Machine learning predicts ecological risks of nanoparticles to soil microbial communities
With the rapid development of nanotechnology in agriculture, there is increasing urgency to assess the impacts of nanoparticles (NPs) on the soil environment. This study merged raw high-throughput sequencing (HTS) data sets generated from 365 soil samples to reveal the potential ecological effects o...
Saved in:
Published in | Environmental pollution (1987) Vol. 307; p. 119528 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of nanotechnology in agriculture, there is increasing urgency to assess the impacts of nanoparticles (NPs) on the soil environment. This study merged raw high-throughput sequencing (HTS) data sets generated from 365 soil samples to reveal the potential ecological effects of NPs on soil microbial community by means of metadata analysis and machine learning methods. Metadata analysis showed that treatment with nanoparticles did not have a significant impact on the alpha diversity of the microbial community, but significantly altered the beta diversity. Unfortunately, the abundance of several beneficial bacteria, such as Dyella, Methylophilus, Streptomyces, which promote the growth of plants, and improve pathogenic resistance, was reduced under the addition of synthetic nanoparticles. Furthermore, metadata demonstrated that nanoparticles treatment weakened the biosynthesis ability of cofactors, carriers, and vitamins, and enhanced the degradation ability of aromatic compounds, amino acids, etc. This is unfavorable for the performance of soil functions. Besides the soil heterogeneity, machine learning uncovered that a) the exposure time of nanoparticles was the most important factor to reshape the soil microbial community, and b) long-term exposure decreased the diversity of microbial community and the abundance of beneficial bacteria. This study is the first to use a machine learning model and metadata analysis to investigate the relationship between the properties of nanoparticles and the hazards to the soil microbial community from a macro perspective. This guides the rational use of nanoparticles for which the impacts on soil microbiota are minimized.
[Display omitted]
•Nanoparticle treatment altered the structure of the soil microbial community.•Nanoparticle treatment decreased the abundance of several beneficial bacteria.•The duration of exposure to nanoparticle was the most important factor.•Nanoparticle long-term exposure decreased diversity of microbial communities.•Nanoparticle long-term exposure decreased abundance of beneficial bacteria. |
---|---|
AbstractList | With the rapid development of nanotechnology in agriculture, there is increasing urgency to assess the impacts of nanoparticles (NPs) on the soil environment. This study merged raw high-throughput sequencing (HTS) data sets generated from 365 soil samples to reveal the potential ecological effects of NPs on soil microbial community by means of metadata analysis and machine learning methods. Metadata analysis showed that treatment with nanoparticles did not have a significant impact on the alpha diversity of the microbial community, but significantly altered the beta diversity. Unfortunately, the abundance of several beneficial bacteria, such as Dyella, Methylophilus, Streptomyces, which promote the growth of plants, and improve pathogenic resistance, was reduced under the addition of synthetic nanoparticles. Furthermore, metadata demonstrated that nanoparticles treatment weakened the biosynthesis ability of cofactors, carriers, and vitamins, and enhanced the degradation ability of aromatic compounds, amino acids, etc. This is unfavorable for the performance of soil functions. Besides the soil heterogeneity, machine learning uncovered that a) the exposure time of nanoparticles was the most important factor to reshape the soil microbial community, and b) long-term exposure decreased the diversity of microbial community and the abundance of beneficial bacteria. This study is the first to use a machine learning model and metadata analysis to investigate the relationship between the properties of nanoparticles and the hazards to the soil microbial community from a macro perspective. This guides the rational use of nanoparticles for which the impacts on soil microbiota are minimized.With the rapid development of nanotechnology in agriculture, there is increasing urgency to assess the impacts of nanoparticles (NPs) on the soil environment. This study merged raw high-throughput sequencing (HTS) data sets generated from 365 soil samples to reveal the potential ecological effects of NPs on soil microbial community by means of metadata analysis and machine learning methods. Metadata analysis showed that treatment with nanoparticles did not have a significant impact on the alpha diversity of the microbial community, but significantly altered the beta diversity. Unfortunately, the abundance of several beneficial bacteria, such as Dyella, Methylophilus, Streptomyces, which promote the growth of plants, and improve pathogenic resistance, was reduced under the addition of synthetic nanoparticles. Furthermore, metadata demonstrated that nanoparticles treatment weakened the biosynthesis ability of cofactors, carriers, and vitamins, and enhanced the degradation ability of aromatic compounds, amino acids, etc. This is unfavorable for the performance of soil functions. Besides the soil heterogeneity, machine learning uncovered that a) the exposure time of nanoparticles was the most important factor to reshape the soil microbial community, and b) long-term exposure decreased the diversity of microbial community and the abundance of beneficial bacteria. This study is the first to use a machine learning model and metadata analysis to investigate the relationship between the properties of nanoparticles and the hazards to the soil microbial community from a macro perspective. This guides the rational use of nanoparticles for which the impacts on soil microbiota are minimized. With the rapid development of nanotechnology in agriculture, there is increasing urgency to assess the impacts of nanoparticles (NPs) on the soil environment. This study merged raw high-throughput sequencing (HTS) data sets generated from 365 soil samples to reveal the potential ecological effects of NPs on soil microbial community by means of metadata analysis and machine learning methods. Metadata analysis showed that treatment with nanoparticles did not have a significant impact on the alpha diversity of the microbial community, but significantly altered the beta diversity. Unfortunately, the abundance of several beneficial bacteria, such as Dyella, Methylophilus, Streptomyces, which promote the growth of plants, and improve pathogenic resistance, was reduced under the addition of synthetic nanoparticles. Furthermore, metadata demonstrated that nanoparticles treatment weakened the biosynthesis ability of cofactors, carriers, and vitamins, and enhanced the degradation ability of aromatic compounds, amino acids, etc. This is unfavorable for the performance of soil functions. Besides the soil heterogeneity, machine learning uncovered that a) the exposure time of nanoparticles was the most important factor to reshape the soil microbial community, and b) long-term exposure decreased the diversity of microbial community and the abundance of beneficial bacteria. This study is the first to use a machine learning model and metadata analysis to investigate the relationship between the properties of nanoparticles and the hazards to the soil microbial community from a macro perspective. This guides the rational use of nanoparticles for which the impacts on soil microbiota are minimized. With the rapid development of nanotechnology in agriculture, there is increasing urgency to assess the impacts of nanoparticles (NPs) on the soil environment. This study merged raw high-throughput sequencing (HTS) data sets generated from 365 soil samples to reveal the potential ecological effects of NPs on soil microbial community by means of metadata analysis and machine learning methods. Metadata analysis showed that treatment with nanoparticles did not have a significant impact on the alpha diversity of the microbial community, but significantly altered the beta diversity. Unfortunately, the abundance of several beneficial bacteria, such as Dyella, Methylophilus, Streptomyces, which promote the growth of plants, and improve pathogenic resistance, was reduced under the addition of synthetic nanoparticles. Furthermore, metadata demonstrated that nanoparticles treatment weakened the biosynthesis ability of cofactors, carriers, and vitamins, and enhanced the degradation ability of aromatic compounds, amino acids, etc. This is unfavorable for the performance of soil functions. Besides the soil heterogeneity, machine learning uncovered that a) the exposure time of nanoparticles was the most important factor to reshape the soil microbial community, and b) long-term exposure decreased the diversity of microbial community and the abundance of beneficial bacteria. This study is the first to use a machine learning model and metadata analysis to investigate the relationship between the properties of nanoparticles and the hazards to the soil microbial community from a macro perspective. This guides the rational use of nanoparticles for which the impacts on soil microbiota are minimized. [Display omitted] •Nanoparticle treatment altered the structure of the soil microbial community.•Nanoparticle treatment decreased the abundance of several beneficial bacteria.•The duration of exposure to nanoparticle was the most important factor.•Nanoparticle long-term exposure decreased diversity of microbial communities.•Nanoparticle long-term exposure decreased abundance of beneficial bacteria. |
ArticleNumber | 119528 |
Author | Wang, Yufei Josep Penuelas Qian, Haifeng Xu, Nuohan Zhang, Qi Ke, Mingjing Bao, Guanjun Ye, Yangqing Zhang, Zhenyan Lu, Tao Peijnenburg, W.J.G.M. Kang, Jian |
Author_xml | – sequence: 1 givenname: Nuohan surname: Xu fullname: Xu, Nuohan organization: College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China – sequence: 2 givenname: Jian surname: Kang fullname: Kang, Jian organization: College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China – sequence: 3 givenname: Yangqing surname: Ye fullname: Ye, Yangqing organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China – sequence: 4 givenname: Qi surname: Zhang fullname: Zhang, Qi organization: College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China – sequence: 5 givenname: Mingjing surname: Ke fullname: Ke, Mingjing organization: College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China – sequence: 6 givenname: Yufei surname: Wang fullname: Wang, Yufei organization: Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China – sequence: 7 givenname: Zhenyan surname: Zhang fullname: Zhang, Zhenyan organization: College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China – sequence: 8 givenname: Tao surname: Lu fullname: Lu, Tao organization: College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China – sequence: 9 givenname: W.J.G.M. surname: Peijnenburg fullname: Peijnenburg, W.J.G.M. organization: Institute of Environmental Sciences (CML), Leiden University, RA, Leiden, 2300, the Netherlands – sequence: 10 surname: Josep Penuelas fullname: Josep Penuelas organization: CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Barcelona, 08193, Catalonia, Spain – sequence: 11 givenname: Guanjun surname: Bao fullname: Bao, Guanjun organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China – sequence: 12 givenname: Haifeng orcidid: 0000-0003-0807-9991 surname: Qian fullname: Qian, Haifeng email: hfqian@zjut.edu.cn organization: College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35623569$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1TAQRi1URG8Lb4CQl2xy8U_sJCyQUAW0UhEbWLCyHHtS5uLYwfat1LcnVQoLFnQxmlmcb6SZc0ZOYopAyEvO9pxx_eawh3i7pLAXTIg954MS_ROy430nG92K9oTsmNBD07UDPyVnpRwYY62U8hk5lUqLtYYd-f7Zuh8YgQawOWK8oUsGj64WCi6FdIPOBpqx_Cw0TTTamBabK7oAhdZES8JAZ3Q5jbiCLs3zMWJFKM_J08mGAi8e-jn59vHD14vL5vrLp6uL99eNk4OqjeonbScvJ6Ws9aMbO68G0GyyQg3MT4yzdbZcas9lN7XWKW0HNbK-873rR3lOXm97l5x-HaFUM2NxEIKNkI7FiI73QjLO-8dR3XHRaSnaFX31gB7HGbxZMs4235k_n1uBdgPW00vJMP1FODP3gszBbILMvSCzCVpjb_-JOay2Yoo1WwyPhd9tYVj_eYuQTXEI0a3CMrhqfML_L_gN6ZWvgw |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2023_132922 crossref_primary_10_1016_j_impact_2025_100553 crossref_primary_10_1016_j_biortech_2023_129143 crossref_primary_10_1039_D4EN00943F crossref_primary_10_1186_s11671_024_04144_z crossref_primary_10_1016_j_still_2024_106257 crossref_primary_10_1016_j_envpol_2023_122358 crossref_primary_10_1016_j_impact_2022_100429 crossref_primary_10_3390_mi16010015 crossref_primary_10_1007_s42773_023_00291_1 crossref_primary_10_1016_j_envpol_2023_121518 crossref_primary_10_1016_j_rhisph_2024_100972 crossref_primary_10_3390_agronomy14020341 crossref_primary_10_3390_ijerph20032513 crossref_primary_10_1021_acs_chemrev_3c00070 crossref_primary_10_1007_s11356_025_36179_9 crossref_primary_10_1109_ACCESS_2024_3494549 |
Cites_doi | 10.1093/treephys/tpz046 10.1016/j.chemosphere.2021.129692 10.1016/j.aquatox.2020.105633 10.1038/s41559-017-0344-y 10.1038/s41587-019-0209-9 10.1016/j.micres.2020.126522 10.1038/nmeth.3869 10.1038/ncomms10541 10.1038/s41587-020-0548-6 10.1126/science.aar5169 10.1021/jf900337h 10.3389/fmicb.2020.622926 10.1016/j.jhazmat.2018.05.066 10.1038/s41396-020-00814-9 10.1021/es103300g 10.1016/j.tibtech.2015.06.011 10.3389/fmicb.2018.03102 10.1002/etc.714 10.1038/nrmicro2259 10.1073/pnas.1919755117 10.1038/s41586-020-2778-7 10.1007/s11356-015-4171-x 10.1016/j.envpol.2018.04.066 10.1021/acs.est.9b07562 10.1016/j.soilbio.2017.03.019 10.1016/j.chemosphere.2012.09.018 10.1038/s41396-020-0720-5 10.1016/j.jhazmat.2021.126047 10.1038/s41564-017-0062-x 10.1021/acs.jafc.0c00073 10.1016/j.envint.2019.04.061 10.1038/s41579-018-0116-y 10.1038/nnano.2015.338 10.14806/ej.17.1.200 10.1021/acs.est.6b05882 10.1093/nar/gkz862 10.1126/sciadv.abf4130 10.1016/j.ejsobi.2021.103313 10.1038/s41586-018-0386-6 10.1007/s11368-017-1716-2 10.1016/j.envpol.2017.10.116 10.3389/fmicb.2020.580024 10.1021/acsnano.0c09488 10.1016/j.apsoil.2020.103510 10.1016/j.soilbio.2018.11.005 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022. Published by Elsevier Ltd. Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022. Published by Elsevier Ltd. – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2022.119528 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 35623569 10_1016_j_envpol_2022_119528 S0269749122007424 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- RIG SEN SEW SSH VH1 WUQ XJT XOL EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-58f6afd3f55aadbcb7d59e60fa2590df0100faa136d137f4ac56a95b087d8c8b3 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Thu Jul 10 22:03:46 EDT 2025 Fri Jul 11 06:07:35 EDT 2025 Mon Jul 21 06:02:39 EDT 2025 Tue Jul 01 03:15:22 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Fri Feb 23 02:39:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanoparticles Microbiota Soil ecosystems Ecotoxicity Machine learning Metadata analysis |
Language | English |
License | Copyright © 2022. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-58f6afd3f55aadbcb7d59e60fa2590df0100faa136d137f4ac56a95b087d8c8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0807-9991 |
PMID | 35623569 |
PQID | 2671276324 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2718230118 proquest_miscellaneous_2671276324 pubmed_primary_35623569 crossref_primary_10_1016_j_envpol_2022_119528 crossref_citationtrail_10_1016_j_envpol_2022_119528 elsevier_sciencedirect_doi_10_1016_j_envpol_2022_119528 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-15 |
PublicationDateYYYYMMDD | 2022-08-15 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fang, Han, Zhang, Long, Cai, Yu (bib14) 2018; 357 Wright, Langille, Walker (bib40) 2021; 15 McShane, Sarrazin, Whalen, Hendershot, Sunahara (bib25) 2012; 31 Hibbing, Fuqua, Parsek, Peterson (bib20) 2010; 8 Lehmann, A., Zheng, W. Rillig, M.C. Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 1, 1828–1835. doi:10.1038/s41559-017-0344-y. Bolyen, Rideout, Dillon, Bokulich, Abnet, Al-Ghalith, Alexander, Alm, Arumugam, Asnicar, Bai, Bisanz, Bittinger, Brejnrod, Brislawn, Brown, Callahan, Caraballo-Rodríguez, Chase, Cope, Da Silva, Diener, Dorrestein, Douglas, Durall, Duvallet, Edwardson, Ernst, Estaki, Fouquier, Gauglitz, Gibbons, Gibson, Gonzalez, Gorlick, Guo, Hillmann, Holmes, Holste, Huttenhower, Huttley, Janssen, Jarmusch, Jiang, Kaehler, Kang, Keefe, Keim, Kelley, Knights, Koester, Kosciolek, Kreps, Langille, Lee, Ley, Liu, Loftfield, Lozupone, Maher, Marotz, Martin, McDonald, McIver, Melnik, Metcalf, Morgan, Morton, Naimey, Navas-Molina, Nothias, Orchanian, Pearson, Peoples, Petras, Preuss, Pruesse, Rasmussen, Rivers, Robeson, Rosenthal, Segata, Shaffer, Shiffer, Sinha, Song, Spear, Swafford, Thompson, Torres, Trinh, Tripathi, Turnbaugh, Ul-Hasan, van der Hooft, Vargas, Vázquez-Baeza, Vogtmann, von Hippel, Walters, Wan, Wang, Warren, Weber, Williamson, Willis, Xu, Zaneveld, Zhang, Zhu, Knight, Caporaso (bib6) 2019; 37 Fan, Xu, Lavoie, Peijnenburg, Zhu, Lu, Fu, Zhu, Qian (bib13) 2018; 233 Peng, Xu, Liu, Sun, Luo, Shi (bib29) 2017; 51 Ali, Guo, Li, Shaheen, Wahid, Antoniadis, Abdelrahman, Al-Solaimani, Li, Tsang, Rinklebe, Zhang (bib2) 2021; 273 Chen, Zhu, An, Ding, Zhu, Cui (bib9) 2019; 128 Yu, Wei, Deng, Peng, Hu (bib45) 2021; 7 Zhang, Huang, Zhang, Gardea-Torresdey, White, Ji, Zhao (bib47) 2020; 54 Zhang, Guo, Zhang, Fu, White, Lynch (bib48) 2020; 16 Delgado-Baquerizo, Maestre, Reich, Jeffries, Gaitan, Encinar, Berdugo, Campbell, Singh (bib11) 2016; 7 You, Liu, Chen, Yang, Dou, Gao, Wang (bib43) 2018; 18 Kalam, Basu, Ahmad, Sayyed, El-Enshasy, Dailin, Suriani (bib21) 2020; 11 Kusi, Scheuerman, Maier (bib22) 2020; 228 Douglas, Maffei, Zaneveld, Yurgel, Brown, Taylor, Huttenhower, Langille (bib12) 2020; 38 Ban, Yuan, Yu, Peng, Zhou, Hu (bib4) 2020; 117 Yang, Rossel, Li, Bissett, Lee, Shi, Behrens, Court (bib42) 2019; 129 Guerriero, Sutera, Torabi-Pour, Renaut, Hausman, Berni, Pennington, Welsh, Dehsorkhi, Zancan, Saffie-Siebert (bib17) 2021; 15 Oh, Liu, Nel, Gemill, Bilal, Cohen, Medintz (bib28) 2016; 11 Bahram, Hildebrand, Forslund, Anderson, Soudzilovskaia, Bodegom, Bengtsson-Palme, Anslan, Coelho, Harend, Huerta-Cepas, Medema, Maltz, Mundra, Olsson, Pent, Põlme, Sunagawa, Ryberg, Tedersoo, Bork (bib3) 2018; 560 Finkel, Salas-González, Castrillo, Conway, Law, Teixeira, Wilson, Fitzpatrick, Jones, Dangl (bib16) 2020; 587 You, Suo, Yin, Wang, Zheng, Fang, Zhang, Li, Li (bib44) 2021; 417 Simonin, Richaume (bib35) 2015; 22 Tapia-García, Hernández-Trejo, Guevara-Luna, Rojas-Rojas, Arroyo-Herrera, Meza-Radilla, Vásquez-Murrieta, Estrada-de los Santos (bib37) 2020; 239 Yang, Barnard, Kuzyakov, Tian (bib41) 2021; 104 Qu, Zhang, Peijnenburg, Liu, Lu, Hu, Chen, Chen, Lin, Qian (bib30) 2020; 68 Simonin, Cantarel, Crouzet, Gervaix, Martins, Richaume (bib34) 2018; 9 Wiegand, Jogler, Jogler (bib39) 2018; 42 Hendren, Mesnard, Dröge, Wiesner (bib19) 2011; 45 Cocozza, Perone, Giordano, Salvatici, Pignattelli, Raio, Schaub, Sever, Innes, Tognetti, Cherubini (bib10) 2019; 39 Martin (bib24) 2011; 17 Caspi, Billington, Keseler, Kothari, Krummenacker, Midford, Ong, Paley, Subhraveti, Karp (bib8) 2020; 48 Guo, Wan, Hua, Yin, Chu, Wang, Guo (bib18) 2020; 149 Shin, Whon, Bae (bib33) 2015; 33 Ray, Lakshmanan, Labbé, Craven (bib32) 2020; 11 Yuan, Wen, Zhang, Zhao, Penton, Thomashow, Shen (bib46) 2020; 14 Ben-Moshe, Frenk, Dror, Minz, Berkowitz (bib5) 2013; 90 Nilsson, Anslan, Bahram, Wurzbacher, Baldrian, Tedersoo (bib27) 2019; 17 Sun, Conroy, Donner, Hungerbuhler, Lombi, Nowack (bib36) 2015; 2 Zhang, Zhang, Cui, Li, Xu, Lu, Chen, Penuelas, Hu, Qian (bib50) 2022 Moll, Klingenfuss, Widmer, Gogos, Bucheli, Hartmann, van der Heijden (bib26) 2017; 111 Callahan, McMurdie, Rosen, Han, Johnson, Holmes (bib7) 2016; 13 Zhang, Ke, Qu, Peijnenburg, Lu, Zhang, Ye, Xu, Du, Sun, Qian (bib49) 2018; 239 Ahneman, Estrada, Lin, Dreher, Doyle (bib1) 2018; 360 Ramirez, Knight, de Hollander, Brearley, Constantinides, Cotton, Creer, Crowther, Davison, Delgado-Baquerizo, Dorrepaal, Elliott, Fox, Griffiths, Hale, Hartman, Houlden, Jones, Krab, Maestre, McGuire, Monteux, Orr, van der Putten, Roberts, Robinson, Rocca, Rowntree, Schlaeppi, Shepherd, Singh, Straathof, Bhatnagar, Thion, van der Heijden, de Vries (bib31) 2018; 3 Fayaz, Balaji, Girilal, Kalaichelvan, Venkatesan (bib15) 2009; 57 10.1016/j.envpol.2022.119528_bib23 Yu (10.1016/j.envpol.2022.119528_bib45) 2021; 7 You (10.1016/j.envpol.2022.119528_bib43) 2018; 18 Ramirez (10.1016/j.envpol.2022.119528_bib31) 2018; 3 Ray (10.1016/j.envpol.2022.119528_bib32) 2020; 11 Simonin (10.1016/j.envpol.2022.119528_bib35) 2015; 22 Ali (10.1016/j.envpol.2022.119528_bib2) 2021; 273 Zhang (10.1016/j.envpol.2022.119528_bib48) 2020; 16 Chen (10.1016/j.envpol.2022.119528_bib9) 2019; 128 Bahram (10.1016/j.envpol.2022.119528_bib3) 2018; 560 Oh (10.1016/j.envpol.2022.119528_bib28) 2016; 11 Zhang (10.1016/j.envpol.2022.119528_bib47) 2020; 54 Shin (10.1016/j.envpol.2022.119528_bib33) 2015; 33 Hendren (10.1016/j.envpol.2022.119528_bib19) 2011; 45 Tapia-García (10.1016/j.envpol.2022.119528_bib37) 2020; 239 Simonin (10.1016/j.envpol.2022.119528_bib34) 2018; 9 Yang (10.1016/j.envpol.2022.119528_bib41) 2021; 104 Caspi (10.1016/j.envpol.2022.119528_bib8) 2020; 48 McShane (10.1016/j.envpol.2022.119528_bib25) 2012; 31 Finkel (10.1016/j.envpol.2022.119528_bib16) 2020; 587 Cocozza (10.1016/j.envpol.2022.119528_bib10) 2019; 39 Nilsson (10.1016/j.envpol.2022.119528_bib27) 2019; 17 Moll (10.1016/j.envpol.2022.119528_bib26) 2017; 111 Hibbing (10.1016/j.envpol.2022.119528_bib20) 2010; 8 You (10.1016/j.envpol.2022.119528_bib44) 2021; 417 Delgado-Baquerizo (10.1016/j.envpol.2022.119528_bib11) 2016; 7 Ben-Moshe (10.1016/j.envpol.2022.119528_bib5) 2013; 90 Guerriero (10.1016/j.envpol.2022.119528_bib17) 2021; 15 Wright (10.1016/j.envpol.2022.119528_bib40) 2021; 15 Wiegand (10.1016/j.envpol.2022.119528_bib39) 2018; 42 Martin (10.1016/j.envpol.2022.119528_bib24) 2011; 17 Yuan (10.1016/j.envpol.2022.119528_bib46) 2020; 14 Ahneman (10.1016/j.envpol.2022.119528_bib1) 2018; 360 Douglas (10.1016/j.envpol.2022.119528_bib12) 2020; 38 Callahan (10.1016/j.envpol.2022.119528_bib7) 2016; 13 Ban (10.1016/j.envpol.2022.119528_bib4) 2020; 117 Fayaz (10.1016/j.envpol.2022.119528_bib15) 2009; 57 Fan (10.1016/j.envpol.2022.119528_bib13) 2018; 233 Peng (10.1016/j.envpol.2022.119528_bib29) 2017; 51 Guo (10.1016/j.envpol.2022.119528_bib18) 2020; 149 Fang (10.1016/j.envpol.2022.119528_bib14) 2018; 357 Zhang (10.1016/j.envpol.2022.119528_bib50) 2022 Bolyen (10.1016/j.envpol.2022.119528_bib6) 2019; 37 Zhang (10.1016/j.envpol.2022.119528_bib49) 2018; 239 Kalam (10.1016/j.envpol.2022.119528_bib21) 2020; 11 Kusi (10.1016/j.envpol.2022.119528_bib22) 2020; 228 Qu (10.1016/j.envpol.2022.119528_bib30) 2020; 68 Yang (10.1016/j.envpol.2022.119528_bib42) 2019; 129 Sun (10.1016/j.envpol.2022.119528_bib36) 2015; 2 |
References_xml | – volume: 68 start-page: 5024 year: 2020 end-page: 5038 ident: bib30 article-title: Rhizosphere microbiome assembly and its impact on plant growth publication-title: J. Agric. Food Chem. – volume: 15 start-page: 789 year: 2021 end-page: 806 ident: bib40 article-title: Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere publication-title: ISME J. – volume: 11 start-page: 479 year: 2016 end-page: 486 ident: bib28 article-title: Meta-analysis of cellular toxicity for cadmium-containing quantum dots publication-title: Nat. Nanotechnol. – volume: 117 start-page: 10492 year: 2020 end-page: 10499 ident: bib4 article-title: Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 42 start-page: 739 year: 2018 end-page: 760 ident: bib39 article-title: On the maverick publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev. – volume: 45 start-page: 2562 year: 2011 end-page: 2569 ident: bib19 article-title: Estimating production data for five engineered nanomaterials as a basis for exposure assessment publication-title: Environ. Sci. Technol. – volume: 17 start-page: 10 year: 2011 end-page: 12 ident: bib24 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet. J. – volume: 587 start-page: 103 year: 2020 end-page: 108 ident: bib16 article-title: A single bacterial genus maintains root growth in a complex microbiome publication-title: Nature – volume: 111 start-page: 85 year: 2017 end-page: 93 ident: bib26 article-title: Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass publication-title: Soil Biol. Biochem. – volume: 13 start-page: 581 year: 2016 end-page: 583 ident: bib7 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods – volume: 17 start-page: 95 year: 2019 end-page: 109 ident: bib27 article-title: Mycobiome diversity: high-throughput sequencing and identification of fungi publication-title: Nat. Rev. Microbiol. – volume: 11 year: 2020 ident: bib32 article-title: Microbe to microbiome: a paradigm shift in the application of microorganisms for sustainable agriculture publication-title: Front. Microbiol. – volume: 16 year: 2020 ident: bib48 article-title: Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture publication-title: Small – volume: 38 start-page: 685 year: 2020 end-page: 688 ident: bib12 article-title: PICRUSt2 for prediction of metagenome functions publication-title: Nat. Biotechnol. – volume: 39 start-page: 1251 year: 2019 end-page: 1261 ident: bib10 article-title: Silver nanoparticles enter the tree stem faster through leaves than through roots publication-title: Tree Physiol. – volume: 90 start-page: 640 year: 2013 end-page: 646 ident: bib5 article-title: Effects of metal oxide nanoparticles on soil properties publication-title: Chemosphere – volume: 9 start-page: 3102 year: 2018 ident: bib34 article-title: Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants publication-title: Front. Microbiol. – volume: 357 start-page: 53 year: 2018 end-page: 62 ident: bib14 article-title: Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils publication-title: J. Hazard Mater. – volume: 128 start-page: 399 year: 2019 end-page: 406 ident: bib9 article-title: Does nano silver promote the selection of antibiotic resistance genes in soil and plant? publication-title: Environ. Int. – volume: 228 start-page: 105633 year: 2020 ident: bib22 article-title: Emerging environmental contaminants (silver nanoparticles) altered the catabolic capability and metabolic fingerprinting of microbial communities publication-title: Aquat. Toxicol. – volume: 54 start-page: 3334 year: 2020 end-page: 3342 ident: bib47 article-title: Silver nanoparticles alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils publication-title: Environ. Sci. Technol. – volume: 51 start-page: 4907 year: 2017 end-page: 4917 ident: bib29 article-title: Fate and transformation of CuO nanoparticles in the soil–rice system during the life cycle of rice plants publication-title: Environ. Sci. Technol. – year: 2022 ident: bib50 article-title: Composition identification and functional verification of bacterial community in disease-suppressive soils by machine learning publication-title: Environ. Microbiol. – volume: 3 start-page: 189 year: 2018 end-page: 196 ident: bib31 article-title: Detecting macroecological patterns in bacterial communities across independent studies of global soils publication-title: Nat. Microbiol. – volume: 15 start-page: 3061 year: 2021 end-page: 3069 ident: bib17 article-title: Phyto-Courier, a silicon particle-based nano-biostimulant: evidence from publication-title: ACS Nano – volume: 239 start-page: 689 year: 2018 end-page: 697 ident: bib49 article-title: Impact of copper nanoparticles and ionic copper exposure on wheat ( publication-title: Environ. Pollut. – volume: 11 start-page: 580024 year: 2020 ident: bib21 article-title: Recent understanding of soil acidobacteria and their ecological significance: a critical review publication-title: Front. Microbiol. – volume: 149 start-page: 103510 year: 2020 ident: bib18 article-title: Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem publication-title: Appl. Soil Ecol. – volume: 560 start-page: 233 year: 2018 end-page: 237 ident: bib3 article-title: Structure and function of the global topsoil microbiome publication-title: Nature – volume: 129 start-page: 29 year: 2019 end-page: 38 ident: bib42 article-title: Soil bacterial abundance and diversity better explained and predicted with spectro-transfer functions publication-title: Soil Biol. Biochem. – volume: 14 start-page: 2936 year: 2020 end-page: 2950 ident: bib46 article-title: Predicting disease occurrence with high accuracy based on soil macroecological patterns of publication-title: ISME J. – volume: 233 start-page: 633 year: 2018 end-page: 641 ident: bib13 article-title: Multiwall carbon nanotubes modulate paraquat toxicity in publication-title: Environ. Pollut. – volume: 37 start-page: 852 year: 2019 end-page: 857 ident: bib6 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nat. Biotechnol. – volume: 22 start-page: 13710 year: 2015 end-page: 13723 ident: bib35 article-title: Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review publication-title: Environ. Sci. Pollut. Control Ser. – volume: 273 start-page: 129692 year: 2021 ident: bib2 article-title: Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial publication-title: Chemosphere – reference: Lehmann, A., Zheng, W. Rillig, M.C. Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 1, 1828–1835. doi:10.1038/s41559-017-0344-y. – volume: 2 start-page: 340 year: 2015 end-page: 351 ident: bib36 article-title: Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatio-temporal approach publication-title: Environ. Sci. J. Integr. Environ. Res.: Nano – volume: 18 start-page: 211 year: 2018 end-page: 221 ident: bib43 article-title: Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types publication-title: J. Soils Sediments – volume: 417 start-page: 126047 year: 2021 ident: bib44 article-title: Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil publication-title: J. Hazard Mater. – volume: 8 start-page: 15 year: 2010 end-page: 25 ident: bib20 article-title: Bacterial competition: surviving and thriving in the microbial jungle publication-title: Nat. Rev. Microbiol. – volume: 7 start-page: 10541 year: 2016 ident: bib11 article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems publication-title: Nat. Commun. – volume: 239 start-page: 126522 year: 2020 ident: bib37 article-title: Plant growth-promoting bacteria isolated from wild legume nodules and nodules of publication-title: Microbiol. Res. – volume: 360 start-page: 186 year: 2018 end-page: 190 ident: bib1 article-title: Predicting reaction performance in C–N cross-coupling using machine learning publication-title: Science – volume: 57 start-page: 6246 year: 2009 end-page: 6252 ident: bib15 article-title: Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation publication-title: J. Agric. Food Chem. – volume: 33 start-page: 496 year: 2015 end-page: 503 ident: bib33 article-title: Proteobacteria: microbial signature of dysbiosis in gut microbiota publication-title: Trends Biotechnol. – volume: 7 year: 2021 ident: bib45 article-title: Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles publication-title: Sci. Adv. – volume: 104 start-page: 103313 year: 2021 ident: bib41 article-title: Bacterial communities drive the resistance of soil multifunctionality to land-use change in karst soils publication-title: Eur. J. Soil Biol. – volume: 31 start-page: 184 year: 2012 end-page: 193 ident: bib25 article-title: Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil publication-title: Environ. Toxicol. Chem. – volume: 48 start-page: D445 year: 2020 end-page: D453 ident: bib8 article-title: The MetaCyc database of metabolic pathways and enzymes - a 2019 update publication-title: Nucleic Acids Res. – volume: 39 start-page: 1251 year: 2019 ident: 10.1016/j.envpol.2022.119528_bib10 article-title: Silver nanoparticles enter the tree stem faster through leaves than through roots publication-title: Tree Physiol. doi: 10.1093/treephys/tpz046 – volume: 273 start-page: 129692 year: 2021 ident: 10.1016/j.envpol.2022.119528_bib2 article-title: Streptomyces pactum addition to contaminated mining soils improved soil quality and enhanced metals phytoextraction by wheat in a green remediation trial publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129692 – volume: 228 start-page: 105633 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib22 article-title: Emerging environmental contaminants (silver nanoparticles) altered the catabolic capability and metabolic fingerprinting of microbial communities publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2020.105633 – ident: 10.1016/j.envpol.2022.119528_bib23 doi: 10.1038/s41559-017-0344-y – volume: 2 start-page: 340 year: 2015 ident: 10.1016/j.envpol.2022.119528_bib36 article-title: Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatio-temporal approach publication-title: Environ. Sci. J. Integr. Environ. Res.: Nano – volume: 37 start-page: 852 year: 2019 ident: 10.1016/j.envpol.2022.119528_bib6 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0209-9 – volume: 239 start-page: 126522 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib37 article-title: Plant growth-promoting bacteria isolated from wild legume nodules and nodules of Phaseolus vulgaris L. trap plants in central and southern Mexico publication-title: Microbiol. Res. doi: 10.1016/j.micres.2020.126522 – volume: 13 start-page: 581 year: 2016 ident: 10.1016/j.envpol.2022.119528_bib7 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 7 start-page: 10541 year: 2016 ident: 10.1016/j.envpol.2022.119528_bib11 article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems publication-title: Nat. Commun. doi: 10.1038/ncomms10541 – volume: 38 start-page: 685 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib12 article-title: PICRUSt2 for prediction of metagenome functions publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0548-6 – volume: 360 start-page: 186 year: 2018 ident: 10.1016/j.envpol.2022.119528_bib1 article-title: Predicting reaction performance in C–N cross-coupling using machine learning publication-title: Science doi: 10.1126/science.aar5169 – volume: 57 start-page: 6246 year: 2009 ident: 10.1016/j.envpol.2022.119528_bib15 article-title: Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation publication-title: J. Agric. Food Chem. doi: 10.1021/jf900337h – volume: 11 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib32 article-title: Microbe to microbiome: a paradigm shift in the application of microorganisms for sustainable agriculture publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.622926 – volume: 357 start-page: 53 year: 2018 ident: 10.1016/j.envpol.2022.119528_bib14 article-title: Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2018.05.066 – volume: 15 start-page: 789 year: 2021 ident: 10.1016/j.envpol.2022.119528_bib40 article-title: Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere publication-title: ISME J. doi: 10.1038/s41396-020-00814-9 – volume: 45 start-page: 2562 year: 2011 ident: 10.1016/j.envpol.2022.119528_bib19 article-title: Estimating production data for five engineered nanomaterials as a basis for exposure assessment publication-title: Environ. Sci. Technol. doi: 10.1021/es103300g – volume: 33 start-page: 496 year: 2015 ident: 10.1016/j.envpol.2022.119528_bib33 article-title: Proteobacteria: microbial signature of dysbiosis in gut microbiota publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2015.06.011 – volume: 9 start-page: 3102 year: 2018 ident: 10.1016/j.envpol.2022.119528_bib34 article-title: Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.03102 – volume: 31 start-page: 184 year: 2012 ident: 10.1016/j.envpol.2022.119528_bib25 article-title: Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.714 – volume: 8 start-page: 15 year: 2010 ident: 10.1016/j.envpol.2022.119528_bib20 article-title: Bacterial competition: surviving and thriving in the microbial jungle publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2259 – volume: 117 start-page: 10492 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib4 article-title: Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1919755117 – volume: 587 start-page: 103 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib16 article-title: A single bacterial genus maintains root growth in a complex microbiome publication-title: Nature doi: 10.1038/s41586-020-2778-7 – volume: 22 start-page: 13710 year: 2015 ident: 10.1016/j.envpol.2022.119528_bib35 article-title: Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-015-4171-x – volume: 239 start-page: 689 year: 2018 ident: 10.1016/j.envpol.2022.119528_bib49 article-title: Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.04.066 – volume: 54 start-page: 3334 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib47 article-title: Silver nanoparticles alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b07562 – volume: 111 start-page: 85 year: 2017 ident: 10.1016/j.envpol.2022.119528_bib26 article-title: Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.03.019 – volume: 90 start-page: 640 year: 2013 ident: 10.1016/j.envpol.2022.119528_bib5 article-title: Effects of metal oxide nanoparticles on soil properties publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.09.018 – volume: 14 start-page: 2936 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib46 article-title: Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt publication-title: ISME J. doi: 10.1038/s41396-020-0720-5 – volume: 417 start-page: 126047 year: 2021 ident: 10.1016/j.envpol.2022.119528_bib44 article-title: Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.126047 – volume: 3 start-page: 189 year: 2018 ident: 10.1016/j.envpol.2022.119528_bib31 article-title: Detecting macroecological patterns in bacterial communities across independent studies of global soils publication-title: Nat. Microbiol. doi: 10.1038/s41564-017-0062-x – volume: 68 start-page: 5024 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib30 article-title: Rhizosphere microbiome assembly and its impact on plant growth publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c00073 – volume: 128 start-page: 399 year: 2019 ident: 10.1016/j.envpol.2022.119528_bib9 article-title: Does nano silver promote the selection of antibiotic resistance genes in soil and plant? publication-title: Environ. Int. doi: 10.1016/j.envint.2019.04.061 – volume: 17 start-page: 95 year: 2019 ident: 10.1016/j.envpol.2022.119528_bib27 article-title: Mycobiome diversity: high-throughput sequencing and identification of fungi publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0116-y – volume: 11 start-page: 479 year: 2016 ident: 10.1016/j.envpol.2022.119528_bib28 article-title: Meta-analysis of cellular toxicity for cadmium-containing quantum dots publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.338 – volume: 17 start-page: 10 year: 2011 ident: 10.1016/j.envpol.2022.119528_bib24 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet. J. doi: 10.14806/ej.17.1.200 – volume: 51 start-page: 4907 year: 2017 ident: 10.1016/j.envpol.2022.119528_bib29 article-title: Fate and transformation of CuO nanoparticles in the soil–rice system during the life cycle of rice plants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05882 – volume: 48 start-page: D445 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib8 article-title: The MetaCyc database of metabolic pathways and enzymes - a 2019 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz862 – volume: 7 year: 2021 ident: 10.1016/j.envpol.2022.119528_bib45 article-title: Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles publication-title: Sci. Adv. doi: 10.1126/sciadv.abf4130 – volume: 16 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib48 article-title: Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture publication-title: Small – volume: 104 start-page: 103313 year: 2021 ident: 10.1016/j.envpol.2022.119528_bib41 article-title: Bacterial communities drive the resistance of soil multifunctionality to land-use change in karst soils publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2021.103313 – volume: 560 start-page: 233 year: 2018 ident: 10.1016/j.envpol.2022.119528_bib3 article-title: Structure and function of the global topsoil microbiome publication-title: Nature doi: 10.1038/s41586-018-0386-6 – volume: 18 start-page: 211 year: 2018 ident: 10.1016/j.envpol.2022.119528_bib43 article-title: Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types publication-title: J. Soils Sediments doi: 10.1007/s11368-017-1716-2 – volume: 42 start-page: 739 year: 2018 ident: 10.1016/j.envpol.2022.119528_bib39 article-title: On the maverick Planctomycetes publication-title: FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev. – year: 2022 ident: 10.1016/j.envpol.2022.119528_bib50 article-title: Composition identification and functional verification of bacterial community in disease-suppressive soils by machine learning publication-title: Environ. Microbiol. – volume: 233 start-page: 633 year: 2018 ident: 10.1016/j.envpol.2022.119528_bib13 article-title: Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.10.116 – volume: 11 start-page: 580024 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib21 article-title: Recent understanding of soil acidobacteria and their ecological significance: a critical review publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.580024 – volume: 15 start-page: 3061 year: 2021 ident: 10.1016/j.envpol.2022.119528_bib17 article-title: Phyto-Courier, a silicon particle-based nano-biostimulant: evidence from Cannabis sativa exposed to salinity publication-title: ACS Nano doi: 10.1021/acsnano.0c09488 – volume: 149 start-page: 103510 year: 2020 ident: 10.1016/j.envpol.2022.119528_bib18 article-title: Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2020.103510 – volume: 129 start-page: 29 year: 2019 ident: 10.1016/j.envpol.2022.119528_bib42 article-title: Soil bacterial abundance and diversity better explained and predicted with spectro-transfer functions publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.11.005 |
SSID | ssj0004333 |
Score | 2.4709027 |
Snippet | With the rapid development of nanotechnology in agriculture, there is increasing urgency to assess the impacts of nanoparticles (NPs) on the soil environment.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119528 |
SubjectTerms | biosynthesis chronic exposure Ecotoxicity edaphic factors Machine learning metadata Metadata analysis Methylophilus microbial communities Microbiota Nanoparticles pollution Soil ecosystems soil heterogeneity soil microorganisms species diversity Streptomyces |
Title | Machine learning predicts ecological risks of nanoparticles to soil microbial communities |
URI | https://dx.doi.org/10.1016/j.envpol.2022.119528 https://www.ncbi.nlm.nih.gov/pubmed/35623569 https://www.proquest.com/docview/2671276324 https://www.proquest.com/docview/2718230118 |
Volume | 307 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoEDgi2F8qiMhLilu_EzOa6qVguovUClcrIcP9CiNlk1KRIXfjszjtOCBFTi5kRjy_LY87BnviHkDSi9UInaFVErUQgtZGH1QkLL18oinkkCnj85Vasz8f5cnm-RwykXBsMqs-wfZXqS1vnPPK_mfLNezz-C9wDGcF0yvG4TDDFBhdC4yw9-3IZ5CD6WkwfiAqmn9LkU4xXab5sOHyAYO0DsM6zJ_mf19DfzM6mh40fkYbYf6XKc4mOyFdoZ2Vm24DtffqdvaYroTFflM_LgF7DBGdk9us1pgxHyoe53yOeTFFAZaK4g8YVurvD5ZuhpcJNspBiD3tMu0ta24GjneDo6dLTv1hf0cp0QnYDQjSknCNT6hJwdH306XBW54kLheC2HQlZR2eh5lNJa37hGe1kHtYgWvKSFj-C8QduWXPmS6yisk8rWsllU2leuavgu2W67NjwjlDFXOSY92jPCVbKyZQy8AYezYa6Mfo_waaGNy3DkWBXjwkxxZ1_NyB6D7DEje_ZIcdNrM8Jx3EGvJx6a37aVAY1xR8_XE8sNnDh8RrFt6K57w5QumUaY-3_QgMpnKDthnKfjfrmZL0eTU6r6-X_P7QW5j194tV3Kl2R7uLoOr8A2Gpr9tPn3yb3luw-r059UDQ8j |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QE4VLCl0ELBSIhb2I2fyXFVtdrS7l5opXKyHMdGi9pk1aRI_Hs8idOCRKnEzUrGluWx52HPfAPwISg9l_HcJl5JnnDFRWLUVIRWmUuDeCYd8PxiKefn_POFuNiAgyEXBsMqo-zvZXonreOXSVzNyXq1mnwJ3kMwhvOU4nUbp_wRbCI6lRjB5uz4ZL68S49kfUX5QJ9ghyGDrgvzctWPdY1vEJR-QvgzLMv-dw11nwXaaaKjZ7AVTUgy62f5HDZcNYbtWRXc56uf5CPpgjq72_IxPP0Nb3AMO4d3aW1hhHium234uuhiKh2JRSS-kfU1vuC0DXF2EI8Ew9AbUntSmSr42jGkjrQ1aerVJbladaBOgdD2WSeI1foCzo8Ozw7mSSy6kFiWizYRmZfGl8wLYUxZ2EKVIndy6k1wlKalD_5baJuUyTJlynNjhTS5KKaZKjObFWwHRlVduVdAKLWZpaJEk4bbTGQm9Y4VwecsqE19uQtsWGhtIyI5Fsa41EPo2Xfds0cje3TPnl1Ibnute0SOB-jVwEP9x87SQWk80PP9wHIdDh2-pJjK1TeNplKlVCHS_T9ogtanKD7DOC_7_XI7X4ZWp5D53n_P7R08np8tTvXp8fLkNTzBP3jTnYo3MGqvb9x-MJXa4m08Cr8AjJQR1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+predicts+ecological+risks+of+nanoparticles+to+soil+microbial+communities&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Xu%2C+Nuohan&rft.au=Kang%2C+Jian&rft.au=Ye%2C+Yangqing&rft.au=Zhang%2C+Qi&rft.date=2022-08-15&rft.issn=0269-7491&rft.volume=307&rft.spage=119528&rft_id=info:doi/10.1016%2Fj.envpol.2022.119528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envpol_2022_119528 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |