Advances in covalent organic frameworks in separation science
[Display omitted] •Applications of covalent organic frameworks for sample preparation are reviewed.•Applications of covalent organic frameworks for chromatography are reviewed.•The prospects of COFs for separation science are presented. Covalent organic frameworks (COFs) are a new class of multifunc...
Saved in:
Published in | Journal of Chromatography A Vol. 1542; pp. 1 - 18 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
23.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Applications of covalent organic frameworks for sample preparation are reviewed.•Applications of covalent organic frameworks for chromatography are reviewed.•The prospects of COFs for separation science are presented.
Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs. |
---|---|
AbstractList | Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs. [Display omitted] •Applications of covalent organic frameworks for sample preparation are reviewed.•Applications of covalent organic frameworks for chromatography are reviewed.•The prospects of COFs for separation science are presented. Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs. |
Author | Yang, Cheng Qian, Hai-Long Wang, Wen-Long Yang, Cheng-Xiong Yan, Xiu-Ping |
Author_xml | – sequence: 1 givenname: Hai-Long surname: Qian fullname: Qian, Hai-Long organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China – sequence: 2 givenname: Cheng-Xiong surname: Yang fullname: Yang, Cheng-Xiong organization: College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China – sequence: 3 givenname: Wen-Long surname: Wang fullname: Wang, Wen-Long organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China – sequence: 4 givenname: Cheng surname: Yang fullname: Yang, Cheng organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China – sequence: 5 givenname: Xiu-Ping surname: Yan fullname: Yan, Xiu-Ping email: xpyan@nankai.edu.cn, xpyan@jiangnan.edu.cn organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29496190$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkF1LIzEUhoO4aP34ByK99Ga6J8nMJBEURFZ3obA363XIJGc0dWZSk2nFf7-prTdeKBxIQt7nhfMckf0hDEjIGYUZBVr_XMzsUwy9mTGgcgYsD98jEyoFL7gQcp9MABgtVC34ITlKaQFABQh2QA6ZKlVNFUzI1Y1bm8FimvphasPadDiM0xAfzeDttI2mx9cQn9-_Ey5NNKMP-Wo9ZuqE_GhNl_B0dx6Th7tf_25_F_O_939ub-aF5aoai6pm6IxgTrXWKstkRQ11IErreINNJagtJa3b_HKisUZyCRVzCLQEWTYNPyYX295lDC8rTKPufbLYdWbAsEqaQcWloqqqc_R8F101PTq9jL438U1_rJwDl9uAjSGliK22fnzfaozGd5qC3vjVC731qzd-NbA8PMPlJ_ij_xvseothlrT2GPVOoPMR7ahd8F8X_AdNPpZk |
CitedBy_id | crossref_primary_10_1016_j_bios_2019_111699 crossref_primary_10_1007_s12161_019_01676_4 crossref_primary_10_1016_j_jhazmat_2020_122793 crossref_primary_10_1002_jssc_202300205 crossref_primary_10_1016_j_chroma_2025_465718 crossref_primary_10_1016_j_talanta_2021_122548 crossref_primary_10_1016_j_talanta_2020_121612 crossref_primary_10_1002_advs_201801116 crossref_primary_10_1016_j_talanta_2019_120194 crossref_primary_10_1016_j_talanta_2024_127285 crossref_primary_10_1007_s11696_024_03677_y crossref_primary_10_1002_jssc_202001245 crossref_primary_10_1002_chem_201806025 crossref_primary_10_1007_s00604_023_05915_8 crossref_primary_10_1016_j_chroma_2020_461197 crossref_primary_10_1039_D1AY02171K crossref_primary_10_1007_s00216_020_02972_3 crossref_primary_10_1016_j_talanta_2023_124732 crossref_primary_10_1016_j_aca_2019_08_066 crossref_primary_10_1007_s12161_020_01812_5 crossref_primary_10_1021_acs_chemmater_2c03448 crossref_primary_10_1002_cplu_202300494 crossref_primary_10_3390_ijerph191710824 crossref_primary_10_1021_acsami_0c06267 crossref_primary_10_1039_D0NA00537A crossref_primary_10_1016_j_microc_2025_113120 crossref_primary_10_1016_j_trac_2023_117486 crossref_primary_10_1016_j_cej_2025_160082 crossref_primary_10_1016_j_optmat_2023_113873 crossref_primary_10_1021_acsapm_2c00939 crossref_primary_10_1016_j_talanta_2021_122524 crossref_primary_10_1039_C8AN01623B crossref_primary_10_1021_acsami_9b02354 crossref_primary_10_1021_acsanm_0c02276 crossref_primary_10_1002_marc_202200718 crossref_primary_10_1016_j_jfca_2024_106199 crossref_primary_10_1016_j_chroma_2022_462864 crossref_primary_10_1016_j_trac_2024_118043 crossref_primary_10_1016_j_chroma_2022_463157 crossref_primary_10_1039_D1AY00873K crossref_primary_10_1007_s00604_022_05444_w crossref_primary_10_1146_annurev_anchem_061318_114854 crossref_primary_10_1016_j_talanta_2022_123923 crossref_primary_10_1021_acsami_9b03330 crossref_primary_10_1021_acsami_3c13853 crossref_primary_10_1002_app_49745 crossref_primary_10_1016_j_talanta_2024_127012 crossref_primary_10_1016_j_cclet_2021_04_052 crossref_primary_10_1016_j_chroma_2020_460898 crossref_primary_10_1039_D3PY00632H crossref_primary_10_1016_j_chroma_2020_460891 crossref_primary_10_1002_jssc_202000923 crossref_primary_10_1016_j_memsci_2020_118466 crossref_primary_10_1007_s00604_020_04340_5 crossref_primary_10_1002_jssc_202100593 crossref_primary_10_1016_j_talanta_2021_122343 crossref_primary_10_1016_j_talanta_2020_121651 crossref_primary_10_1039_C9CS00827F crossref_primary_10_1016_j_talanta_2022_123716 crossref_primary_10_1016_j_bios_2022_114668 crossref_primary_10_1016_j_jcoa_2021_100002 crossref_primary_10_1080_10826076_2019_1701013 crossref_primary_10_1016_j_chroma_2018_06_066 crossref_primary_10_1016_j_snb_2022_131729 crossref_primary_10_1016_j_chroma_2024_465519 crossref_primary_10_1016_j_chroma_2019_02_048 crossref_primary_10_1016_j_chroma_2019_460847 crossref_primary_10_1016_j_chroma_2019_460722 crossref_primary_10_1016_j_ccr_2024_215699 crossref_primary_10_1016_j_aca_2023_342156 crossref_primary_10_1007_s12161_020_01750_2 crossref_primary_10_3390_ijerph20021393 crossref_primary_10_1016_j_cej_2021_128619 crossref_primary_10_1016_j_jes_2018_12_010 crossref_primary_10_1016_j_chroma_2021_462239 crossref_primary_10_1016_j_micromeso_2020_110523 crossref_primary_10_1016_j_chroma_2021_462238 crossref_primary_10_1016_j_aca_2020_05_071 crossref_primary_10_1016_j_microc_2023_108413 crossref_primary_10_1002_cbdv_202301795 crossref_primary_10_1016_j_aca_2023_341953 crossref_primary_10_1002_bmc_5131 crossref_primary_10_1021_acs_jafc_4c05300 crossref_primary_10_1039_C8CC06621C crossref_primary_10_1016_j_jelechem_2019_113590 crossref_primary_10_1002_mame_202100761 crossref_primary_10_1016_j_aca_2021_338539 crossref_primary_10_1016_j_chroma_2023_463955 crossref_primary_10_1039_C9RA10846G crossref_primary_10_1139_cjc_2018_0410 crossref_primary_10_1016_j_chroma_2020_461098 crossref_primary_10_1016_j_jorganchem_2023_122984 crossref_primary_10_1016_j_jtice_2020_10_028 crossref_primary_10_1016_j_microc_2023_109419 crossref_primary_10_1016_j_chroma_2022_463077 crossref_primary_10_1016_j_trac_2019_115632 crossref_primary_10_1016_j_talanta_2021_122330 crossref_primary_10_1021_acsami_0c18902 crossref_primary_10_1016_j_chroma_2022_463085 crossref_primary_10_1016_j_chroma_2023_464474 crossref_primary_10_1016_j_chroma_2025_465800 crossref_primary_10_1002_anie_202204938 crossref_primary_10_1016_j_foodchem_2021_130653 crossref_primary_10_1007_s13233_022_0076_y crossref_primary_10_1016_j_microc_2019_01_036 crossref_primary_10_1016_j_chroma_2024_465180 crossref_primary_10_1016_j_chroma_2020_461665 crossref_primary_10_1016_j_microc_2024_110259 crossref_primary_10_1002_chem_202400668 crossref_primary_10_1016_j_aca_2021_338886 crossref_primary_10_1021_acsami_9b16438 crossref_primary_10_1039_D1NJ04229G crossref_primary_10_1039_D0RA02647F crossref_primary_10_1016_j_talanta_2023_124441 crossref_primary_10_1016_j_foodchem_2020_128841 crossref_primary_10_1016_j_chroma_2024_465398 crossref_primary_10_1016_j_jssc_2024_124627 crossref_primary_10_1016_j_talanta_2020_121570 crossref_primary_10_1007_s00604_021_04740_1 crossref_primary_10_1016_j_chroma_2018_08_033 crossref_primary_10_1002_ange_202204938 crossref_primary_10_1016_j_aca_2023_342061 crossref_primary_10_1016_j_lwt_2023_114639 crossref_primary_10_4155_bio_2023_0256 crossref_primary_10_1002_jssc_201801126 crossref_primary_10_1016_j_microc_2025_113417 crossref_primary_10_1002_ange_202006535 crossref_primary_10_1007_s00604_019_3741_x crossref_primary_10_1021_acsanm_0c01327 crossref_primary_10_1016_j_trac_2020_116048 crossref_primary_10_1039_D4CC04977B crossref_primary_10_1016_j_talanta_2019_05_086 crossref_primary_10_1016_j_envpol_2020_114616 crossref_primary_10_1016_j_trac_2019_01_016 crossref_primary_10_1002_adsu_201800150 crossref_primary_10_1016_j_ces_2024_121079 crossref_primary_10_1021_acsami_9b01883 crossref_primary_10_1016_j_cclet_2021_10_030 crossref_primary_10_1002_anie_201810571 crossref_primary_10_1016_j_trac_2018_07_013 crossref_primary_10_1016_j_foodchem_2022_135192 crossref_primary_10_1016_j_cclet_2018_10_029 crossref_primary_10_1016_j_chroma_2019_06_018 crossref_primary_10_1016_j_chroma_2020_461362 crossref_primary_10_1016_j_chroma_2024_464998 crossref_primary_10_1016_j_jfca_2024_106482 crossref_primary_10_1016_j_apcatb_2022_122135 crossref_primary_10_1016_j_colsurfa_2024_133309 crossref_primary_10_1016_j_talanta_2023_124589 crossref_primary_10_1016_j_microc_2020_105048 crossref_primary_10_1021_acsami_9b17324 crossref_primary_10_1016_j_mtcomm_2021_102612 crossref_primary_10_1021_acs_chemrev_0c01184 crossref_primary_10_1016_j_foodchem_2022_134681 crossref_primary_10_1080_10643389_2020_1720493 crossref_primary_10_1021_jacs_0c04589 crossref_primary_10_1038_s41467_023_38427_3 crossref_primary_10_1016_j_trac_2024_117910 crossref_primary_10_1039_D1AN00988E crossref_primary_10_1002_jssc_202100849 crossref_primary_10_1016_j_colsurfa_2024_134601 crossref_primary_10_1016_j_chroma_2021_462186 crossref_primary_10_1016_j_chroma_2021_462068 crossref_primary_10_1002_chir_23405 crossref_primary_10_1021_acs_analchem_9b04677 crossref_primary_10_3390_nano12142482 crossref_primary_10_1002_jsfa_12912 crossref_primary_10_1016_j_trac_2021_116208 crossref_primary_10_1007_s00604_020_4224_9 crossref_primary_10_1002_elps_201800235 crossref_primary_10_1016_j_aca_2019_09_078 crossref_primary_10_1039_C8RA04321C crossref_primary_10_3390_molecules25143288 crossref_primary_10_1016_j_chroma_2021_462296 crossref_primary_10_1016_j_chroma_2021_462731 crossref_primary_10_1016_j_chroma_2018_09_047 crossref_primary_10_1021_acs_jafc_8b06372 crossref_primary_10_1016_j_carbon_2021_08_022 crossref_primary_10_1016_j_ccr_2024_215748 crossref_primary_10_1002_jssc_202400013 crossref_primary_10_2139_ssrn_4158178 crossref_primary_10_1021_acs_inorgchem_3c03500 crossref_primary_10_1002_jssc_201800630 crossref_primary_10_1016_j_chroma_2018_04_059 crossref_primary_10_1016_j_chroma_2022_462927 crossref_primary_10_1002_ange_201810571 crossref_primary_10_1016_j_trac_2023_117054 crossref_primary_10_1039_C8TA06195E crossref_primary_10_2139_ssrn_4159832 crossref_primary_10_1002_slct_202102435 crossref_primary_10_1016_j_talanta_2021_122754 crossref_primary_10_1039_D0AN01885F crossref_primary_10_1016_j_chroma_2022_462807 crossref_primary_10_3724_SP_J_1123_2022_03017 crossref_primary_10_1016_j_talanta_2019_04_010 crossref_primary_10_1039_D2AY01226J crossref_primary_10_1002_celc_201900298 crossref_primary_10_1016_j_isci_2019_03_028 crossref_primary_10_1039_C9RA01879D crossref_primary_10_1080_10408347_2021_1934651 crossref_primary_10_1016_j_jpha_2020_12_006 crossref_primary_10_1016_j_foodchem_2020_127255 crossref_primary_10_1016_j_inoche_2020_108094 crossref_primary_10_1016_j_chroma_2019_460543 crossref_primary_10_1002_aesr_202400412 crossref_primary_10_1002_anie_202006535 crossref_primary_10_1016_j_envres_2023_118018 crossref_primary_10_1039_C8GC02611D crossref_primary_10_1360_TB_2023_0055 crossref_primary_10_1002_jssc_201800656 crossref_primary_10_1039_C9AY02755F crossref_primary_10_1002_adfm_202113153 crossref_primary_10_1007_s00604_019_3513_7 crossref_primary_10_1002_advs_202300462 crossref_primary_10_1016_j_chroma_2019_460773 crossref_primary_10_1016_j_microc_2022_107699 crossref_primary_10_1039_D3NJ04669A crossref_primary_10_1039_D3QM00042G crossref_primary_10_1016_j_microc_2024_110525 crossref_primary_10_1016_j_talanta_2019_04_031 crossref_primary_10_3390_molecules25225404 crossref_primary_10_1002_jssc_202200637 crossref_primary_10_1016_j_microc_2024_111065 crossref_primary_10_1016_j_trac_2018_08_025 crossref_primary_10_1016_j_trac_2024_117680 crossref_primary_10_1016_j_jelechem_2020_114931 crossref_primary_10_1002_elps_202200029 |
Cites_doi | 10.1002/cplu.201700223 10.1021/ac403674p 10.1007/s00604-017-2095-5 10.1039/c3cc43017k 10.1039/C7TB00700K 10.1021/ac1003147 10.1016/j.jhazmat.2017.10.013 10.1007/s00604-017-2408-8 10.1016/j.chroma.2017.09.007 10.1016/j.chroma.2010.08.057 10.1021/acsami.7b08060 10.1016/j.talanta.2017.01.043 10.1038/natrevmats.2016.68 10.1016/j.chroma.2016.12.082 10.1021/jacs.5b04147 10.1039/C7CC00482F 10.1021/ja0764815 10.1039/C7AN01027C 10.1016/j.chroma.2016.03.085 10.1016/j.jcis.2012.01.011 10.1038/nchem.2352 10.1039/C5CS00878F 10.1002/elps.201100009 10.1016/j.chroma.2017.10.025 10.1039/c3cs60044k 10.1021/jacs.5b10666 10.1002/elps.201600573 10.1039/c2cs35157a 10.1016/j.chroma.2016.02.073 10.1016/j.chroma.2004.05.107 10.1021/ja8096256 10.1126/science.1120411 10.1126/science.1139915 10.1016/j.chroma.2016.01.066 10.1126/science.aaa8075 10.1002/anie.200601345 10.1016/j.chroma.2016.12.004 10.1021/acs.accounts.5b00369 10.1016/j.talanta.2016.08.041 10.1002/anie.200705710 10.1039/C2CS35072F 10.1021/ja9015765 10.1039/C6CC10188G 10.1021/ja204728y 10.1002/adma.201603006 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E 10.1021/acsami.6b13643 10.1021/jacs.5b05644 10.1021/ja203807h 10.1002/anie.201306775 10.1016/j.ccr.2015.12.010 10.1021/ja206846p 10.1002/anie.200803826 10.1038/ncomms12104 10.1002/adma.200903436 10.1039/C4SC00016A 10.1039/C7TB01807J 10.1021/cm201140r 10.1016/j.chroma.2016.05.100 10.1039/C5CC03413B 10.1016/j.talanta.2016.12.051 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7S9 L.6 |
DOI | 10.1016/j.chroma.2018.02.023 |
DatabaseName | CrossRef PubMed AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3778 |
EndPage | 18 |
ExternalDocumentID | 29496190 10_1016_j_chroma_2018_02_023 S0021967318301742 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FLBIZ FNPLU FYGXN G-Q GBLVA IH2 IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSK SSZ T5K WH7 XPP YK3 ZMT ~02 ~G- ~KM .GJ 29K AAHBH AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABXDB ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AI. AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I FEDTE FGOYB HMU HVGLF HZ~ H~9 OHT SCB SEW SSH UQL VH1 WUQ ZGI ZKB ZXP NPM 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-562eda72d9fcc9c2851a1d074cd3beb571c4816fd3bd7bca838052de014084bb3 |
IEDL.DBID | .~1 |
ISSN | 0021-9673 |
IngestDate | Fri Jul 11 14:44:02 EDT 2025 Thu Apr 03 06:59:23 EDT 2025 Thu Apr 24 23:00:16 EDT 2025 Tue Jul 01 02:38:32 EDT 2025 Fri Feb 23 02:22:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Covalent organic frameworks Solid phase microextraction Solid phase extraction Chromatography Stationary phase |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-562eda72d9fcc9c2851a1d074cd3beb571c4816fd3bd7bca838052de014084bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29496190 |
PQID | 2053891956 |
PQPubID | 24069 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2053891956 pubmed_primary_29496190 crossref_citationtrail_10_1016_j_chroma_2018_02_023 crossref_primary_10_1016_j_chroma_2018_02_023 elsevier_sciencedirect_doi_10_1016_j_chroma_2018_02_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-23 |
PublicationDateYYYYMMDD | 2018-03-23 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of Chromatography A |
PublicationTitleAlternate | J Chromatogr A |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bojdys, Jeromenok, Thomas, Antonietti (bib0085) 2010; 22 Ding, Gao, Wang, Zhang, Song, Su, Wang (bib0125) 2011; 133 Zhao, Hu, Hu, Wang, Yu, Zhang (bib0235) 2017; 1487 Liu, Wang, Zhao, Hao, Fang, Wang (bib0155) 2018; 344 Lanni, Tilford, Bharathy, Lavigne (bib0075) 2011; 133 Wan, Guo, Kim, Ihee, Jiang (bib0110) 2008; 47 Qian, Dai, Yang, Yan (bib0115) 2017; 9 Ma, Yuan, Zhang, Zhou, Zhang (bib0160) 2017; 142 Chen, Chen (bib0180) 2017; 165 Zhang, Cai, Yan, He, Lin, Huang, Zheng, Fan, Zhang (bib0240) 2017; 1519 Liu, Zong, Fu, Zheng, Xu, Zhu (bib0145) 2012; 372 Ding, Wang (bib0060) 2013; 42 Gao, Lin, Lei, Zheng, Lin, Lin (bib0195) 2017; 5 Niu, Ding, Wang, Xu, Xu, Chen, Chen (bib0250) 2016; 1436 Qian, Yang, Yan (bib0225) 2016; 7 Feng, Ding, Jiang (bib0055) 2012; 41 Vyas, Vishwakarma, Moudrakovski, Haase, Savasci, Ochsenfeld, Spatz, Lotsch (bib0140) 2016; 28 Wang, Jiao, Gao, Huang, Zhao, Shen, Zhang, Qian (bib0205) 2017; 5 Kandambeth, Shinde, Panda, Lukose, Heine, Banerjee (bib0100) 2013; 52 Fanali, Guihen, Glennon (bib0295) 2017; 38 Yang, Liu, Cao, Yan (bib0220) 2015; 51 Slater, Cooper (bib0040) 2015; 348 Wang, Yang, Yan (bib0230) 2017; 82 Lin, Gao, Zheng, Lei, Geng, Lin, Yang, Cai (bib0190) 2017; 53 Mangelings, Heyden (bib0290) 2011; 32 Uriberomo, Doonan, Furukawa, Oisaki, Yaghi (bib0095) 2011; 133 Wan, Gándara, Asano, Furukawa, Saeki, Dey, Liao, Ambrogio, Botros, Duan, Seki, Stoddart, Yaghi (bib0070) 2011; 23 Huang, Wang, Jiang (bib0035) 2016; 1 El-Kaderi, Hunt, Mendoza-Cortes, Cote, Taylor, O'Keeffe, Yaghi (bib0010) 2007; 316 Kong, Bao, Chen (bib0260) 2017; 184 Wang, Chen (bib0175) 2017; 184 Wang, Jiao, Gao, Lv, Wu, Zhao, Shen, Zhang, Qian (bib0165) 2017; 166 Liu, Yang, Yan (bib0245) 2017; 1479 Xu, Gao, Jiang (bib0130) 2015; 7 Wu, Gang, Ping, Zhou, Jia (bib0210) 2016; 1456 Bao, Tang, Kong, Mao, Chen (bib0255) 2016; 1445 Stegbauer, Schwinghammer, Lotsch (bib0120) 2014; 5 Kuhn, Antonietti, Thomas (bib0080) 2008; 47 Uribe-Romo, Hunt, Furukawa, Klöck, O’Keeffe, Yaghi (bib0090) 2009; 131 Wang, Li, Wu, Hu, Yao, Zhou, Xiang, Chen (bib0105) 2015; 137 Zhong, He, Liao, Chen, Wang, Hu (bib0150) 2016; 1441 Fu, Yang, Yan (bib0280) 2013; 49 Wu, Gang, Ma, Ping, Jia (bib0215) 2016; 161 Waller, Gandara, Yaghi (bib0015) 2015; 48 Jiang, Zhao, Yaghi (bib0020) 2016 He, Zeng, Wang, Niu, Cai (bib0200) 2017; 9 Itoh, Fuchibe, Akiyama (bib0270) 2006; 45 Rowan, Cantrill, Cousins, Sanders, Stoddart (bib0045) 2002; 41 Wu, Wu, Li, Qin, Dong, Zhang, Zou (bib0285) 2010; 82 Kuang, Ma, Su, Zhang, Dong, Tang (bib0265) 2014; 86 Fang, Wang, Gu, Kaspar, Zhuang, Zheng, Guo, Qiu, Yan (bib0135) 2015; 137 Yan, He, Chen, Gui, Wang, Hu (bib0185) 2017; 1525 Jin, Yu, Denman, Zhang (bib0050) 2013; 42 Díaz, Corma (bib0030) 2016; 311 Davis, Fiedler, Ziegler, Terpin, Raymond (bib0275) 2007; 129 Li, Yang, Yan (bib0170) 2017; 53 Furukawa, Yaghi (bib0025) 2009; 131 Segura, Mancheno, Zamora (bib0065) 2016; 45 Qu, Liu, Mangelings, Yang, Hu (bib0300) 2010; 1217 Côté, Benin, Ockwig, O'Keeffe, Matzger, Yaghi (bib0005) 2005; 310 Jiang (10.1016/j.chroma.2018.02.023_bib0020) 2016 Stegbauer (10.1016/j.chroma.2018.02.023_bib0120) 2014; 5 Qian (10.1016/j.chroma.2018.02.023_bib0225) 2016; 7 Liu (10.1016/j.chroma.2018.02.023_bib0145) 2012; 372 Li (10.1016/j.chroma.2018.02.023_bib0170) 2017; 53 Guihen (10.1016/j.chroma.2018.02.023_sbref0295b) 2004; 1044 Zhong (10.1016/j.chroma.2018.02.023_bib0150) 2016; 1441 He (10.1016/j.chroma.2018.02.023_bib0200) 2017; 9 Lanni (10.1016/j.chroma.2018.02.023_bib0075) 2011; 133 Slater (10.1016/j.chroma.2018.02.023_bib0040) 2015; 348 Uribe-Romo (10.1016/j.chroma.2018.02.023_bib0090) 2009; 131 Yang (10.1016/j.chroma.2018.02.023_bib0220) 2015; 51 Wang (10.1016/j.chroma.2018.02.023_bib0165) 2017; 166 Zhang (10.1016/j.chroma.2018.02.023_bib0240) 2017; 1519 Liu (10.1016/j.chroma.2018.02.023_bib0245) 2017; 1479 Wu (10.1016/j.chroma.2018.02.023_bib0285) 2010; 82 Ma (10.1016/j.chroma.2018.02.023_bib0160) 2017; 142 Davis (10.1016/j.chroma.2018.02.023_bib0275) 2007; 129 Qu (10.1016/j.chroma.2018.02.023_bib0300) 2010; 1217 Qian (10.1016/j.chroma.2018.02.023_bib0115) 2017; 9 Liu (10.1016/j.chroma.2018.02.023_bib0155) 2018; 344 Díaz (10.1016/j.chroma.2018.02.023_bib0030) 2016; 311 Wang (10.1016/j.chroma.2018.02.023_bib0230) 2017; 82 Feng (10.1016/j.chroma.2018.02.023_bib0055) 2012; 41 Xu (10.1016/j.chroma.2018.02.023_bib0130) 2015; 7 Kuhn (10.1016/j.chroma.2018.02.023_bib0080) 2008; 47 Bojdys (10.1016/j.chroma.2018.02.023_bib0085) 2010; 22 Wu (10.1016/j.chroma.2018.02.023_bib0210) 2016; 1456 Jin (10.1016/j.chroma.2018.02.023_bib0050) 2013; 42 Kong (10.1016/j.chroma.2018.02.023_bib0260) 2017; 184 Vyas (10.1016/j.chroma.2018.02.023_bib0140) 2016; 28 Wang (10.1016/j.chroma.2018.02.023_bib0205) 2017; 5 Waller (10.1016/j.chroma.2018.02.023_bib0015) 2015; 48 Kandambeth (10.1016/j.chroma.2018.02.023_bib0100) 2013; 52 Wan (10.1016/j.chroma.2018.02.023_bib0110) 2008; 47 Bao (10.1016/j.chroma.2018.02.023_bib0255) 2016; 1445 Fu (10.1016/j.chroma.2018.02.023_bib0280) 2013; 49 Fang (10.1016/j.chroma.2018.02.023_bib0135) 2015; 137 Rowan (10.1016/j.chroma.2018.02.023_bib0045) 2002; 41 Huang (10.1016/j.chroma.2018.02.023_bib0035) 2016; 1 Wang (10.1016/j.chroma.2018.02.023_bib0175) 2017; 184 Wan (10.1016/j.chroma.2018.02.023_bib0070) 2011; 23 Uriberomo (10.1016/j.chroma.2018.02.023_bib0095) 2011; 133 Chen (10.1016/j.chroma.2018.02.023_bib0180) 2017; 165 Itoh (10.1016/j.chroma.2018.02.023_bib0270) 2006; 45 El-Kaderi (10.1016/j.chroma.2018.02.023_bib0010) 2007; 316 Gao (10.1016/j.chroma.2018.02.023_bib0195) 2017; 5 Wu (10.1016/j.chroma.2018.02.023_bib0215) 2016; 161 Fanali (10.1016/j.chroma.2018.02.023_sbref0295a) 2017; 38 Furukawa (10.1016/j.chroma.2018.02.023_bib0025) 2009; 131 Segura (10.1016/j.chroma.2018.02.023_bib0065) 2016; 45 Ding (10.1016/j.chroma.2018.02.023_bib0060) 2013; 42 Niu (10.1016/j.chroma.2018.02.023_bib0250) 2016; 1436 Mangelings (10.1016/j.chroma.2018.02.023_bib0290) 2011; 32 Ding (10.1016/j.chroma.2018.02.023_bib0125) 2011; 133 Côté (10.1016/j.chroma.2018.02.023_bib0005) 2005; 310 Zhao (10.1016/j.chroma.2018.02.023_bib0235) 2017; 1487 Wang (10.1016/j.chroma.2018.02.023_bib0105) 2015; 137 Kuang (10.1016/j.chroma.2018.02.023_bib0265) 2014; 86 Yan (10.1016/j.chroma.2018.02.023_bib0185) 2017; 1525 Lin (10.1016/j.chroma.2018.02.023_bib0190) 2017; 53 |
References_xml | – volume: 28 start-page: 8749 year: 2016 end-page: 8754 ident: bib0140 article-title: Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery publication-title: Adv. Mater. – volume: 161 start-page: 350 year: 2016 end-page: 358 ident: bib0215 article-title: Fabrication of cross-linked hydrazone covalent organic frameworks by click chemistry and application to solid phase microextraction publication-title: Talanta – volume: 133 start-page: 13975 year: 2011 end-page: 13983 ident: bib0075 article-title: Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 11478 year: 2011 end-page: 11481 ident: bib0095 article-title: Crystalline covalent organic frameworks with hydrazone linkages publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 898 year: 2002 end-page: 952 ident: bib0045 article-title: Dynamic covalent chemistry publication-title: Angew. Chem. Int. Ed. – volume: 32 start-page: 2583 year: 2011 end-page: 2601 ident: bib0290 article-title: Enantioselective capillary electrochromatography: recent developments and new trends publication-title: Electrophoresis – volume: 49 start-page: 7162 year: 2013 end-page: 7164 ident: bib0280 article-title: Incorporation of metal-organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules publication-title: Chem. Commun. – volume: 137 start-page: 9963 year: 2015 end-page: 9970 ident: bib0105 article-title: A flexible microporous hydrogen-bonded organic framework for gas sorption and separation publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 4570 year: 2009 end-page: 4571 ident: bib0090 article-title: A crystalline imine-linked 3-D porous covalent organic framework publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 3053 year: 2015 end-page: 3063 ident: bib0015 article-title: Chemistry of covalent organic frameworks publication-title: Acc. Chem. Res. – volume: 1525 start-page: 32 year: 2017 end-page: 41 ident: bib0185 article-title: Magnetic covalent triazine framework for rapid extraction of phthalate esters in plastic packaging materials followed by gas chromatography-flame ionization detection publication-title: J. Chromatogr. A – volume: 1441 start-page: 8 year: 2016 end-page: 15 ident: bib0150 article-title: Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples publication-title: J. Chromatogr. A – volume: 1445 start-page: 140 year: 2016 end-page: 148 ident: bib0255 article-title: Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation publication-title: J. Chromatogr. A – volume: 45 start-page: 5635 year: 2016 end-page: 5671 ident: bib0065 article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications publication-title: Chem. Soc. Rev. – volume: 7 start-page: 12104 year: 2016 ident: bib0225 article-title: Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation publication-title: Nat. Commun. – volume: 23 start-page: 4094 year: 2011 end-page: 4097 ident: bib0070 article-title: Covalent organic frameworks with high charge carrier mobility publication-title: Chem. Mater. – start-page: 3255 year: 2016 end-page: 3265 ident: bib0020 article-title: Covalent chemistry beyond molecules publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 2202 year: 2010 end-page: 2205 ident: bib0085 article-title: Rational extension of the family of layered covalent, triazine-based frameworks with regular porosity publication-title: Adv. Mater. – volume: 5 start-page: 7496 year: 2017 end-page: 7503 ident: bib0195 article-title: Facile synthesis of core-shell structured magnetic covalent organic framework composite nanospheres for selective enrichment of peptides with simultaneous exclusion of proteins publication-title: J. Mater. Chem. B – volume: 9 start-page: 24999 year: 2017 end-page: 25005 ident: bib0115 article-title: High crystallinity covalent organic framework with dual fluorescence emissions and its ratiometric sensing application publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 16068 year: 2016 ident: bib0035 article-title: Covalent organic frameworks: a materials platform for structural and functional designs publication-title: Nat. Rev. Mater. – volume: 133 start-page: 19816 year: 2011 end-page: 19822 ident: bib0125 article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction publication-title: J. Am. Chem. Soc. – volume: 311 start-page: 85 year: 2016 end-page: 124 ident: bib0030 article-title: Ordered covalent organic frameworks, COFs and PAFs. From preparation to application publication-title: Coord. Chem. Rev. – volume: 7 start-page: 905 year: 2015 end-page: 912 ident: bib0130 article-title: Stable crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts publication-title: Nat. Chem. – volume: 5 start-page: 2789 year: 2014 end-page: 2793 ident: bib0120 article-title: A hydrazone-based covalent organic framework for photocatalytic hydrogen production publication-title: Chem. Sci. – volume: 53 start-page: 2511 year: 2017 end-page: 2514 ident: bib0170 article-title: Controllable preparation of core-shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution publication-title: Chem. Commun. – volume: 42 start-page: 6634 year: 2013 end-page: 6654 ident: bib0050 article-title: Recent advances in dynamic covalent chemistry publication-title: Chem. Soc. Rev. – volume: 42 start-page: 548 year: 2013 end-page: 568 ident: bib0060 article-title: Covalent organic frameworks (COFs): from design to applications publication-title: Chem. Soc. Rev. – volume: 372 start-page: 99 year: 2012 end-page: 107 ident: bib0145 article-title: Adsorption of aromatic compounds on porous covalent triazine-based framework publication-title: J. Colloid Interface Sci. – volume: 1436 start-page: 109 year: 2016 end-page: 117 ident: bib0250 article-title: Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography publication-title: J. Chromatogr. A – volume: 45 start-page: 4796 year: 2006 end-page: 4798 ident: bib0270 article-title: Chiral bronsted acid catalyzed enantioselective Aza-Diels-Alder reaction of brassard's diene with imines publication-title: Angew. Chem. Int. Ed. – volume: 165 start-page: 188 year: 2017 end-page: 193 ident: bib0180 article-title: COF-1-modified magnetic nanoparticles for highly selective and efficient solid-phase microextraction of paclitaxel publication-title: Talanta – volume: 1456 start-page: 34 year: 2016 end-page: 41 ident: bib0210 article-title: Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits publication-title: J. Chromatogr. A – volume: 51 start-page: 12254 year: 2015 end-page: 12257 ident: bib0220 article-title: Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation publication-title: Chem. Commun. – volume: 348 start-page: aaa8075 year: 2015 ident: bib0040 article-title: Function-led design of new porous materials publication-title: Science – volume: 1479 start-page: 137 year: 2017 end-page: 144 ident: bib0245 article-title: Methacrylate-bonded covalent organic framework monolithic columns for high performance liquid chromatography publication-title: J. Chromatogr. A – volume: 316 start-page: 268 year: 2007 end-page: 272 ident: bib0010 article-title: Designed synthesis of 3D covalent organic frameworks publication-title: Science – volume: 129 start-page: 15354 year: 2007 end-page: 15363 ident: bib0275 article-title: Resolution of chiral, tetrahedral M4L6 metal-ligand hosts publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 3649 year: 2017 end-page: 3652 ident: bib0190 article-title: Room-temperature synthesis of core-shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins publication-title: Chem. Commun. – volume: 137 start-page: 8352 year: 2015 end-page: 8355 ident: bib0135 article-title: 3D porous crystalline polyimide covalent organic frameworks for drug delivery publication-title: J. Am. Chem. Soc. – volume: 82 start-page: 933 year: 2017 end-page: 938 ident: bib0230 article-title: In situ growth of covalent organic framework shells on silica microspheres for application in liquid chromatography publication-title: Chempluschem – volume: 86 start-page: 1277 year: 2014 end-page: 1281 ident: bib0265 article-title: High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework publication-title: Anal. Chem. – volume: 344 start-page: 220 year: 2018 end-page: 229 ident: bib0155 article-title: Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix publication-title: J. Hazard. Mater. – volume: 142 start-page: 3212 year: 2017 end-page: 3218 ident: bib0160 article-title: Highly efficient enrichment of N-linked glycopeptides using a hydrophilic covalent-organic framework publication-title: Analyst – volume: 38 start-page: 1822 year: 2017 end-page: 1829 ident: bib0295 article-title: An overview to nano-scale analytical techniques: nano-liquid chromatography and capillary electrochromatography publication-title: Electrophoresis – volume: 52 start-page: 13052 year: 2013 end-page: 13056 ident: bib0100 article-title: Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 2959 year: 2017 end-page: 2965 ident: bib0200 article-title: Facile synthesis of magnetic covalent organic framework with three-dimensional bouquet-like structure for enhanced extraction of organic targets publication-title: ACS Appl. Mater. Interfaces – volume: 1519 start-page: 100 year: 2017 end-page: 109 ident: bib0240 article-title: Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography publication-title: J. Chromatogr. A – volume: 184 start-page: 3867 year: 2017 end-page: 3874 ident: bib0175 article-title: A covalent organic framework-based magnetic sorbent for solid phase extraction of polycyclic aromatic hydrocarbons, and its hyphenation to HPLC for quantitation publication-title: Microchim. Acta – volume: 82 start-page: 5447 year: 2010 end-page: 5454 ident: bib0285 article-title: Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic-organic hybrid monolithic columns publication-title: Anal. Chem. – volume: 310 start-page: 1166 year: 2005 end-page: 1170 ident: bib0005 article-title: Porous crystalline, covalent organic frameworks publication-title: Science – volume: 1217 start-page: 6588 year: 2010 end-page: 6594 ident: bib0300 article-title: Permanent gold nanoparticle coatings on polyelectrolyte multilayer modified capillaries for open-tubular capillary electrochromatography publication-title: J. Chromatogr. A – volume: 184 start-page: 1169 year: 2017 end-page: 1176 ident: bib0260 article-title: In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids publication-title: Microchim. Acta – volume: 5 start-page: 4052 year: 2017 end-page: 4059 ident: bib0205 article-title: Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides publication-title: J. Mater. Chem. B – volume: 47 start-page: 3450 year: 2008 end-page: 3453 ident: bib0080 article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis publication-title: Angew. Chem. Int. Ed. – volume: 1487 start-page: 83 year: 2017 end-page: 88 ident: bib0235 article-title: Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography publication-title: J. Chromatogr. A – volume: 41 start-page: 6010 year: 2012 end-page: 6022 ident: bib0055 article-title: Covalent organic frameworks publication-title: Chem. Soc. Rev. – volume: 47 start-page: 8826 year: 2008 end-page: 8830 ident: bib0110 article-title: A belt-shaped, blue luminescent, and semiconducting covalent organic framework publication-title: Angew. Chem. Int. Ed. – volume: 131 start-page: 8875 year: 2009 end-page: 8883 ident: bib0025 article-title: Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications publication-title: J. Am. Chem. Soc. – volume: 166 start-page: 133 year: 2017 end-page: 140 ident: bib0165 article-title: Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides publication-title: Talanta – volume: 82 start-page: 933 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0230 article-title: In situ growth of covalent organic framework shells on silica microspheres for application in liquid chromatography publication-title: Chempluschem doi: 10.1002/cplu.201700223 – volume: 86 start-page: 1277 year: 2014 ident: 10.1016/j.chroma.2018.02.023_bib0265 article-title: High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework publication-title: Anal. Chem. doi: 10.1021/ac403674p – volume: 184 start-page: 1169 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0260 article-title: In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids publication-title: Microchim. Acta doi: 10.1007/s00604-017-2095-5 – volume: 49 start-page: 7162 year: 2013 ident: 10.1016/j.chroma.2018.02.023_bib0280 article-title: Incorporation of metal-organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules publication-title: Chem. Commun. doi: 10.1039/c3cc43017k – volume: 5 start-page: 4052 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0205 article-title: Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides publication-title: J. Mater. Chem. B doi: 10.1039/C7TB00700K – volume: 82 start-page: 5447 year: 2010 ident: 10.1016/j.chroma.2018.02.023_bib0285 article-title: Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic-organic hybrid monolithic columns publication-title: Anal. Chem. doi: 10.1021/ac1003147 – volume: 344 start-page: 220 year: 2018 ident: 10.1016/j.chroma.2018.02.023_bib0155 article-title: Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.10.013 – volume: 184 start-page: 3867 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0175 article-title: A covalent organic framework-based magnetic sorbent for solid phase extraction of polycyclic aromatic hydrocarbons, and its hyphenation to HPLC for quantitation publication-title: Microchim. Acta doi: 10.1007/s00604-017-2408-8 – volume: 1519 start-page: 100 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0240 article-title: Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2017.09.007 – volume: 1217 start-page: 6588 year: 2010 ident: 10.1016/j.chroma.2018.02.023_bib0300 article-title: Permanent gold nanoparticle coatings on polyelectrolyte multilayer modified capillaries for open-tubular capillary electrochromatography publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2010.08.057 – volume: 9 start-page: 24999 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0115 article-title: High crystallinity covalent organic framework with dual fluorescence emissions and its ratiometric sensing application publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08060 – volume: 166 start-page: 133 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0165 article-title: Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides publication-title: Talanta doi: 10.1016/j.talanta.2017.01.043 – volume: 1 start-page: 16068 year: 2016 ident: 10.1016/j.chroma.2018.02.023_bib0035 article-title: Covalent organic frameworks: a materials platform for structural and functional designs publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.68 – volume: 1487 start-page: 83 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0235 article-title: Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2016.12.082 – volume: 137 start-page: 8352 year: 2015 ident: 10.1016/j.chroma.2018.02.023_bib0135 article-title: 3D porous crystalline polyimide covalent organic frameworks for drug delivery publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04147 – volume: 53 start-page: 3649 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0190 article-title: Room-temperature synthesis of core-shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins publication-title: Chem. Commun. doi: 10.1039/C7CC00482F – volume: 129 start-page: 15354 year: 2007 ident: 10.1016/j.chroma.2018.02.023_bib0275 article-title: Resolution of chiral, tetrahedral M4L6 metal-ligand hosts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0764815 – volume: 142 start-page: 3212 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0160 article-title: Highly efficient enrichment of N-linked glycopeptides using a hydrophilic covalent-organic framework publication-title: Analyst doi: 10.1039/C7AN01027C – volume: 1445 start-page: 140 year: 2016 ident: 10.1016/j.chroma.2018.02.023_bib0255 article-title: Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2016.03.085 – volume: 372 start-page: 99 year: 2012 ident: 10.1016/j.chroma.2018.02.023_bib0145 article-title: Adsorption of aromatic compounds on porous covalent triazine-based framework publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.01.011 – volume: 7 start-page: 905 year: 2015 ident: 10.1016/j.chroma.2018.02.023_bib0130 article-title: Stable crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts publication-title: Nat. Chem. doi: 10.1038/nchem.2352 – volume: 45 start-page: 5635 year: 2016 ident: 10.1016/j.chroma.2018.02.023_bib0065 article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00878F – volume: 32 start-page: 2583 year: 2011 ident: 10.1016/j.chroma.2018.02.023_bib0290 article-title: Enantioselective capillary electrochromatography: recent developments and new trends publication-title: Electrophoresis doi: 10.1002/elps.201100009 – volume: 1525 start-page: 32 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0185 article-title: Magnetic covalent triazine framework for rapid extraction of phthalate esters in plastic packaging materials followed by gas chromatography-flame ionization detection publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2017.10.025 – volume: 42 start-page: 6634 year: 2013 ident: 10.1016/j.chroma.2018.02.023_bib0050 article-title: Recent advances in dynamic covalent chemistry publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60044k – start-page: 3255 year: 2016 ident: 10.1016/j.chroma.2018.02.023_bib0020 article-title: Covalent chemistry beyond molecules publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10666 – volume: 38 start-page: 1822 year: 2017 ident: 10.1016/j.chroma.2018.02.023_sbref0295a article-title: An overview to nano-scale analytical techniques: nano-liquid chromatography and capillary electrochromatography publication-title: Electrophoresis doi: 10.1002/elps.201600573 – volume: 41 start-page: 6010 year: 2012 ident: 10.1016/j.chroma.2018.02.023_bib0055 article-title: Covalent organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35157a – volume: 1441 start-page: 8 year: 2016 ident: 10.1016/j.chroma.2018.02.023_bib0150 article-title: Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2016.02.073 – volume: 1044 start-page: 67 year: 2004 ident: 10.1016/j.chroma.2018.02.023_sbref0295b article-title: Recent highlights in stationary phase design for open-tubular capillary electrochromatography publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2004.05.107 – volume: 131 start-page: 4570 year: 2009 ident: 10.1016/j.chroma.2018.02.023_bib0090 article-title: A crystalline imine-linked 3-D porous covalent organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8096256 – volume: 310 start-page: 1166 year: 2005 ident: 10.1016/j.chroma.2018.02.023_bib0005 article-title: Porous crystalline, covalent organic frameworks publication-title: Science doi: 10.1126/science.1120411 – volume: 316 start-page: 268 year: 2007 ident: 10.1016/j.chroma.2018.02.023_bib0010 article-title: Designed synthesis of 3D covalent organic frameworks publication-title: Science doi: 10.1126/science.1139915 – volume: 1436 start-page: 109 year: 2016 ident: 10.1016/j.chroma.2018.02.023_bib0250 article-title: Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2016.01.066 – volume: 348 start-page: aaa8075 year: 2015 ident: 10.1016/j.chroma.2018.02.023_bib0040 article-title: Function-led design of new porous materials publication-title: Science doi: 10.1126/science.aaa8075 – volume: 45 start-page: 4796 year: 2006 ident: 10.1016/j.chroma.2018.02.023_bib0270 article-title: Chiral bronsted acid catalyzed enantioselective Aza-Diels-Alder reaction of brassard's diene with imines publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200601345 – volume: 1479 start-page: 137 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0245 article-title: Methacrylate-bonded covalent organic framework monolithic columns for high performance liquid chromatography publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2016.12.004 – volume: 48 start-page: 3053 year: 2015 ident: 10.1016/j.chroma.2018.02.023_bib0015 article-title: Chemistry of covalent organic frameworks publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00369 – volume: 161 start-page: 350 year: 2016 ident: 10.1016/j.chroma.2018.02.023_bib0215 article-title: Fabrication of cross-linked hydrazone covalent organic frameworks by click chemistry and application to solid phase microextraction publication-title: Talanta doi: 10.1016/j.talanta.2016.08.041 – volume: 47 start-page: 3450 year: 2008 ident: 10.1016/j.chroma.2018.02.023_bib0080 article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200705710 – volume: 42 start-page: 548 year: 2013 ident: 10.1016/j.chroma.2018.02.023_bib0060 article-title: Covalent organic frameworks (COFs): from design to applications publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35072F – volume: 131 start-page: 8875 year: 2009 ident: 10.1016/j.chroma.2018.02.023_bib0025 article-title: Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9015765 – volume: 53 start-page: 2511 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0170 article-title: Controllable preparation of core-shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution publication-title: Chem. Commun. doi: 10.1039/C6CC10188G – volume: 133 start-page: 11478 year: 2011 ident: 10.1016/j.chroma.2018.02.023_bib0095 article-title: Crystalline covalent organic frameworks with hydrazone linkages publication-title: J. Am. Chem. Soc. doi: 10.1021/ja204728y – volume: 28 start-page: 8749 year: 2016 ident: 10.1016/j.chroma.2018.02.023_bib0140 article-title: Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery publication-title: Adv. Mater. doi: 10.1002/adma.201603006 – volume: 41 start-page: 898 year: 2002 ident: 10.1016/j.chroma.2018.02.023_bib0045 article-title: Dynamic covalent chemistry publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E – volume: 9 start-page: 2959 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0200 article-title: Facile synthesis of magnetic covalent organic framework with three-dimensional bouquet-like structure for enhanced extraction of organic targets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13643 – volume: 137 start-page: 9963 year: 2015 ident: 10.1016/j.chroma.2018.02.023_bib0105 article-title: A flexible microporous hydrogen-bonded organic framework for gas sorption and separation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05644 – volume: 133 start-page: 13975 year: 2011 ident: 10.1016/j.chroma.2018.02.023_bib0075 article-title: Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203807h – volume: 52 start-page: 13052 year: 2013 ident: 10.1016/j.chroma.2018.02.023_bib0100 article-title: Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201306775 – volume: 311 start-page: 85 year: 2016 ident: 10.1016/j.chroma.2018.02.023_bib0030 article-title: Ordered covalent organic frameworks, COFs and PAFs. From preparation to application publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.12.010 – volume: 133 start-page: 19816 year: 2011 ident: 10.1016/j.chroma.2018.02.023_bib0125 article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206846p – volume: 47 start-page: 8826 year: 2008 ident: 10.1016/j.chroma.2018.02.023_bib0110 article-title: A belt-shaped, blue luminescent, and semiconducting covalent organic framework publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200803826 – volume: 7 start-page: 12104 year: 2016 ident: 10.1016/j.chroma.2018.02.023_bib0225 article-title: Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation publication-title: Nat. Commun. doi: 10.1038/ncomms12104 – volume: 22 start-page: 2202 year: 2010 ident: 10.1016/j.chroma.2018.02.023_bib0085 article-title: Rational extension of the family of layered covalent, triazine-based frameworks with regular porosity publication-title: Adv. Mater. doi: 10.1002/adma.200903436 – volume: 5 start-page: 2789 year: 2014 ident: 10.1016/j.chroma.2018.02.023_bib0120 article-title: A hydrazone-based covalent organic framework for photocatalytic hydrogen production publication-title: Chem. Sci. doi: 10.1039/C4SC00016A – volume: 5 start-page: 7496 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0195 article-title: Facile synthesis of core-shell structured magnetic covalent organic framework composite nanospheres for selective enrichment of peptides with simultaneous exclusion of proteins publication-title: J. Mater. Chem. B doi: 10.1039/C7TB01807J – volume: 23 start-page: 4094 year: 2011 ident: 10.1016/j.chroma.2018.02.023_bib0070 article-title: Covalent organic frameworks with high charge carrier mobility publication-title: Chem. Mater. doi: 10.1021/cm201140r – volume: 1456 start-page: 34 year: 2016 ident: 10.1016/j.chroma.2018.02.023_bib0210 article-title: Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2016.05.100 – volume: 51 start-page: 12254 year: 2015 ident: 10.1016/j.chroma.2018.02.023_bib0220 article-title: Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation publication-title: Chem. Commun. doi: 10.1039/C5CC03413B – volume: 165 start-page: 188 year: 2017 ident: 10.1016/j.chroma.2018.02.023_bib0180 article-title: COF-1-modified magnetic nanoparticles for highly selective and efficient solid-phase microextraction of paclitaxel publication-title: Talanta doi: 10.1016/j.talanta.2016.12.051 |
SSID | ssj0017072 ssj0029838 |
Score | 2.6317513 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Applications of covalent organic frameworks for sample preparation are reviewed.•Applications of covalent organic frameworks for... Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | chemical bonding Chromatography coatings Covalent organic frameworks electrochromatography gas chromatography high performance liquid chromatography polymers porosity Solid phase extraction Solid phase microextraction sorbents Stationary phase |
Title | Advances in covalent organic frameworks in separation science |
URI | https://dx.doi.org/10.1016/j.chroma.2018.02.023 https://www.ncbi.nlm.nih.gov/pubmed/29496190 https://www.proquest.com/docview/2053891956 |
Volume | 1542 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9jHvQivp2PUcFrXZukjxw8jOGYjg0Rh7uVvIoTacceV_92vzTNwMMYCIU2aULDL1-_B_keCN3LMOdAB9KnHGxVyjj1OVPcT1UO0j7HRMQmGnk0jgcT-jKNpg3Uc7Ewxq2y5v2Wp1fcuu7p1Gh25rOZifGFvy1ODFECWVHDhylNDJU__GzcPMIkSDb5pDBLiWXNxi8BprpYusrhS34uyioVUZhWaTwx2SartumilUzqH6HDWpn0una9x6ihixO033M13E7RY9ce8S-9WeHJEqgKZIxnKzlJL3eOWdXrpbZpwEt4tECcoUn_6b038OuCCb4kLFr5oMtoxROsWC4lkxi0KR4qUBKkIkKLKAklTcM4h5ZKhOSARhBhpY2VlVIhyDlqFmWhL5EnYA-ZMHHyRFKwMbkGVQFsi5ymCkR80ELEQZPJOpu4KWrxnTm3sa_MApoZQLMAw0VayN_MmttsGjvGJw717A9VZMDwd8y8c5uUAebmFIQXulwvYVBkzmbBLmyhC7t7m7VgRhlYlMHVv797jQ5My3ipYXKDmqvFWt-C2rIS7You22iv-zwcjM19-PYxhN7x6-gXB0Hszg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05a8MwFBYhHdKl9G56utDVjS3Jh4YOITSkbZIpgWxCl2lKsUOOtb-9T5Yd6BACBQ-2JSHx6ekd6B0IPakwE0AHyqcCbFXKBPUF08JPdQbSPsNExjYaeTSOB1P6PotmDdSrY2GsW2XF-x1PL7l19adTodlZzOc2xhdOW5xYogSyosCHDygcX1vG4Pln6-cRJkGyTSiFWUocb7aOCTC2DqYrPb7U57IocxGFaZnHE5NdwmqXMloKpf4xOqq0Sa_rFnyCGiY_Ra1eXcTtDL103R3_ypvnniqArEDIeK6Uk_Ky2jOrbF4Zlwe8gFeHxDma9l8nvYFfVUzwFWHR2gdlxmiRYM0ypZjCoE6JUIOWoDSRRkZJqGgaxhl86UQqAWgEEdbGmlkplZJcoGZe5OYKeRI2kUkbKE8UBSNTGNAVwLjIaKpBxgdtRGpouKrSiduqFt-89hv74g5QbgHlAYaHtJG_HbVw6TT29E9q1PkfsuDA8feMfKw3iQPm9hpE5KbYrKBTZC9nwTBso0u3e9u1YEYZmJTB9b_nfUCtwWQ05MO38ccNOrQt1mUNk1vUXC835g50mLW8L2n0F46f660 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+covalent+organic+frameworks+in+separation+science&rft.jtitle=Journal+of+Chromatography+A&rft.au=Qian%2C+Hai-Long&rft.au=Yang%2C+Cheng-Xiong&rft.au=Wang%2C+Wen-Long&rft.au=Yang%2C+Cheng&rft.date=2018-03-23&rft.pub=Elsevier+B.V&rft.issn=0021-9673&rft.volume=1542&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1016%2Fj.chroma.2018.02.023&rft.externalDocID=S0021967318301742 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon |