Advances in covalent organic frameworks in separation science

[Display omitted] •Applications of covalent organic frameworks for sample preparation are reviewed.•Applications of covalent organic frameworks for chromatography are reviewed.•The prospects of COFs for separation science are presented. Covalent organic frameworks (COFs) are a new class of multifunc...

Full description

Saved in:
Bibliographic Details
Published inJournal of Chromatography A Vol. 1542; pp. 1 - 18
Main Authors Qian, Hai-Long, Yang, Cheng-Xiong, Wang, Wen-Long, Yang, Cheng, Yan, Xiu-Ping
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 23.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Applications of covalent organic frameworks for sample preparation are reviewed.•Applications of covalent organic frameworks for chromatography are reviewed.•The prospects of COFs for separation science are presented. Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs.
AbstractList Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs.
[Display omitted] •Applications of covalent organic frameworks for sample preparation are reviewed.•Applications of covalent organic frameworks for chromatography are reviewed.•The prospects of COFs for separation science are presented. Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs.
Author Yang, Cheng
Qian, Hai-Long
Wang, Wen-Long
Yang, Cheng-Xiong
Yan, Xiu-Ping
Author_xml – sequence: 1
  givenname: Hai-Long
  surname: Qian
  fullname: Qian, Hai-Long
  organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
– sequence: 2
  givenname: Cheng-Xiong
  surname: Yang
  fullname: Yang, Cheng-Xiong
  organization: College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
– sequence: 3
  givenname: Wen-Long
  surname: Wang
  fullname: Wang, Wen-Long
  organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
– sequence: 4
  givenname: Cheng
  surname: Yang
  fullname: Yang, Cheng
  organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
– sequence: 5
  givenname: Xiu-Ping
  surname: Yan
  fullname: Yan, Xiu-Ping
  email: xpyan@nankai.edu.cn, xpyan@jiangnan.edu.cn
  organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29496190$$D View this record in MEDLINE/PubMed
BookMark eNqFkF1LIzEUhoO4aP34ByK99Ga6J8nMJBEURFZ3obA363XIJGc0dWZSk2nFf7-prTdeKBxIQt7nhfMckf0hDEjIGYUZBVr_XMzsUwy9mTGgcgYsD98jEyoFL7gQcp9MABgtVC34ITlKaQFABQh2QA6ZKlVNFUzI1Y1bm8FimvphasPadDiM0xAfzeDttI2mx9cQn9-_Ey5NNKMP-Wo9ZuqE_GhNl_B0dx6Th7tf_25_F_O_939ub-aF5aoai6pm6IxgTrXWKstkRQ11IErreINNJagtJa3b_HKisUZyCRVzCLQEWTYNPyYX295lDC8rTKPufbLYdWbAsEqaQcWloqqqc_R8F101PTq9jL438U1_rJwDl9uAjSGliK22fnzfaozGd5qC3vjVC731qzd-NbA8PMPlJ_ij_xvseothlrT2GPVOoPMR7ahd8F8X_AdNPpZk
CitedBy_id crossref_primary_10_1016_j_bios_2019_111699
crossref_primary_10_1007_s12161_019_01676_4
crossref_primary_10_1016_j_jhazmat_2020_122793
crossref_primary_10_1002_jssc_202300205
crossref_primary_10_1016_j_chroma_2025_465718
crossref_primary_10_1016_j_talanta_2021_122548
crossref_primary_10_1016_j_talanta_2020_121612
crossref_primary_10_1002_advs_201801116
crossref_primary_10_1016_j_talanta_2019_120194
crossref_primary_10_1016_j_talanta_2024_127285
crossref_primary_10_1007_s11696_024_03677_y
crossref_primary_10_1002_jssc_202001245
crossref_primary_10_1002_chem_201806025
crossref_primary_10_1007_s00604_023_05915_8
crossref_primary_10_1016_j_chroma_2020_461197
crossref_primary_10_1039_D1AY02171K
crossref_primary_10_1007_s00216_020_02972_3
crossref_primary_10_1016_j_talanta_2023_124732
crossref_primary_10_1016_j_aca_2019_08_066
crossref_primary_10_1007_s12161_020_01812_5
crossref_primary_10_1021_acs_chemmater_2c03448
crossref_primary_10_1002_cplu_202300494
crossref_primary_10_3390_ijerph191710824
crossref_primary_10_1021_acsami_0c06267
crossref_primary_10_1039_D0NA00537A
crossref_primary_10_1016_j_microc_2025_113120
crossref_primary_10_1016_j_trac_2023_117486
crossref_primary_10_1016_j_cej_2025_160082
crossref_primary_10_1016_j_optmat_2023_113873
crossref_primary_10_1021_acsapm_2c00939
crossref_primary_10_1016_j_talanta_2021_122524
crossref_primary_10_1039_C8AN01623B
crossref_primary_10_1021_acsami_9b02354
crossref_primary_10_1021_acsanm_0c02276
crossref_primary_10_1002_marc_202200718
crossref_primary_10_1016_j_jfca_2024_106199
crossref_primary_10_1016_j_chroma_2022_462864
crossref_primary_10_1016_j_trac_2024_118043
crossref_primary_10_1016_j_chroma_2022_463157
crossref_primary_10_1039_D1AY00873K
crossref_primary_10_1007_s00604_022_05444_w
crossref_primary_10_1146_annurev_anchem_061318_114854
crossref_primary_10_1016_j_talanta_2022_123923
crossref_primary_10_1021_acsami_9b03330
crossref_primary_10_1021_acsami_3c13853
crossref_primary_10_1002_app_49745
crossref_primary_10_1016_j_talanta_2024_127012
crossref_primary_10_1016_j_cclet_2021_04_052
crossref_primary_10_1016_j_chroma_2020_460898
crossref_primary_10_1039_D3PY00632H
crossref_primary_10_1016_j_chroma_2020_460891
crossref_primary_10_1002_jssc_202000923
crossref_primary_10_1016_j_memsci_2020_118466
crossref_primary_10_1007_s00604_020_04340_5
crossref_primary_10_1002_jssc_202100593
crossref_primary_10_1016_j_talanta_2021_122343
crossref_primary_10_1016_j_talanta_2020_121651
crossref_primary_10_1039_C9CS00827F
crossref_primary_10_1016_j_talanta_2022_123716
crossref_primary_10_1016_j_bios_2022_114668
crossref_primary_10_1016_j_jcoa_2021_100002
crossref_primary_10_1080_10826076_2019_1701013
crossref_primary_10_1016_j_chroma_2018_06_066
crossref_primary_10_1016_j_snb_2022_131729
crossref_primary_10_1016_j_chroma_2024_465519
crossref_primary_10_1016_j_chroma_2019_02_048
crossref_primary_10_1016_j_chroma_2019_460847
crossref_primary_10_1016_j_chroma_2019_460722
crossref_primary_10_1016_j_ccr_2024_215699
crossref_primary_10_1016_j_aca_2023_342156
crossref_primary_10_1007_s12161_020_01750_2
crossref_primary_10_3390_ijerph20021393
crossref_primary_10_1016_j_cej_2021_128619
crossref_primary_10_1016_j_jes_2018_12_010
crossref_primary_10_1016_j_chroma_2021_462239
crossref_primary_10_1016_j_micromeso_2020_110523
crossref_primary_10_1016_j_chroma_2021_462238
crossref_primary_10_1016_j_aca_2020_05_071
crossref_primary_10_1016_j_microc_2023_108413
crossref_primary_10_1002_cbdv_202301795
crossref_primary_10_1016_j_aca_2023_341953
crossref_primary_10_1002_bmc_5131
crossref_primary_10_1021_acs_jafc_4c05300
crossref_primary_10_1039_C8CC06621C
crossref_primary_10_1016_j_jelechem_2019_113590
crossref_primary_10_1002_mame_202100761
crossref_primary_10_1016_j_aca_2021_338539
crossref_primary_10_1016_j_chroma_2023_463955
crossref_primary_10_1039_C9RA10846G
crossref_primary_10_1139_cjc_2018_0410
crossref_primary_10_1016_j_chroma_2020_461098
crossref_primary_10_1016_j_jorganchem_2023_122984
crossref_primary_10_1016_j_jtice_2020_10_028
crossref_primary_10_1016_j_microc_2023_109419
crossref_primary_10_1016_j_chroma_2022_463077
crossref_primary_10_1016_j_trac_2019_115632
crossref_primary_10_1016_j_talanta_2021_122330
crossref_primary_10_1021_acsami_0c18902
crossref_primary_10_1016_j_chroma_2022_463085
crossref_primary_10_1016_j_chroma_2023_464474
crossref_primary_10_1016_j_chroma_2025_465800
crossref_primary_10_1002_anie_202204938
crossref_primary_10_1016_j_foodchem_2021_130653
crossref_primary_10_1007_s13233_022_0076_y
crossref_primary_10_1016_j_microc_2019_01_036
crossref_primary_10_1016_j_chroma_2024_465180
crossref_primary_10_1016_j_chroma_2020_461665
crossref_primary_10_1016_j_microc_2024_110259
crossref_primary_10_1002_chem_202400668
crossref_primary_10_1016_j_aca_2021_338886
crossref_primary_10_1021_acsami_9b16438
crossref_primary_10_1039_D1NJ04229G
crossref_primary_10_1039_D0RA02647F
crossref_primary_10_1016_j_talanta_2023_124441
crossref_primary_10_1016_j_foodchem_2020_128841
crossref_primary_10_1016_j_chroma_2024_465398
crossref_primary_10_1016_j_jssc_2024_124627
crossref_primary_10_1016_j_talanta_2020_121570
crossref_primary_10_1007_s00604_021_04740_1
crossref_primary_10_1016_j_chroma_2018_08_033
crossref_primary_10_1002_ange_202204938
crossref_primary_10_1016_j_aca_2023_342061
crossref_primary_10_1016_j_lwt_2023_114639
crossref_primary_10_4155_bio_2023_0256
crossref_primary_10_1002_jssc_201801126
crossref_primary_10_1016_j_microc_2025_113417
crossref_primary_10_1002_ange_202006535
crossref_primary_10_1007_s00604_019_3741_x
crossref_primary_10_1021_acsanm_0c01327
crossref_primary_10_1016_j_trac_2020_116048
crossref_primary_10_1039_D4CC04977B
crossref_primary_10_1016_j_talanta_2019_05_086
crossref_primary_10_1016_j_envpol_2020_114616
crossref_primary_10_1016_j_trac_2019_01_016
crossref_primary_10_1002_adsu_201800150
crossref_primary_10_1016_j_ces_2024_121079
crossref_primary_10_1021_acsami_9b01883
crossref_primary_10_1016_j_cclet_2021_10_030
crossref_primary_10_1002_anie_201810571
crossref_primary_10_1016_j_trac_2018_07_013
crossref_primary_10_1016_j_foodchem_2022_135192
crossref_primary_10_1016_j_cclet_2018_10_029
crossref_primary_10_1016_j_chroma_2019_06_018
crossref_primary_10_1016_j_chroma_2020_461362
crossref_primary_10_1016_j_chroma_2024_464998
crossref_primary_10_1016_j_jfca_2024_106482
crossref_primary_10_1016_j_apcatb_2022_122135
crossref_primary_10_1016_j_colsurfa_2024_133309
crossref_primary_10_1016_j_talanta_2023_124589
crossref_primary_10_1016_j_microc_2020_105048
crossref_primary_10_1021_acsami_9b17324
crossref_primary_10_1016_j_mtcomm_2021_102612
crossref_primary_10_1021_acs_chemrev_0c01184
crossref_primary_10_1016_j_foodchem_2022_134681
crossref_primary_10_1080_10643389_2020_1720493
crossref_primary_10_1021_jacs_0c04589
crossref_primary_10_1038_s41467_023_38427_3
crossref_primary_10_1016_j_trac_2024_117910
crossref_primary_10_1039_D1AN00988E
crossref_primary_10_1002_jssc_202100849
crossref_primary_10_1016_j_colsurfa_2024_134601
crossref_primary_10_1016_j_chroma_2021_462186
crossref_primary_10_1016_j_chroma_2021_462068
crossref_primary_10_1002_chir_23405
crossref_primary_10_1021_acs_analchem_9b04677
crossref_primary_10_3390_nano12142482
crossref_primary_10_1002_jsfa_12912
crossref_primary_10_1016_j_trac_2021_116208
crossref_primary_10_1007_s00604_020_4224_9
crossref_primary_10_1002_elps_201800235
crossref_primary_10_1016_j_aca_2019_09_078
crossref_primary_10_1039_C8RA04321C
crossref_primary_10_3390_molecules25143288
crossref_primary_10_1016_j_chroma_2021_462296
crossref_primary_10_1016_j_chroma_2021_462731
crossref_primary_10_1016_j_chroma_2018_09_047
crossref_primary_10_1021_acs_jafc_8b06372
crossref_primary_10_1016_j_carbon_2021_08_022
crossref_primary_10_1016_j_ccr_2024_215748
crossref_primary_10_1002_jssc_202400013
crossref_primary_10_2139_ssrn_4158178
crossref_primary_10_1021_acs_inorgchem_3c03500
crossref_primary_10_1002_jssc_201800630
crossref_primary_10_1016_j_chroma_2018_04_059
crossref_primary_10_1016_j_chroma_2022_462927
crossref_primary_10_1002_ange_201810571
crossref_primary_10_1016_j_trac_2023_117054
crossref_primary_10_1039_C8TA06195E
crossref_primary_10_2139_ssrn_4159832
crossref_primary_10_1002_slct_202102435
crossref_primary_10_1016_j_talanta_2021_122754
crossref_primary_10_1039_D0AN01885F
crossref_primary_10_1016_j_chroma_2022_462807
crossref_primary_10_3724_SP_J_1123_2022_03017
crossref_primary_10_1016_j_talanta_2019_04_010
crossref_primary_10_1039_D2AY01226J
crossref_primary_10_1002_celc_201900298
crossref_primary_10_1016_j_isci_2019_03_028
crossref_primary_10_1039_C9RA01879D
crossref_primary_10_1080_10408347_2021_1934651
crossref_primary_10_1016_j_jpha_2020_12_006
crossref_primary_10_1016_j_foodchem_2020_127255
crossref_primary_10_1016_j_inoche_2020_108094
crossref_primary_10_1016_j_chroma_2019_460543
crossref_primary_10_1002_aesr_202400412
crossref_primary_10_1002_anie_202006535
crossref_primary_10_1016_j_envres_2023_118018
crossref_primary_10_1039_C8GC02611D
crossref_primary_10_1360_TB_2023_0055
crossref_primary_10_1002_jssc_201800656
crossref_primary_10_1039_C9AY02755F
crossref_primary_10_1002_adfm_202113153
crossref_primary_10_1007_s00604_019_3513_7
crossref_primary_10_1002_advs_202300462
crossref_primary_10_1016_j_chroma_2019_460773
crossref_primary_10_1016_j_microc_2022_107699
crossref_primary_10_1039_D3NJ04669A
crossref_primary_10_1039_D3QM00042G
crossref_primary_10_1016_j_microc_2024_110525
crossref_primary_10_1016_j_talanta_2019_04_031
crossref_primary_10_3390_molecules25225404
crossref_primary_10_1002_jssc_202200637
crossref_primary_10_1016_j_microc_2024_111065
crossref_primary_10_1016_j_trac_2018_08_025
crossref_primary_10_1016_j_trac_2024_117680
crossref_primary_10_1016_j_jelechem_2020_114931
crossref_primary_10_1002_elps_202200029
Cites_doi 10.1002/cplu.201700223
10.1021/ac403674p
10.1007/s00604-017-2095-5
10.1039/c3cc43017k
10.1039/C7TB00700K
10.1021/ac1003147
10.1016/j.jhazmat.2017.10.013
10.1007/s00604-017-2408-8
10.1016/j.chroma.2017.09.007
10.1016/j.chroma.2010.08.057
10.1021/acsami.7b08060
10.1016/j.talanta.2017.01.043
10.1038/natrevmats.2016.68
10.1016/j.chroma.2016.12.082
10.1021/jacs.5b04147
10.1039/C7CC00482F
10.1021/ja0764815
10.1039/C7AN01027C
10.1016/j.chroma.2016.03.085
10.1016/j.jcis.2012.01.011
10.1038/nchem.2352
10.1039/C5CS00878F
10.1002/elps.201100009
10.1016/j.chroma.2017.10.025
10.1039/c3cs60044k
10.1021/jacs.5b10666
10.1002/elps.201600573
10.1039/c2cs35157a
10.1016/j.chroma.2016.02.073
10.1016/j.chroma.2004.05.107
10.1021/ja8096256
10.1126/science.1120411
10.1126/science.1139915
10.1016/j.chroma.2016.01.066
10.1126/science.aaa8075
10.1002/anie.200601345
10.1016/j.chroma.2016.12.004
10.1021/acs.accounts.5b00369
10.1016/j.talanta.2016.08.041
10.1002/anie.200705710
10.1039/C2CS35072F
10.1021/ja9015765
10.1039/C6CC10188G
10.1021/ja204728y
10.1002/adma.201603006
10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
10.1021/acsami.6b13643
10.1021/jacs.5b05644
10.1021/ja203807h
10.1002/anie.201306775
10.1016/j.ccr.2015.12.010
10.1021/ja206846p
10.1002/anie.200803826
10.1038/ncomms12104
10.1002/adma.200903436
10.1039/C4SC00016A
10.1039/C7TB01807J
10.1021/cm201140r
10.1016/j.chroma.2016.05.100
10.1039/C5CC03413B
10.1016/j.talanta.2016.12.051
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7S9
L.6
DOI 10.1016/j.chroma.2018.02.023
DatabaseName CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3778
EndPage 18
ExternalDocumentID 29496190
10_1016_j_chroma_2018_02_023
S0021967318301742
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
YK3
ZMT
~02
~G-
~KM
.GJ
29K
AAHBH
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABXDB
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AI.
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
OHT
SCB
SEW
SSH
UQL
VH1
WUQ
ZGI
ZKB
ZXP
NPM
7S9
L.6
ID FETCH-LOGICAL-c395t-562eda72d9fcc9c2851a1d074cd3beb571c4816fd3bd7bca838052de014084bb3
IEDL.DBID .~1
ISSN 0021-9673
IngestDate Fri Jul 11 14:44:02 EDT 2025
Thu Apr 03 06:59:23 EDT 2025
Thu Apr 24 23:00:16 EDT 2025
Tue Jul 01 02:38:32 EDT 2025
Fri Feb 23 02:22:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Covalent organic frameworks
Solid phase microextraction
Solid phase extraction
Chromatography
Stationary phase
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-562eda72d9fcc9c2851a1d074cd3beb571c4816fd3bd7bca838052de014084bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29496190
PQID 2053891956
PQPubID 24069
PageCount 18
ParticipantIDs proquest_miscellaneous_2053891956
pubmed_primary_29496190
crossref_citationtrail_10_1016_j_chroma_2018_02_023
crossref_primary_10_1016_j_chroma_2018_02_023
elsevier_sciencedirect_doi_10_1016_j_chroma_2018_02_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-23
PublicationDateYYYYMMDD 2018-03-23
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-23
  day: 23
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of Chromatography A
PublicationTitleAlternate J Chromatogr A
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bojdys, Jeromenok, Thomas, Antonietti (bib0085) 2010; 22
Ding, Gao, Wang, Zhang, Song, Su, Wang (bib0125) 2011; 133
Zhao, Hu, Hu, Wang, Yu, Zhang (bib0235) 2017; 1487
Liu, Wang, Zhao, Hao, Fang, Wang (bib0155) 2018; 344
Lanni, Tilford, Bharathy, Lavigne (bib0075) 2011; 133
Wan, Guo, Kim, Ihee, Jiang (bib0110) 2008; 47
Qian, Dai, Yang, Yan (bib0115) 2017; 9
Ma, Yuan, Zhang, Zhou, Zhang (bib0160) 2017; 142
Chen, Chen (bib0180) 2017; 165
Zhang, Cai, Yan, He, Lin, Huang, Zheng, Fan, Zhang (bib0240) 2017; 1519
Liu, Zong, Fu, Zheng, Xu, Zhu (bib0145) 2012; 372
Ding, Wang (bib0060) 2013; 42
Gao, Lin, Lei, Zheng, Lin, Lin (bib0195) 2017; 5
Niu, Ding, Wang, Xu, Xu, Chen, Chen (bib0250) 2016; 1436
Qian, Yang, Yan (bib0225) 2016; 7
Feng, Ding, Jiang (bib0055) 2012; 41
Vyas, Vishwakarma, Moudrakovski, Haase, Savasci, Ochsenfeld, Spatz, Lotsch (bib0140) 2016; 28
Wang, Jiao, Gao, Huang, Zhao, Shen, Zhang, Qian (bib0205) 2017; 5
Kandambeth, Shinde, Panda, Lukose, Heine, Banerjee (bib0100) 2013; 52
Fanali, Guihen, Glennon (bib0295) 2017; 38
Yang, Liu, Cao, Yan (bib0220) 2015; 51
Slater, Cooper (bib0040) 2015; 348
Wang, Yang, Yan (bib0230) 2017; 82
Lin, Gao, Zheng, Lei, Geng, Lin, Yang, Cai (bib0190) 2017; 53
Mangelings, Heyden (bib0290) 2011; 32
Uriberomo, Doonan, Furukawa, Oisaki, Yaghi (bib0095) 2011; 133
Wan, Gándara, Asano, Furukawa, Saeki, Dey, Liao, Ambrogio, Botros, Duan, Seki, Stoddart, Yaghi (bib0070) 2011; 23
Huang, Wang, Jiang (bib0035) 2016; 1
El-Kaderi, Hunt, Mendoza-Cortes, Cote, Taylor, O'Keeffe, Yaghi (bib0010) 2007; 316
Kong, Bao, Chen (bib0260) 2017; 184
Wang, Chen (bib0175) 2017; 184
Wang, Jiao, Gao, Lv, Wu, Zhao, Shen, Zhang, Qian (bib0165) 2017; 166
Liu, Yang, Yan (bib0245) 2017; 1479
Xu, Gao, Jiang (bib0130) 2015; 7
Wu, Gang, Ping, Zhou, Jia (bib0210) 2016; 1456
Bao, Tang, Kong, Mao, Chen (bib0255) 2016; 1445
Stegbauer, Schwinghammer, Lotsch (bib0120) 2014; 5
Kuhn, Antonietti, Thomas (bib0080) 2008; 47
Uribe-Romo, Hunt, Furukawa, Klöck, O’Keeffe, Yaghi (bib0090) 2009; 131
Wang, Li, Wu, Hu, Yao, Zhou, Xiang, Chen (bib0105) 2015; 137
Zhong, He, Liao, Chen, Wang, Hu (bib0150) 2016; 1441
Fu, Yang, Yan (bib0280) 2013; 49
Wu, Gang, Ma, Ping, Jia (bib0215) 2016; 161
Waller, Gandara, Yaghi (bib0015) 2015; 48
Jiang, Zhao, Yaghi (bib0020) 2016
He, Zeng, Wang, Niu, Cai (bib0200) 2017; 9
Itoh, Fuchibe, Akiyama (bib0270) 2006; 45
Rowan, Cantrill, Cousins, Sanders, Stoddart (bib0045) 2002; 41
Wu, Wu, Li, Qin, Dong, Zhang, Zou (bib0285) 2010; 82
Kuang, Ma, Su, Zhang, Dong, Tang (bib0265) 2014; 86
Fang, Wang, Gu, Kaspar, Zhuang, Zheng, Guo, Qiu, Yan (bib0135) 2015; 137
Yan, He, Chen, Gui, Wang, Hu (bib0185) 2017; 1525
Jin, Yu, Denman, Zhang (bib0050) 2013; 42
Díaz, Corma (bib0030) 2016; 311
Davis, Fiedler, Ziegler, Terpin, Raymond (bib0275) 2007; 129
Li, Yang, Yan (bib0170) 2017; 53
Furukawa, Yaghi (bib0025) 2009; 131
Segura, Mancheno, Zamora (bib0065) 2016; 45
Qu, Liu, Mangelings, Yang, Hu (bib0300) 2010; 1217
Côté, Benin, Ockwig, O'Keeffe, Matzger, Yaghi (bib0005) 2005; 310
Jiang (10.1016/j.chroma.2018.02.023_bib0020) 2016
Stegbauer (10.1016/j.chroma.2018.02.023_bib0120) 2014; 5
Qian (10.1016/j.chroma.2018.02.023_bib0225) 2016; 7
Liu (10.1016/j.chroma.2018.02.023_bib0145) 2012; 372
Li (10.1016/j.chroma.2018.02.023_bib0170) 2017; 53
Guihen (10.1016/j.chroma.2018.02.023_sbref0295b) 2004; 1044
Zhong (10.1016/j.chroma.2018.02.023_bib0150) 2016; 1441
He (10.1016/j.chroma.2018.02.023_bib0200) 2017; 9
Lanni (10.1016/j.chroma.2018.02.023_bib0075) 2011; 133
Slater (10.1016/j.chroma.2018.02.023_bib0040) 2015; 348
Uribe-Romo (10.1016/j.chroma.2018.02.023_bib0090) 2009; 131
Yang (10.1016/j.chroma.2018.02.023_bib0220) 2015; 51
Wang (10.1016/j.chroma.2018.02.023_bib0165) 2017; 166
Zhang (10.1016/j.chroma.2018.02.023_bib0240) 2017; 1519
Liu (10.1016/j.chroma.2018.02.023_bib0245) 2017; 1479
Wu (10.1016/j.chroma.2018.02.023_bib0285) 2010; 82
Ma (10.1016/j.chroma.2018.02.023_bib0160) 2017; 142
Davis (10.1016/j.chroma.2018.02.023_bib0275) 2007; 129
Qu (10.1016/j.chroma.2018.02.023_bib0300) 2010; 1217
Qian (10.1016/j.chroma.2018.02.023_bib0115) 2017; 9
Liu (10.1016/j.chroma.2018.02.023_bib0155) 2018; 344
Díaz (10.1016/j.chroma.2018.02.023_bib0030) 2016; 311
Wang (10.1016/j.chroma.2018.02.023_bib0230) 2017; 82
Feng (10.1016/j.chroma.2018.02.023_bib0055) 2012; 41
Xu (10.1016/j.chroma.2018.02.023_bib0130) 2015; 7
Kuhn (10.1016/j.chroma.2018.02.023_bib0080) 2008; 47
Bojdys (10.1016/j.chroma.2018.02.023_bib0085) 2010; 22
Wu (10.1016/j.chroma.2018.02.023_bib0210) 2016; 1456
Jin (10.1016/j.chroma.2018.02.023_bib0050) 2013; 42
Kong (10.1016/j.chroma.2018.02.023_bib0260) 2017; 184
Vyas (10.1016/j.chroma.2018.02.023_bib0140) 2016; 28
Wang (10.1016/j.chroma.2018.02.023_bib0205) 2017; 5
Waller (10.1016/j.chroma.2018.02.023_bib0015) 2015; 48
Kandambeth (10.1016/j.chroma.2018.02.023_bib0100) 2013; 52
Wan (10.1016/j.chroma.2018.02.023_bib0110) 2008; 47
Bao (10.1016/j.chroma.2018.02.023_bib0255) 2016; 1445
Fu (10.1016/j.chroma.2018.02.023_bib0280) 2013; 49
Fang (10.1016/j.chroma.2018.02.023_bib0135) 2015; 137
Rowan (10.1016/j.chroma.2018.02.023_bib0045) 2002; 41
Huang (10.1016/j.chroma.2018.02.023_bib0035) 2016; 1
Wang (10.1016/j.chroma.2018.02.023_bib0175) 2017; 184
Wan (10.1016/j.chroma.2018.02.023_bib0070) 2011; 23
Uriberomo (10.1016/j.chroma.2018.02.023_bib0095) 2011; 133
Chen (10.1016/j.chroma.2018.02.023_bib0180) 2017; 165
Itoh (10.1016/j.chroma.2018.02.023_bib0270) 2006; 45
El-Kaderi (10.1016/j.chroma.2018.02.023_bib0010) 2007; 316
Gao (10.1016/j.chroma.2018.02.023_bib0195) 2017; 5
Wu (10.1016/j.chroma.2018.02.023_bib0215) 2016; 161
Fanali (10.1016/j.chroma.2018.02.023_sbref0295a) 2017; 38
Furukawa (10.1016/j.chroma.2018.02.023_bib0025) 2009; 131
Segura (10.1016/j.chroma.2018.02.023_bib0065) 2016; 45
Ding (10.1016/j.chroma.2018.02.023_bib0060) 2013; 42
Niu (10.1016/j.chroma.2018.02.023_bib0250) 2016; 1436
Mangelings (10.1016/j.chroma.2018.02.023_bib0290) 2011; 32
Ding (10.1016/j.chroma.2018.02.023_bib0125) 2011; 133
Côté (10.1016/j.chroma.2018.02.023_bib0005) 2005; 310
Zhao (10.1016/j.chroma.2018.02.023_bib0235) 2017; 1487
Wang (10.1016/j.chroma.2018.02.023_bib0105) 2015; 137
Kuang (10.1016/j.chroma.2018.02.023_bib0265) 2014; 86
Yan (10.1016/j.chroma.2018.02.023_bib0185) 2017; 1525
Lin (10.1016/j.chroma.2018.02.023_bib0190) 2017; 53
References_xml – volume: 28
  start-page: 8749
  year: 2016
  end-page: 8754
  ident: bib0140
  article-title: Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery
  publication-title: Adv. Mater.
– volume: 161
  start-page: 350
  year: 2016
  end-page: 358
  ident: bib0215
  article-title: Fabrication of cross-linked hydrazone covalent organic frameworks by click chemistry and application to solid phase microextraction
  publication-title: Talanta
– volume: 133
  start-page: 13975
  year: 2011
  end-page: 13983
  ident: bib0075
  article-title: Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 11478
  year: 2011
  end-page: 11481
  ident: bib0095
  article-title: Crystalline covalent organic frameworks with hydrazone linkages
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 898
  year: 2002
  end-page: 952
  ident: bib0045
  article-title: Dynamic covalent chemistry
  publication-title: Angew. Chem. Int. Ed.
– volume: 32
  start-page: 2583
  year: 2011
  end-page: 2601
  ident: bib0290
  article-title: Enantioselective capillary electrochromatography: recent developments and new trends
  publication-title: Electrophoresis
– volume: 49
  start-page: 7162
  year: 2013
  end-page: 7164
  ident: bib0280
  article-title: Incorporation of metal-organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules
  publication-title: Chem. Commun.
– volume: 137
  start-page: 9963
  year: 2015
  end-page: 9970
  ident: bib0105
  article-title: A flexible microporous hydrogen-bonded organic framework for gas sorption and separation
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 4570
  year: 2009
  end-page: 4571
  ident: bib0090
  article-title: A crystalline imine-linked 3-D porous covalent organic framework
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 3053
  year: 2015
  end-page: 3063
  ident: bib0015
  article-title: Chemistry of covalent organic frameworks
  publication-title: Acc. Chem. Res.
– volume: 1525
  start-page: 32
  year: 2017
  end-page: 41
  ident: bib0185
  article-title: Magnetic covalent triazine framework for rapid extraction of phthalate esters in plastic packaging materials followed by gas chromatography-flame ionization detection
  publication-title: J. Chromatogr. A
– volume: 1441
  start-page: 8
  year: 2016
  end-page: 15
  ident: bib0150
  article-title: Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples
  publication-title: J. Chromatogr. A
– volume: 1445
  start-page: 140
  year: 2016
  end-page: 148
  ident: bib0255
  article-title: Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation
  publication-title: J. Chromatogr. A
– volume: 45
  start-page: 5635
  year: 2016
  end-page: 5671
  ident: bib0065
  article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 12104
  year: 2016
  ident: bib0225
  article-title: Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation
  publication-title: Nat. Commun.
– volume: 23
  start-page: 4094
  year: 2011
  end-page: 4097
  ident: bib0070
  article-title: Covalent organic frameworks with high charge carrier mobility
  publication-title: Chem. Mater.
– start-page: 3255
  year: 2016
  end-page: 3265
  ident: bib0020
  article-title: Covalent chemistry beyond molecules
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 2202
  year: 2010
  end-page: 2205
  ident: bib0085
  article-title: Rational extension of the family of layered covalent, triazine-based frameworks with regular porosity
  publication-title: Adv. Mater.
– volume: 5
  start-page: 7496
  year: 2017
  end-page: 7503
  ident: bib0195
  article-title: Facile synthesis of core-shell structured magnetic covalent organic framework composite nanospheres for selective enrichment of peptides with simultaneous exclusion of proteins
  publication-title: J. Mater. Chem. B
– volume: 9
  start-page: 24999
  year: 2017
  end-page: 25005
  ident: bib0115
  article-title: High crystallinity covalent organic framework with dual fluorescence emissions and its ratiometric sensing application
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 16068
  year: 2016
  ident: bib0035
  article-title: Covalent organic frameworks: a materials platform for structural and functional designs
  publication-title: Nat. Rev. Mater.
– volume: 133
  start-page: 19816
  year: 2011
  end-page: 19822
  ident: bib0125
  article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction
  publication-title: J. Am. Chem. Soc.
– volume: 311
  start-page: 85
  year: 2016
  end-page: 124
  ident: bib0030
  article-title: Ordered covalent organic frameworks, COFs and PAFs. From preparation to application
  publication-title: Coord. Chem. Rev.
– volume: 7
  start-page: 905
  year: 2015
  end-page: 912
  ident: bib0130
  article-title: Stable crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts
  publication-title: Nat. Chem.
– volume: 5
  start-page: 2789
  year: 2014
  end-page: 2793
  ident: bib0120
  article-title: A hydrazone-based covalent organic framework for photocatalytic hydrogen production
  publication-title: Chem. Sci.
– volume: 53
  start-page: 2511
  year: 2017
  end-page: 2514
  ident: bib0170
  article-title: Controllable preparation of core-shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution
  publication-title: Chem. Commun.
– volume: 42
  start-page: 6634
  year: 2013
  end-page: 6654
  ident: bib0050
  article-title: Recent advances in dynamic covalent chemistry
  publication-title: Chem. Soc. Rev.
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  ident: bib0060
  article-title: Covalent organic frameworks (COFs): from design to applications
  publication-title: Chem. Soc. Rev.
– volume: 372
  start-page: 99
  year: 2012
  end-page: 107
  ident: bib0145
  article-title: Adsorption of aromatic compounds on porous covalent triazine-based framework
  publication-title: J. Colloid Interface Sci.
– volume: 1436
  start-page: 109
  year: 2016
  end-page: 117
  ident: bib0250
  article-title: Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography
  publication-title: J. Chromatogr. A
– volume: 45
  start-page: 4796
  year: 2006
  end-page: 4798
  ident: bib0270
  article-title: Chiral bronsted acid catalyzed enantioselective Aza-Diels-Alder reaction of brassard's diene with imines
  publication-title: Angew. Chem. Int. Ed.
– volume: 165
  start-page: 188
  year: 2017
  end-page: 193
  ident: bib0180
  article-title: COF-1-modified magnetic nanoparticles for highly selective and efficient solid-phase microextraction of paclitaxel
  publication-title: Talanta
– volume: 1456
  start-page: 34
  year: 2016
  end-page: 41
  ident: bib0210
  article-title: Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits
  publication-title: J. Chromatogr. A
– volume: 51
  start-page: 12254
  year: 2015
  end-page: 12257
  ident: bib0220
  article-title: Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation
  publication-title: Chem. Commun.
– volume: 348
  start-page: aaa8075
  year: 2015
  ident: bib0040
  article-title: Function-led design of new porous materials
  publication-title: Science
– volume: 1479
  start-page: 137
  year: 2017
  end-page: 144
  ident: bib0245
  article-title: Methacrylate-bonded covalent organic framework monolithic columns for high performance liquid chromatography
  publication-title: J. Chromatogr. A
– volume: 316
  start-page: 268
  year: 2007
  end-page: 272
  ident: bib0010
  article-title: Designed synthesis of 3D covalent organic frameworks
  publication-title: Science
– volume: 129
  start-page: 15354
  year: 2007
  end-page: 15363
  ident: bib0275
  article-title: Resolution of chiral, tetrahedral M4L6 metal-ligand hosts
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 3649
  year: 2017
  end-page: 3652
  ident: bib0190
  article-title: Room-temperature synthesis of core-shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins
  publication-title: Chem. Commun.
– volume: 137
  start-page: 8352
  year: 2015
  end-page: 8355
  ident: bib0135
  article-title: 3D porous crystalline polyimide covalent organic frameworks for drug delivery
  publication-title: J. Am. Chem. Soc.
– volume: 82
  start-page: 933
  year: 2017
  end-page: 938
  ident: bib0230
  article-title: In situ growth of covalent organic framework shells on silica microspheres for application in liquid chromatography
  publication-title: Chempluschem
– volume: 86
  start-page: 1277
  year: 2014
  end-page: 1281
  ident: bib0265
  article-title: High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework
  publication-title: Anal. Chem.
– volume: 344
  start-page: 220
  year: 2018
  end-page: 229
  ident: bib0155
  article-title: Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix
  publication-title: J. Hazard. Mater.
– volume: 142
  start-page: 3212
  year: 2017
  end-page: 3218
  ident: bib0160
  article-title: Highly efficient enrichment of N-linked glycopeptides using a hydrophilic covalent-organic framework
  publication-title: Analyst
– volume: 38
  start-page: 1822
  year: 2017
  end-page: 1829
  ident: bib0295
  article-title: An overview to nano-scale analytical techniques: nano-liquid chromatography and capillary electrochromatography
  publication-title: Electrophoresis
– volume: 52
  start-page: 13052
  year: 2013
  end-page: 13056
  ident: bib0100
  article-title: Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 2959
  year: 2017
  end-page: 2965
  ident: bib0200
  article-title: Facile synthesis of magnetic covalent organic framework with three-dimensional bouquet-like structure for enhanced extraction of organic targets
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1519
  start-page: 100
  year: 2017
  end-page: 109
  ident: bib0240
  article-title: Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography
  publication-title: J. Chromatogr. A
– volume: 184
  start-page: 3867
  year: 2017
  end-page: 3874
  ident: bib0175
  article-title: A covalent organic framework-based magnetic sorbent for solid phase extraction of polycyclic aromatic hydrocarbons, and its hyphenation to HPLC for quantitation
  publication-title: Microchim. Acta
– volume: 82
  start-page: 5447
  year: 2010
  end-page: 5454
  ident: bib0285
  article-title: Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic-organic hybrid monolithic columns
  publication-title: Anal. Chem.
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  ident: bib0005
  article-title: Porous crystalline, covalent organic frameworks
  publication-title: Science
– volume: 1217
  start-page: 6588
  year: 2010
  end-page: 6594
  ident: bib0300
  article-title: Permanent gold nanoparticle coatings on polyelectrolyte multilayer modified capillaries for open-tubular capillary electrochromatography
  publication-title: J. Chromatogr. A
– volume: 184
  start-page: 1169
  year: 2017
  end-page: 1176
  ident: bib0260
  article-title: In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids
  publication-title: Microchim. Acta
– volume: 5
  start-page: 4052
  year: 2017
  end-page: 4059
  ident: bib0205
  article-title: Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides
  publication-title: J. Mater. Chem. B
– volume: 47
  start-page: 3450
  year: 2008
  end-page: 3453
  ident: bib0080
  article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 1487
  start-page: 83
  year: 2017
  end-page: 88
  ident: bib0235
  article-title: Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography
  publication-title: J. Chromatogr. A
– volume: 41
  start-page: 6010
  year: 2012
  end-page: 6022
  ident: bib0055
  article-title: Covalent organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 47
  start-page: 8826
  year: 2008
  end-page: 8830
  ident: bib0110
  article-title: A belt-shaped, blue luminescent, and semiconducting covalent organic framework
  publication-title: Angew. Chem. Int. Ed.
– volume: 131
  start-page: 8875
  year: 2009
  end-page: 8883
  ident: bib0025
  article-title: Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications
  publication-title: J. Am. Chem. Soc.
– volume: 166
  start-page: 133
  year: 2017
  end-page: 140
  ident: bib0165
  article-title: Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides
  publication-title: Talanta
– volume: 82
  start-page: 933
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0230
  article-title: In situ growth of covalent organic framework shells on silica microspheres for application in liquid chromatography
  publication-title: Chempluschem
  doi: 10.1002/cplu.201700223
– volume: 86
  start-page: 1277
  year: 2014
  ident: 10.1016/j.chroma.2018.02.023_bib0265
  article-title: High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework
  publication-title: Anal. Chem.
  doi: 10.1021/ac403674p
– volume: 184
  start-page: 1169
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0260
  article-title: In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-017-2095-5
– volume: 49
  start-page: 7162
  year: 2013
  ident: 10.1016/j.chroma.2018.02.023_bib0280
  article-title: Incorporation of metal-organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43017k
– volume: 5
  start-page: 4052
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0205
  article-title: Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB00700K
– volume: 82
  start-page: 5447
  year: 2010
  ident: 10.1016/j.chroma.2018.02.023_bib0285
  article-title: Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic-organic hybrid monolithic columns
  publication-title: Anal. Chem.
  doi: 10.1021/ac1003147
– volume: 344
  start-page: 220
  year: 2018
  ident: 10.1016/j.chroma.2018.02.023_bib0155
  article-title: Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.10.013
– volume: 184
  start-page: 3867
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0175
  article-title: A covalent organic framework-based magnetic sorbent for solid phase extraction of polycyclic aromatic hydrocarbons, and its hyphenation to HPLC for quantitation
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-017-2408-8
– volume: 1519
  start-page: 100
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0240
  article-title: Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2017.09.007
– volume: 1217
  start-page: 6588
  year: 2010
  ident: 10.1016/j.chroma.2018.02.023_bib0300
  article-title: Permanent gold nanoparticle coatings on polyelectrolyte multilayer modified capillaries for open-tubular capillary electrochromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2010.08.057
– volume: 9
  start-page: 24999
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0115
  article-title: High crystallinity covalent organic framework with dual fluorescence emissions and its ratiometric sensing application
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08060
– volume: 166
  start-page: 133
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0165
  article-title: Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides
  publication-title: Talanta
  doi: 10.1016/j.talanta.2017.01.043
– volume: 1
  start-page: 16068
  year: 2016
  ident: 10.1016/j.chroma.2018.02.023_bib0035
  article-title: Covalent organic frameworks: a materials platform for structural and functional designs
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.68
– volume: 1487
  start-page: 83
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0235
  article-title: Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.12.082
– volume: 137
  start-page: 8352
  year: 2015
  ident: 10.1016/j.chroma.2018.02.023_bib0135
  article-title: 3D porous crystalline polyimide covalent organic frameworks for drug delivery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04147
– volume: 53
  start-page: 3649
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0190
  article-title: Room-temperature synthesis of core-shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC00482F
– volume: 129
  start-page: 15354
  year: 2007
  ident: 10.1016/j.chroma.2018.02.023_bib0275
  article-title: Resolution of chiral, tetrahedral M4L6 metal-ligand hosts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0764815
– volume: 142
  start-page: 3212
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0160
  article-title: Highly efficient enrichment of N-linked glycopeptides using a hydrophilic covalent-organic framework
  publication-title: Analyst
  doi: 10.1039/C7AN01027C
– volume: 1445
  start-page: 140
  year: 2016
  ident: 10.1016/j.chroma.2018.02.023_bib0255
  article-title: Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.03.085
– volume: 372
  start-page: 99
  year: 2012
  ident: 10.1016/j.chroma.2018.02.023_bib0145
  article-title: Adsorption of aromatic compounds on porous covalent triazine-based framework
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.01.011
– volume: 7
  start-page: 905
  year: 2015
  ident: 10.1016/j.chroma.2018.02.023_bib0130
  article-title: Stable crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2352
– volume: 45
  start-page: 5635
  year: 2016
  ident: 10.1016/j.chroma.2018.02.023_bib0065
  article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00878F
– volume: 32
  start-page: 2583
  year: 2011
  ident: 10.1016/j.chroma.2018.02.023_bib0290
  article-title: Enantioselective capillary electrochromatography: recent developments and new trends
  publication-title: Electrophoresis
  doi: 10.1002/elps.201100009
– volume: 1525
  start-page: 32
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0185
  article-title: Magnetic covalent triazine framework for rapid extraction of phthalate esters in plastic packaging materials followed by gas chromatography-flame ionization detection
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2017.10.025
– volume: 42
  start-page: 6634
  year: 2013
  ident: 10.1016/j.chroma.2018.02.023_bib0050
  article-title: Recent advances in dynamic covalent chemistry
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60044k
– start-page: 3255
  year: 2016
  ident: 10.1016/j.chroma.2018.02.023_bib0020
  article-title: Covalent chemistry beyond molecules
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10666
– volume: 38
  start-page: 1822
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_sbref0295a
  article-title: An overview to nano-scale analytical techniques: nano-liquid chromatography and capillary electrochromatography
  publication-title: Electrophoresis
  doi: 10.1002/elps.201600573
– volume: 41
  start-page: 6010
  year: 2012
  ident: 10.1016/j.chroma.2018.02.023_bib0055
  article-title: Covalent organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35157a
– volume: 1441
  start-page: 8
  year: 2016
  ident: 10.1016/j.chroma.2018.02.023_bib0150
  article-title: Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.02.073
– volume: 1044
  start-page: 67
  year: 2004
  ident: 10.1016/j.chroma.2018.02.023_sbref0295b
  article-title: Recent highlights in stationary phase design for open-tubular capillary electrochromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2004.05.107
– volume: 131
  start-page: 4570
  year: 2009
  ident: 10.1016/j.chroma.2018.02.023_bib0090
  article-title: A crystalline imine-linked 3-D porous covalent organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8096256
– volume: 310
  start-page: 1166
  year: 2005
  ident: 10.1016/j.chroma.2018.02.023_bib0005
  article-title: Porous crystalline, covalent organic frameworks
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 316
  start-page: 268
  year: 2007
  ident: 10.1016/j.chroma.2018.02.023_bib0010
  article-title: Designed synthesis of 3D covalent organic frameworks
  publication-title: Science
  doi: 10.1126/science.1139915
– volume: 1436
  start-page: 109
  year: 2016
  ident: 10.1016/j.chroma.2018.02.023_bib0250
  article-title: Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.01.066
– volume: 348
  start-page: aaa8075
  year: 2015
  ident: 10.1016/j.chroma.2018.02.023_bib0040
  article-title: Function-led design of new porous materials
  publication-title: Science
  doi: 10.1126/science.aaa8075
– volume: 45
  start-page: 4796
  year: 2006
  ident: 10.1016/j.chroma.2018.02.023_bib0270
  article-title: Chiral bronsted acid catalyzed enantioselective Aza-Diels-Alder reaction of brassard's diene with imines
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200601345
– volume: 1479
  start-page: 137
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0245
  article-title: Methacrylate-bonded covalent organic framework monolithic columns for high performance liquid chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.12.004
– volume: 48
  start-page: 3053
  year: 2015
  ident: 10.1016/j.chroma.2018.02.023_bib0015
  article-title: Chemistry of covalent organic frameworks
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00369
– volume: 161
  start-page: 350
  year: 2016
  ident: 10.1016/j.chroma.2018.02.023_bib0215
  article-title: Fabrication of cross-linked hydrazone covalent organic frameworks by click chemistry and application to solid phase microextraction
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.08.041
– volume: 47
  start-page: 3450
  year: 2008
  ident: 10.1016/j.chroma.2018.02.023_bib0080
  article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200705710
– volume: 42
  start-page: 548
  year: 2013
  ident: 10.1016/j.chroma.2018.02.023_bib0060
  article-title: Covalent organic frameworks (COFs): from design to applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35072F
– volume: 131
  start-page: 8875
  year: 2009
  ident: 10.1016/j.chroma.2018.02.023_bib0025
  article-title: Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9015765
– volume: 53
  start-page: 2511
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0170
  article-title: Controllable preparation of core-shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC10188G
– volume: 133
  start-page: 11478
  year: 2011
  ident: 10.1016/j.chroma.2018.02.023_bib0095
  article-title: Crystalline covalent organic frameworks with hydrazone linkages
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204728y
– volume: 28
  start-page: 8749
  year: 2016
  ident: 10.1016/j.chroma.2018.02.023_bib0140
  article-title: Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603006
– volume: 41
  start-page: 898
  year: 2002
  ident: 10.1016/j.chroma.2018.02.023_bib0045
  article-title: Dynamic covalent chemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
– volume: 9
  start-page: 2959
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0200
  article-title: Facile synthesis of magnetic covalent organic framework with three-dimensional bouquet-like structure for enhanced extraction of organic targets
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13643
– volume: 137
  start-page: 9963
  year: 2015
  ident: 10.1016/j.chroma.2018.02.023_bib0105
  article-title: A flexible microporous hydrogen-bonded organic framework for gas sorption and separation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05644
– volume: 133
  start-page: 13975
  year: 2011
  ident: 10.1016/j.chroma.2018.02.023_bib0075
  article-title: Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203807h
– volume: 52
  start-page: 13052
  year: 2013
  ident: 10.1016/j.chroma.2018.02.023_bib0100
  article-title: Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201306775
– volume: 311
  start-page: 85
  year: 2016
  ident: 10.1016/j.chroma.2018.02.023_bib0030
  article-title: Ordered covalent organic frameworks, COFs and PAFs. From preparation to application
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.12.010
– volume: 133
  start-page: 19816
  year: 2011
  ident: 10.1016/j.chroma.2018.02.023_bib0125
  article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206846p
– volume: 47
  start-page: 8826
  year: 2008
  ident: 10.1016/j.chroma.2018.02.023_bib0110
  article-title: A belt-shaped, blue luminescent, and semiconducting covalent organic framework
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200803826
– volume: 7
  start-page: 12104
  year: 2016
  ident: 10.1016/j.chroma.2018.02.023_bib0225
  article-title: Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12104
– volume: 22
  start-page: 2202
  year: 2010
  ident: 10.1016/j.chroma.2018.02.023_bib0085
  article-title: Rational extension of the family of layered covalent, triazine-based frameworks with regular porosity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903436
– volume: 5
  start-page: 2789
  year: 2014
  ident: 10.1016/j.chroma.2018.02.023_bib0120
  article-title: A hydrazone-based covalent organic framework for photocatalytic hydrogen production
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC00016A
– volume: 5
  start-page: 7496
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0195
  article-title: Facile synthesis of core-shell structured magnetic covalent organic framework composite nanospheres for selective enrichment of peptides with simultaneous exclusion of proteins
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB01807J
– volume: 23
  start-page: 4094
  year: 2011
  ident: 10.1016/j.chroma.2018.02.023_bib0070
  article-title: Covalent organic frameworks with high charge carrier mobility
  publication-title: Chem. Mater.
  doi: 10.1021/cm201140r
– volume: 1456
  start-page: 34
  year: 2016
  ident: 10.1016/j.chroma.2018.02.023_bib0210
  article-title: Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.05.100
– volume: 51
  start-page: 12254
  year: 2015
  ident: 10.1016/j.chroma.2018.02.023_bib0220
  article-title: Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC03413B
– volume: 165
  start-page: 188
  year: 2017
  ident: 10.1016/j.chroma.2018.02.023_bib0180
  article-title: COF-1-modified magnetic nanoparticles for highly selective and efficient solid-phase microextraction of paclitaxel
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.12.051
SSID ssj0017072
ssj0029838
Score 2.6317513
SecondaryResourceType review_article
Snippet [Display omitted] •Applications of covalent organic frameworks for sample preparation are reviewed.•Applications of covalent organic frameworks for...
Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms chemical bonding
Chromatography
coatings
Covalent organic frameworks
electrochromatography
gas chromatography
high performance liquid chromatography
polymers
porosity
Solid phase extraction
Solid phase microextraction
sorbents
Stationary phase
Title Advances in covalent organic frameworks in separation science
URI https://dx.doi.org/10.1016/j.chroma.2018.02.023
https://www.ncbi.nlm.nih.gov/pubmed/29496190
https://www.proquest.com/docview/2053891956
Volume 1542
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9jHvQivp2PUcFrXZukjxw8jOGYjg0Rh7uVvIoTacceV_92vzTNwMMYCIU2aULDL1-_B_keCN3LMOdAB9KnHGxVyjj1OVPcT1UO0j7HRMQmGnk0jgcT-jKNpg3Uc7Ewxq2y5v2Wp1fcuu7p1Gh25rOZifGFvy1ODFECWVHDhylNDJU__GzcPMIkSDb5pDBLiWXNxi8BprpYusrhS34uyioVUZhWaTwx2SartumilUzqH6HDWpn0una9x6ihixO033M13E7RY9ce8S-9WeHJEqgKZIxnKzlJL3eOWdXrpbZpwEt4tECcoUn_6b038OuCCb4kLFr5oMtoxROsWC4lkxi0KR4qUBKkIkKLKAklTcM4h5ZKhOSARhBhpY2VlVIhyDlqFmWhL5EnYA-ZMHHyRFKwMbkGVQFsi5ymCkR80ELEQZPJOpu4KWrxnTm3sa_MApoZQLMAw0VayN_MmttsGjvGJw717A9VZMDwd8y8c5uUAebmFIQXulwvYVBkzmbBLmyhC7t7m7VgRhlYlMHVv797jQ5My3ipYXKDmqvFWt-C2rIS7You22iv-zwcjM19-PYxhN7x6-gXB0Hszg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05a8MwFBYhHdKl9G56utDVjS3Jh4YOITSkbZIpgWxCl2lKsUOOtb-9T5Yd6BACBQ-2JSHx6ekd6B0IPakwE0AHyqcCbFXKBPUF08JPdQbSPsNExjYaeTSOB1P6PotmDdSrY2GsW2XF-x1PL7l19adTodlZzOc2xhdOW5xYogSyosCHDygcX1vG4Pln6-cRJkGyTSiFWUocb7aOCTC2DqYrPb7U57IocxGFaZnHE5NdwmqXMloKpf4xOqq0Sa_rFnyCGiY_Ra1eXcTtDL103R3_ypvnniqArEDIeK6Uk_Ky2jOrbF4Zlwe8gFeHxDma9l8nvYFfVUzwFWHR2gdlxmiRYM0ypZjCoE6JUIOWoDSRRkZJqGgaxhl86UQqAWgEEdbGmlkplZJcoGZe5OYKeRI2kUkbKE8UBSNTGNAVwLjIaKpBxgdtRGpouKrSiduqFt-89hv74g5QbgHlAYaHtJG_HbVw6TT29E9q1PkfsuDA8feMfKw3iQPm9hpE5KbYrKBTZC9nwTBso0u3e9u1YEYZmJTB9b_nfUCtwWQ05MO38ccNOrQt1mUNk1vUXC835g50mLW8L2n0F46f660
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+covalent+organic+frameworks+in+separation+science&rft.jtitle=Journal+of+Chromatography+A&rft.au=Qian%2C+Hai-Long&rft.au=Yang%2C+Cheng-Xiong&rft.au=Wang%2C+Wen-Long&rft.au=Yang%2C+Cheng&rft.date=2018-03-23&rft.pub=Elsevier+B.V&rft.issn=0021-9673&rft.volume=1542&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1016%2Fj.chroma.2018.02.023&rft.externalDocID=S0021967318301742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon