A magnetohydrodynamic flow of a water-based hybrid nanofluid past a convectively heated rotating disk surface: A passive control of nanoparticles
One of the basic fluid mechanics problems of fluid flows over a revolving disk has both theoretical and real-world applications. The flow over a rotating disk has been the subject of numerous theoretical studies because it has many real-world applications in areas like rotating machinery, medical eq...
Saved in:
Published in | Reviews on advanced materials science Vol. 63; no. 1; pp. pp. 1 - 21 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
07.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the basic fluid mechanics problems of fluid flows over a revolving disk has both theoretical and real-world applications. The flow over a rotating disk has been the subject of numerous theoretical studies because it has many real-world applications in areas like rotating machinery, medical equipment, electronic devices, and computer storage. It is also crucial for engineering processes. Therefore, this article deals with a time-independent water-based hybrid nanofluid flow containing copper oxide and silver nanoparticles past a spinning disk. The Newtonian flow is taken into consideration in this analysis. The influence of magnetic field, thermophoresis, nonlinear thermal radiation, Brownian motion, and activation energy has been considered. The present analysis is modeled in a partial differential equation form and is then converted to ordinary differential equations using appropriate variables. A numerical solution using the bvp4c technique is accomplished using MATLAB software. The current results are matched with the previous literature and established a close relationship with previous studies. The purpose of this investigation is to numerically investigate the time-independent hybrid nanofluid flow comprising copper oxide and silver nanoparticles over a rotating disk surface. The results show that the increased magnetic parameters increase the friction force at the surface, which decreases the radial and azimuthal velocity distribution. At the sheet surface, the radial velocity of the hybrid nanofluid shows dominant performance compared to the nanofluid. On the other hand, the magnetic factor has dominant behavior on the azimuthal velocity component of the nanofluid flow compared to the hybrid nanofluid flow. The higher volume fraction and magnetic factor enhance the skin friction at the disk surface. Furthermore, greater surface drag is found for the hybrid nanofluid flow. The higher solid volume fraction, temperature ratio, and Biot number enhance the rate of heat transmission. Also, a higher rate of heat transmission is observed for the hybrid nanofluid flow. |
---|---|
AbstractList | One of the basic fluid mechanics problems of fluid flows over a revolving disk has both theoretical and real-world applications. The flow over a rotating disk has been the subject of numerous theoretical studies because it has many real-world applications in areas like rotating machinery, medical equipment, electronic devices, and computer storage. It is also crucial for engineering processes. Therefore, this article deals with a time-independent water-based hybrid nanofluid flow containing copper oxide and silver nanoparticles past a spinning disk. The Newtonian flow is taken into consideration in this analysis. The influence of magnetic field, thermophoresis, nonlinear thermal radiation, Brownian motion, and activation energy has been considered. The present analysis is modeled in a partial differential equation form and is then converted to ordinary differential equations using appropriate variables. A numerical solution using the bvp4c technique is accomplished using MATLAB software. The current results are matched with the previous literature and established a close relationship with previous studies. The purpose of this investigation is to numerically investigate the time-independent hybrid nanofluid flow comprising copper oxide and silver nanoparticles over a rotating disk surface. The results show that the increased magnetic parameters increase the friction force at the surface, which decreases the radial and azimuthal velocity distribution. At the sheet surface, the radial velocity of the hybrid nanofluid shows dominant performance compared to the nanofluid. On the other hand, the magnetic factor has dominant behavior on the azimuthal velocity component of the nanofluid flow compared to the hybrid nanofluid flow. The higher volume fraction and magnetic factor enhance the skin friction at the disk surface. Furthermore, greater surface drag is found for the hybrid nanofluid flow. The higher solid volume fraction, temperature ratio, and Biot number enhance the rate of heat transmission. Also, a higher rate of heat transmission is observed for the hybrid nanofluid flow. |
Author | Hamali, Waleed AL-Essa, Laila A. Mahnashi, Ali M. Saeed, Anwar Yasmin, Humaira |
Author_xml | – sequence: 1 givenname: Humaira surname: Yasmin fullname: Yasmin, Humaira email: hhassain@kfu.edu.sa organization: Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al Ahsa, 31982, Saudi Arabia – sequence: 2 givenname: Laila A. surname: AL-Essa fullname: AL-Essa, Laila A. organization: Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia – sequence: 3 givenname: Ali M. surname: Mahnashi fullname: Mahnashi, Ali M. organization: Department of Mathematics, College of Science, Jazan University, Jazan, Saudi Arabia – sequence: 4 givenname: Waleed surname: Hamali fullname: Hamali, Waleed organization: Department of Mathematics, College of Science, Jazan University, Jazan, Saudi Arabia – sequence: 5 givenname: Anwar surname: Saeed fullname: Saeed, Anwar email: anwarsaeed769@gmail.com organization: Department of Mathematics, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan |
BookMark | eNp1kc1qGzEUhUVJoYnbbdd6gUn1M5rxdGdCfwKBbNq1uCNd2XLHIyPJMfMYfeNKdSglkJUO0v3OFefckKs5zEjIR85uueLqU4RDagQTbcOYat-Qa94x1ay56K_-0-_ITUp7xkTP-uGa_N7QA2xnzGG32BjsMsPBG-qmcKbBUaBnyBibERJaulvG6C2dYQ5uOhV1hJTLjAnzE5rsn3Ba6A4LYWkMGbKft9T69IumU3Rg8DPdVCaVyQrlGKa6pRoeIWZvJkzvyVsHU8IPz-eK_Pz65cfd9-bh8dv93eahMXJQuelazpSR4MB1qAQOjg-s67iCkXXc9ONg2pGpobz1vRRonZGt6p1dj3KthJQrcn_xtQH2-hj9AeKiA3j99yLErX7-klYGkQ_SOmt5O0q-RmRtL4wVKB0r9itye_EyMaQU0f3z40zXcnQtR9dydC2nAO0LwPiaV80E_PQ6NlywM0ylFovbeFqK0PtwinNJ6xWwk1z-AXyPrMw |
CitedBy_id | crossref_primary_10_1007_s41939_025_00758_7 crossref_primary_10_3934_math_20241549 crossref_primary_10_1016_j_jrras_2025_101344 |
Cites_doi | 10.1016/j.icheatmasstransfer.2021.105800 10.1007/s40819-022-01357-7 10.1177/09544089221083468 10.1016/j.ijheatmasstransfer.2022.123085 10.1016/j.csite.2022.101893 10.1016/j.heliyon.2023.e22737 10.1016/j.aej.2022.12.034 10.1016/j.csite.2022.102104 10.3390/mi12060605 10.1016/j.icheatmasstransfer.2022.106244 10.1016/j.csite.2021.101428 10.1016/j.matcom.2021.09.022 10.3390/mi13020302 10.1016/j.ijthermalsci.2011.08.016 10.1016/j.molliq.2016.03.046 10.1016/j.ijheatmasstransfer.2013.03.004 10.1371/journal.pone.0249264 10.1615/JPorMedia.2022040519 10.1088/1361-6528/ac8995 10.1002/htj.22550 10.1038/s41598-022-13351-6 10.1142/S0217979223500595 10.1038/s41598-021-97045-5 10.1038/s41598-022-23561-7 10.1016/j.csite.2023.103510 10.1016/j.padiff.2021.100240 10.1007/s13369-021-05673-w 10.1016/j.cmpb.2019.105197 10.1016/j.molliq.2023.122018 10.1177/23977914241231891 10.1016/j.icheatmasstransfer.2021.105562 10.1016/j.rineng.2022.100745 10.1016/j.aej.2022.02.013 10.1038/s41598-023-49988-0 10.3934/math.2023608 10.1142/S0217984924502087 10.1007/s13204-022-02583-7 10.3390/app12178779 10.1080/02286203.2023.2191586 10.1155/2022/3429439 10.3390/nano12091566 10.1016/j.aej.2022.10.021 10.1002/zamm.19210010401 10.1016/j.cplett.2021.139172 10.1016/j.heliyon.2024.e26628 10.1080/17455030.2022.2152905 10.1016/j.aej.2022.01.043 10.1007/s40997-016-0030-8 10.1140/epjs/s11734-021-00409-1 10.1016/j.aej.2023.05.089 10.1016/j.compfluid.2009.12.007 10.1088/1402-4896/ac297c 10.1080/10407790.2024.2318456 10.3390/mi13010116 10.1002/num.22620 10.1016/j.icheatmasstransfer.2021.105816 10.3390/mi13111871 10.37934/cfdl.14.3.2238 10.3389/fenrg.2022.986284 10.3390/cryst12091308 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1515/rams-2024-0054 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1605-8127 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_5cee193dfdd14b318ee0472cd2e3f077 10_1515_rams_2024_0054 10_1515_rams_2024_0054631 |
GroupedDBID | -~X 123 29P 2WC AAFWJ ABFKT ADMLS AEGXH AENEX AFBDD AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS E3Z EBS EJD EOJEC GROUPED_DOAJ HH5 KQ8 M48 OBODZ OK1 OVT QD8 RNS SLJYH TR2 TUS XSB AAYXX CITATION |
ID | FETCH-LOGICAL-c395t-64105c3afaf6e52e9f1906615ab061c7b9c4b059e527732edfc3457fd8b385233 |
IEDL.DBID | M48 |
ISSN | 1605-8127 |
IngestDate | Wed Aug 27 01:30:56 EDT 2025 Thu Apr 24 22:57:44 EDT 2025 Tue Jul 01 04:10:20 EDT 2025 Thu Jul 10 10:32:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-64105c3afaf6e52e9f1906615ab061c7b9c4b059e527732edfc3457fd8b385233 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/rams-2024-0054 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5cee193dfdd14b318ee0472cd2e3f077 crossref_primary_10_1515_rams_2024_0054 crossref_citationtrail_10_1515_rams_2024_0054 walterdegruyter_journals_10_1515_rams_2024_0054631 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-07 |
PublicationDateYYYYMMDD | 2024-10-07 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Reviews on advanced materials science |
PublicationYear | 2024 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2024100709170004305_j_rams-2024-0054_ref_033 2024100709170004305_j_rams-2024-0054_ref_034 2024100709170004305_j_rams-2024-0054_ref_031 2024100709170004305_j_rams-2024-0054_ref_032 2024100709170004305_j_rams-2024-0054_ref_030 2024100709170004305_j_rams-2024-0054_ref_039 2024100709170004305_j_rams-2024-0054_ref_037 2024100709170004305_j_rams-2024-0054_ref_038 2024100709170004305_j_rams-2024-0054_ref_035 2024100709170004305_j_rams-2024-0054_ref_036 2024100709170004305_j_rams-2024-0054_ref_022 2024100709170004305_j_rams-2024-0054_ref_023 2024100709170004305_j_rams-2024-0054_ref_020 2024100709170004305_j_rams-2024-0054_ref_021 2024100709170004305_j_rams-2024-0054_ref_062 2024100709170004305_j_rams-2024-0054_ref_060 2024100709170004305_j_rams-2024-0054_ref_061 2024100709170004305_j_rams-2024-0054_ref_028 2024100709170004305_j_rams-2024-0054_ref_029 2024100709170004305_j_rams-2024-0054_ref_026 2024100709170004305_j_rams-2024-0054_ref_027 2024100709170004305_j_rams-2024-0054_ref_024 2024100709170004305_j_rams-2024-0054_ref_025 2024100709170004305_j_rams-2024-0054_ref_011 2024100709170004305_j_rams-2024-0054_ref_055 2024100709170004305_j_rams-2024-0054_ref_012 2024100709170004305_j_rams-2024-0054_ref_056 2024100709170004305_j_rams-2024-0054_ref_053 2024100709170004305_j_rams-2024-0054_ref_010 2024100709170004305_j_rams-2024-0054_ref_054 2024100709170004305_j_rams-2024-0054_ref_051 2024100709170004305_j_rams-2024-0054_ref_052 2024100709170004305_j_rams-2024-0054_ref_050 2024100709170004305_j_rams-2024-0054_ref_019 2024100709170004305_j_rams-2024-0054_ref_017 2024100709170004305_j_rams-2024-0054_ref_018 2024100709170004305_j_rams-2024-0054_ref_015 2024100709170004305_j_rams-2024-0054_ref_059 2024100709170004305_j_rams-2024-0054_ref_016 2024100709170004305_j_rams-2024-0054_ref_013 2024100709170004305_j_rams-2024-0054_ref_057 2024100709170004305_j_rams-2024-0054_ref_014 2024100709170004305_j_rams-2024-0054_ref_058 2024100709170004305_j_rams-2024-0054_ref_044 2024100709170004305_j_rams-2024-0054_ref_001 2024100709170004305_j_rams-2024-0054_ref_045 2024100709170004305_j_rams-2024-0054_ref_042 2024100709170004305_j_rams-2024-0054_ref_043 2024100709170004305_j_rams-2024-0054_ref_040 2024100709170004305_j_rams-2024-0054_ref_041 2024100709170004305_j_rams-2024-0054_ref_008 2024100709170004305_j_rams-2024-0054_ref_009 2024100709170004305_j_rams-2024-0054_ref_006 2024100709170004305_j_rams-2024-0054_ref_007 2024100709170004305_j_rams-2024-0054_ref_004 2024100709170004305_j_rams-2024-0054_ref_048 2024100709170004305_j_rams-2024-0054_ref_005 2024100709170004305_j_rams-2024-0054_ref_049 2024100709170004305_j_rams-2024-0054_ref_002 2024100709170004305_j_rams-2024-0054_ref_046 2024100709170004305_j_rams-2024-0054_ref_003 2024100709170004305_j_rams-2024-0054_ref_047 |
References_xml | – ident: 2024100709170004305_j_rams-2024-0054_ref_053 doi: 10.1016/j.icheatmasstransfer.2021.105800 – ident: 2024100709170004305_j_rams-2024-0054_ref_032 doi: 10.1007/s40819-022-01357-7 – ident: 2024100709170004305_j_rams-2024-0054_ref_058 – ident: 2024100709170004305_j_rams-2024-0054_ref_041 doi: 10.1177/09544089221083468 – ident: 2024100709170004305_j_rams-2024-0054_ref_023 doi: 10.1016/j.ijheatmasstransfer.2022.123085 – ident: 2024100709170004305_j_rams-2024-0054_ref_060 doi: 10.1016/j.csite.2022.101893 – ident: 2024100709170004305_j_rams-2024-0054_ref_034 doi: 10.1016/j.heliyon.2023.e22737 – ident: 2024100709170004305_j_rams-2024-0054_ref_027 doi: 10.1016/j.aej.2022.12.034 – ident: 2024100709170004305_j_rams-2024-0054_ref_044 doi: 10.1016/j.csite.2022.102104 – ident: 2024100709170004305_j_rams-2024-0054_ref_054 doi: 10.3390/mi12060605 – ident: 2024100709170004305_j_rams-2024-0054_ref_004 doi: 10.1016/j.icheatmasstransfer.2022.106244 – ident: 2024100709170004305_j_rams-2024-0054_ref_055 doi: 10.1016/j.csite.2021.101428 – ident: 2024100709170004305_j_rams-2024-0054_ref_017 doi: 10.1016/j.matcom.2021.09.022 – ident: 2024100709170004305_j_rams-2024-0054_ref_046 doi: 10.3390/mi13020302 – ident: 2024100709170004305_j_rams-2024-0054_ref_050 doi: 10.1016/j.ijthermalsci.2011.08.016 – ident: 2024100709170004305_j_rams-2024-0054_ref_051 doi: 10.1016/j.molliq.2016.03.046 – ident: 2024100709170004305_j_rams-2024-0054_ref_061 doi: 10.1016/j.ijheatmasstransfer.2013.03.004 – ident: 2024100709170004305_j_rams-2024-0054_ref_007 doi: 10.1371/journal.pone.0249264 – ident: 2024100709170004305_j_rams-2024-0054_ref_014 doi: 10.1615/JPorMedia.2022040519 – ident: 2024100709170004305_j_rams-2024-0054_ref_019 doi: 10.1088/1361-6528/ac8995 – ident: 2024100709170004305_j_rams-2024-0054_ref_036 doi: 10.1002/htj.22550 – ident: 2024100709170004305_j_rams-2024-0054_ref_039 doi: 10.1038/s41598-022-13351-6 – ident: 2024100709170004305_j_rams-2024-0054_ref_001 – ident: 2024100709170004305_j_rams-2024-0054_ref_043 doi: 10.1142/S0217979223500595 – ident: 2024100709170004305_j_rams-2024-0054_ref_013 doi: 10.1038/s41598-021-97045-5 – ident: 2024100709170004305_j_rams-2024-0054_ref_002 doi: 10.1038/s41598-022-23561-7 – ident: 2024100709170004305_j_rams-2024-0054_ref_035 doi: 10.1016/j.csite.2023.103510 – ident: 2024100709170004305_j_rams-2024-0054_ref_018 doi: 10.1016/j.padiff.2021.100240 – ident: 2024100709170004305_j_rams-2024-0054_ref_042 doi: 10.1007/s13369-021-05673-w – ident: 2024100709170004305_j_rams-2024-0054_ref_005 doi: 10.1016/j.cmpb.2019.105197 – ident: 2024100709170004305_j_rams-2024-0054_ref_052 doi: 10.1016/j.molliq.2023.122018 – ident: 2024100709170004305_j_rams-2024-0054_ref_011 doi: 10.1177/23977914241231891 – ident: 2024100709170004305_j_rams-2024-0054_ref_031 doi: 10.1016/j.icheatmasstransfer.2021.105562 – ident: 2024100709170004305_j_rams-2024-0054_ref_059 doi: 10.1016/j.rineng.2022.100745 – ident: 2024100709170004305_j_rams-2024-0054_ref_029 doi: 10.1016/j.aej.2022.02.013 – ident: 2024100709170004305_j_rams-2024-0054_ref_012 doi: 10.1038/s41598-023-49988-0 – ident: 2024100709170004305_j_rams-2024-0054_ref_026 doi: 10.3934/math.2023608 – ident: 2024100709170004305_j_rams-2024-0054_ref_008 doi: 10.1142/S0217984924502087 – ident: 2024100709170004305_j_rams-2024-0054_ref_037 doi: 10.1007/s13204-022-02583-7 – ident: 2024100709170004305_j_rams-2024-0054_ref_048 doi: 10.3390/app12178779 – ident: 2024100709170004305_j_rams-2024-0054_ref_020 doi: 10.1080/02286203.2023.2191586 – ident: 2024100709170004305_j_rams-2024-0054_ref_015 doi: 10.1155/2022/3429439 – ident: 2024100709170004305_j_rams-2024-0054_ref_022 doi: 10.3390/nano12091566 – ident: 2024100709170004305_j_rams-2024-0054_ref_003 doi: 10.1016/j.aej.2022.10.021 – ident: 2024100709170004305_j_rams-2024-0054_ref_056 doi: 10.1002/zamm.19210010401 – ident: 2024100709170004305_j_rams-2024-0054_ref_047 doi: 10.1016/j.cplett.2021.139172 – ident: 2024100709170004305_j_rams-2024-0054_ref_009 doi: 10.1016/j.heliyon.2024.e26628 – ident: 2024100709170004305_j_rams-2024-0054_ref_024 doi: 10.1080/17455030.2022.2152905 – ident: 2024100709170004305_j_rams-2024-0054_ref_030 doi: 10.1016/j.aej.2022.01.043 – ident: 2024100709170004305_j_rams-2024-0054_ref_025 doi: 10.1007/s40997-016-0030-8 – ident: 2024100709170004305_j_rams-2024-0054_ref_016 doi: 10.1140/epjs/s11734-021-00409-1 – ident: 2024100709170004305_j_rams-2024-0054_ref_033 doi: 10.1016/j.aej.2023.05.089 – ident: 2024100709170004305_j_rams-2024-0054_ref_062 doi: 10.1016/j.compfluid.2009.12.007 – ident: 2024100709170004305_j_rams-2024-0054_ref_057 doi: 10.1088/1402-4896/ac297c – ident: 2024100709170004305_j_rams-2024-0054_ref_010 doi: 10.1080/10407790.2024.2318456 – ident: 2024100709170004305_j_rams-2024-0054_ref_028 doi: 10.3390/mi13010116 – ident: 2024100709170004305_j_rams-2024-0054_ref_049 doi: 10.1002/num.22620 – ident: 2024100709170004305_j_rams-2024-0054_ref_038 doi: 10.1016/j.icheatmasstransfer.2021.105816 – ident: 2024100709170004305_j_rams-2024-0054_ref_021 doi: 10.3390/mi13111871 – ident: 2024100709170004305_j_rams-2024-0054_ref_006 doi: 10.37934/cfdl.14.3.2238 – ident: 2024100709170004305_j_rams-2024-0054_ref_045 doi: 10.3389/fenrg.2022.986284 – ident: 2024100709170004305_j_rams-2024-0054_ref_040 doi: 10.3390/cryst12091308 |
SSID | ssj0027079 |
Score | 2.394519 |
Snippet | One of the basic fluid mechanics problems of fluid flows over a revolving disk has both theoretical and real-world applications. The flow over a rotating disk... |
SourceID | doaj crossref walterdegruyter |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | pp. 1 |
SubjectTerms | activation energy heat source hybrid nanofluid MHD nonlinear thermal radiation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXexA8LTb7SIy3KooIelLwFjb7qGJNSpJS-jP8x85sElFBvHgr6SQbdiYz3zCz3xBynOAQJDAcxqUaMpkKxUDNEbM-yh0g9kh7PO98dx_fPMrbJ_X0ZdQX9oS19MDtxp0q8OIAMqy3NpI5WKBzSHBoLHfCD5NwjhxiXp9M9anWMEk7ikYI2KeVfqvBHrhkCFG-haDA1L9K1uahOm3duJotmr4aGoLM9TpZ69AhHbVvtUGWXLFJVr9wBm6R9xF90-PCNeXzwoL3ayfKUz8p57T0VNM5oMeKYXSy9HmBB7JooYvST2bwa6rrBmRCr3nwdJMFRXcMslWJVfliTO1L_UrrWeW1ced0hPdgjzvtutpxFXzgtO-p2yaP11cPlzesm6vAjEhVw2Js7TRCe-1jp7hLPaACiNNK5xDdTZKnRuYAu-C_JBHcWW-EVIm3Z7k4g8RV7JDloizcLqEeC41Drp3RSD3IdWS1UkJKyyOXx_GAsH6rM9ORjuPsi0mGyQeoJkPVZKiaDFUzICef8tOWbuNXyQvU3KcU0mSHC2A8WbcB2V_GMyD8h96z7hOuf1kW7HjvP1beJyvBHrEVITkgy001c4cAb5r8KFjyB0Gb-8k priority: 102 providerName: Directory of Open Access Journals |
Title | A magnetohydrodynamic flow of a water-based hybrid nanofluid past a convectively heated rotating disk surface: A passive control of nanoparticles |
URI | https://www.degruyter.com/doi/10.1515/rams-2024-0054 https://doaj.org/article/5cee193dfdd14b318ee0472cd2e3f077 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpemkOoU-6fQQdAjmpXethrQOlbEtDCCSnLORmZD02pV57a3vZ-mfkH3dG6036yqU3Y49s0Dea-eQZzRByqLEJEigO41KNmcyEYgBzwlxICg-MPTEBzzufX6SnM3l2pa7u8p-GCWz_ubXDflKzpnz343v_ERb8h9i9J1HvG7NoAW0uGRKQB-QheCWNi_RcTu42X2OdDUUb_x7zm1OKtfv3yP46xqudnzervtvGR6PbOXlM9ge-SKcbgJ-QHV89JXu_VBF8Rm6mdGHmle_q696BPdz0mKehrNe0DtTQNfDJhqG_cvS6xyNatDJVHcoVXC1N24FMzD6Ptq_sKRpokG1qjNNXc-q-tt9ou2qCsf6YTnEMZr3TIc8dv4IvXG6z7J6T2cmXy8-nbOi0wKzIVMdSTPa0wgQTUq-4zwLwBPDcyhTg760uMisLIGLwTGvBvQtWSKWDmxRiAltZ8YLsVnXlXxIaMPQ45sZbg8UIuUmcUUpI6XjiizQdEbad6twOZcixG0aZ43YEoMkRmhyhyRGaETm6lV9uCnDcK_kJkbuVwsLZ8UbdzPNhAnIFpAA4qwvOJbIAg-Y91su0jnsRxlqPCP8D93yrk_d8FjT71f8Mek0eRf3DZAT9hux2zcq_BYLTFQfxx8BB1N-f27D93Q |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4A9rHiKsjx8QOJktYntuNlbQSwFdpcDu9LeLMePFpEmVR6q-jP4x8yk2VJAe-EWJeMk8jfxfI7H3xDyRmERJHAcFgs5ZiLlkgHMEXMhyjww9sgE3O98fpHMrsTna3m9txcG0yqdn1ftptkqpI5caVv8UbbTGoAIPKrMsgaAY8GQc4wWzTK_Sw4SYP-TATmYzj5--_p72jVWaS_X-G_TP8JRp9p_SI7W3Ur17jX2As7pA3LUM0U63UL7kNzxxSNyuKcf-Jj8nNKlmRe-KRcbByPhtro8DXm5pmWghq6BSVYMI5Wjiw1uzqKFKcqQt3C0MnUDNl3eeTfq5RuKQzPYViWu0Bdz6r7XP2jdVsFYf0Kn2Abz3Wmf4Y5PwRuubvLrnpCr0w-X72esr7HALE9lwxJM87TcBBMSL2OfBmAIELOlySDSW5WlVmRAweCaUjz2LlgupApukvEJTGL5UzIoysI_IzTgouM4Nt4alCGMTeSMlFwIF0c-S5IhYTddrW0vQI51MHKNExGARiM0GqHRCM2QvN3Zr7bSG7davkPkdlYomd2dKKu57jtAS6ADwFZdcC4SGQxl3qNSpnWx52Gs1JDEf-Gu-8-5vuWx4NPP_6fRa3Jvdnl-ps8-XXw5Jvc7X8SUBPWCDJqq9S-B5jTZq96PfwFJuf3m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagKyH2sFpeorALPiBxstr4EW-4dYFSXgsSrMTNcvzoIrpJlYeq_gz-MTNpWhbQXrhFyTiJ_E08n-PxN4Q801gECRyHcanGTGZCMYA5YT4meQDGntiI-50_nqWzc_num9pmE9Z9WqUP86pdNxuF1JEvXYs_ynZaAxCBR5W9rAFgLhlyjtHSx5tkL00zIQdkbzJ78-XT71nXWGe9WuO_Lf-IRp1o_z45WHUL1bu3uBJvpofkoCeKdLJB9g65EYq7ZP-KfOA98nNCL-28CE15sfYwEG6Ky9O4KFe0jNTSFRDJimGg8vRijXuzaGGLMi5aOFraugGbLu28G_QWa4ojM9hWJS7QF3Pqv9c_aN1W0brwgk6wDaa70z7BHZ-CN1xu0-vuk_Pp668vZ6wvscCcyFTDUszydMJGG9OgeMgiEAQI2crmEOidzjMnc2BgcE1rwYOPTkiloz_JxQnMYcUDMijKIjwkNOKa45jb4CyqEHKbeKuUkNLzJORpOiRs29XG9frjWAZjYXAeAtAYhMYgNAahGZLnO_vlRnnjWstTRG5nhYrZ3Ymympu-A4wCNgBk1UfvE5nDSBYCCmU6z4OIY62HhP-Fu-m_5vqax4JLP_qfRk_Jrc-vpubD27P3j8ntzhUxIUEfkUFTteEYSE6TP-nd-Be-Xf0M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+magnetohydrodynamic+flow+of+a+water-based+hybrid+nanofluid+past+a+convectively+heated+rotating+disk+surface%3A+A+passive+control+of+nanoparticles&rft.jtitle=Reviews+on+advanced+materials+science&rft.au=Yasmin%2C+Humaira&rft.au=AL-Essa%2C+Laila+A.&rft.au=Mahnashi%2C+Ali+M.&rft.au=Hamali%2C+Waleed&rft.date=2024-10-07&rft.pub=De+Gruyter&rft.eissn=1605-8127&rft.volume=63&rft.issue=1&rft_id=info:doi/10.1515%2Frams-2024-0054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_rams_2024_0054631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1605-8127&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1605-8127&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1605-8127&client=summon |