An in vitro investigation of the inhibitory mechanism of β-galactosidase by cinnamaldehyde alone and in combination with carvacrol and thymol
Some antibacterial agents exert their antimicrobial action by targeting the cytoplasmic macromolecules, such as proteins or nucleic acids, to disturb the properties of macromolecules that may deeply influence their biological activities and functions. Cinnamaldehyde (CIN) is a natural antibacterial...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1861; no. 1; pp. 3189 - 3198 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Some antibacterial agents exert their antimicrobial action by targeting the cytoplasmic macromolecules, such as proteins or nucleic acids, to disturb the properties of macromolecules that may deeply influence their biological activities and functions. Cinnamaldehyde (CIN) is a natural antibacterial ingredient found in the bark and leaves of cinnamon trees.
The inhibitory mechanism of a typical enzyme, β-galactosidase by CIN was investigated by UV–visible, fluorescence, 3-D spectroscopy, circular dichroism, atomic force microscopy and molecular modeling studies.
CIN decreased the activity of β-galactosidase by competitive inhibition through a multiphase kinetic process. 3-D spectroscopy and circular dichroism showed that the binding of CIN to β-galactosidase resulted in changes in micro-environment of tryptophan and tyrosine residues, and conformation of β-galactosidase. The molecular recognition was also analyzed through modeling which indicated that CIN was inserted into the active site pocket of β-galactosidase and interacted with amino acid residues, such as Met502, Trp568, Phe601 and Trp999. Atomic force microscopy showed that a serious destabilization of the native conformation of β-galactosidase occurred after binding with CIN, e.g., morphological changes and increased dimensions of the β-galactosidase molecule. Moreover, it was found that the combinations of CIN, carvacrol and thymol exposure displayed synergistic effects on the inhibition of β-galactosidase.
This study exhibits a comprehensively understanding about the action mechanism of CIN that affects the conformation and activity of β-galactosidase in biochemical processes and provides some new insights into the possible intracellular targeting behaviors of CIN at a molecular level.
Cinnamaldehyde occupies the active site of β-galactosidase to decrease the activity and alter the secondary structure of this enzyme. [Display omitted]
•CIN decreased the β-gal activity by competitive inhibition via a multiphase process.•Binding of CIN to β-gal resulted changes in the secondary structure of β-gal.•CIN inserted into the active site of β-gal and interacted with amino acid residues.•AFM revealed that morphological changes and increased dimensions of the β-gal by CIN. |
---|---|
AbstractList | Some antibacterial agents exert their antimicrobial action by targeting the cytoplasmic macromolecules, such as proteins or nucleic acids, to disturb the properties of macromolecules that may deeply influence their biological activities and functions. Cinnamaldehyde (CIN) is a natural antibacterial ingredient found in the bark and leaves of cinnamon trees.BACKGROUNDSome antibacterial agents exert their antimicrobial action by targeting the cytoplasmic macromolecules, such as proteins or nucleic acids, to disturb the properties of macromolecules that may deeply influence their biological activities and functions. Cinnamaldehyde (CIN) is a natural antibacterial ingredient found in the bark and leaves of cinnamon trees.The inhibitory mechanism of a typical enzyme, β-galactosidase by CIN was investigated by UV-visible, fluorescence, 3-D spectroscopy, circular dichroism, atomic force microscopy and molecular modeling studies.METHODSThe inhibitory mechanism of a typical enzyme, β-galactosidase by CIN was investigated by UV-visible, fluorescence, 3-D spectroscopy, circular dichroism, atomic force microscopy and molecular modeling studies.CIN decreased the activity of β-galactosidase by competitive inhibition through a multiphase kinetic process. 3-D spectroscopy and circular dichroism showed that the binding of CIN to β-galactosidase resulted in changes in micro-environment of tryptophan and tyrosine residues, and conformation of β-galactosidase. The molecular recognition was also analyzed through modeling which indicated that CIN was inserted into the active site pocket of β-galactosidase and interacted with amino acid residues, such as Met502, Trp568, Phe601 and Trp999. Atomic force microscopy showed that a serious destabilization of the native conformation of β-galactosidase occurred after binding with CIN, e.g., morphological changes and increased dimensions of the β-galactosidase molecule. Moreover, it was found that the combinations of CIN, carvacrol and thymol exposure displayed synergistic effects on the inhibition of β-galactosidase.RESULTSCIN decreased the activity of β-galactosidase by competitive inhibition through a multiphase kinetic process. 3-D spectroscopy and circular dichroism showed that the binding of CIN to β-galactosidase resulted in changes in micro-environment of tryptophan and tyrosine residues, and conformation of β-galactosidase. The molecular recognition was also analyzed through modeling which indicated that CIN was inserted into the active site pocket of β-galactosidase and interacted with amino acid residues, such as Met502, Trp568, Phe601 and Trp999. Atomic force microscopy showed that a serious destabilization of the native conformation of β-galactosidase occurred after binding with CIN, e.g., morphological changes and increased dimensions of the β-galactosidase molecule. Moreover, it was found that the combinations of CIN, carvacrol and thymol exposure displayed synergistic effects on the inhibition of β-galactosidase.This study exhibits a comprehensively understanding about the action mechanism of CIN that affects the conformation and activity of β-galactosidase in biochemical processes and provides some new insights into the possible intracellular targeting behaviors of CIN at a molecular level.GENERAL SIGNIFICANCEThis study exhibits a comprehensively understanding about the action mechanism of CIN that affects the conformation and activity of β-galactosidase in biochemical processes and provides some new insights into the possible intracellular targeting behaviors of CIN at a molecular level. Some antibacterial agents exert their antimicrobial action by targeting the cytoplasmic macromolecules, such as proteins or nucleic acids, to disturb the properties of macromolecules that may deeply influence their biological activities and functions. Cinnamaldehyde (CIN) is a natural antibacterial ingredient found in the bark and leaves of cinnamon trees. The inhibitory mechanism of a typical enzyme, β-galactosidase by CIN was investigated by UV–visible, fluorescence, 3-D spectroscopy, circular dichroism, atomic force microscopy and molecular modeling studies. CIN decreased the activity of β-galactosidase by competitive inhibition through a multiphase kinetic process. 3-D spectroscopy and circular dichroism showed that the binding of CIN to β-galactosidase resulted in changes in micro-environment of tryptophan and tyrosine residues, and conformation of β-galactosidase. The molecular recognition was also analyzed through modeling which indicated that CIN was inserted into the active site pocket of β-galactosidase and interacted with amino acid residues, such as Met502, Trp568, Phe601 and Trp999. Atomic force microscopy showed that a serious destabilization of the native conformation of β-galactosidase occurred after binding with CIN, e.g., morphological changes and increased dimensions of the β-galactosidase molecule. Moreover, it was found that the combinations of CIN, carvacrol and thymol exposure displayed synergistic effects on the inhibition of β-galactosidase. This study exhibits a comprehensively understanding about the action mechanism of CIN that affects the conformation and activity of β-galactosidase in biochemical processes and provides some new insights into the possible intracellular targeting behaviors of CIN at a molecular level. Cinnamaldehyde occupies the active site of β-galactosidase to decrease the activity and alter the secondary structure of this enzyme. [Display omitted] •CIN decreased the β-gal activity by competitive inhibition via a multiphase process.•Binding of CIN to β-gal resulted changes in the secondary structure of β-gal.•CIN inserted into the active site of β-gal and interacted with amino acid residues.•AFM revealed that morphological changes and increased dimensions of the β-gal by CIN. Some antibacterial agents exert their antimicrobial action by targeting the cytoplasmic macromolecules, such as proteins or nucleic acids, to disturb the properties of macromolecules that may deeply influence their biological activities and functions. Cinnamaldehyde (CIN) is a natural antibacterial ingredient found in the bark and leaves of cinnamon trees.The inhibitory mechanism of a typical enzyme, β-galactosidase by CIN was investigated by UV–visible, fluorescence, 3-D spectroscopy, circular dichroism, atomic force microscopy and molecular modeling studies.CIN decreased the activity of β-galactosidase by competitive inhibition through a multiphase kinetic process. 3-D spectroscopy and circular dichroism showed that the binding of CIN to β-galactosidase resulted in changes in micro-environment of tryptophan and tyrosine residues, and conformation of β-galactosidase. The molecular recognition was also analyzed through modeling which indicated that CIN was inserted into the active site pocket of β-galactosidase and interacted with amino acid residues, such as Met502, Trp568, Phe601 and Trp999. Atomic force microscopy showed that a serious destabilization of the native conformation of β-galactosidase occurred after binding with CIN, e.g., morphological changes and increased dimensions of the β-galactosidase molecule. Moreover, it was found that the combinations of CIN, carvacrol and thymol exposure displayed synergistic effects on the inhibition of β-galactosidase.This study exhibits a comprehensively understanding about the action mechanism of CIN that affects the conformation and activity of β-galactosidase in biochemical processes and provides some new insights into the possible intracellular targeting behaviors of CIN at a molecular level. Some antibacterial agents exert their antimicrobial action by targeting the cytoplasmic macromolecules, such as proteins or nucleic acids, to disturb the properties of macromolecules that may deeply influence their biological activities and functions. Cinnamaldehyde (CIN) is a natural antibacterial ingredient found in the bark and leaves of cinnamon trees. The inhibitory mechanism of a typical enzyme, β-galactosidase by CIN was investigated by UV-visible, fluorescence, 3-D spectroscopy, circular dichroism, atomic force microscopy and molecular modeling studies. CIN decreased the activity of β-galactosidase by competitive inhibition through a multiphase kinetic process. 3-D spectroscopy and circular dichroism showed that the binding of CIN to β-galactosidase resulted in changes in micro-environment of tryptophan and tyrosine residues, and conformation of β-galactosidase. The molecular recognition was also analyzed through modeling which indicated that CIN was inserted into the active site pocket of β-galactosidase and interacted with amino acid residues, such as Met502, Trp568, Phe601 and Trp999. Atomic force microscopy showed that a serious destabilization of the native conformation of β-galactosidase occurred after binding with CIN, e.g., morphological changes and increased dimensions of the β-galactosidase molecule. Moreover, it was found that the combinations of CIN, carvacrol and thymol exposure displayed synergistic effects on the inhibition of β-galactosidase. This study exhibits a comprehensively understanding about the action mechanism of CIN that affects the conformation and activity of β-galactosidase in biochemical processes and provides some new insights into the possible intracellular targeting behaviors of CIN at a molecular level. |
Author | Wang, Man-Sheng Zeng, Xin-An Huang, Yan-Bo Gong, De-Ming Wang, Lang-Hong |
Author_xml | – sequence: 1 givenname: Lang-Hong surname: Wang fullname: Wang, Lang-Hong organization: School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 2 givenname: Man-Sheng surname: Wang fullname: Wang, Man-Sheng organization: School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 3 givenname: Xin-An surname: Zeng fullname: Zeng, Xin-An email: xazeng@scut.edu.cn organization: School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 4 givenname: De-Ming surname: Gong fullname: Gong, De-Ming organization: School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand – sequence: 5 givenname: Yan-Bo surname: Huang fullname: Huang, Yan-Bo organization: School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27531708$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctu1DAUtVARnRb-ACEv2SRc52E7LJCqipdUiQ2sLce5M_EosYvtmSo_wcfwIXwTnqbdsKDe2Nc-5_jecy7ImfMOCXnNoGTA-Lt92fd6h66sclWCLAGqZ2TDpKgKCcDPyAZqaIqG8facXMS4h7zarn1BzivR1kyA3JBfV45aR482BZ8PR4zJ7nSy3lG_pWnEfDna3iYfFjqjGbWzcT69_fld7PSkTfLRDjoi7RdqrHN61tOA4zIg1VNumWo3nL4wfu6tW6XvbBqp0eGoTfDTPSKNy-ynl-T5Vk8RXz3sl-THp4_fr78UN98-f72-uilM3bWp4KxjQjOoeMvaDgTWsGUtN0L0DLoaK4kCOsbA1LobJGsGwWvO24Fr2cimqi_J21X3Nvifhzy0mm00OE3aoT9EVWWrqiorN09CmWyaugUOIkPfPEAP_YyDug121mFRj3ZnwPsVkMeOMeBWGZvuLUlB20kxUKds1V6t2apTtgqkyt1kcvMP-VH_CdqHlYbZz6PFoKKx6AwONqBJavD2_wJ_AcHqwAk |
CitedBy_id | crossref_primary_10_1039_C7IB00095B crossref_primary_10_1186_s40494_024_01410_2 crossref_primary_10_1002_jsfa_12307 crossref_primary_10_1007_s12161_017_0884_4 crossref_primary_10_1016_j_bioelechem_2018_07_017 crossref_primary_10_1186_s12906_020_03156_3 crossref_primary_10_1007_s00203_018_1572_5 crossref_primary_10_1016_j_ifset_2017_10_011 crossref_primary_10_1016_j_ijbiomac_2018_06_045 crossref_primary_10_1016_j_foodcont_2017_04_011 crossref_primary_10_3390_ijms21217852 crossref_primary_10_3389_fnut_2022_1040152 crossref_primary_10_2139_ssrn_4049572 crossref_primary_10_1016_j_molliq_2020_112954 crossref_primary_10_1021_acs_jafc_7b04344 crossref_primary_10_3390_ani10020329 crossref_primary_10_1111_jfpp_13740 crossref_primary_10_1016_j_fm_2019_103357 crossref_primary_10_1021_acs_jafc_8b02992 crossref_primary_10_1021_acs_jproteome_4c00520 crossref_primary_10_1016_j_carbpol_2017_09_043 crossref_primary_10_1007_s10499_021_00705_6 crossref_primary_10_1002_app_50911 crossref_primary_10_1016_j_ijbiomac_2017_10_040 crossref_primary_10_1016_j_tifs_2021_03_032 crossref_primary_10_1016_j_ifset_2018_11_009 crossref_primary_10_3389_fimmu_2023_1095848 crossref_primary_10_1016_j_bmc_2017_07_020 crossref_primary_10_1039_C6RA23426G crossref_primary_10_1016_j_micpath_2020_104208 crossref_primary_10_1016_j_ijbiomac_2018_04_024 crossref_primary_10_1016_j_jfoodeng_2017_11_035 crossref_primary_10_1016_j_foodcont_2018_03_025 crossref_primary_10_1007_s00217_023_04446_z crossref_primary_10_1111_jfpp_14003 crossref_primary_10_1007_s00216_016_0102_z crossref_primary_10_1016_j_micpath_2022_105572 crossref_primary_10_1016_j_bbamem_2017_11_007 |
Cites_doi | 10.1128/AEM.06923-11 10.1016/j.colsurfb.2012.12.023 10.1016/j.foodchem.2011.05.039 10.1016/S0141-0229(99)00182-9 10.1016/j.foodcont.2013.05.032 10.1007/s12010-012-0003-3 10.1038/369761a0 10.1021/jm030266r 10.1016/S0006-291X(02)00442-4 10.1016/j.foodcont.2005.11.009 10.1016/j.foodcont.2014.07.003 10.1021/jf1033625 10.1039/C5CP02582F 10.1021/jf3009958 10.1111/j.1472-765X.2011.03122.x 10.1016/j.crvi.2005.03.006 10.1016/j.procbio.2015.01.014 10.1016/j.jphotobiol.2014.10.013 10.1016/j.jlumin.2014.01.036 10.1016/S0141-0229(01)00366-0 10.1039/C5RA19626D 10.1016/0964-8305(96)00015-7 10.1016/j.bbagen.2006.03.026 10.1021/jf505584m 10.1021/acsnano.5b03247 10.1002/pts.952 10.1007/BF02974062 10.1021/jp207803c 10.1021/jf404177b 10.1021/bi00514a017 10.1021/jf301156v 10.1016/j.procbio.2012.12.019 10.1021/jf505469k 10.1039/C4MB00548A 10.1016/j.foodchem.2015.05.088 10.1016/0003-9861(69)90066-6 10.1016/j.bbagen.2013.05.017 10.1016/j.jphotobiol.2015.10.022 10.1016/j.foodchem.2006.08.018 10.1016/S0142-9612(02)00036-4 10.1021/jf5046359 10.1016/j.foodchem.2010.07.079 10.1128/AEM.02767-12 10.1002/bip.21011 10.1016/j.ijbiomac.2011.12.035 10.1016/j.bbagen.2016.01.026 10.1073/pnas.1402809111 10.1093/jac/dku374 10.1016/S0092-8674(01)00286-0 10.1016/j.foodcont.2015.06.044 10.1016/j.foodchem.2014.06.021 10.1039/C4CP04952G 10.1021/cr030101q 10.1016/j.jhazmat.2008.07.132 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2016.08.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 3198 |
ExternalDocumentID | 27531708 10_1016_j_bbagen_2016_08_002 S0304416516302835 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-61917a1026515907e30f156c77b1093e28e709110c3a9d814d763665d6a848423 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 |
IngestDate | Fri Aug 22 20:41:26 EDT 2025 Thu Jul 10 23:12:29 EDT 2025 Mon Jul 21 05:42:27 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Tue Jul 01 00:22:07 EDT 2025 Fri Feb 23 02:32:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cinnamaldehyde Synergistic effect Competitive inhibition Molecular modeling β-Galactosidase |
Language | English |
License | Copyright © 2016 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-61917a1026515907e30f156c77b1093e28e709110c3a9d814d763665d6a848423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27531708 |
PQID | 1844350607 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000229074 proquest_miscellaneous_1844350607 pubmed_primary_27531708 crossref_citationtrail_10_1016_j_bbagen_2016_08_002 crossref_primary_10_1016_j_bbagen_2016_08_002 elsevier_sciencedirect_doi_10_1016_j_bbagen_2016_08_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 2017-Jan 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rodriguez-Colinas, Poveda, Jimenez-Barbero, Ballesteros, Plou (bb0115) 2012; 60 Wang, Zhang (bb0205) 2013; 61 Visvalingam, Hernandez-Doria, Holley (bb0070) 2013; 79 Oussalah, Caillet, Saucier, Lacroix (bb0050) 2007; 18 Zhang, Zhou, Zhang, Huang, Li, Liu (bb0235) 2009; 163 Masuoka, Nihei, Maeta, Yamagiwa, Kubo (bb0165) 2015; 166 Chaturvedi, Ahmad, Khan, Alam, Ishtikhar, Khan (bb0230) 2015; 11 Denyer (bb0010) 1995; 36 Zinn, Betz, Medcraft, Schnell (bb0045) 2015; 17 Peng, Zhang, Liao, Gong (bb0120) 2016; 190 Xie, Long, Liu, Qin, Wang (bb0200) 2006; 1760 Matthews (bb0085) 2005; 328 Anand, Mukherjee (bb0240) 2013; 1830 Shen, Zhang, Yuan, Lin, Xu, Ye (bb0065) 2015; 47 Wang, Zhang, Pan, Gong (bb0145) 2015; 63 McGovern, Helfand, Feng, Shoichet (bb0025) 2003; 46 Ladero, Santos, Garcı́a, Garcı́a-Ochoa (bb0075) 2001; 29 Thoppil, Choudhary, Kishore (bb0195) 2016; 1860 Bell, Magill, Hallsworth, Timson (bb0095) 2013; 169 Ross, Subramanian (bb0215) 1981; 20 Nesgaard, Hoffmann, Andersen, Malmendal, Otzen (bb0245) 2008; 89 Matsue, Miyawaki (bb0105) 2000; 26 Bae, Ji, Park (bb0160) 1992; 15 Seras-Franzoso, Affentranger, Ferrer-Navarro, Daura, Villaverde, Garcia-Fruitos (bb0090) 2012; 78 Mir, Khan, Khan, Dar, Rather (bb0255) 2012; 116 Wheatley, Juers, Lev, Huber, Noskov (bb0270) 2015; 17 Guo, Li, Jiang, Yi, Wu, Chang, Diao, Sun, Pan, Zhou (bb0220) 2014; 149 Wang, Tao, Zhang, Li, Gong (bb0155) 2015; 5 Li, Lü, Wang, Han, Yang, Park, Zhou, Sheng, Lee (bb0140) 2015; 50 Huang, Fu, Ho, Tan, Huang, Pan (bb0055) 2007; 103 Lin, Dong, Zhao, Wen, Yang, Zhao (bb0125) 2011; 129 Bartesaghi, Matthies, Banerjee, Merk, Subramaniam (bb0260) 2014; 111 Cai, Wang, Wang, He, Wang, Zhang, Zhou, Ji (bb0280) 2012; 60 Wang, Lee, Si, Oh, Yang, Shen, Qian, Yin (bb0170) 2013; 48 Hu, Yan, Park, Jeong, Chung, Yang, Ye, Qian (bb0185) 2012; 50 Lin, Chen, Chen, Liang, Lin (bb0180) 2002; 294 Campbell, Korzheva, Mustaev, Murakami, Nair, Goldfarb, Darst (bb0020) 2001; 104 Cui, Liang, Hu, Shi, Cai, Gao, Chen, Wang (bb0175) 2015; 63 Li, Chen, Yu, Hu, Song, Zhou, Chen (bb0135) 2010; 58 Tian, Zang, Luo, Zhao, Wang, Xu, Wang (bb0225) 2015; 142 Shahabadi, Maghsudi, Kiani, Pourfoulad (bb0210) 2011; 124 Li, Jia, Wang, Li, Chen, Lin, Gao (bb0265) 2013; 104 Ye, Shen, Xu, Lin, Yuan, Jones (bb0040) 2013; 34 Sanla-Ead, Jangchud, Chonhenchob, Suppakul (bb0060) 2012; 25 Shifrin, Hunn (bb0100) 1969; 130 Barreca, Laganà, Toscano, Calandra, Kiselev, Lombardo, Bellocco (bb0190) 2016 Wang, Zhang, Wang (bb0150) 2014; 63 Jia, Xue, Duan, Shao (bb0035) 2011; 53 Ulvatne, Samuelsen, Haukland, Krämer, Vorland (bb0005) 2004; 237 Mitscher (bb0030) 2005; 105 Jacobson, Zhang, DuBose, Matthews (bb0080) 1994; 369 Lin, Zhang, Pan, Gong (bb0130) 2015; 153 Katragkou, McCarthy, Alexander, Antachopoulos, Meletiadis, Jabra-Rizk, Petraitis, Roilides, Walsh (bb0275) 2015; 70 Cha, Hong, McGuffie, Yeom, VanEpps, Kotov (bb0250) 2015; 9 Miao, Zhou, Liu, Chen, Chen, Gao, Dixon, Song, Xiao, Cao (bb0110) 2016; 59 Chen, Cooper (bb0015) 2002; 23 Visvalingam (10.1016/j.bbagen.2016.08.002_bb0070) 2013; 79 Shifrin (10.1016/j.bbagen.2016.08.002_bb0100) 1969; 130 Ross (10.1016/j.bbagen.2016.08.002_bb0215) 1981; 20 Wang (10.1016/j.bbagen.2016.08.002_bb0150) 2014; 63 Seras-Franzoso (10.1016/j.bbagen.2016.08.002_bb0090) 2012; 78 Anand (10.1016/j.bbagen.2016.08.002_bb0240) 2013; 1830 Cui (10.1016/j.bbagen.2016.08.002_bb0175) 2015; 63 Campbell (10.1016/j.bbagen.2016.08.002_bb0020) 2001; 104 Wang (10.1016/j.bbagen.2016.08.002_bb0145) 2015; 63 Matthews (10.1016/j.bbagen.2016.08.002_bb0085) 2005; 328 Shen (10.1016/j.bbagen.2016.08.002_bb0065) 2015; 47 Hu (10.1016/j.bbagen.2016.08.002_bb0185) 2012; 50 Lin (10.1016/j.bbagen.2016.08.002_bb0125) 2011; 129 Katragkou (10.1016/j.bbagen.2016.08.002_bb0275) 2015; 70 Thoppil (10.1016/j.bbagen.2016.08.002_bb0195) 2016; 1860 Li (10.1016/j.bbagen.2016.08.002_bb0265) 2013; 104 Li (10.1016/j.bbagen.2016.08.002_bb0140) 2015; 50 Ulvatne (10.1016/j.bbagen.2016.08.002_bb0005) 2004; 237 Zinn (10.1016/j.bbagen.2016.08.002_bb0045) 2015; 17 Bell (10.1016/j.bbagen.2016.08.002_bb0095) 2013; 169 Chaturvedi (10.1016/j.bbagen.2016.08.002_bb0230) 2015; 11 Nesgaard (10.1016/j.bbagen.2016.08.002_bb0245) 2008; 89 Li (10.1016/j.bbagen.2016.08.002_bb0135) 2010; 58 Wang (10.1016/j.bbagen.2016.08.002_bb0205) 2013; 61 Lin (10.1016/j.bbagen.2016.08.002_bb0130) 2015; 153 Chen (10.1016/j.bbagen.2016.08.002_bb0015) 2002; 23 Miao (10.1016/j.bbagen.2016.08.002_bb0110) 2016; 59 Wang (10.1016/j.bbagen.2016.08.002_bb0170) 2013; 48 Zhang (10.1016/j.bbagen.2016.08.002_bb0235) 2009; 163 Mitscher (10.1016/j.bbagen.2016.08.002_bb0030) 2005; 105 Cha (10.1016/j.bbagen.2016.08.002_bb0250) 2015; 9 Sanla-Ead (10.1016/j.bbagen.2016.08.002_bb0060) 2012; 25 Guo (10.1016/j.bbagen.2016.08.002_bb0220) 2014; 149 Ye (10.1016/j.bbagen.2016.08.002_bb0040) 2013; 34 Huang (10.1016/j.bbagen.2016.08.002_bb0055) 2007; 103 McGovern (10.1016/j.bbagen.2016.08.002_bb0025) 2003; 46 Jacobson (10.1016/j.bbagen.2016.08.002_bb0080) 1994; 369 Peng (10.1016/j.bbagen.2016.08.002_bb0120) 2016; 190 Jia (10.1016/j.bbagen.2016.08.002_bb0035) 2011; 53 Lin (10.1016/j.bbagen.2016.08.002_bb0180) 2002; 294 Bartesaghi (10.1016/j.bbagen.2016.08.002_bb0260) 2014; 111 Shahabadi (10.1016/j.bbagen.2016.08.002_bb0210) 2011; 124 Rodriguez-Colinas (10.1016/j.bbagen.2016.08.002_bb0115) 2012; 60 Xie (10.1016/j.bbagen.2016.08.002_bb0200) 2006; 1760 Denyer (10.1016/j.bbagen.2016.08.002_bb0010) 1995; 36 Cai (10.1016/j.bbagen.2016.08.002_bb0280) 2012; 60 Tian (10.1016/j.bbagen.2016.08.002_bb0225) 2015; 142 Wheatley (10.1016/j.bbagen.2016.08.002_bb0270) 2015; 17 Mir (10.1016/j.bbagen.2016.08.002_bb0255) 2012; 116 Bae (10.1016/j.bbagen.2016.08.002_bb0160) 1992; 15 Masuoka (10.1016/j.bbagen.2016.08.002_bb0165) 2015; 166 Ladero (10.1016/j.bbagen.2016.08.002_bb0075) 2001; 29 Wang (10.1016/j.bbagen.2016.08.002_bb0155) 2015; 5 Oussalah (10.1016/j.bbagen.2016.08.002_bb0050) 2007; 18 Barreca (10.1016/j.bbagen.2016.08.002_bb0190) 2016 Matsue (10.1016/j.bbagen.2016.08.002_bb0105) 2000; 26 |
References_xml | – volume: 166 start-page: 270 year: 2015 end-page: 274 ident: bb0165 article-title: Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase publication-title: Food Chem. – volume: 149 start-page: 353 year: 2014 end-page: 360 ident: bb0220 article-title: A spectroscopic study on the interaction between p-nitrophenol and bovine serum albumin publication-title: J. Lumin. – volume: 34 start-page: 619 year: 2013 end-page: 623 ident: bb0040 article-title: Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria publication-title: Food Control – volume: 294 start-page: 167 year: 2002 end-page: 172 ident: bb0180 article-title: Molecular modeling of flavonoids that inhibits xanthine oxidase publication-title: Biochem. Biophys. Res. Commun. – volume: 47 start-page: 196 year: 2015 end-page: 202 ident: bb0065 article-title: Effects of cinnamaldehyde on publication-title: Food Control – volume: 124 start-page: 1063 year: 2011 end-page: 1068 ident: bb0210 article-title: Multispectroscopic studies on the interaction of 2-tert-butylhydroquinone (TBHQ), a food additive, with bovine serum albumin publication-title: Food Chem. – volume: 11 start-page: 307 year: 2015 end-page: 316 ident: bb0230 article-title: Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach publication-title: Mol. BioSyst. – volume: 61 start-page: 11191 year: 2013 end-page: 11200 ident: bb0205 article-title: Comparative studies of the binding of six phthalate plasticizers to pepsin by multispectroscopic approach and molecular modeling publication-title: J. Agric. Food Chem. – volume: 58 start-page: 12537 year: 2010 end-page: 12540 ident: bb0135 article-title: Inhibition kinetics of chlorobenzaldehyde thiosemicarbazones on mushroom tyrosinase publication-title: J. Agric. Food Chem. – volume: 63 start-page: 526 year: 2015 end-page: 534 ident: bb0145 article-title: Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase publication-title: J. Agric. Food Chem. – volume: 50 start-page: 694 year: 2012 end-page: 700 ident: bb0185 article-title: Kinetic, structural and molecular docking studies on the inhibition of tyrosinase induced by arabinose publication-title: Int. J. Biol. Macromol. – volume: 169 start-page: 786 year: 2013 end-page: 794 ident: bb0095 article-title: Effects of alcohols and compatible solutes on the activity of β-galactosidase publication-title: Appl. Biochem. Biotechnol. – volume: 153 start-page: 463 year: 2015 end-page: 472 ident: bb0130 article-title: Deciphering the inhibitory mechanism of genistein on xanthine oxidase in vitro publication-title: J. Photochem. Photobiol. B – volume: 50 start-page: 582 year: 2015 end-page: 588 ident: bb0140 article-title: Effect of Ba publication-title: Process Biochem. – volume: 129 start-page: 884 year: 2011 end-page: 889 ident: bb0125 article-title: Comparative evaluation of rosmarinic acid, methyl rosmarinate and pedalitin isolated from publication-title: Food Chem. – volume: 23 start-page: 3359 year: 2002 end-page: 3368 ident: bb0015 article-title: Interactions between dendrimer biocides and bacterial membranes publication-title: Biomaterials – volume: 369 start-page: 761 year: 1994 end-page: 766 ident: bb0080 article-title: Three-dimensional structure of β-galactosidase from publication-title: Nature – volume: 60 start-page: 6391 year: 2012 end-page: 6398 ident: bb0115 article-title: Galacto-oligosaccharide synthesis from lactose solution or skim milk using the β-galactosidase from publication-title: J. Agric. Food Chem. – volume: 130 start-page: 530 year: 1969 end-page: 535 ident: bb0100 article-title: Effect of alcohols on the enzymatic activity and subunit association of β-galactosidase publication-title: Arch. Biochem. Biophys. – volume: 63 start-page: 716 year: 2015 end-page: 722 ident: bb0175 article-title: Alpha-substituted derivatives of cinnamaldehyde as tyrosinase inhibitors: inhibitory mechanism and molecular analysis publication-title: J. Agric. Food Chem. – volume: 17 start-page: 10899 year: 2015 end-page: 10909 ident: bb0270 article-title: Elucidating factors important for monovalent cation selectivity in enzymes: publication-title: Phys. Chem. Chem. Phys. – volume: 36 start-page: 227 year: 1995 end-page: 245 ident: bb0010 article-title: Mechanisms of action of antibacterial biocides publication-title: Int. Biodeter. Biodegr. – volume: 1760 start-page: 1184 year: 2006 end-page: 1191 ident: bb0200 article-title: Characterization of the interaction between human serum albumin and morin publication-title: Biochim. Biophys. Acta, Gen. Subj. – volume: 104 start-page: 901 year: 2001 end-page: 912 ident: bb0020 article-title: Structural mechanism for rifampicin inhibition of bacterial RNA polymerase publication-title: Cell – volume: 163 start-page: 1345 year: 2009 end-page: 1352 ident: bb0235 article-title: Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods publication-title: J. Hazard. Mater. – volume: 116 start-page: 5711 year: 2012 end-page: 5718 ident: bb0255 article-title: Interaction of cetyltrimethylammonium bromide and its gemini homologue bis (cetyldimethylammonium) butane dibromide with xanthine oxidase publication-title: J. Phys. Chem. B – volume: 60 start-page: 7245 year: 2012 end-page: 7251 ident: bb0280 article-title: In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented oats ( publication-title: J. Agric. Food. Chem. – volume: 48 start-page: 260 year: 2013 end-page: 266 ident: bb0170 article-title: Toward the inhibitory effect of acetylsalicylic acid on tyrosinase: integrating kinetics studies and computational simulations publication-title: Process Biochem. – volume: 46 start-page: 4265 year: 2003 end-page: 4272 ident: bb0025 article-title: A specific mechanism of nonspecific inhibition publication-title: J. Med. Chem. – volume: 237 start-page: 377 year: 2004 end-page: 384 ident: bb0005 article-title: Lactoferricin B inhibits bacterial macromolecular synthesis in publication-title: FEMS Microbiol. Lett. – volume: 26 start-page: 342 year: 2000 end-page: 347 ident: bb0105 article-title: Influence of water activity and aqueous solvent ordering on enzyme kinetics of alcohol dehydrogenase, lysozyme, and β-galactosidase publication-title: Enzym. Microb. Technol. – volume: 142 start-page: 103 year: 2015 end-page: 109 ident: bb0225 article-title: Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA) publication-title: J. Photochem. Photobiol. B – volume: 9 start-page: 9097 year: 2015 end-page: 9105 ident: bb0250 article-title: Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity publication-title: ACS Nano – volume: 18 start-page: 414 year: 2007 end-page: 420 ident: bb0050 article-title: Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: publication-title: Food Control – volume: 29 start-page: 181 year: 2001 end-page: 193 ident: bb0075 article-title: Activity over lactose and ONPG of a genetically engineered β-galactosidase from publication-title: Enzym. Microb. Technol. – volume: 103 start-page: 434 year: 2007 end-page: 443 ident: bb0055 article-title: Induction of apoptosis by cinnamaldehyde from indigenous cinnamon publication-title: Food Chem. – volume: 25 start-page: 7 year: 2012 end-page: 17 ident: bb0060 article-title: Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose-based packaging films publication-title: Packag. Technol. Sci. – volume: 190 start-page: 207 year: 2016 end-page: 215 ident: bb0120 article-title: Inhibitory kinetics and mechanism of kaempferol on α-glucosidase publication-title: Food Chem. – volume: 5 start-page: 98366 year: 2015 end-page: 98376 ident: bb0155 article-title: Partial intercalative binding of the food colorant erythrosine to herring sperm DNA publication-title: RSC Adv. – volume: 78 start-page: 2376 year: 2012 end-page: 2385 ident: bb0090 article-title: Disulfide bond formation and activation of publication-title: Appl. Environ. Microbiol. – year: 2016 ident: bb0190 article-title: The interaction and binding of flavonoids to human serum albumin modify its conformation, stability and resistance against aggregation and oxidative injuries publication-title: Biophys. Acta, Gen. Subj. – volume: 1830 start-page: 5394 year: 2013 end-page: 5404 ident: bb0240 article-title: Binding, unfolding and refolding dynamics of serum albumins publication-title: Biochim. Biophys. Acta, Gen. Subj. – volume: 15 start-page: 239 year: 1992 end-page: 241 ident: bb0160 article-title: The antibacterial component from publication-title: Arch. Pharm. Res. – volume: 53 start-page: 409 year: 2011 end-page: 416 ident: bb0035 article-title: Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant publication-title: Lett. Appl. Microbiol. – volume: 63 start-page: 75 year: 2014 end-page: 84 ident: bb0150 article-title: Potential toxicity of phthalic acid esters plasticizer: interaction of dimethyl phthalate with trypsin in vitro publication-title: J. Agric. Food Chem. – volume: 105 start-page: 559 year: 2005 end-page: 592 ident: bb0030 article-title: Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents publication-title: Chem. Rev. – volume: 59 start-page: 609 year: 2016 end-page: 613 ident: bb0110 article-title: Membrane disruption and DNA binding of publication-title: Food Control – volume: 328 start-page: 549 year: 2005 end-page: 556 ident: bb0085 article-title: The structure of publication-title: C.R. Biol. – volume: 79 start-page: 942 year: 2013 end-page: 950 ident: bb0070 article-title: Examination of the genome-wide transcriptional response of publication-title: Appl. Environ. Microbiol. – volume: 111 start-page: 11709 year: 2014 end-page: 11714 ident: bb0260 article-title: Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 1860 start-page: 917 year: 2016 end-page: 929 ident: bb0195 article-title: Competitive binding of anticancer drugs 5-fluorouracil and cyclophosphamide with serum albumin: calorimetric insights publication-title: Biochim. Biophys. Acta, Gen. Subj. – volume: 70 start-page: 470 year: 2015 end-page: 478 ident: bb0275 article-title: In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against publication-title: J. Antimicrob. Chemother. – volume: 20 start-page: 3096 year: 1981 end-page: 3102 ident: bb0215 article-title: Thermodynamics of protein association reactions: forces contributing to stability publication-title: Biochemistry – volume: 89 start-page: 779 year: 2008 end-page: 795 ident: bb0245 article-title: Characterization of dry globular proteins and protein fibrils by synchrotron radiation vacuum UV circular dichroism publication-title: Biopolymers – volume: 104 start-page: 311 year: 2013 end-page: 317 ident: bb0265 article-title: The interaction of 2-mercaptobenzimidazole with human serum albumin as determined by spectroscopy, atomic force microscopy and molecular modeling publication-title: Colloids Surf., B – volume: 17 start-page: 16080 year: 2015 end-page: 16085 ident: bb0045 article-title: Structure determination of trans-cinnamaldehyde by broadband microwave spectroscopy publication-title: Phys. Chem. Chem. Phys. – year: 2016 ident: 10.1016/j.bbagen.2016.08.002_bb0190 article-title: The interaction and binding of flavonoids to human serum albumin modify its conformation, stability and resistance against aggregation and oxidative injuries publication-title: Biophys. Acta, Gen. Subj. – volume: 78 start-page: 2376 year: 2012 ident: 10.1016/j.bbagen.2016.08.002_bb0090 article-title: Disulfide bond formation and activation of Escherichia coli beta-galactosidase under oxidizing conditions publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.06923-11 – volume: 104 start-page: 311 year: 2013 ident: 10.1016/j.bbagen.2016.08.002_bb0265 article-title: The interaction of 2-mercaptobenzimidazole with human serum albumin as determined by spectroscopy, atomic force microscopy and molecular modeling publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2012.12.023 – volume: 129 start-page: 884 year: 2011 ident: 10.1016/j.bbagen.2016.08.002_bb0125 article-title: Comparative evaluation of rosmarinic acid, methyl rosmarinate and pedalitin isolated from Rabdosia serra (MAXIM.) HARA as inhibitors of tyrosinase and α-glucosidase publication-title: Food Chem. doi: 10.1016/j.foodchem.2011.05.039 – volume: 26 start-page: 342 year: 2000 ident: 10.1016/j.bbagen.2016.08.002_bb0105 article-title: Influence of water activity and aqueous solvent ordering on enzyme kinetics of alcohol dehydrogenase, lysozyme, and β-galactosidase publication-title: Enzym. Microb. Technol. doi: 10.1016/S0141-0229(99)00182-9 – volume: 34 start-page: 619 year: 2013 ident: 10.1016/j.bbagen.2016.08.002_bb0040 article-title: Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria publication-title: Food Control doi: 10.1016/j.foodcont.2013.05.032 – volume: 169 start-page: 786 year: 2013 ident: 10.1016/j.bbagen.2016.08.002_bb0095 article-title: Effects of alcohols and compatible solutes on the activity of β-galactosidase publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-012-0003-3 – volume: 369 start-page: 761 year: 1994 ident: 10.1016/j.bbagen.2016.08.002_bb0080 article-title: Three-dimensional structure of β-galactosidase from E. coli publication-title: Nature doi: 10.1038/369761a0 – volume: 46 start-page: 4265 year: 2003 ident: 10.1016/j.bbagen.2016.08.002_bb0025 article-title: A specific mechanism of nonspecific inhibition publication-title: J. Med. Chem. doi: 10.1021/jm030266r – volume: 294 start-page: 167 year: 2002 ident: 10.1016/j.bbagen.2016.08.002_bb0180 article-title: Molecular modeling of flavonoids that inhibits xanthine oxidase publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(02)00442-4 – volume: 18 start-page: 414 year: 2007 ident: 10.1016/j.bbagen.2016.08.002_bb0050 article-title: Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157: H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes publication-title: Food Control doi: 10.1016/j.foodcont.2005.11.009 – volume: 237 start-page: 377 year: 2004 ident: 10.1016/j.bbagen.2016.08.002_bb0005 article-title: Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis publication-title: FEMS Microbiol. Lett. – volume: 47 start-page: 196 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0065 article-title: Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane publication-title: Food Control doi: 10.1016/j.foodcont.2014.07.003 – volume: 58 start-page: 12537 year: 2010 ident: 10.1016/j.bbagen.2016.08.002_bb0135 article-title: Inhibition kinetics of chlorobenzaldehyde thiosemicarbazones on mushroom tyrosinase publication-title: J. Agric. Food Chem. doi: 10.1021/jf1033625 – volume: 17 start-page: 16080 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0045 article-title: Structure determination of trans-cinnamaldehyde by broadband microwave spectroscopy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP02582F – volume: 60 start-page: 7245 year: 2012 ident: 10.1016/j.bbagen.2016.08.002_bb0280 article-title: In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented oats (Avena sativa L.) and synergistic effect of three phenolic acids publication-title: J. Agric. Food. Chem. doi: 10.1021/jf3009958 – volume: 53 start-page: 409 year: 2011 ident: 10.1016/j.bbagen.2016.08.002_bb0035 article-title: Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant Staphylococcus aureus publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.2011.03122.x – volume: 328 start-page: 549 year: 2005 ident: 10.1016/j.bbagen.2016.08.002_bb0085 article-title: The structure of E. coli β-galactosidase publication-title: C.R. Biol. doi: 10.1016/j.crvi.2005.03.006 – volume: 50 start-page: 582 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0140 article-title: Effect of Ba2+ on the activity and structure of α-glucosidase: inhibition kinetics and molecular dynamics simulation publication-title: Process Biochem. doi: 10.1016/j.procbio.2015.01.014 – volume: 142 start-page: 103 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0225 article-title: Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA) publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2014.10.013 – volume: 149 start-page: 353 year: 2014 ident: 10.1016/j.bbagen.2016.08.002_bb0220 article-title: A spectroscopic study on the interaction between p-nitrophenol and bovine serum albumin publication-title: J. Lumin. doi: 10.1016/j.jlumin.2014.01.036 – volume: 29 start-page: 181 year: 2001 ident: 10.1016/j.bbagen.2016.08.002_bb0075 article-title: Activity over lactose and ONPG of a genetically engineered β-galactosidase from Escherichia coli in solution and immobilized: kinetic modelling publication-title: Enzym. Microb. Technol. doi: 10.1016/S0141-0229(01)00366-0 – volume: 5 start-page: 98366 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0155 article-title: Partial intercalative binding of the food colorant erythrosine to herring sperm DNA publication-title: RSC Adv. doi: 10.1039/C5RA19626D – volume: 36 start-page: 227 year: 1995 ident: 10.1016/j.bbagen.2016.08.002_bb0010 article-title: Mechanisms of action of antibacterial biocides publication-title: Int. Biodeter. Biodegr. doi: 10.1016/0964-8305(96)00015-7 – volume: 1760 start-page: 1184 year: 2006 ident: 10.1016/j.bbagen.2016.08.002_bb0200 article-title: Characterization of the interaction between human serum albumin and morin publication-title: Biochim. Biophys. Acta, Gen. Subj. doi: 10.1016/j.bbagen.2006.03.026 – volume: 63 start-page: 526 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0145 article-title: Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase publication-title: J. Agric. Food Chem. doi: 10.1021/jf505584m – volume: 9 start-page: 9097 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0250 article-title: Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity publication-title: ACS Nano doi: 10.1021/acsnano.5b03247 – volume: 25 start-page: 7 year: 2012 ident: 10.1016/j.bbagen.2016.08.002_bb0060 article-title: Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose-based packaging films publication-title: Packag. Technol. Sci. doi: 10.1002/pts.952 – volume: 15 start-page: 239 year: 1992 ident: 10.1016/j.bbagen.2016.08.002_bb0160 article-title: The antibacterial component from Cinnamomi cortex against a cariogenic bacterium Streptococcus mutans OMZ 176 publication-title: Arch. Pharm. Res. doi: 10.1007/BF02974062 – volume: 116 start-page: 5711 year: 2012 ident: 10.1016/j.bbagen.2016.08.002_bb0255 article-title: Interaction of cetyltrimethylammonium bromide and its gemini homologue bis (cetyldimethylammonium) butane dibromide with xanthine oxidase publication-title: J. Phys. Chem. B doi: 10.1021/jp207803c – volume: 61 start-page: 11191 year: 2013 ident: 10.1016/j.bbagen.2016.08.002_bb0205 article-title: Comparative studies of the binding of six phthalate plasticizers to pepsin by multispectroscopic approach and molecular modeling publication-title: J. Agric. Food Chem. doi: 10.1021/jf404177b – volume: 20 start-page: 3096 year: 1981 ident: 10.1016/j.bbagen.2016.08.002_bb0215 article-title: Thermodynamics of protein association reactions: forces contributing to stability publication-title: Biochemistry doi: 10.1021/bi00514a017 – volume: 60 start-page: 6391 year: 2012 ident: 10.1016/j.bbagen.2016.08.002_bb0115 article-title: Galacto-oligosaccharide synthesis from lactose solution or skim milk using the β-galactosidase from Bacillus circulans publication-title: J. Agric. Food Chem. doi: 10.1021/jf301156v – volume: 48 start-page: 260 year: 2013 ident: 10.1016/j.bbagen.2016.08.002_bb0170 article-title: Toward the inhibitory effect of acetylsalicylic acid on tyrosinase: integrating kinetics studies and computational simulations publication-title: Process Biochem. doi: 10.1016/j.procbio.2012.12.019 – volume: 63 start-page: 716 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0175 article-title: Alpha-substituted derivatives of cinnamaldehyde as tyrosinase inhibitors: inhibitory mechanism and molecular analysis publication-title: J. Agric. Food Chem. doi: 10.1021/jf505469k – volume: 11 start-page: 307 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0230 article-title: Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach publication-title: Mol. BioSyst. doi: 10.1039/C4MB00548A – volume: 190 start-page: 207 year: 2016 ident: 10.1016/j.bbagen.2016.08.002_bb0120 article-title: Inhibitory kinetics and mechanism of kaempferol on α-glucosidase publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.05.088 – volume: 130 start-page: 530 year: 1969 ident: 10.1016/j.bbagen.2016.08.002_bb0100 article-title: Effect of alcohols on the enzymatic activity and subunit association of β-galactosidase publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(69)90066-6 – volume: 1830 start-page: 5394 year: 2013 ident: 10.1016/j.bbagen.2016.08.002_bb0240 article-title: Binding, unfolding and refolding dynamics of serum albumins publication-title: Biochim. Biophys. Acta, Gen. Subj. doi: 10.1016/j.bbagen.2013.05.017 – volume: 153 start-page: 463 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0130 article-title: Deciphering the inhibitory mechanism of genistein on xanthine oxidase in vitro publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2015.10.022 – volume: 103 start-page: 434 year: 2007 ident: 10.1016/j.bbagen.2016.08.002_bb0055 article-title: Induction of apoptosis by cinnamaldehyde from indigenous cinnamon Cinnamomum osmophloeum Kaneh through reactive oxygen species production, glutathione depletion, and caspase activation in human leukemia K562 cells publication-title: Food Chem. doi: 10.1016/j.foodchem.2006.08.018 – volume: 23 start-page: 3359 year: 2002 ident: 10.1016/j.bbagen.2016.08.002_bb0015 article-title: Interactions between dendrimer biocides and bacterial membranes publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00036-4 – volume: 63 start-page: 75 year: 2014 ident: 10.1016/j.bbagen.2016.08.002_bb0150 article-title: Potential toxicity of phthalic acid esters plasticizer: interaction of dimethyl phthalate with trypsin in vitro publication-title: J. Agric. Food Chem. doi: 10.1021/jf5046359 – volume: 124 start-page: 1063 year: 2011 ident: 10.1016/j.bbagen.2016.08.002_bb0210 article-title: Multispectroscopic studies on the interaction of 2-tert-butylhydroquinone (TBHQ), a food additive, with bovine serum albumin publication-title: Food Chem. doi: 10.1016/j.foodchem.2010.07.079 – volume: 79 start-page: 942 year: 2013 ident: 10.1016/j.bbagen.2016.08.002_bb0070 article-title: Examination of the genome-wide transcriptional response of Escherichia coli O157: H7 to cinnamaldehyde exposure publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02767-12 – volume: 89 start-page: 779 year: 2008 ident: 10.1016/j.bbagen.2016.08.002_bb0245 article-title: Characterization of dry globular proteins and protein fibrils by synchrotron radiation vacuum UV circular dichroism publication-title: Biopolymers doi: 10.1002/bip.21011 – volume: 50 start-page: 694 year: 2012 ident: 10.1016/j.bbagen.2016.08.002_bb0185 article-title: Kinetic, structural and molecular docking studies on the inhibition of tyrosinase induced by arabinose publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2011.12.035 – volume: 1860 start-page: 917 year: 2016 ident: 10.1016/j.bbagen.2016.08.002_bb0195 article-title: Competitive binding of anticancer drugs 5-fluorouracil and cyclophosphamide with serum albumin: calorimetric insights publication-title: Biochim. Biophys. Acta, Gen. Subj. doi: 10.1016/j.bbagen.2016.01.026 – volume: 111 start-page: 11709 year: 2014 ident: 10.1016/j.bbagen.2016.08.002_bb0260 article-title: Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1402809111 – volume: 70 start-page: 470 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0275 article-title: In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dku374 – volume: 104 start-page: 901 year: 2001 ident: 10.1016/j.bbagen.2016.08.002_bb0020 article-title: Structural mechanism for rifampicin inhibition of bacterial RNA polymerase publication-title: Cell doi: 10.1016/S0092-8674(01)00286-0 – volume: 59 start-page: 609 year: 2016 ident: 10.1016/j.bbagen.2016.08.002_bb0110 article-title: Membrane disruption and DNA binding of Staphylococcus aureus cell induced by a novel antimicrobial peptide produced by Lactobacillus paracasei subsp. tolerans FX-6 publication-title: Food Control doi: 10.1016/j.foodcont.2015.06.044 – volume: 166 start-page: 270 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0165 article-title: Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.06.021 – volume: 17 start-page: 10899 year: 2015 ident: 10.1016/j.bbagen.2016.08.002_bb0270 article-title: Elucidating factors important for monovalent cation selectivity in enzymes: E. coli β-galactosidase as a model publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04952G – volume: 105 start-page: 559 year: 2005 ident: 10.1016/j.bbagen.2016.08.002_bb0030 article-title: Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents publication-title: Chem. Rev. doi: 10.1021/cr030101q – volume: 163 start-page: 1345 year: 2009 ident: 10.1016/j.bbagen.2016.08.002_bb0235 article-title: Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.07.132 |
SSID | ssj0000595 |
Score | 2.3720436 |
Snippet | Some antibacterial agents exert their antimicrobial action by targeting the cytoplasmic macromolecules, such as proteins or nucleic acids, to disturb the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3189 |
SubjectTerms | Acrolein - analogs & derivatives Acrolein - chemistry Acrolein - pharmacology active sites antibiotics atomic force microscopy bark beta-galactosidase beta-Galactosidase - antagonists & inhibitors beta-Galactosidase - metabolism Binding Sites bioactive properties biochemical pathways carvacrol Cinnamaldehyde cinnamon Circular Dichroism circular dichroism spectroscopy Cluster Analysis Competitive inhibition Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology fluorescence Hydrogen-Ion Concentration ingredients Kinetics leaves mechanism of action Microscopy, Atomic Force Molecular Docking Simulation Molecular modeling molecular models Monoterpenes - chemistry Monoterpenes - pharmacology nucleic acids proteins Spectrometry, Fluorescence synergism Synergistic effect thymol Thymol - chemistry Thymol - pharmacology tryptophan tyrosine β-Galactosidase |
Title | An in vitro investigation of the inhibitory mechanism of β-galactosidase by cinnamaldehyde alone and in combination with carvacrol and thymol |
URI | https://dx.doi.org/10.1016/j.bbagen.2016.08.002 https://www.ncbi.nlm.nih.gov/pubmed/27531708 https://www.proquest.com/docview/1844350607 https://www.proquest.com/docview/2000229074 |
Volume | 1861 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5CSmgvpUl_sm0TFOjVWa8t_-i4LA3bhOSSBnIT-jNx8coh2RT2kkfIw_RB-kydsewtPSyBXoyxJVvWjDXfSKP5AL6UZepUpV2kXRpHXMRVJAwKJOXWCltyUXZkE-cX-fyKn15n11swG_bCUFhlP_aHMb0brfsr4743x7d1Pb6kRT2EExkiCjKStNGc84K0_Pjxb5gHwocsrCTwiEoP2-e6GC-t8aelLKiT_DgEVW4yT5vgZ2eGTt7A6x4_smlo4i5sOb8HO4FRcrUHL2cDgdtbeJp6Vnv2s17etXiyzqfRetZWDIEfXrypdU3L7GzhaAtwfb-ge79_RWg4iIkHdRXNHNMrZmrv1UI11t2srGOqaT0evaVXYOehgx0eTRO7zBDjEH5h05VAXVi0zTu4Ovn6fTaPevqFyKQiW6JTia6cQgBCbOnoQ6MwK_T2TFFoykHlktIViDYmsUkVinXCLY5VeZ7ZXJW8RJj2HrY9tmUfGBeu0DzjyuqMm6QSsSXHSdgqQ4RgxAjSodel6XOTE0VGI4cgtB8yyEqSrCQxZ8bJCKJ1rduQm-OZ8sUgUPmPjkk0H8_UPBrkL1GItKaivGsf7iU6yAg44zwuNpdJuixDNAsxgg9BedbtTdBdnBRx-fG_2_YJXiUENbppoc-wvbx7cAcIlJb6sPsTDuHF9NvZ_OIP1CESVw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWCBEV6Kdp0c1cWaI-KZYlaeOghSBs4zXJpAuTGiiKFqJCpIHYS-JJPyMek_9Fv6hstLnowAhTIxRBkyh5xyJk35HAeYx_TNLRZoa2nbeh7QvqFJ3MoJBTGSJMKmTZkEweH8fhYfDuJTlbYr_4sDKVVdra_temNte7uDLveHJ6V5fA7beoBTkRAFOQk-8zKPTu_Qtw2_bz7BUr-FAQ7X4-2x15HLeDloYxmCJgQpmRwrsQEjvgQghaIZPIk0VRfyQapTeBJR34eZhB5JAzmYRxHJs5SkQqqdgC7vyZgLog2YfP6b14J8ErUbl0Ij8Trz-s1SWVaw0pQ2dVRvNlmcS7zh8vwbuP3dh6zRx1g5VttnzxhK9ZtsActheV8g61v94xxT9nNluOl45fl7LzGxaKAR-14XXAgTdw8LXVJ-_p8YunMcTmd0He_bz14KqL-weSAX-V6zvPSuWySVcaezo3lWVU7fDpDfwFtIaJvf5pWknlOFEd4w6ppgcE3qatn7PhelPKcrTrI8pJxIW2iRSQyoyORB4X0DUVq0hQRIEkuByzse13lXTF04uSoVJ_19lO1ulKkK0VUnX4wYN7iqbO2GMgd7ZNeoeqfQa3gr-548kOvfwUl0iZO5mx9MVWIyIFw_dhPlrcJmrJGtOwxYC_awbOQN0B8Okr89NV_y_aerY-PDvbV_u7h3mv2MCCc06xJvWGrs_ML-xYobabfNbOCsx_3PQ3_AN28Sa0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+in+vitro+investigation+of+the+inhibitory+mechanism+of+%CE%B2-galactosidase+by+cinnamaldehyde+alone+and+in+combination+with+carvacrol+and+thymol&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Wang%2C+Lang-Hong&rft.au=Wang%2C+Man-Sheng&rft.au=Zeng%2C+Xin-An&rft.au=Gong%2C+De-Ming&rft.date=2017-01-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1861&rft.issue=1&rft.spage=3189&rft.epage=3198&rft_id=info:doi/10.1016%2Fj.bbagen.2016.08.002&rft.externalDocID=S0304416516302835 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |