Peroxiredoxins as biomarkers of oxidative stress

Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis. This review disc...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1840; no. 2; pp. 906 - 912
Main Authors Poynton, Rebecca A., Hampton, Mark B.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis. This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems. Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources. Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. •Peroxiredoxins are endogenous antioxidants and redox sensors.•Various biochemical properties of the peroxiredoxins make them suitable as markers of oxidative stress.•Different methods are available to detect peroxiredoxin oxidation.•Oxidized peroxiredoxins have been detected in experimental and clinical samples.
AbstractList Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis.This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems.Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources.Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis. This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems. Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources. Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. •Peroxiredoxins are endogenous antioxidants and redox sensors.•Various biochemical properties of the peroxiredoxins make them suitable as markers of oxidative stress.•Different methods are available to detect peroxiredoxin oxidation.•Oxidized peroxiredoxins have been detected in experimental and clinical samples.
Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis.BACKGROUNDPeroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis.This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems.SCOPE OF REVIEWThis review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems.Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources.MAJOR CONCLUSIONSTwo Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources.Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.GENERAL SIGNIFICANCEMonitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis. This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems. Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources. Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Author Hampton, Mark B.
Poynton, Rebecca A.
Author_xml – sequence: 1
  givenname: Rebecca A.
  surname: Poynton
  fullname: Poynton, Rebecca A.
– sequence: 2
  givenname: Mark B.
  surname: Hampton
  fullname: Hampton, Mark B.
  email: mark.hampton@otago.ac.nz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23939310$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYMo2lb_gcgs3cx4M5nJw4UgxRcIutB1yGTuSGo7qcm06L83pbpxYRNIIHzncM_JmOz3vkdCTikUFCi_mBVNY96wL0qgrABZANA9MqJSlLkE4PtkBAyqvKK8PiLjGGeQVq3qQ3JUMpU2hRGBZwz-0wVs09nHzMSscX5hwjuGmPkuS8-tGdwaszgEjPGYHHRmHvHk556Q19ubl-l9_vh09zC9fswtU_WQc9ZRaUuB1tSNlA0vK9OaWgCKDkEqaixwIWprlWpKaNNkTFTc1kIC7RRjE3K-9V0G_7HCOOiFixbnc9OjX0VdpjBUKSb4TpRWnCdO0Q169oOumgW2ehlcyvqlfwtJwOUWsMHHGLDT1g0pv--HYNxcU9Cb9vVMb9vXm_Y1SJ2mSeLqj_jXf4fsaivD1OfaYdDROuwttulf7KBb7_43-Ab1tJ32
CitedBy_id crossref_primary_10_1016_j_freeradbiomed_2018_05_061
crossref_primary_10_1089_ars_2017_7422
crossref_primary_10_3389_fpls_2022_953450
crossref_primary_10_3390_antiox13050555
crossref_primary_10_3390_antiox9080701
crossref_primary_10_1080_13510002_2021_1901028
crossref_primary_10_1002_pro_2903
crossref_primary_10_1007_s40071_017_0175_0
crossref_primary_10_1016_j_plaphy_2022_11_009
crossref_primary_10_1016_j_intimp_2018_12_053
crossref_primary_10_3390_antiox9121184
crossref_primary_10_3390_app10103602
crossref_primary_10_3389_fchem_2024_1470458
crossref_primary_10_1016_j_plaphy_2025_109552
crossref_primary_10_1039_D1FO01036K
crossref_primary_10_1080_10715762_2020_1745201
crossref_primary_10_1530_ERC_18_0115
crossref_primary_10_1016_j_abb_2019_108231
crossref_primary_10_1111_his_12659
crossref_primary_10_1155_2014_209845
crossref_primary_10_1016_j_pneurobio_2016_05_001
crossref_primary_10_1016_j_pharep_2014_12_014
crossref_primary_10_1155_2018_2812904
crossref_primary_10_3390_antiox11122486
crossref_primary_10_1161_CIRCRESAHA_113_302021
crossref_primary_10_1371_journal_pone_0119350
crossref_primary_10_3390_ijms20153745
crossref_primary_10_1021_acs_chemrev_7b00205
crossref_primary_10_1021_bi5008386
crossref_primary_10_1155_2014_346809
crossref_primary_10_1111_lam_12435
crossref_primary_10_3390_antiox12051012
crossref_primary_10_1089_ars_2022_0026
crossref_primary_10_1016_j_bbadis_2016_11_019
crossref_primary_10_1016_j_fsi_2021_12_055
crossref_primary_10_1007_s13577_017_0171_0
crossref_primary_10_1101_cshperspect_a027698
crossref_primary_10_3892_ol_2017_7549
crossref_primary_10_1016_j_semcancer_2017_04_005
crossref_primary_10_1016_j_freeradbiomed_2015_04_030
crossref_primary_10_1042_EBC20230036
crossref_primary_10_1016_j_fsi_2019_03_072
crossref_primary_10_1089_thy_2020_0160
crossref_primary_10_1007_s12045_022_1329_y
crossref_primary_10_1016_j_gene_2020_145350
crossref_primary_10_3109_00498254_2015_1110760
crossref_primary_10_1016_j_freeradbiomed_2014_09_025
crossref_primary_10_1017_S0043933916000751
crossref_primary_10_1016_j_jchromb_2015_06_007
crossref_primary_10_1038_cddis_2016_315
crossref_primary_10_1016_j_canlet_2016_12_009
crossref_primary_10_1038_srep38300
crossref_primary_10_1016_j_fct_2018_01_025
crossref_primary_10_1089_ars_2020_8077
crossref_primary_10_1111_jphp_12329
crossref_primary_10_1016_j_scitotenv_2025_178510
crossref_primary_10_3892_mmr_2015_4544
crossref_primary_10_1016_j_fsi_2019_02_023
crossref_primary_10_1021_acs_jafc_1c04742
crossref_primary_10_1155_2021_9508702
crossref_primary_10_1186_s10020_023_00756_w
crossref_primary_10_1007_s12017_017_8467_5
crossref_primary_10_1074_jbc_M115_699850
crossref_primary_10_1371_journal_pone_0097588
crossref_primary_10_1016_j_jep_2024_117938
crossref_primary_10_1002_jcp_31431
crossref_primary_10_1016_j_tiv_2017_04_028
crossref_primary_10_1007_s12192_015_0594_z
crossref_primary_10_1039_C6FO00674D
crossref_primary_10_1007_s10646_022_02532_8
crossref_primary_10_3390_antiox7100136
crossref_primary_10_14348_molcells_2016_2328
crossref_primary_10_1016_j_freeradbiomed_2017_03_016
crossref_primary_10_1016_j_cbi_2019_06_030
crossref_primary_10_3390_antiox10020276
crossref_primary_10_1016_j_bbamcr_2021_119041
crossref_primary_10_3390_antiox12101811
crossref_primary_10_3389_fpls_2022_995855
crossref_primary_10_3390_metabo12010023
crossref_primary_10_1016_j_brainres_2023_148428
crossref_primary_10_1152_ajpcell_00002_2018
crossref_primary_10_1007_s10545_017_0104_9
crossref_primary_10_1155_2021_1208690
crossref_primary_10_1186_s40001_024_01989_z
crossref_primary_10_1016_j_freeradbiomed_2020_06_006
crossref_primary_10_1016_j_fob_2014_10_003
crossref_primary_10_1007_s12031_024_02270_y
crossref_primary_10_1002_bit_25921
crossref_primary_10_1007_s12640_017_9738_5
crossref_primary_10_1016_j_fsi_2017_06_034
crossref_primary_10_1016_j_freeradbiomed_2019_03_007
crossref_primary_10_1128_MCB_00148_19
crossref_primary_10_1186_s12864_015_2341_3
crossref_primary_10_1007_s00018_014_1579_2
crossref_primary_10_1371_journal_pone_0146832
crossref_primary_10_1016_j_freeradbiomed_2020_08_026
crossref_primary_10_1124_mol_113_091322
crossref_primary_10_1002_pmic_201500248
crossref_primary_10_1155_2022_3605436
crossref_primary_10_1152_japplphysiol_00340_2019
crossref_primary_10_1007_s11064_014_1481_1
crossref_primary_10_1016_j_cbpc_2018_11_005
crossref_primary_10_1016_j_chemosphere_2019_124602
crossref_primary_10_3390_genes11121392
crossref_primary_10_3892_etm_2015_2693
crossref_primary_10_1371_journal_pcbi_1008202
crossref_primary_10_1039_C7TX00201G
crossref_primary_10_1155_2020_6039769
crossref_primary_10_1007_s00429_015_1135_3
crossref_primary_10_1016_j_molp_2025_01_014
crossref_primary_10_22175_mmb_14492
crossref_primary_10_1007_s10557_023_07480_x
crossref_primary_10_1016_j_bbagen_2018_11_007
crossref_primary_10_1089_ars_2017_7214
crossref_primary_10_14348_molcells_2016_2351
crossref_primary_10_1002_jcp_27322
crossref_primary_10_1007_s10534_014_9726_7
crossref_primary_10_1152_ajplung_00088_2014
crossref_primary_10_1096_fj_14_250050
crossref_primary_10_22175_mmb_12241
crossref_primary_10_1126_sciadv_adq4461
crossref_primary_10_1016_j_bbapap_2014_03_007
crossref_primary_10_1016_j_dib_2017_01_005
crossref_primary_10_3389_fcell_2021_673618
Cites_doi 10.1042/BJ20091541
10.1016/j.freeradbiomed.2012.05.020
10.1021/bi012173m
10.1073/pnas.0708308105
10.1016/j.febslet.2010.02.042
10.1016/j.molcel.2012.05.030
10.1021/bi900558g
10.1074/jbc.M113.460881
10.1074/jbc.M409482200
10.1182/blood-2006-09-048728
10.1128/JB.183.6.1961-1973.2001
10.1074/jbc.M700339200
10.1016/j.freeradbiomed.2009.08.015
10.1089/ars.2011.4348
10.1007/s10571-008-9333-7
10.1038/nature02075
10.1126/science.1080405
10.1016/S0076-6879(10)74004-0
10.1074/jbc.M301145200
10.1074/jbc.M110432200
10.1007/s11064-007-9345-6
10.1074/jbc.M401748200
10.1042/BJ20101156
10.1016/j.freeradbiomed.2007.11.017
10.1016/j.febslet.2009.05.029
10.1016/j.freeradbiomed.2006.10.042
10.1016/j.febslet.2005.12.030
10.1021/bi050448i
10.1074/jbc.M206626200
10.1016/j.bbabio.2009.03.002
10.1016/S0969-2126(00)00147-7
10.1002/1615-9861(200209)2:9<1261::AID-PROT1261>3.0.CO;2-Q
10.1096/fj.13-227298
10.1016/j.tox.2008.12.013
10.1089/ars.2008.2049
10.1016/j.jmb.2010.07.022
10.1074/jbc.M111.232355
10.1016/j.lfs.2012.01.003
10.1074/jbc.C300428200
10.1016/S0968-0004(02)00003-8
10.1074/jbc.273.32.20096
10.1002/hep.24104
10.1042/BJ20090242
10.1515/BC.2002.040
10.1089/ars.2010.3843
10.1042/BJ20050337
10.1016/j.freeradbiomed.2009.08.022
10.1080/10715760100300831
10.1089/ars.2011.4334
10.1371/journal.pone.0015558
10.1038/nature09702
10.1016/j.freeradbiomed.2013.01.021
10.1021/bi101373h
10.1016/j.freeradbiomed.2013.02.017
10.1016/j.bcp.2008.08.021
10.1016/j.tox.2011.01.001
10.1016/j.freeradbiomed.2008.04.030
10.1016/j.freeradbiomed.2008.05.004
10.1007/978-1-4020-6051-9_5
10.1074/jbc.M112.433755
10.1016/j.cell.2010.01.009
10.1089/ars.2008.2325
10.1089/ars.2010.3393
10.1016/j.molcel.2011.11.027
10.1016/j.febslet.2009.02.018
10.1093/carcin/bgm093
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2013.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2013.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2013.08.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 912
ExternalDocumentID 23939310
10_1016_j_bbagen_2013_08_001
S0304416513003450
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c395t-63f18c27eca5b88b624ada570e7fe0891ac06775cc99b20d0053746c57801f933
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Mon Jul 21 11:25:03 EDT 2025
Fri Jul 11 04:54:58 EDT 2025
Thu Apr 03 07:02:41 EDT 2025
Tue Jul 01 00:22:01 EDT 2025
Thu Apr 24 23:07:34 EDT 2025
Fri Feb 23 02:32:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Peroxiredoxin
Oxidative stress
Biomarker
Hydrogen peroxide
IAM
AMS
NEM
Prx
Srx
Oxidation
Hyperoxidation
Cys
N-ethylmaleimide
cysteine
sulfiredoxin
4′-4-acetamido-4′-((iodoacetyl)amino)stilbene-2,2′-disulfonic acid
iodoacetamide
Language English
License 2013.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-63f18c27eca5b88b624ada570e7fe0891ac06775cc99b20d0053746c57801f933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 23939310
PQID 1466376916
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2000199376
proquest_miscellaneous_1466376916
pubmed_primary_23939310
crossref_citationtrail_10_1016_j_bbagen_2013_08_001
crossref_primary_10_1016_j_bbagen_2013_08_001
elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_08_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2014
2014-02-00
2014-Feb
20140201
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: February 2014
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Myers, Myers (bb0230) 2009; 257
Winterbourn, Hampton (bb0045) 2008; 45
Peskin, Cox, Nagy, Morgan, Hampton, Davies, Winterbourn (bb0070) 2010; 432
Jeong, Bae, Toledano, Rhee (bb0160) 2012; 53
Bae, Woo, Sung, Lee, Lee, Kil, Rhee (bb0270) 2009; 11
Cox, Pearson, Pullar, Jonsson, Lowther, Winterbourn, Hampton (bb0265) 2009; 421
Musicco, Capelli, Pesce, Timperio, Calvani, Mosconi, Zolla, Cantatore, Gadaleta (bb0275) 2009; 1787
Day, Brown, Taylor, Rand, Morgan, Veal (bb0330) 2012; 45
Baker, Raudonikiene, Hoffman, Poole (bb0075) 2001; 183
Hwang, Yoo, Kim, Choi, Lee, Won (bb0305) 2007; 32
Hall, Parsonage, Poole, Karplus (bb0095) 2010; 402
Cuddihy, Winterbourn, Hampton (bb0250) 2011; 15
Engelman, Weisman-Shomer, Ziv, Xu, Arner, Benhar (bb0130) 2013; 288
Baty, Hampton, Winterbourn (bb0170) 2005; 389
Kumar, Kitaeff, Hampton, Cannell, Winterbourn (bb0190) 2009; 583
Baty, Hampton, Winterbourn (bb0175) 2002; 2
Myers, Antholine, Myers (bb0235) 2011; 281
Bernal, Vickers, Hampton, Poynton, Sloboda (bb0315) 2010; 5
Cox, Winterbourn, Hampton (bb0185) 2010; 474
Yoo, Park, Yu, Yan, Li, Lee, Choi, Kim, Hwang, Won (bb0310) 2009; 29
Hofmann, Hecht, Flohe (bb0080) 2002; 383
Bae, Sung, Lee, Kang, Lee, Oh, Woo, Kil, Rhee (bb0280) 2012; 17
Peskin, Low, Paton, Maghzal, Hampton, Winterbourn (bb0055) 2007; 282
Myers, Myers (bb0240) 2009; 47
Barranco-Medina, Lazaro, Dietz (bb0035) 2009; 583
Brown, Cox, Hampton (bb0225) 2010; 584
Bae, Sung, Cho, Lee, Lee, Woo, Yu, Kil, Rhee (bb0285) 2011; 53
Rhee, Woo (bb0005) 2011; 15
Woo, Yim, Shin, Kang, Yu, Rhee (bb0135) 2010; 140
Chang, Jeong, Woo, Lee, Park, Rhee (bb0150) 2004; 279
Jang, Kim, Park, Jeon, Lee, Jung, Lee, Chae, Jung, Lee, Lim, Chung, Bahk, Yun, Cho (bb0120) 2006; 580
Chang, Jeong, Choi, Yu, Kang, Rhee (bb0115) 2002; 277
Cox, Peskin, Paton, Winterbourn, Hampton (bb0090) 2009; 48
Ogusucu, Rettori, Munhoz, Netto, Augusto (bb0085) 2007; 42
Stacey, Peskin, Vissers, Winterbourn (bb0180) 2009; 47
Parsonage, Karplus, Poole (bb0050) 2008; 105
Sobotta, Barata, Schmidt, Mueller, Millonig, Dick (bb0195) 2013; 60
Kwon, Bae, Moon, Lee, Lee, Lee, Kim, Park, Moon, Cho (bb0290) 2012; 90
Yang, Kang, Woo, Hwang, Chae, Kim, Rhee (bb0015) 2002; 277
Woo, Kang, Kim, Yang, Chae, Rhee (bb0140) 2003; 278
Cox, Winterbourn, Hampton (bb0165) 2010; 425
Park, Piszczek, Rhee, Chock (bb0125) 2011; 50
Gromer, Arscott, Williams, Schirmer, Becker (bb0255) 1998; 273
Peskin, Dickerhof, Poynton, Paton, Pace, Hampton, Winterbourn (bb0110) 2013; 288
Cox, Brown, Arner, Hampton (bb0220) 2008; 76
Low, Hampton, Peskin, Winterbourn (bb0200) 2007; 109
Brown, Eriksson, Arner, Hampton (bb0210) 2008; 45
Stacey, Vissers, Winterbourn (bb0155) 2012; 17
O'Neill, Reddy (bb0300) 2011; 469
Kil, Lee, Ryu, Woo, Hu, Bae, Rhee (bb0295) 2012; 46
Konig, Lotte, Plessow, Brockhinke, Baier, Dietz (bb0320) 2003; 278
Wood, Schroder, Harris, Poole (bb0010) 2003; 28
Nagy, Karton, Betz, Peskin, Pace, O'Reilly, Hampton, Radom, Winterbourn (bb0100) 2011; 286
Sayed, Williams (bb0060) 2004; 279
Cox, Hampton (bb0325) 2007; 28
Biteau, Labarre, Toledano (bb0145) 2003; 425
Wood, Poole, Karplus (bb0020) 2003; 300
Fourquet, Huang, D'Autreaux, Toledano (bb0040) 2008; 10
Wood, Poole, Hantgan, Karplus (bb0025) 2002; 41
Schroder, Littlechild, Lebedev, Errington, Vagin, Isupov (bb0105) 2000; 8
Parsonage, Youngblood, Sarma, Wood, Karplus, Poole (bb0030) 2005; 44
Mitsumoto, Nakagawa, Takeuchi, Okawa, Iwamatsu, Takanezawa (bb0260) 2001; 35
Bayer, Maghzal, Stocker, Hampton, Winterbourn (bb0205) 2013; 27
Cox, Pullar, Hughes, Ledgerwood, Hampton (bb0215) 2008; 44
Trujillo, Ferrer-Sueta, Thomson, Flohe, Radi (bb0065) 2007; 44
Kumar, Kleffmann, Hampton, Cannell, Winterbourn (bb0245) 2013; 58
Hall (10.1016/j.bbagen.2013.08.001_bb0095) 2010; 402
Park (10.1016/j.bbagen.2013.08.001_bb0125) 2011; 50
Cox (10.1016/j.bbagen.2013.08.001_bb0265) 2009; 421
O'Neill (10.1016/j.bbagen.2013.08.001_bb0300) 2011; 469
Cox (10.1016/j.bbagen.2013.08.001_bb0185) 2010; 474
Cox (10.1016/j.bbagen.2013.08.001_bb0215) 2008; 44
Hwang (10.1016/j.bbagen.2013.08.001_bb0305) 2007; 32
Kil (10.1016/j.bbagen.2013.08.001_bb0295) 2012; 46
Chang (10.1016/j.bbagen.2013.08.001_bb0115) 2002; 277
Peskin (10.1016/j.bbagen.2013.08.001_bb0070) 2010; 432
Brown (10.1016/j.bbagen.2013.08.001_bb0210) 2008; 45
Winterbourn (10.1016/j.bbagen.2013.08.001_bb0045) 2008; 45
Baty (10.1016/j.bbagen.2013.08.001_bb0170) 2005; 389
Woo (10.1016/j.bbagen.2013.08.001_bb0140) 2003; 278
Jang (10.1016/j.bbagen.2013.08.001_bb0120) 2006; 580
Kumar (10.1016/j.bbagen.2013.08.001_bb0190) 2009; 583
Jeong (10.1016/j.bbagen.2013.08.001_bb0160) 2012; 53
Myers (10.1016/j.bbagen.2013.08.001_bb0230) 2009; 257
Gromer (10.1016/j.bbagen.2013.08.001_bb0255) 1998; 273
Mitsumoto (10.1016/j.bbagen.2013.08.001_bb0260) 2001; 35
Hofmann (10.1016/j.bbagen.2013.08.001_bb0080) 2002; 383
Stacey (10.1016/j.bbagen.2013.08.001_bb0180) 2009; 47
Yang (10.1016/j.bbagen.2013.08.001_bb0015) 2002; 277
Fourquet (10.1016/j.bbagen.2013.08.001_bb0040) 2008; 10
Sayed (10.1016/j.bbagen.2013.08.001_bb0060) 2004; 279
Bae (10.1016/j.bbagen.2013.08.001_bb0285) 2011; 53
Nagy (10.1016/j.bbagen.2013.08.001_bb0100) 2011; 286
Day (10.1016/j.bbagen.2013.08.001_bb0330) 2012; 45
Peskin (10.1016/j.bbagen.2013.08.001_bb0110) 2013; 288
Baty (10.1016/j.bbagen.2013.08.001_bb0175) 2002; 2
Biteau (10.1016/j.bbagen.2013.08.001_bb0145) 2003; 425
Trujillo (10.1016/j.bbagen.2013.08.001_bb0065) 2007; 44
Cox (10.1016/j.bbagen.2013.08.001_bb0220) 2008; 76
Wood (10.1016/j.bbagen.2013.08.001_bb0020) 2003; 300
Low (10.1016/j.bbagen.2013.08.001_bb0200) 2007; 109
Barranco-Medina (10.1016/j.bbagen.2013.08.001_bb0035) 2009; 583
Rhee (10.1016/j.bbagen.2013.08.001_bb0005) 2011; 15
Stacey (10.1016/j.bbagen.2013.08.001_bb0155) 2012; 17
Bae (10.1016/j.bbagen.2013.08.001_bb0270) 2009; 11
Parsonage (10.1016/j.bbagen.2013.08.001_bb0050) 2008; 105
Bae (10.1016/j.bbagen.2013.08.001_bb0280) 2012; 17
Baker (10.1016/j.bbagen.2013.08.001_bb0075) 2001; 183
Engelman (10.1016/j.bbagen.2013.08.001_bb0130) 2013; 288
Yoo (10.1016/j.bbagen.2013.08.001_bb0310) 2009; 29
Cuddihy (10.1016/j.bbagen.2013.08.001_bb0250) 2011; 15
Peskin (10.1016/j.bbagen.2013.08.001_bb0055) 2007; 282
Wood (10.1016/j.bbagen.2013.08.001_bb0010) 2003; 28
Ogusucu (10.1016/j.bbagen.2013.08.001_bb0085) 2007; 42
Chang (10.1016/j.bbagen.2013.08.001_bb0150) 2004; 279
Cox (10.1016/j.bbagen.2013.08.001_bb0165) 2010; 425
Myers (10.1016/j.bbagen.2013.08.001_bb0240) 2009; 47
Parsonage (10.1016/j.bbagen.2013.08.001_bb0030) 2005; 44
Schroder (10.1016/j.bbagen.2013.08.001_bb0105) 2000; 8
Brown (10.1016/j.bbagen.2013.08.001_bb0225) 2010; 584
Myers (10.1016/j.bbagen.2013.08.001_bb0235) 2011; 281
Woo (10.1016/j.bbagen.2013.08.001_bb0135) 2010; 140
Bayer (10.1016/j.bbagen.2013.08.001_bb0205) 2013; 27
Kumar (10.1016/j.bbagen.2013.08.001_bb0245) 2013; 58
Cox (10.1016/j.bbagen.2013.08.001_bb0090) 2009; 48
Bernal (10.1016/j.bbagen.2013.08.001_bb0315) 2010; 5
Konig (10.1016/j.bbagen.2013.08.001_bb0320) 2003; 278
Cox (10.1016/j.bbagen.2013.08.001_bb0325) 2007; 28
Musicco (10.1016/j.bbagen.2013.08.001_bb0275) 2009; 1787
Wood (10.1016/j.bbagen.2013.08.001_bb0025) 2002; 41
Sobotta (10.1016/j.bbagen.2013.08.001_bb0195) 2013; 60
Kwon (10.1016/j.bbagen.2013.08.001_bb0290) 2012; 90
References_xml – volume: 32
  start-page: 1530
  year: 2007
  end-page: 1538
  ident: bb0305
  article-title: Hyperoxidized peroxiredoxins and glyceraldehyde-3-phosphate dehydrogenase immunoreactivity and protein levels are changed in the gerbil hippocampal CA1 region after transient forebrain ischemia
  publication-title: Neurochem. Res.
– volume: 2
  start-page: 1261
  year: 2002
  end-page: 1266
  ident: bb0175
  article-title: Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis
  publication-title: Proteomics
– volume: 1787
  start-page: 890
  year: 2009
  end-page: 896
  ident: bb0275
  article-title: Accumulation of overoxidized peroxiredoxin III in aged rat liver mitochondria
  publication-title: Biochim. Biophys. Acta
– volume: 277
  start-page: 38029
  year: 2002
  end-page: 38036
  ident: bb0015
  article-title: Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid
  publication-title: J. Biol. Chem.
– volume: 28
  start-page: 32
  year: 2003
  end-page: 40
  ident: bb0010
  article-title: Structure, mechanism and regulation of peroxiredoxins
  publication-title: Trends Biochem. Sci.
– volume: 140
  start-page: 517
  year: 2010
  end-page: 528
  ident: bb0135
  article-title: Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling
  publication-title: Cell
– volume: 35
  start-page: 301
  year: 2001
  end-page: 310
  ident: bb0260
  article-title: Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat
  publication-title: Free Radic. Res.
– volume: 279
  start-page: 50994
  year: 2004
  end-page: 51001
  ident: bb0150
  article-title: Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine
  publication-title: J. Biol. Chem.
– volume: 53
  start-page: 447
  year: 2012
  end-page: 456
  ident: bb0160
  article-title: Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression
  publication-title: Free Radic. Biol. Med.
– volume: 273
  start-page: 20096
  year: 1998
  end-page: 20101
  ident: bb0255
  article-title: Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds
  publication-title: J. Biol. Chem.
– volume: 50
  start-page: 3204
  year: 2011
  end-page: 3210
  ident: bb0125
  article-title: Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity
  publication-title: Biochemistry
– volume: 42
  start-page: 326
  year: 2007
  end-page: 334
  ident: bb0085
  article-title: Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics
  publication-title: Free Radic. Biol. Med.
– volume: 583
  start-page: 1809
  year: 2009
  end-page: 1816
  ident: bb0035
  article-title: The oligomeric conformation of peroxiredoxins links redox state to function
  publication-title: FEBS Lett.
– volume: 281
  start-page: 37
  year: 2011
  end-page: 47
  ident: bb0235
  article-title: The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control
  publication-title: Toxicology
– volume: 46
  start-page: 584
  year: 2012
  end-page: 594
  ident: bb0295
  article-title: Feedback control of adrenal steroidogenesis via H
  publication-title: Mol. Cell
– volume: 469
  start-page: 498
  year: 2011
  end-page: 503
  ident: bb0300
  article-title: Circadian clocks in human red blood cells
  publication-title: Nature
– volume: 421
  start-page: 51
  year: 2009
  end-page: 58
  ident: bb0265
  article-title: Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxins
  publication-title: Biochem. J.
– volume: 45
  start-page: 398
  year: 2012
  end-page: 408
  ident: bb0330
  article-title: Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival
  publication-title: Mol. Cell
– volume: 277
  start-page: 25370
  year: 2002
  end-page: 25376
  ident: bb0115
  article-title: Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation
  publication-title: J. Biol. Chem.
– volume: 300
  start-page: 650
  year: 2003
  end-page: 653
  ident: bb0020
  article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
  publication-title: Science
– volume: 45
  start-page: 494
  year: 2008
  end-page: 502
  ident: bb0210
  article-title: Mitochondrial peroxiredoxin 3 is rapidly oxidised in cells treated with isothiocyanates
  publication-title: Free Radic. Biol. Med.
– volume: 15
  start-page: 167
  year: 2011
  end-page: 174
  ident: bb0250
  article-title: Assessment of redox changes to hydrogen peroxide-sensitive proteins during EGF signaling
  publication-title: Antioxid. Redox Signal.
– volume: 47
  start-page: 1468
  year: 2009
  end-page: 1476
  ident: bb0180
  article-title: Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2
  publication-title: Free Radic. Biol. Med.
– volume: 60
  start-page: 325
  year: 2013
  end-page: 335
  ident: bb0195
  article-title: Exposing cells to H
  publication-title: Free Radic. Biol. Med.
– volume: 432
  start-page: 313
  year: 2010
  end-page: 321
  ident: bb0070
  article-title: Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3
  publication-title: Biochem. J.
– volume: 278
  start-page: 47361
  year: 2003
  end-page: 47364
  ident: bb0140
  article-title: Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid — immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence
  publication-title: J. Biol. Chem.
– volume: 47
  start-page: 1477
  year: 2009
  end-page: 1485
  ident: bb0240
  article-title: The effects of hexavalent chromium on thioredoxin reductase and peroxiredoxins in human bronchial epithelial cells
  publication-title: Free Radic. Biol. Med.
– volume: 44
  start-page: 1001
  year: 2008
  end-page: 1009
  ident: bb0215
  article-title: Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis
  publication-title: Free Radic. Biol. Med.
– volume: 44
  start-page: 83
  year: 2007
  end-page: 113
  ident: bb0065
  article-title: Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite
  publication-title: Subcell. Biochem.
– volume: 76
  start-page: 1097
  year: 2008
  end-page: 1109
  ident: bb0220
  article-title: The thioredoxin reductase inhibitor auranofin triggers apoptosis through a Bax/Bak-dependent process that involves peroxiredoxin 3 oxidation
  publication-title: Biochem. Pharmacol.
– volume: 90
  start-page: 502
  year: 2012
  end-page: 508
  ident: bb0290
  article-title: Hyperoxidized peroxiredoxins in peripheral blood mononuclear cells of asthma patients is associated with asthma severity
  publication-title: Life Sci.
– volume: 286
  start-page: 18048
  year: 2011
  end-page: 18055
  ident: bb0100
  article-title: Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study
  publication-title: J. Biol. Chem.
– volume: 580
  start-page: 351
  year: 2006
  end-page: 355
  ident: bb0120
  article-title: Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular chaperone functions
  publication-title: FEBS Lett.
– volume: 278
  start-page: 24409
  year: 2003
  end-page: 24420
  ident: bb0320
  article-title: Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure
  publication-title: J. Biol. Chem.
– volume: 183
  start-page: 1961
  year: 2001
  end-page: 1973
  ident: bb0075
  article-title: Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization
  publication-title: J. Bacteriol.
– volume: 17
  start-page: 1351
  year: 2012
  end-page: 1361
  ident: bb0280
  article-title: Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury
  publication-title: Antioxid. Redox Signal.
– volume: 15
  start-page: 781
  year: 2011
  end-page: 794
  ident: bb0005
  article-title: Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones
  publication-title: Antioxid. Redox Signal.
– volume: 8
  start-page: 605
  year: 2000
  end-page: 615
  ident: bb0105
  article-title: Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7
  publication-title: Structure
– volume: 17
  start-page: 411
  year: 2012
  end-page: 421
  ident: bb0155
  article-title: Oxidation of 2-cys peroxiredoxins in human endothelial cells by hydrogen peroxide, hypochlorous acid, and chloramines
  publication-title: Antioxid. Redox Signal.
– volume: 5
  start-page: e15558
  year: 2010
  ident: bb0315
  article-title: Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring
  publication-title: PLoS One
– volume: 402
  start-page: 194
  year: 2010
  end-page: 209
  ident: bb0095
  article-title: Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization
  publication-title: J. Mol. Biol.
– volume: 109
  start-page: 2611
  year: 2007
  end-page: 2617
  ident: bb0200
  article-title: Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte
  publication-title: Blood
– volume: 105
  start-page: 8209
  year: 2008
  end-page: 8214
  ident: bb0050
  article-title: Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 53
  start-page: 945
  year: 2011
  end-page: 953
  ident: bb0285
  article-title: Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver
  publication-title: Hepatology
– volume: 44
  start-page: 10583
  year: 2005
  end-page: 10592
  ident: bb0030
  article-title: Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin
  publication-title: Biochemistry
– volume: 58
  start-page: 109
  year: 2013
  end-page: 117
  ident: bb0245
  article-title: Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry
  publication-title: Free Radic. Biol. Med.
– volume: 27
  start-page: 3315
  year: 2013
  end-page: 3322
  ident: bb0205
  article-title: Neutrophil-mediated oxidation of erythrocyte peroxiredoxin 2 as a potential marker of oxidative stress in inflammation
  publication-title: FASEB J.
– volume: 28
  start-page: 2166
  year: 2007
  end-page: 2171
  ident: bb0325
  article-title: Bcl-2 over-expression promotes genomic instability by inhibiting apoptosis of cells exposed to hydrogen peroxide
  publication-title: Carcinogenesis
– volume: 11
  start-page: 937
  year: 2009
  end-page: 948
  ident: bb0270
  article-title: Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia
  publication-title: Antioxid. Redox Signal.
– volume: 383
  start-page: 347
  year: 2002
  end-page: 364
  ident: bb0080
  article-title: Peroxiredoxins
  publication-title: Biol. Chem.
– volume: 279
  start-page: 26159
  year: 2004
  end-page: 26166
  ident: bb0060
  article-title: Biochemical characterization of 2-Cys peroxiredoxins from
  publication-title: J. Biol. Chem.
– volume: 425
  start-page: 980
  year: 2003
  end-page: 984
  ident: bb0145
  article-title: ATP-dependent reduction of cysteine-sulphinic acid by
  publication-title: Nature
– volume: 10
  start-page: 1565
  year: 2008
  end-page: 1576
  ident: bb0040
  article-title: The dual functions of thiol-based peroxidases in H
  publication-title: Antioxid. Redox Signal.
– volume: 583
  start-page: 997
  year: 2009
  end-page: 1000
  ident: bb0190
  article-title: Reversible oxidation of mitochondrial peroxiredoxin 3 in mouse heart subjected to ischemia and reperfusion
  publication-title: FEBS Lett.
– volume: 288
  start-page: 14170
  year: 2013
  end-page: 14177
  ident: bb0110
  article-title: Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine
  publication-title: J. Biol. Chem.
– volume: 288
  start-page: 11312
  year: 2013
  end-page: 11324
  ident: bb0130
  article-title: Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation
  publication-title: J. Biol. Chem.
– volume: 425
  start-page: 313
  year: 2010
  end-page: 325
  ident: bb0165
  article-title: Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
  publication-title: Biochem. J.
– volume: 29
  start-page: 413
  year: 2009
  end-page: 421
  ident: bb0310
  article-title: Expression and changes of hyperoxidized peroxiredoxins in non-pyramidal and polymorphic cells in the gerbil hippocampus during normal aging
  publication-title: Cell. Mol. Neurobiol.
– volume: 257
  start-page: 95
  year: 2009
  end-page: 104
  ident: bb0230
  article-title: The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells
  publication-title: Toxicology
– volume: 282
  start-page: 11885
  year: 2007
  end-page: 11892
  ident: bb0055
  article-title: The high reactivity peroxiredoxin 2 with H
  publication-title: J. Biol. Chem.
– volume: 48
  start-page: 6495
  year: 2009
  end-page: 6501
  ident: bb0090
  article-title: Redox potential and peroxide reactivity of human peroxiredoxin 3
  publication-title: Biochemistry
– volume: 389
  start-page: 785
  year: 2005
  end-page: 795
  ident: bb0170
  article-title: Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells
  publication-title: Biochem. J.
– volume: 45
  start-page: 549
  year: 2008
  end-page: 561
  ident: bb0045
  article-title: Thiol chemistry and specificity in redox signaling
  publication-title: Free Radic. Biol. Med.
– volume: 474
  start-page: 51
  year: 2010
  end-page: 66
  ident: bb0185
  article-title: Measuring the redox state of cellular peroxiredoxins by immunoblotting
  publication-title: Methods Enzymol.
– volume: 41
  start-page: 5493
  year: 2002
  end-page: 5504
  ident: bb0025
  article-title: Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins
  publication-title: Biochemistry
– volume: 584
  start-page: 1257
  year: 2010
  end-page: 1262
  ident: bb0225
  article-title: Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofin
  publication-title: FEBS Lett.
– volume: 425
  start-page: 313
  year: 2010
  ident: 10.1016/j.bbagen.2013.08.001_bb0165
  article-title: Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling
  publication-title: Biochem. J.
  doi: 10.1042/BJ20091541
– volume: 53
  start-page: 447
  year: 2012
  ident: 10.1016/j.bbagen.2013.08.001_bb0160
  article-title: Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.05.020
– volume: 41
  start-page: 5493
  year: 2002
  ident: 10.1016/j.bbagen.2013.08.001_bb0025
  article-title: Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins
  publication-title: Biochemistry
  doi: 10.1021/bi012173m
– volume: 105
  start-page: 8209
  year: 2008
  ident: 10.1016/j.bbagen.2013.08.001_bb0050
  article-title: Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0708308105
– volume: 584
  start-page: 1257
  year: 2010
  ident: 10.1016/j.bbagen.2013.08.001_bb0225
  article-title: Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofin
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.02.042
– volume: 46
  start-page: 584
  year: 2012
  ident: 10.1016/j.bbagen.2013.08.001_bb0295
  article-title: Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.030
– volume: 48
  start-page: 6495
  year: 2009
  ident: 10.1016/j.bbagen.2013.08.001_bb0090
  article-title: Redox potential and peroxide reactivity of human peroxiredoxin 3
  publication-title: Biochemistry
  doi: 10.1021/bi900558g
– volume: 288
  start-page: 14170
  year: 2013
  ident: 10.1016/j.bbagen.2013.08.001_bb0110
  article-title: Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.460881
– volume: 279
  start-page: 50994
  year: 2004
  ident: 10.1016/j.bbagen.2013.08.001_bb0150
  article-title: Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M409482200
– volume: 109
  start-page: 2611
  year: 2007
  ident: 10.1016/j.bbagen.2013.08.001_bb0200
  article-title: Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte
  publication-title: Blood
  doi: 10.1182/blood-2006-09-048728
– volume: 183
  start-page: 1961
  year: 2001
  ident: 10.1016/j.bbagen.2013.08.001_bb0075
  article-title: Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.183.6.1961-1973.2001
– volume: 282
  start-page: 11885
  year: 2007
  ident: 10.1016/j.bbagen.2013.08.001_bb0055
  article-title: The high reactivity peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M700339200
– volume: 47
  start-page: 1477
  year: 2009
  ident: 10.1016/j.bbagen.2013.08.001_bb0240
  article-title: The effects of hexavalent chromium on thioredoxin reductase and peroxiredoxins in human bronchial epithelial cells
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.08.015
– volume: 17
  start-page: 411
  year: 2012
  ident: 10.1016/j.bbagen.2013.08.001_bb0155
  article-title: Oxidation of 2-cys peroxiredoxins in human endothelial cells by hydrogen peroxide, hypochlorous acid, and chloramines
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2011.4348
– volume: 29
  start-page: 413
  year: 2009
  ident: 10.1016/j.bbagen.2013.08.001_bb0310
  article-title: Expression and changes of hyperoxidized peroxiredoxins in non-pyramidal and polymorphic cells in the gerbil hippocampus during normal aging
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/s10571-008-9333-7
– volume: 425
  start-page: 980
  year: 2003
  ident: 10.1016/j.bbagen.2013.08.001_bb0145
  article-title: ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin
  publication-title: Nature
  doi: 10.1038/nature02075
– volume: 300
  start-page: 650
  year: 2003
  ident: 10.1016/j.bbagen.2013.08.001_bb0020
  article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
  publication-title: Science
  doi: 10.1126/science.1080405
– volume: 474
  start-page: 51
  year: 2010
  ident: 10.1016/j.bbagen.2013.08.001_bb0185
  article-title: Measuring the redox state of cellular peroxiredoxins by immunoblotting
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(10)74004-0
– volume: 278
  start-page: 24409
  year: 2003
  ident: 10.1016/j.bbagen.2013.08.001_bb0320
  article-title: Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M301145200
– volume: 277
  start-page: 25370
  year: 2002
  ident: 10.1016/j.bbagen.2013.08.001_bb0115
  article-title: Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110432200
– volume: 32
  start-page: 1530
  year: 2007
  ident: 10.1016/j.bbagen.2013.08.001_bb0305
  article-title: Hyperoxidized peroxiredoxins and glyceraldehyde-3-phosphate dehydrogenase immunoreactivity and protein levels are changed in the gerbil hippocampal CA1 region after transient forebrain ischemia
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-007-9345-6
– volume: 279
  start-page: 26159
  year: 2004
  ident: 10.1016/j.bbagen.2013.08.001_bb0060
  article-title: Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M401748200
– volume: 432
  start-page: 313
  year: 2010
  ident: 10.1016/j.bbagen.2013.08.001_bb0070
  article-title: Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3
  publication-title: Biochem. J.
  doi: 10.1042/BJ20101156
– volume: 44
  start-page: 1001
  year: 2008
  ident: 10.1016/j.bbagen.2013.08.001_bb0215
  article-title: Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2007.11.017
– volume: 583
  start-page: 1809
  year: 2009
  ident: 10.1016/j.bbagen.2013.08.001_bb0035
  article-title: The oligomeric conformation of peroxiredoxins links redox state to function
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.05.029
– volume: 42
  start-page: 326
  year: 2007
  ident: 10.1016/j.bbagen.2013.08.001_bb0085
  article-title: Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2006.10.042
– volume: 580
  start-page: 351
  year: 2006
  ident: 10.1016/j.bbagen.2013.08.001_bb0120
  article-title: Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular chaperone functions
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.12.030
– volume: 44
  start-page: 10583
  year: 2005
  ident: 10.1016/j.bbagen.2013.08.001_bb0030
  article-title: Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin
  publication-title: Biochemistry
  doi: 10.1021/bi050448i
– volume: 277
  start-page: 38029
  year: 2002
  ident: 10.1016/j.bbagen.2013.08.001_bb0015
  article-title: Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206626200
– volume: 1787
  start-page: 890
  year: 2009
  ident: 10.1016/j.bbagen.2013.08.001_bb0275
  article-title: Accumulation of overoxidized peroxiredoxin III in aged rat liver mitochondria
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2009.03.002
– volume: 8
  start-page: 605
  year: 2000
  ident: 10.1016/j.bbagen.2013.08.001_bb0105
  article-title: Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7A resolution
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00147-7
– volume: 2
  start-page: 1261
  year: 2002
  ident: 10.1016/j.bbagen.2013.08.001_bb0175
  article-title: Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis
  publication-title: Proteomics
  doi: 10.1002/1615-9861(200209)2:9<1261::AID-PROT1261>3.0.CO;2-Q
– volume: 27
  start-page: 3315
  year: 2013
  ident: 10.1016/j.bbagen.2013.08.001_bb0205
  article-title: Neutrophil-mediated oxidation of erythrocyte peroxiredoxin 2 as a potential marker of oxidative stress in inflammation
  publication-title: FASEB J.
  doi: 10.1096/fj.13-227298
– volume: 257
  start-page: 95
  year: 2009
  ident: 10.1016/j.bbagen.2013.08.001_bb0230
  article-title: The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells
  publication-title: Toxicology
  doi: 10.1016/j.tox.2008.12.013
– volume: 10
  start-page: 1565
  year: 2008
  ident: 10.1016/j.bbagen.2013.08.001_bb0040
  article-title: The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2008.2049
– volume: 402
  start-page: 194
  year: 2010
  ident: 10.1016/j.bbagen.2013.08.001_bb0095
  article-title: Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.07.022
– volume: 286
  start-page: 18048
  year: 2011
  ident: 10.1016/j.bbagen.2013.08.001_bb0100
  article-title: Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.232355
– volume: 90
  start-page: 502
  year: 2012
  ident: 10.1016/j.bbagen.2013.08.001_bb0290
  article-title: Hyperoxidized peroxiredoxins in peripheral blood mononuclear cells of asthma patients is associated with asthma severity
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2012.01.003
– volume: 278
  start-page: 47361
  year: 2003
  ident: 10.1016/j.bbagen.2013.08.001_bb0140
  article-title: Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid — immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C300428200
– volume: 28
  start-page: 32
  year: 2003
  ident: 10.1016/j.bbagen.2013.08.001_bb0010
  article-title: Structure, mechanism and regulation of peroxiredoxins
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(02)00003-8
– volume: 273
  start-page: 20096
  year: 1998
  ident: 10.1016/j.bbagen.2013.08.001_bb0255
  article-title: Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.32.20096
– volume: 53
  start-page: 945
  year: 2011
  ident: 10.1016/j.bbagen.2013.08.001_bb0285
  article-title: Concerted action of sulfiredoxin and peroxiredoxin I protects against alcohol-induced oxidative injury in mouse liver
  publication-title: Hepatology
  doi: 10.1002/hep.24104
– volume: 421
  start-page: 51
  year: 2009
  ident: 10.1016/j.bbagen.2013.08.001_bb0265
  article-title: Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxins
  publication-title: Biochem. J.
  doi: 10.1042/BJ20090242
– volume: 383
  start-page: 347
  year: 2002
  ident: 10.1016/j.bbagen.2013.08.001_bb0080
  article-title: Peroxiredoxins
  publication-title: Biol. Chem.
  doi: 10.1515/BC.2002.040
– volume: 15
  start-page: 167
  year: 2011
  ident: 10.1016/j.bbagen.2013.08.001_bb0250
  article-title: Assessment of redox changes to hydrogen peroxide-sensitive proteins during EGF signaling
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3843
– volume: 389
  start-page: 785
  year: 2005
  ident: 10.1016/j.bbagen.2013.08.001_bb0170
  article-title: Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells
  publication-title: Biochem. J.
  doi: 10.1042/BJ20050337
– volume: 47
  start-page: 1468
  year: 2009
  ident: 10.1016/j.bbagen.2013.08.001_bb0180
  article-title: Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.08.022
– volume: 35
  start-page: 301
  year: 2001
  ident: 10.1016/j.bbagen.2013.08.001_bb0260
  article-title: Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat
  publication-title: Free Radic. Res.
  doi: 10.1080/10715760100300831
– volume: 17
  start-page: 1351
  year: 2012
  ident: 10.1016/j.bbagen.2013.08.001_bb0280
  article-title: Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2011.4334
– volume: 5
  start-page: e15558
  year: 2010
  ident: 10.1016/j.bbagen.2013.08.001_bb0315
  article-title: Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015558
– volume: 469
  start-page: 498
  year: 2011
  ident: 10.1016/j.bbagen.2013.08.001_bb0300
  article-title: Circadian clocks in human red blood cells
  publication-title: Nature
  doi: 10.1038/nature09702
– volume: 58
  start-page: 109
  year: 2013
  ident: 10.1016/j.bbagen.2013.08.001_bb0245
  article-title: Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.01.021
– volume: 50
  start-page: 3204
  year: 2011
  ident: 10.1016/j.bbagen.2013.08.001_bb0125
  article-title: Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity
  publication-title: Biochemistry
  doi: 10.1021/bi101373h
– volume: 60
  start-page: 325
  year: 2013
  ident: 10.1016/j.bbagen.2013.08.001_bb0195
  article-title: Exposing cells to H2O2: a quantitative comparison between continuous low-dose and one-time high-dose treatments
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.02.017
– volume: 76
  start-page: 1097
  year: 2008
  ident: 10.1016/j.bbagen.2013.08.001_bb0220
  article-title: The thioredoxin reductase inhibitor auranofin triggers apoptosis through a Bax/Bak-dependent process that involves peroxiredoxin 3 oxidation
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2008.08.021
– volume: 281
  start-page: 37
  year: 2011
  ident: 10.1016/j.bbagen.2013.08.001_bb0235
  article-title: The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control
  publication-title: Toxicology
  doi: 10.1016/j.tox.2011.01.001
– volume: 45
  start-page: 494
  year: 2008
  ident: 10.1016/j.bbagen.2013.08.001_bb0210
  article-title: Mitochondrial peroxiredoxin 3 is rapidly oxidised in cells treated with isothiocyanates
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2008.04.030
– volume: 45
  start-page: 549
  year: 2008
  ident: 10.1016/j.bbagen.2013.08.001_bb0045
  article-title: Thiol chemistry and specificity in redox signaling
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2008.05.004
– volume: 44
  start-page: 83
  year: 2007
  ident: 10.1016/j.bbagen.2013.08.001_bb0065
  article-title: Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite
  publication-title: Subcell. Biochem.
  doi: 10.1007/978-1-4020-6051-9_5
– volume: 288
  start-page: 11312
  year: 2013
  ident: 10.1016/j.bbagen.2013.08.001_bb0130
  article-title: Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.433755
– volume: 140
  start-page: 517
  year: 2010
  ident: 10.1016/j.bbagen.2013.08.001_bb0135
  article-title: Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.009
– volume: 11
  start-page: 937
  year: 2009
  ident: 10.1016/j.bbagen.2013.08.001_bb0270
  article-title: Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2008.2325
– volume: 15
  start-page: 781
  year: 2011
  ident: 10.1016/j.bbagen.2013.08.001_bb0005
  article-title: Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3393
– volume: 45
  start-page: 398
  year: 2012
  ident: 10.1016/j.bbagen.2013.08.001_bb0330
  article-title: Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.11.027
– volume: 583
  start-page: 997
  year: 2009
  ident: 10.1016/j.bbagen.2013.08.001_bb0190
  article-title: Reversible oxidation of mitochondrial peroxiredoxin 3 in mouse heart subjected to ischemia and reperfusion
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.02.018
– volume: 28
  start-page: 2166
  year: 2007
  ident: 10.1016/j.bbagen.2013.08.001_bb0325
  article-title: Bcl-2 over-expression promotes genomic instability by inhibiting apoptosis of cells exposed to hydrogen peroxide
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgm093
SSID ssj0000595
ssj0025309
Score 2.4796093
SecondaryResourceType review_article
Snippet Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 906
SubjectTerms Animals
Biomarker
biomarkers
Biomarkers - analysis
Biomarkers - metabolism
biophysics
homeostasis
Humans
Hydrogen peroxide
hydroperoxides
Hyperoxidation
membrane proteins
Oxidation
Oxidative Stress
peroxidases
Peroxiredoxin
Peroxiredoxins - analysis
Peroxiredoxins - metabolism
thiols
tissues
Title Peroxiredoxins as biomarkers of oxidative stress
URI https://dx.doi.org/10.1016/j.bbagen.2013.08.001
https://www.ncbi.nlm.nih.gov/pubmed/23939310
https://www.proquest.com/docview/1466376916
https://www.proquest.com/docview/2000199376
Volume 1840
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yEX0RnV_zY1Twta5tmrZ5HMMxHQ5Rh3srSZrBRLqxD5gv_u3eJe1EcAx8aWm4wnFJLr9wd78j5EawQDMJ11SVsdBF-hNXSMFd5euEqoxm3JRHP_aiTj98GLDBFmmVtTCYVln4fuvTjbcuRhqFNRuT0ajxgkE9gBMMAzI0NPf2MIxxld9-_aR5AHxgNpIAqoB0WT5ncrykhE2LLKg-NUSeRWuYP46ndfDTHEPtA7Jf4EenaVU8JFs6r5Id21Hys0p2W2UDtyPiPenpeDlCRtDlKJ85YuZgsT3m40xnznjowHBmeL8dWzFyTPrtu9dWxy0aJLiKcjZ3Izr0ExXEWgkmk0RGQSgywWJPx0PtJdwXCgnimFKcy8DLDHlLGCnYpZ4_5JSekEo-zvUZcRSy6iC2QH61OBIJR3IueErAk0rqGqGlXVJVsIdjE4uPtEwTe0-tNVO0Zoq9LT2_RtzVXxPLnrFBPi5Nnv5aBSk4-A1_XpczlIKZMeohcj1ezPBuE4EXBRi8XiYwUBeQGsic2uld6YsccRxA8Pm_dbsge_AV2lzvS1KZTxf6CqDMXNbNWq2T7eZ9t9PDd_f5rfsNnVXw5w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DkfkiOr8_K_ha1zZN2zzKcEydIriBbyFJM5hIJ_uA-eLf7l3STgTHwJc-pBc4LsnlF-7ud4RcSRYZpuCZqnMW-0h_4kslua9Dk1Gd05zb8ujHp6TTj-9f2WuNtKpaGEyrLH2_8-nWW5cjzdKazY_hsPmCQT2AEwwDMjTGd_t6DMcX2xhcf_3keQB-YC6UALqAeFU_Z5O8lIJTizSoIbVMnmVvmD_up2X4095D7W2yVQJI78bpuENqpmiQDddS8rNB6q2qg9suCZ7NeDQfIiXofFhMPDnxsNoeE3LGE2808GA4t8TfnisZ2SP99m2v1fHLDgm-ppxN_YQOwkxHqdGSqSxTSRTLXLI0MOnABBkPpUaGOKY15yoKcsveEicajmkQDjil-2StGBXmkHgaaXUQXCDBWprIjCM7F3wVAEqtzBGhlV2ELunDsYvFu6jyxN6Es6ZAawpsbhmER8RfzPpw9Bkr5NPK5OLXNhDg4VfMvKxWSICZMewhCzOaTfBxk4AbBRy8XCayWBegGsgcuOVd6IskcRxQ8PG_dbsg9U7vsSu6d08PJ2QT_sQu8fuUrE3HM3MGuGaqzu2-_Qadu_DS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peroxiredoxins+as+biomarkers+of+oxidative+stress&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Poynton%2C+Rebecca+A.&rft.au=Hampton%2C+Mark+B.&rft.date=2014-02-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1840&rft.issue=2&rft.spage=906&rft.epage=912&rft_id=info:doi/10.1016%2Fj.bbagen.2013.08.001&rft.externalDocID=S0304416513003450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon