Peroxiredoxins as biomarkers of oxidative stress
Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis. This review disc...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1840; no. 2; pp. 906 - 912 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis.
This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems.
Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources.
Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
•Peroxiredoxins are endogenous antioxidants and redox sensors.•Various biochemical properties of the peroxiredoxins make them suitable as markers of oxidative stress.•Different methods are available to detect peroxiredoxin oxidation.•Oxidized peroxiredoxins have been detected in experimental and clinical samples. |
---|---|
AbstractList | Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis.This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems.Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources.Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis. This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems. Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources. Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. •Peroxiredoxins are endogenous antioxidants and redox sensors.•Various biochemical properties of the peroxiredoxins make them suitable as markers of oxidative stress.•Different methods are available to detect peroxiredoxin oxidation.•Oxidized peroxiredoxins have been detected in experimental and clinical samples. Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis.BACKGROUNDPeroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis.This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems.SCOPE OF REVIEWThis review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems.Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources.MAJOR CONCLUSIONSTwo Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources.Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.GENERAL SIGNIFICANCEMonitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis. This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems. Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources. Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. |
Author | Hampton, Mark B. Poynton, Rebecca A. |
Author_xml | – sequence: 1 givenname: Rebecca A. surname: Poynton fullname: Poynton, Rebecca A. – sequence: 2 givenname: Mark B. surname: Hampton fullname: Hampton, Mark B. email: mark.hampton@otago.ac.nz |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23939310$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYMo2lb_gcgs3cx4M5nJw4UgxRcIutB1yGTuSGo7qcm06L83pbpxYRNIIHzncM_JmOz3vkdCTikUFCi_mBVNY96wL0qgrABZANA9MqJSlLkE4PtkBAyqvKK8PiLjGGeQVq3qQ3JUMpU2hRGBZwz-0wVs09nHzMSscX5hwjuGmPkuS8-tGdwaszgEjPGYHHRmHvHk556Q19ubl-l9_vh09zC9fswtU_WQc9ZRaUuB1tSNlA0vK9OaWgCKDkEqaixwIWprlWpKaNNkTFTc1kIC7RRjE3K-9V0G_7HCOOiFixbnc9OjX0VdpjBUKSb4TpRWnCdO0Q169oOumgW2ehlcyvqlfwtJwOUWsMHHGLDT1g0pv--HYNxcU9Cb9vVMb9vXm_Y1SJ2mSeLqj_jXf4fsaivD1OfaYdDROuwttulf7KBb7_43-Ab1tJ32 |
CitedBy_id | crossref_primary_10_1016_j_freeradbiomed_2018_05_061 crossref_primary_10_1089_ars_2017_7422 crossref_primary_10_3389_fpls_2022_953450 crossref_primary_10_3390_antiox13050555 crossref_primary_10_3390_antiox9080701 crossref_primary_10_1080_13510002_2021_1901028 crossref_primary_10_1002_pro_2903 crossref_primary_10_1007_s40071_017_0175_0 crossref_primary_10_1016_j_plaphy_2022_11_009 crossref_primary_10_1016_j_intimp_2018_12_053 crossref_primary_10_3390_antiox9121184 crossref_primary_10_3390_app10103602 crossref_primary_10_3389_fchem_2024_1470458 crossref_primary_10_1016_j_plaphy_2025_109552 crossref_primary_10_1039_D1FO01036K crossref_primary_10_1080_10715762_2020_1745201 crossref_primary_10_1530_ERC_18_0115 crossref_primary_10_1016_j_abb_2019_108231 crossref_primary_10_1111_his_12659 crossref_primary_10_1155_2014_209845 crossref_primary_10_1016_j_pneurobio_2016_05_001 crossref_primary_10_1016_j_pharep_2014_12_014 crossref_primary_10_1155_2018_2812904 crossref_primary_10_3390_antiox11122486 crossref_primary_10_1161_CIRCRESAHA_113_302021 crossref_primary_10_1371_journal_pone_0119350 crossref_primary_10_3390_ijms20153745 crossref_primary_10_1021_acs_chemrev_7b00205 crossref_primary_10_1021_bi5008386 crossref_primary_10_1155_2014_346809 crossref_primary_10_1111_lam_12435 crossref_primary_10_3390_antiox12051012 crossref_primary_10_1089_ars_2022_0026 crossref_primary_10_1016_j_bbadis_2016_11_019 crossref_primary_10_1016_j_fsi_2021_12_055 crossref_primary_10_1007_s13577_017_0171_0 crossref_primary_10_1101_cshperspect_a027698 crossref_primary_10_3892_ol_2017_7549 crossref_primary_10_1016_j_semcancer_2017_04_005 crossref_primary_10_1016_j_freeradbiomed_2015_04_030 crossref_primary_10_1042_EBC20230036 crossref_primary_10_1016_j_fsi_2019_03_072 crossref_primary_10_1089_thy_2020_0160 crossref_primary_10_1007_s12045_022_1329_y crossref_primary_10_1016_j_gene_2020_145350 crossref_primary_10_3109_00498254_2015_1110760 crossref_primary_10_1016_j_freeradbiomed_2014_09_025 crossref_primary_10_1017_S0043933916000751 crossref_primary_10_1016_j_jchromb_2015_06_007 crossref_primary_10_1038_cddis_2016_315 crossref_primary_10_1016_j_canlet_2016_12_009 crossref_primary_10_1038_srep38300 crossref_primary_10_1016_j_fct_2018_01_025 crossref_primary_10_1089_ars_2020_8077 crossref_primary_10_1111_jphp_12329 crossref_primary_10_1016_j_scitotenv_2025_178510 crossref_primary_10_3892_mmr_2015_4544 crossref_primary_10_1016_j_fsi_2019_02_023 crossref_primary_10_1021_acs_jafc_1c04742 crossref_primary_10_1155_2021_9508702 crossref_primary_10_1186_s10020_023_00756_w crossref_primary_10_1007_s12017_017_8467_5 crossref_primary_10_1074_jbc_M115_699850 crossref_primary_10_1371_journal_pone_0097588 crossref_primary_10_1016_j_jep_2024_117938 crossref_primary_10_1002_jcp_31431 crossref_primary_10_1016_j_tiv_2017_04_028 crossref_primary_10_1007_s12192_015_0594_z crossref_primary_10_1039_C6FO00674D crossref_primary_10_1007_s10646_022_02532_8 crossref_primary_10_3390_antiox7100136 crossref_primary_10_14348_molcells_2016_2328 crossref_primary_10_1016_j_freeradbiomed_2017_03_016 crossref_primary_10_1016_j_cbi_2019_06_030 crossref_primary_10_3390_antiox10020276 crossref_primary_10_1016_j_bbamcr_2021_119041 crossref_primary_10_3390_antiox12101811 crossref_primary_10_3389_fpls_2022_995855 crossref_primary_10_3390_metabo12010023 crossref_primary_10_1016_j_brainres_2023_148428 crossref_primary_10_1152_ajpcell_00002_2018 crossref_primary_10_1007_s10545_017_0104_9 crossref_primary_10_1155_2021_1208690 crossref_primary_10_1186_s40001_024_01989_z crossref_primary_10_1016_j_freeradbiomed_2020_06_006 crossref_primary_10_1016_j_fob_2014_10_003 crossref_primary_10_1007_s12031_024_02270_y crossref_primary_10_1002_bit_25921 crossref_primary_10_1007_s12640_017_9738_5 crossref_primary_10_1016_j_fsi_2017_06_034 crossref_primary_10_1016_j_freeradbiomed_2019_03_007 crossref_primary_10_1128_MCB_00148_19 crossref_primary_10_1186_s12864_015_2341_3 crossref_primary_10_1007_s00018_014_1579_2 crossref_primary_10_1371_journal_pone_0146832 crossref_primary_10_1016_j_freeradbiomed_2020_08_026 crossref_primary_10_1124_mol_113_091322 crossref_primary_10_1002_pmic_201500248 crossref_primary_10_1155_2022_3605436 crossref_primary_10_1152_japplphysiol_00340_2019 crossref_primary_10_1007_s11064_014_1481_1 crossref_primary_10_1016_j_cbpc_2018_11_005 crossref_primary_10_1016_j_chemosphere_2019_124602 crossref_primary_10_3390_genes11121392 crossref_primary_10_3892_etm_2015_2693 crossref_primary_10_1371_journal_pcbi_1008202 crossref_primary_10_1039_C7TX00201G crossref_primary_10_1155_2020_6039769 crossref_primary_10_1007_s00429_015_1135_3 crossref_primary_10_1016_j_molp_2025_01_014 crossref_primary_10_22175_mmb_14492 crossref_primary_10_1007_s10557_023_07480_x crossref_primary_10_1016_j_bbagen_2018_11_007 crossref_primary_10_1089_ars_2017_7214 crossref_primary_10_14348_molcells_2016_2351 crossref_primary_10_1002_jcp_27322 crossref_primary_10_1007_s10534_014_9726_7 crossref_primary_10_1152_ajplung_00088_2014 crossref_primary_10_1096_fj_14_250050 crossref_primary_10_22175_mmb_12241 crossref_primary_10_1126_sciadv_adq4461 crossref_primary_10_1016_j_bbapap_2014_03_007 crossref_primary_10_1016_j_dib_2017_01_005 crossref_primary_10_3389_fcell_2021_673618 |
Cites_doi | 10.1042/BJ20091541 10.1016/j.freeradbiomed.2012.05.020 10.1021/bi012173m 10.1073/pnas.0708308105 10.1016/j.febslet.2010.02.042 10.1016/j.molcel.2012.05.030 10.1021/bi900558g 10.1074/jbc.M113.460881 10.1074/jbc.M409482200 10.1182/blood-2006-09-048728 10.1128/JB.183.6.1961-1973.2001 10.1074/jbc.M700339200 10.1016/j.freeradbiomed.2009.08.015 10.1089/ars.2011.4348 10.1007/s10571-008-9333-7 10.1038/nature02075 10.1126/science.1080405 10.1016/S0076-6879(10)74004-0 10.1074/jbc.M301145200 10.1074/jbc.M110432200 10.1007/s11064-007-9345-6 10.1074/jbc.M401748200 10.1042/BJ20101156 10.1016/j.freeradbiomed.2007.11.017 10.1016/j.febslet.2009.05.029 10.1016/j.freeradbiomed.2006.10.042 10.1016/j.febslet.2005.12.030 10.1021/bi050448i 10.1074/jbc.M206626200 10.1016/j.bbabio.2009.03.002 10.1016/S0969-2126(00)00147-7 10.1002/1615-9861(200209)2:9<1261::AID-PROT1261>3.0.CO;2-Q 10.1096/fj.13-227298 10.1016/j.tox.2008.12.013 10.1089/ars.2008.2049 10.1016/j.jmb.2010.07.022 10.1074/jbc.M111.232355 10.1016/j.lfs.2012.01.003 10.1074/jbc.C300428200 10.1016/S0968-0004(02)00003-8 10.1074/jbc.273.32.20096 10.1002/hep.24104 10.1042/BJ20090242 10.1515/BC.2002.040 10.1089/ars.2010.3843 10.1042/BJ20050337 10.1016/j.freeradbiomed.2009.08.022 10.1080/10715760100300831 10.1089/ars.2011.4334 10.1371/journal.pone.0015558 10.1038/nature09702 10.1016/j.freeradbiomed.2013.01.021 10.1021/bi101373h 10.1016/j.freeradbiomed.2013.02.017 10.1016/j.bcp.2008.08.021 10.1016/j.tox.2011.01.001 10.1016/j.freeradbiomed.2008.04.030 10.1016/j.freeradbiomed.2008.05.004 10.1007/978-1-4020-6051-9_5 10.1074/jbc.M112.433755 10.1016/j.cell.2010.01.009 10.1089/ars.2008.2325 10.1089/ars.2010.3393 10.1016/j.molcel.2011.11.027 10.1016/j.febslet.2009.02.018 10.1093/carcin/bgm093 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2013. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2013. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2013.08.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 912 |
ExternalDocumentID | 23939310 10_1016_j_bbagen_2013_08_001 S0304416513003450 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c395t-63f18c27eca5b88b624ada570e7fe0891ac06775cc99b20d0053746c57801f933 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Mon Jul 21 11:25:03 EDT 2025 Fri Jul 11 04:54:58 EDT 2025 Thu Apr 03 07:02:41 EDT 2025 Tue Jul 01 00:22:01 EDT 2025 Thu Apr 24 23:07:34 EDT 2025 Fri Feb 23 02:32:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Peroxiredoxin Oxidative stress Biomarker Hydrogen peroxide IAM AMS NEM Prx Srx Oxidation Hyperoxidation Cys N-ethylmaleimide cysteine sulfiredoxin 4′-4-acetamido-4′-((iodoacetyl)amino)stilbene-2,2′-disulfonic acid iodoacetamide |
Language | English |
License | 2013. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-63f18c27eca5b88b624ada570e7fe0891ac06775cc99b20d0053746c57801f933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 23939310 |
PQID | 1466376916 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000199376 proquest_miscellaneous_1466376916 pubmed_primary_23939310 crossref_citationtrail_10_1016_j_bbagen_2013_08_001 crossref_primary_10_1016_j_bbagen_2013_08_001 elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_08_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2014 2014-02-00 2014-Feb 20140201 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: February 2014 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Myers, Myers (bb0230) 2009; 257 Winterbourn, Hampton (bb0045) 2008; 45 Peskin, Cox, Nagy, Morgan, Hampton, Davies, Winterbourn (bb0070) 2010; 432 Jeong, Bae, Toledano, Rhee (bb0160) 2012; 53 Bae, Woo, Sung, Lee, Lee, Kil, Rhee (bb0270) 2009; 11 Cox, Pearson, Pullar, Jonsson, Lowther, Winterbourn, Hampton (bb0265) 2009; 421 Musicco, Capelli, Pesce, Timperio, Calvani, Mosconi, Zolla, Cantatore, Gadaleta (bb0275) 2009; 1787 Day, Brown, Taylor, Rand, Morgan, Veal (bb0330) 2012; 45 Baker, Raudonikiene, Hoffman, Poole (bb0075) 2001; 183 Hwang, Yoo, Kim, Choi, Lee, Won (bb0305) 2007; 32 Hall, Parsonage, Poole, Karplus (bb0095) 2010; 402 Cuddihy, Winterbourn, Hampton (bb0250) 2011; 15 Engelman, Weisman-Shomer, Ziv, Xu, Arner, Benhar (bb0130) 2013; 288 Baty, Hampton, Winterbourn (bb0170) 2005; 389 Kumar, Kitaeff, Hampton, Cannell, Winterbourn (bb0190) 2009; 583 Baty, Hampton, Winterbourn (bb0175) 2002; 2 Myers, Antholine, Myers (bb0235) 2011; 281 Bernal, Vickers, Hampton, Poynton, Sloboda (bb0315) 2010; 5 Cox, Winterbourn, Hampton (bb0185) 2010; 474 Yoo, Park, Yu, Yan, Li, Lee, Choi, Kim, Hwang, Won (bb0310) 2009; 29 Hofmann, Hecht, Flohe (bb0080) 2002; 383 Bae, Sung, Lee, Kang, Lee, Oh, Woo, Kil, Rhee (bb0280) 2012; 17 Peskin, Low, Paton, Maghzal, Hampton, Winterbourn (bb0055) 2007; 282 Myers, Myers (bb0240) 2009; 47 Barranco-Medina, Lazaro, Dietz (bb0035) 2009; 583 Brown, Cox, Hampton (bb0225) 2010; 584 Bae, Sung, Cho, Lee, Lee, Woo, Yu, Kil, Rhee (bb0285) 2011; 53 Rhee, Woo (bb0005) 2011; 15 Woo, Yim, Shin, Kang, Yu, Rhee (bb0135) 2010; 140 Chang, Jeong, Woo, Lee, Park, Rhee (bb0150) 2004; 279 Jang, Kim, Park, Jeon, Lee, Jung, Lee, Chae, Jung, Lee, Lim, Chung, Bahk, Yun, Cho (bb0120) 2006; 580 Chang, Jeong, Choi, Yu, Kang, Rhee (bb0115) 2002; 277 Cox, Peskin, Paton, Winterbourn, Hampton (bb0090) 2009; 48 Ogusucu, Rettori, Munhoz, Netto, Augusto (bb0085) 2007; 42 Stacey, Peskin, Vissers, Winterbourn (bb0180) 2009; 47 Parsonage, Karplus, Poole (bb0050) 2008; 105 Sobotta, Barata, Schmidt, Mueller, Millonig, Dick (bb0195) 2013; 60 Kwon, Bae, Moon, Lee, Lee, Lee, Kim, Park, Moon, Cho (bb0290) 2012; 90 Yang, Kang, Woo, Hwang, Chae, Kim, Rhee (bb0015) 2002; 277 Woo, Kang, Kim, Yang, Chae, Rhee (bb0140) 2003; 278 Cox, Winterbourn, Hampton (bb0165) 2010; 425 Park, Piszczek, Rhee, Chock (bb0125) 2011; 50 Gromer, Arscott, Williams, Schirmer, Becker (bb0255) 1998; 273 Peskin, Dickerhof, Poynton, Paton, Pace, Hampton, Winterbourn (bb0110) 2013; 288 Cox, Brown, Arner, Hampton (bb0220) 2008; 76 Low, Hampton, Peskin, Winterbourn (bb0200) 2007; 109 Brown, Eriksson, Arner, Hampton (bb0210) 2008; 45 Stacey, Vissers, Winterbourn (bb0155) 2012; 17 O'Neill, Reddy (bb0300) 2011; 469 Kil, Lee, Ryu, Woo, Hu, Bae, Rhee (bb0295) 2012; 46 Konig, Lotte, Plessow, Brockhinke, Baier, Dietz (bb0320) 2003; 278 Wood, Schroder, Harris, Poole (bb0010) 2003; 28 Nagy, Karton, Betz, Peskin, Pace, O'Reilly, Hampton, Radom, Winterbourn (bb0100) 2011; 286 Sayed, Williams (bb0060) 2004; 279 Cox, Hampton (bb0325) 2007; 28 Biteau, Labarre, Toledano (bb0145) 2003; 425 Wood, Poole, Karplus (bb0020) 2003; 300 Fourquet, Huang, D'Autreaux, Toledano (bb0040) 2008; 10 Wood, Poole, Hantgan, Karplus (bb0025) 2002; 41 Schroder, Littlechild, Lebedev, Errington, Vagin, Isupov (bb0105) 2000; 8 Parsonage, Youngblood, Sarma, Wood, Karplus, Poole (bb0030) 2005; 44 Mitsumoto, Nakagawa, Takeuchi, Okawa, Iwamatsu, Takanezawa (bb0260) 2001; 35 Bayer, Maghzal, Stocker, Hampton, Winterbourn (bb0205) 2013; 27 Cox, Pullar, Hughes, Ledgerwood, Hampton (bb0215) 2008; 44 Trujillo, Ferrer-Sueta, Thomson, Flohe, Radi (bb0065) 2007; 44 Kumar, Kleffmann, Hampton, Cannell, Winterbourn (bb0245) 2013; 58 Hall (10.1016/j.bbagen.2013.08.001_bb0095) 2010; 402 Park (10.1016/j.bbagen.2013.08.001_bb0125) 2011; 50 Cox (10.1016/j.bbagen.2013.08.001_bb0265) 2009; 421 O'Neill (10.1016/j.bbagen.2013.08.001_bb0300) 2011; 469 Cox (10.1016/j.bbagen.2013.08.001_bb0185) 2010; 474 Cox (10.1016/j.bbagen.2013.08.001_bb0215) 2008; 44 Hwang (10.1016/j.bbagen.2013.08.001_bb0305) 2007; 32 Kil (10.1016/j.bbagen.2013.08.001_bb0295) 2012; 46 Chang (10.1016/j.bbagen.2013.08.001_bb0115) 2002; 277 Peskin (10.1016/j.bbagen.2013.08.001_bb0070) 2010; 432 Brown (10.1016/j.bbagen.2013.08.001_bb0210) 2008; 45 Winterbourn (10.1016/j.bbagen.2013.08.001_bb0045) 2008; 45 Baty (10.1016/j.bbagen.2013.08.001_bb0170) 2005; 389 Woo (10.1016/j.bbagen.2013.08.001_bb0140) 2003; 278 Jang (10.1016/j.bbagen.2013.08.001_bb0120) 2006; 580 Kumar (10.1016/j.bbagen.2013.08.001_bb0190) 2009; 583 Jeong (10.1016/j.bbagen.2013.08.001_bb0160) 2012; 53 Myers (10.1016/j.bbagen.2013.08.001_bb0230) 2009; 257 Gromer (10.1016/j.bbagen.2013.08.001_bb0255) 1998; 273 Mitsumoto (10.1016/j.bbagen.2013.08.001_bb0260) 2001; 35 Hofmann (10.1016/j.bbagen.2013.08.001_bb0080) 2002; 383 Stacey (10.1016/j.bbagen.2013.08.001_bb0180) 2009; 47 Yang (10.1016/j.bbagen.2013.08.001_bb0015) 2002; 277 Fourquet (10.1016/j.bbagen.2013.08.001_bb0040) 2008; 10 Sayed (10.1016/j.bbagen.2013.08.001_bb0060) 2004; 279 Bae (10.1016/j.bbagen.2013.08.001_bb0285) 2011; 53 Nagy (10.1016/j.bbagen.2013.08.001_bb0100) 2011; 286 Day (10.1016/j.bbagen.2013.08.001_bb0330) 2012; 45 Peskin (10.1016/j.bbagen.2013.08.001_bb0110) 2013; 288 Baty (10.1016/j.bbagen.2013.08.001_bb0175) 2002; 2 Biteau (10.1016/j.bbagen.2013.08.001_bb0145) 2003; 425 Trujillo (10.1016/j.bbagen.2013.08.001_bb0065) 2007; 44 Cox (10.1016/j.bbagen.2013.08.001_bb0220) 2008; 76 Wood (10.1016/j.bbagen.2013.08.001_bb0020) 2003; 300 Low (10.1016/j.bbagen.2013.08.001_bb0200) 2007; 109 Barranco-Medina (10.1016/j.bbagen.2013.08.001_bb0035) 2009; 583 Rhee (10.1016/j.bbagen.2013.08.001_bb0005) 2011; 15 Stacey (10.1016/j.bbagen.2013.08.001_bb0155) 2012; 17 Bae (10.1016/j.bbagen.2013.08.001_bb0270) 2009; 11 Parsonage (10.1016/j.bbagen.2013.08.001_bb0050) 2008; 105 Bae (10.1016/j.bbagen.2013.08.001_bb0280) 2012; 17 Baker (10.1016/j.bbagen.2013.08.001_bb0075) 2001; 183 Engelman (10.1016/j.bbagen.2013.08.001_bb0130) 2013; 288 Yoo (10.1016/j.bbagen.2013.08.001_bb0310) 2009; 29 Cuddihy (10.1016/j.bbagen.2013.08.001_bb0250) 2011; 15 Peskin (10.1016/j.bbagen.2013.08.001_bb0055) 2007; 282 Wood (10.1016/j.bbagen.2013.08.001_bb0010) 2003; 28 Ogusucu (10.1016/j.bbagen.2013.08.001_bb0085) 2007; 42 Chang (10.1016/j.bbagen.2013.08.001_bb0150) 2004; 279 Cox (10.1016/j.bbagen.2013.08.001_bb0165) 2010; 425 Myers (10.1016/j.bbagen.2013.08.001_bb0240) 2009; 47 Parsonage (10.1016/j.bbagen.2013.08.001_bb0030) 2005; 44 Schroder (10.1016/j.bbagen.2013.08.001_bb0105) 2000; 8 Brown (10.1016/j.bbagen.2013.08.001_bb0225) 2010; 584 Myers (10.1016/j.bbagen.2013.08.001_bb0235) 2011; 281 Woo (10.1016/j.bbagen.2013.08.001_bb0135) 2010; 140 Bayer (10.1016/j.bbagen.2013.08.001_bb0205) 2013; 27 Kumar (10.1016/j.bbagen.2013.08.001_bb0245) 2013; 58 Cox (10.1016/j.bbagen.2013.08.001_bb0090) 2009; 48 Bernal (10.1016/j.bbagen.2013.08.001_bb0315) 2010; 5 Konig (10.1016/j.bbagen.2013.08.001_bb0320) 2003; 278 Cox (10.1016/j.bbagen.2013.08.001_bb0325) 2007; 28 Musicco (10.1016/j.bbagen.2013.08.001_bb0275) 2009; 1787 Wood (10.1016/j.bbagen.2013.08.001_bb0025) 2002; 41 Sobotta (10.1016/j.bbagen.2013.08.001_bb0195) 2013; 60 Kwon (10.1016/j.bbagen.2013.08.001_bb0290) 2012; 90 |
References_xml | – volume: 32 start-page: 1530 year: 2007 end-page: 1538 ident: bb0305 article-title: Hyperoxidized peroxiredoxins and glyceraldehyde-3-phosphate dehydrogenase immunoreactivity and protein levels are changed in the gerbil hippocampal CA1 region after transient forebrain ischemia publication-title: Neurochem. Res. – volume: 2 start-page: 1261 year: 2002 end-page: 1266 ident: bb0175 article-title: Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis publication-title: Proteomics – volume: 1787 start-page: 890 year: 2009 end-page: 896 ident: bb0275 article-title: Accumulation of overoxidized peroxiredoxin III in aged rat liver mitochondria publication-title: Biochim. Biophys. Acta – volume: 277 start-page: 38029 year: 2002 end-page: 38036 ident: bb0015 article-title: Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid publication-title: J. Biol. Chem. – volume: 28 start-page: 32 year: 2003 end-page: 40 ident: bb0010 article-title: Structure, mechanism and regulation of peroxiredoxins publication-title: Trends Biochem. Sci. – volume: 140 start-page: 517 year: 2010 end-page: 528 ident: bb0135 article-title: Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling publication-title: Cell – volume: 35 start-page: 301 year: 2001 end-page: 310 ident: bb0260 article-title: Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat publication-title: Free Radic. Res. – volume: 279 start-page: 50994 year: 2004 end-page: 51001 ident: bb0150 article-title: Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine publication-title: J. Biol. Chem. – volume: 53 start-page: 447 year: 2012 end-page: 456 ident: bb0160 article-title: Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression publication-title: Free Radic. Biol. Med. – volume: 273 start-page: 20096 year: 1998 end-page: 20101 ident: bb0255 article-title: Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds publication-title: J. Biol. Chem. – volume: 50 start-page: 3204 year: 2011 end-page: 3210 ident: bb0125 article-title: Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity publication-title: Biochemistry – volume: 42 start-page: 326 year: 2007 end-page: 334 ident: bb0085 article-title: Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics publication-title: Free Radic. Biol. Med. – volume: 583 start-page: 1809 year: 2009 end-page: 1816 ident: bb0035 article-title: The oligomeric conformation of peroxiredoxins links redox state to function publication-title: FEBS Lett. – volume: 281 start-page: 37 year: 2011 end-page: 47 ident: bb0235 article-title: The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control publication-title: Toxicology – volume: 46 start-page: 584 year: 2012 end-page: 594 ident: bb0295 article-title: Feedback control of adrenal steroidogenesis via H publication-title: Mol. Cell – volume: 469 start-page: 498 year: 2011 end-page: 503 ident: bb0300 article-title: Circadian clocks in human red blood cells publication-title: Nature – volume: 421 start-page: 51 year: 2009 end-page: 58 ident: bb0265 article-title: Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxins publication-title: Biochem. J. – volume: 45 start-page: 398 year: 2012 end-page: 408 ident: bb0330 article-title: Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival publication-title: Mol. Cell – volume: 277 start-page: 25370 year: 2002 end-page: 25376 ident: bb0115 article-title: Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation publication-title: J. Biol. Chem. – volume: 300 start-page: 650 year: 2003 end-page: 653 ident: bb0020 article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling publication-title: Science – volume: 45 start-page: 494 year: 2008 end-page: 502 ident: bb0210 article-title: Mitochondrial peroxiredoxin 3 is rapidly oxidised in cells treated with isothiocyanates publication-title: Free Radic. Biol. Med. – volume: 15 start-page: 167 year: 2011 end-page: 174 ident: bb0250 article-title: Assessment of redox changes to hydrogen peroxide-sensitive proteins during EGF signaling publication-title: Antioxid. Redox Signal. – volume: 47 start-page: 1468 year: 2009 end-page: 1476 ident: bb0180 article-title: Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2 publication-title: Free Radic. Biol. Med. – volume: 60 start-page: 325 year: 2013 end-page: 335 ident: bb0195 article-title: Exposing cells to H publication-title: Free Radic. Biol. Med. – volume: 432 start-page: 313 year: 2010 end-page: 321 ident: bb0070 article-title: Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3 publication-title: Biochem. J. – volume: 278 start-page: 47361 year: 2003 end-page: 47364 ident: bb0140 article-title: Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid — immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence publication-title: J. Biol. Chem. – volume: 47 start-page: 1477 year: 2009 end-page: 1485 ident: bb0240 article-title: The effects of hexavalent chromium on thioredoxin reductase and peroxiredoxins in human bronchial epithelial cells publication-title: Free Radic. Biol. Med. – volume: 44 start-page: 1001 year: 2008 end-page: 1009 ident: bb0215 article-title: Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis publication-title: Free Radic. Biol. Med. – volume: 44 start-page: 83 year: 2007 end-page: 113 ident: bb0065 article-title: Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite publication-title: Subcell. Biochem. – volume: 76 start-page: 1097 year: 2008 end-page: 1109 ident: bb0220 article-title: The thioredoxin reductase inhibitor auranofin triggers apoptosis through a Bax/Bak-dependent process that involves peroxiredoxin 3 oxidation publication-title: Biochem. Pharmacol. – volume: 90 start-page: 502 year: 2012 end-page: 508 ident: bb0290 article-title: Hyperoxidized peroxiredoxins in peripheral blood mononuclear cells of asthma patients is associated with asthma severity publication-title: Life Sci. – volume: 286 start-page: 18048 year: 2011 end-page: 18055 ident: bb0100 article-title: Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study publication-title: J. Biol. Chem. – volume: 580 start-page: 351 year: 2006 end-page: 355 ident: bb0120 article-title: Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular chaperone functions publication-title: FEBS Lett. – volume: 278 start-page: 24409 year: 2003 end-page: 24420 ident: bb0320 article-title: Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure publication-title: J. Biol. Chem. – volume: 183 start-page: 1961 year: 2001 end-page: 1973 ident: bb0075 article-title: Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization publication-title: J. Bacteriol. – volume: 17 start-page: 1351 year: 2012 end-page: 1361 ident: bb0280 article-title: Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury publication-title: Antioxid. Redox Signal. – volume: 15 start-page: 781 year: 2011 end-page: 794 ident: bb0005 article-title: Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones publication-title: Antioxid. Redox Signal. – volume: 8 start-page: 605 year: 2000 end-page: 615 ident: bb0105 article-title: Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 publication-title: Structure – volume: 17 start-page: 411 year: 2012 end-page: 421 ident: bb0155 article-title: Oxidation of 2-cys peroxiredoxins in human endothelial cells by hydrogen peroxide, hypochlorous acid, and chloramines publication-title: Antioxid. Redox Signal. – volume: 5 start-page: e15558 year: 2010 ident: bb0315 article-title: Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring publication-title: PLoS One – volume: 402 start-page: 194 year: 2010 end-page: 209 ident: bb0095 article-title: Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization publication-title: J. Mol. Biol. – volume: 109 start-page: 2611 year: 2007 end-page: 2617 ident: bb0200 article-title: Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte publication-title: Blood – volume: 105 start-page: 8209 year: 2008 end-page: 8214 ident: bb0050 article-title: Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 53 start-page: 945 year: 2011 end-page: 953 ident: bb0285 article-title: Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver publication-title: Hepatology – volume: 44 start-page: 10583 year: 2005 end-page: 10592 ident: bb0030 article-title: Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin publication-title: Biochemistry – volume: 58 start-page: 109 year: 2013 end-page: 117 ident: bb0245 article-title: Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry publication-title: Free Radic. Biol. Med. – volume: 27 start-page: 3315 year: 2013 end-page: 3322 ident: bb0205 article-title: Neutrophil-mediated oxidation of erythrocyte peroxiredoxin 2 as a potential marker of oxidative stress in inflammation publication-title: FASEB J. – volume: 28 start-page: 2166 year: 2007 end-page: 2171 ident: bb0325 article-title: Bcl-2 over-expression promotes genomic instability by inhibiting apoptosis of cells exposed to hydrogen peroxide publication-title: Carcinogenesis – volume: 11 start-page: 937 year: 2009 end-page: 948 ident: bb0270 article-title: Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia publication-title: Antioxid. Redox Signal. – volume: 383 start-page: 347 year: 2002 end-page: 364 ident: bb0080 article-title: Peroxiredoxins publication-title: Biol. Chem. – volume: 279 start-page: 26159 year: 2004 end-page: 26166 ident: bb0060 article-title: Biochemical characterization of 2-Cys peroxiredoxins from publication-title: J. Biol. Chem. – volume: 425 start-page: 980 year: 2003 end-page: 984 ident: bb0145 article-title: ATP-dependent reduction of cysteine-sulphinic acid by publication-title: Nature – volume: 10 start-page: 1565 year: 2008 end-page: 1576 ident: bb0040 article-title: The dual functions of thiol-based peroxidases in H publication-title: Antioxid. Redox Signal. – volume: 583 start-page: 997 year: 2009 end-page: 1000 ident: bb0190 article-title: Reversible oxidation of mitochondrial peroxiredoxin 3 in mouse heart subjected to ischemia and reperfusion publication-title: FEBS Lett. – volume: 288 start-page: 14170 year: 2013 end-page: 14177 ident: bb0110 article-title: Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine publication-title: J. Biol. Chem. – volume: 288 start-page: 11312 year: 2013 end-page: 11324 ident: bb0130 article-title: Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation publication-title: J. Biol. Chem. – volume: 425 start-page: 313 year: 2010 end-page: 325 ident: bb0165 article-title: Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling publication-title: Biochem. J. – volume: 29 start-page: 413 year: 2009 end-page: 421 ident: bb0310 article-title: Expression and changes of hyperoxidized peroxiredoxins in non-pyramidal and polymorphic cells in the gerbil hippocampus during normal aging publication-title: Cell. Mol. Neurobiol. – volume: 257 start-page: 95 year: 2009 end-page: 104 ident: bb0230 article-title: The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells publication-title: Toxicology – volume: 282 start-page: 11885 year: 2007 end-page: 11892 ident: bb0055 article-title: The high reactivity peroxiredoxin 2 with H publication-title: J. Biol. Chem. – volume: 48 start-page: 6495 year: 2009 end-page: 6501 ident: bb0090 article-title: Redox potential and peroxide reactivity of human peroxiredoxin 3 publication-title: Biochemistry – volume: 389 start-page: 785 year: 2005 end-page: 795 ident: bb0170 article-title: Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells publication-title: Biochem. J. – volume: 45 start-page: 549 year: 2008 end-page: 561 ident: bb0045 article-title: Thiol chemistry and specificity in redox signaling publication-title: Free Radic. Biol. Med. – volume: 474 start-page: 51 year: 2010 end-page: 66 ident: bb0185 article-title: Measuring the redox state of cellular peroxiredoxins by immunoblotting publication-title: Methods Enzymol. – volume: 41 start-page: 5493 year: 2002 end-page: 5504 ident: bb0025 article-title: Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins publication-title: Biochemistry – volume: 584 start-page: 1257 year: 2010 end-page: 1262 ident: bb0225 article-title: Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofin publication-title: FEBS Lett. – volume: 425 start-page: 313 year: 2010 ident: 10.1016/j.bbagen.2013.08.001_bb0165 article-title: Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling publication-title: Biochem. J. doi: 10.1042/BJ20091541 – volume: 53 start-page: 447 year: 2012 ident: 10.1016/j.bbagen.2013.08.001_bb0160 article-title: Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.05.020 – volume: 41 start-page: 5493 year: 2002 ident: 10.1016/j.bbagen.2013.08.001_bb0025 article-title: Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins publication-title: Biochemistry doi: 10.1021/bi012173m – volume: 105 start-page: 8209 year: 2008 ident: 10.1016/j.bbagen.2013.08.001_bb0050 article-title: Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0708308105 – volume: 584 start-page: 1257 year: 2010 ident: 10.1016/j.bbagen.2013.08.001_bb0225 article-title: Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofin publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.02.042 – volume: 46 start-page: 584 year: 2012 ident: 10.1016/j.bbagen.2013.08.001_bb0295 article-title: Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.030 – volume: 48 start-page: 6495 year: 2009 ident: 10.1016/j.bbagen.2013.08.001_bb0090 article-title: Redox potential and peroxide reactivity of human peroxiredoxin 3 publication-title: Biochemistry doi: 10.1021/bi900558g – volume: 288 start-page: 14170 year: 2013 ident: 10.1016/j.bbagen.2013.08.001_bb0110 article-title: Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.460881 – volume: 279 start-page: 50994 year: 2004 ident: 10.1016/j.bbagen.2013.08.001_bb0150 article-title: Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine publication-title: J. Biol. Chem. doi: 10.1074/jbc.M409482200 – volume: 109 start-page: 2611 year: 2007 ident: 10.1016/j.bbagen.2013.08.001_bb0200 article-title: Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte publication-title: Blood doi: 10.1182/blood-2006-09-048728 – volume: 183 start-page: 1961 year: 2001 ident: 10.1016/j.bbagen.2013.08.001_bb0075 article-title: Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization publication-title: J. Bacteriol. doi: 10.1128/JB.183.6.1961-1973.2001 – volume: 282 start-page: 11885 year: 2007 ident: 10.1016/j.bbagen.2013.08.001_bb0055 article-title: The high reactivity peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents publication-title: J. Biol. Chem. doi: 10.1074/jbc.M700339200 – volume: 47 start-page: 1477 year: 2009 ident: 10.1016/j.bbagen.2013.08.001_bb0240 article-title: The effects of hexavalent chromium on thioredoxin reductase and peroxiredoxins in human bronchial epithelial cells publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.08.015 – volume: 17 start-page: 411 year: 2012 ident: 10.1016/j.bbagen.2013.08.001_bb0155 article-title: Oxidation of 2-cys peroxiredoxins in human endothelial cells by hydrogen peroxide, hypochlorous acid, and chloramines publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2011.4348 – volume: 29 start-page: 413 year: 2009 ident: 10.1016/j.bbagen.2013.08.001_bb0310 article-title: Expression and changes of hyperoxidized peroxiredoxins in non-pyramidal and polymorphic cells in the gerbil hippocampus during normal aging publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-008-9333-7 – volume: 425 start-page: 980 year: 2003 ident: 10.1016/j.bbagen.2013.08.001_bb0145 article-title: ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin publication-title: Nature doi: 10.1038/nature02075 – volume: 300 start-page: 650 year: 2003 ident: 10.1016/j.bbagen.2013.08.001_bb0020 article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling publication-title: Science doi: 10.1126/science.1080405 – volume: 474 start-page: 51 year: 2010 ident: 10.1016/j.bbagen.2013.08.001_bb0185 article-title: Measuring the redox state of cellular peroxiredoxins by immunoblotting publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(10)74004-0 – volume: 278 start-page: 24409 year: 2003 ident: 10.1016/j.bbagen.2013.08.001_bb0320 article-title: Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure publication-title: J. Biol. Chem. doi: 10.1074/jbc.M301145200 – volume: 277 start-page: 25370 year: 2002 ident: 10.1016/j.bbagen.2013.08.001_bb0115 article-title: Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110432200 – volume: 32 start-page: 1530 year: 2007 ident: 10.1016/j.bbagen.2013.08.001_bb0305 article-title: Hyperoxidized peroxiredoxins and glyceraldehyde-3-phosphate dehydrogenase immunoreactivity and protein levels are changed in the gerbil hippocampal CA1 region after transient forebrain ischemia publication-title: Neurochem. Res. doi: 10.1007/s11064-007-9345-6 – volume: 279 start-page: 26159 year: 2004 ident: 10.1016/j.bbagen.2013.08.001_bb0060 article-title: Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401748200 – volume: 432 start-page: 313 year: 2010 ident: 10.1016/j.bbagen.2013.08.001_bb0070 article-title: Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3 publication-title: Biochem. J. doi: 10.1042/BJ20101156 – volume: 44 start-page: 1001 year: 2008 ident: 10.1016/j.bbagen.2013.08.001_bb0215 article-title: Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2007.11.017 – volume: 583 start-page: 1809 year: 2009 ident: 10.1016/j.bbagen.2013.08.001_bb0035 article-title: The oligomeric conformation of peroxiredoxins links redox state to function publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.05.029 – volume: 42 start-page: 326 year: 2007 ident: 10.1016/j.bbagen.2013.08.001_bb0085 article-title: Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2006.10.042 – volume: 580 start-page: 351 year: 2006 ident: 10.1016/j.bbagen.2013.08.001_bb0120 article-title: Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular chaperone functions publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.12.030 – volume: 44 start-page: 10583 year: 2005 ident: 10.1016/j.bbagen.2013.08.001_bb0030 article-title: Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin publication-title: Biochemistry doi: 10.1021/bi050448i – volume: 277 start-page: 38029 year: 2002 ident: 10.1016/j.bbagen.2013.08.001_bb0015 article-title: Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206626200 – volume: 1787 start-page: 890 year: 2009 ident: 10.1016/j.bbagen.2013.08.001_bb0275 article-title: Accumulation of overoxidized peroxiredoxin III in aged rat liver mitochondria publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2009.03.002 – volume: 8 start-page: 605 year: 2000 ident: 10.1016/j.bbagen.2013.08.001_bb0105 article-title: Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7A resolution publication-title: Structure doi: 10.1016/S0969-2126(00)00147-7 – volume: 2 start-page: 1261 year: 2002 ident: 10.1016/j.bbagen.2013.08.001_bb0175 article-title: Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis publication-title: Proteomics doi: 10.1002/1615-9861(200209)2:9<1261::AID-PROT1261>3.0.CO;2-Q – volume: 27 start-page: 3315 year: 2013 ident: 10.1016/j.bbagen.2013.08.001_bb0205 article-title: Neutrophil-mediated oxidation of erythrocyte peroxiredoxin 2 as a potential marker of oxidative stress in inflammation publication-title: FASEB J. doi: 10.1096/fj.13-227298 – volume: 257 start-page: 95 year: 2009 ident: 10.1016/j.bbagen.2013.08.001_bb0230 article-title: The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells publication-title: Toxicology doi: 10.1016/j.tox.2008.12.013 – volume: 10 start-page: 1565 year: 2008 ident: 10.1016/j.bbagen.2013.08.001_bb0040 article-title: The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2008.2049 – volume: 402 start-page: 194 year: 2010 ident: 10.1016/j.bbagen.2013.08.001_bb0095 article-title: Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.07.022 – volume: 286 start-page: 18048 year: 2011 ident: 10.1016/j.bbagen.2013.08.001_bb0100 article-title: Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.232355 – volume: 90 start-page: 502 year: 2012 ident: 10.1016/j.bbagen.2013.08.001_bb0290 article-title: Hyperoxidized peroxiredoxins in peripheral blood mononuclear cells of asthma patients is associated with asthma severity publication-title: Life Sci. doi: 10.1016/j.lfs.2012.01.003 – volume: 278 start-page: 47361 year: 2003 ident: 10.1016/j.bbagen.2013.08.001_bb0140 article-title: Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid — immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence publication-title: J. Biol. Chem. doi: 10.1074/jbc.C300428200 – volume: 28 start-page: 32 year: 2003 ident: 10.1016/j.bbagen.2013.08.001_bb0010 article-title: Structure, mechanism and regulation of peroxiredoxins publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(02)00003-8 – volume: 273 start-page: 20096 year: 1998 ident: 10.1016/j.bbagen.2013.08.001_bb0255 article-title: Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.32.20096 – volume: 53 start-page: 945 year: 2011 ident: 10.1016/j.bbagen.2013.08.001_bb0285 article-title: Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver publication-title: Hepatology doi: 10.1002/hep.24104 – volume: 421 start-page: 51 year: 2009 ident: 10.1016/j.bbagen.2013.08.001_bb0265 article-title: Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxins publication-title: Biochem. J. doi: 10.1042/BJ20090242 – volume: 383 start-page: 347 year: 2002 ident: 10.1016/j.bbagen.2013.08.001_bb0080 article-title: Peroxiredoxins publication-title: Biol. Chem. doi: 10.1515/BC.2002.040 – volume: 15 start-page: 167 year: 2011 ident: 10.1016/j.bbagen.2013.08.001_bb0250 article-title: Assessment of redox changes to hydrogen peroxide-sensitive proteins during EGF signaling publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3843 – volume: 389 start-page: 785 year: 2005 ident: 10.1016/j.bbagen.2013.08.001_bb0170 article-title: Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells publication-title: Biochem. J. doi: 10.1042/BJ20050337 – volume: 47 start-page: 1468 year: 2009 ident: 10.1016/j.bbagen.2013.08.001_bb0180 article-title: Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.08.022 – volume: 35 start-page: 301 year: 2001 ident: 10.1016/j.bbagen.2013.08.001_bb0260 article-title: Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat publication-title: Free Radic. Res. doi: 10.1080/10715760100300831 – volume: 17 start-page: 1351 year: 2012 ident: 10.1016/j.bbagen.2013.08.001_bb0280 article-title: Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2011.4334 – volume: 5 start-page: e15558 year: 2010 ident: 10.1016/j.bbagen.2013.08.001_bb0315 article-title: Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring publication-title: PLoS One doi: 10.1371/journal.pone.0015558 – volume: 469 start-page: 498 year: 2011 ident: 10.1016/j.bbagen.2013.08.001_bb0300 article-title: Circadian clocks in human red blood cells publication-title: Nature doi: 10.1038/nature09702 – volume: 58 start-page: 109 year: 2013 ident: 10.1016/j.bbagen.2013.08.001_bb0245 article-title: Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.01.021 – volume: 50 start-page: 3204 year: 2011 ident: 10.1016/j.bbagen.2013.08.001_bb0125 article-title: Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity publication-title: Biochemistry doi: 10.1021/bi101373h – volume: 60 start-page: 325 year: 2013 ident: 10.1016/j.bbagen.2013.08.001_bb0195 article-title: Exposing cells to H2O2: a quantitative comparison between continuous low-dose and one-time high-dose treatments publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.02.017 – volume: 76 start-page: 1097 year: 2008 ident: 10.1016/j.bbagen.2013.08.001_bb0220 article-title: The thioredoxin reductase inhibitor auranofin triggers apoptosis through a Bax/Bak-dependent process that involves peroxiredoxin 3 oxidation publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2008.08.021 – volume: 281 start-page: 37 year: 2011 ident: 10.1016/j.bbagen.2013.08.001_bb0235 article-title: The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control publication-title: Toxicology doi: 10.1016/j.tox.2011.01.001 – volume: 45 start-page: 494 year: 2008 ident: 10.1016/j.bbagen.2013.08.001_bb0210 article-title: Mitochondrial peroxiredoxin 3 is rapidly oxidised in cells treated with isothiocyanates publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2008.04.030 – volume: 45 start-page: 549 year: 2008 ident: 10.1016/j.bbagen.2013.08.001_bb0045 article-title: Thiol chemistry and specificity in redox signaling publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2008.05.004 – volume: 44 start-page: 83 year: 2007 ident: 10.1016/j.bbagen.2013.08.001_bb0065 article-title: Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite publication-title: Subcell. Biochem. doi: 10.1007/978-1-4020-6051-9_5 – volume: 288 start-page: 11312 year: 2013 ident: 10.1016/j.bbagen.2013.08.001_bb0130 article-title: Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.433755 – volume: 140 start-page: 517 year: 2010 ident: 10.1016/j.bbagen.2013.08.001_bb0135 article-title: Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling publication-title: Cell doi: 10.1016/j.cell.2010.01.009 – volume: 11 start-page: 937 year: 2009 ident: 10.1016/j.bbagen.2013.08.001_bb0270 article-title: Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2008.2325 – volume: 15 start-page: 781 year: 2011 ident: 10.1016/j.bbagen.2013.08.001_bb0005 article-title: Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3393 – volume: 45 start-page: 398 year: 2012 ident: 10.1016/j.bbagen.2013.08.001_bb0330 article-title: Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.11.027 – volume: 583 start-page: 997 year: 2009 ident: 10.1016/j.bbagen.2013.08.001_bb0190 article-title: Reversible oxidation of mitochondrial peroxiredoxin 3 in mouse heart subjected to ischemia and reperfusion publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.02.018 – volume: 28 start-page: 2166 year: 2007 ident: 10.1016/j.bbagen.2013.08.001_bb0325 article-title: Bcl-2 over-expression promotes genomic instability by inhibiting apoptosis of cells exposed to hydrogen peroxide publication-title: Carcinogenesis doi: 10.1093/carcin/bgm093 |
SSID | ssj0000595 ssj0025309 |
Score | 2.4796093 |
SecondaryResourceType | review_article |
Snippet | Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 906 |
SubjectTerms | Animals Biomarker biomarkers Biomarkers - analysis Biomarkers - metabolism biophysics homeostasis Humans Hydrogen peroxide hydroperoxides Hyperoxidation membrane proteins Oxidation Oxidative Stress peroxidases Peroxiredoxin Peroxiredoxins - analysis Peroxiredoxins - metabolism thiols tissues |
Title | Peroxiredoxins as biomarkers of oxidative stress |
URI | https://dx.doi.org/10.1016/j.bbagen.2013.08.001 https://www.ncbi.nlm.nih.gov/pubmed/23939310 https://www.proquest.com/docview/1466376916 https://www.proquest.com/docview/2000199376 |
Volume | 1840 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yEX0RnV_zY1Twta5tmrZ5HMMxHQ5Rh3srSZrBRLqxD5gv_u3eJe1EcAx8aWm4wnFJLr9wd78j5EawQDMJ11SVsdBF-hNXSMFd5euEqoxm3JRHP_aiTj98GLDBFmmVtTCYVln4fuvTjbcuRhqFNRuT0ajxgkE9gBMMAzI0NPf2MIxxld9-_aR5AHxgNpIAqoB0WT5ncrykhE2LLKg-NUSeRWuYP46ndfDTHEPtA7Jf4EenaVU8JFs6r5Id21Hys0p2W2UDtyPiPenpeDlCRtDlKJ85YuZgsT3m40xnznjowHBmeL8dWzFyTPrtu9dWxy0aJLiKcjZ3Izr0ExXEWgkmk0RGQSgywWJPx0PtJdwXCgnimFKcy8DLDHlLGCnYpZ4_5JSekEo-zvUZcRSy6iC2QH61OBIJR3IueErAk0rqGqGlXVJVsIdjE4uPtEwTe0-tNVO0Zoq9LT2_RtzVXxPLnrFBPi5Nnv5aBSk4-A1_XpczlIKZMeohcj1ezPBuE4EXBRi8XiYwUBeQGsic2uld6YsccRxA8Pm_dbsge_AV2lzvS1KZTxf6CqDMXNbNWq2T7eZ9t9PDd_f5rfsNnVXw5w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DkfkiOr8_K_ha1zZN2zzKcEydIriBbyFJM5hIJ_uA-eLf7l3STgTHwJc-pBc4LsnlF-7ud4RcSRYZpuCZqnMW-0h_4kslua9Dk1Gd05zb8ujHp6TTj-9f2WuNtKpaGEyrLH2_8-nWW5cjzdKazY_hsPmCQT2AEwwDMjTGd_t6DMcX2xhcf_3keQB-YC6UALqAeFU_Z5O8lIJTizSoIbVMnmVvmD_up2X4095D7W2yVQJI78bpuENqpmiQDddS8rNB6q2qg9suCZ7NeDQfIiXofFhMPDnxsNoeE3LGE2808GA4t8TfnisZ2SP99m2v1fHLDgm-ppxN_YQOwkxHqdGSqSxTSRTLXLI0MOnABBkPpUaGOKY15yoKcsveEicajmkQDjil-2StGBXmkHgaaXUQXCDBWprIjCM7F3wVAEqtzBGhlV2ELunDsYvFu6jyxN6Es6ZAawpsbhmER8RfzPpw9Bkr5NPK5OLXNhDg4VfMvKxWSICZMewhCzOaTfBxk4AbBRy8XCayWBegGsgcuOVd6IskcRxQ8PG_dbsg9U7vsSu6d08PJ2QT_sQu8fuUrE3HM3MGuGaqzu2-_Qadu_DS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peroxiredoxins+as+biomarkers+of+oxidative+stress&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Poynton%2C+Rebecca+A.&rft.au=Hampton%2C+Mark+B.&rft.date=2014-02-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1840&rft.issue=2&rft.spage=906&rft.epage=912&rft_id=info:doi/10.1016%2Fj.bbagen.2013.08.001&rft.externalDocID=S0304416513003450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |