A Dual Process Model of the Influence of Recommender Systems on Purchase Intentions in Online Shopping Environments
Whereas much research has looked at how recommendation systems influence online purchase intentions, this article illustrates the dual process model by which they occur. Using two studies, we fill the research void in interactive marketing by demonstrating how the dual processes of social proof and...
Saved in:
Published in | Journal of Internet commerce Vol. 22; no. 3; pp. 432 - 453 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Binghamton
Routledge
03.07.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1533-2861 1533-287X |
DOI | 10.1080/15332861.2022.2049113 |
Cover
Abstract | Whereas much research has looked at how recommendation systems influence online purchase intentions, this article illustrates the dual process model by which they occur. Using two studies, we fill the research void in interactive marketing by demonstrating how the dual processes of social proof and risk avoidance mediate the impact of recommendation labels on consumer decision-making contingent upon their level of involvement. Study 1 (n = 73), used a mixed-subjects design with a college student sample to demonstrate that both types of recommendation labels will lead to higher purchase intentions in an online setting. Most importantly, it provides evidence for the main effect of our theoretical model across different product categories. Study 2 (n = 160) provides support for our remaining four hypotheses by demonstrating the underlying process through which recommendation labels have a two-fold effect on purchase intentions. Specifically, the recommendation label increased the risk avoidance effect for high-involvement consumers and enhanced the social proof effect for low-involvement consumers. In both cases, the recommendation labels increased purchase intentions. Implications of our findings for theoretical and practical contributions and future directions are also explored. |
---|---|
AbstractList | Whereas much research has looked at how recommendation systems influence online purchase intentions, this article illustrates the dual process model by which they occur. Using two studies, we fill the research void in interactive marketing by demonstrating how the dual processes of social proof and risk avoidance mediate the impact of recommendation labels on consumer decision-making contingent upon their level of involvement. Study 1 (n = 73), used a mixed-subjects design with a college student sample to demonstrate that both types of recommendation labels will lead to higher purchase intentions in an online setting. Most importantly, it provides evidence for the main effect of our theoretical model across different product categories. Study 2 (n = 160) provides support for our remaining four hypotheses by demonstrating the underlying process through which recommendation labels have a two-fold effect on purchase intentions. Specifically, the recommendation label increased the risk avoidance effect for high-involvement consumers and enhanced the social proof effect for low-involvement consumers. In both cases, the recommendation labels increased purchase intentions. Implications of our findings for theoretical and practical contributions and future directions are also explored. |
Author | Niculescu, Mihai Roy, Abhijit Xu, Lina |
Author_xml | – sequence: 1 givenname: Lina surname: Xu fullname: Xu, Lina organization: Department of Marketing, New Mexico State University – sequence: 2 givenname: Abhijit surname: Roy fullname: Roy, Abhijit organization: Department of Marketing, University of Scranton – sequence: 3 givenname: Mihai surname: Niculescu fullname: Niculescu, Mihai organization: Department of Marketing, New Mexico State University |
BookMark | eNqFkE1LxDAQhoMo-PkThIDn1aRt2hQvit-gKH6At5CdJm6knaxJquy_t2XVgwe9zAzD-8zAs0lW0aMhZJezfc4kO-AizzNZ8v2MZdlQiprzfIVsjPtJJqvn1Z-55OtkM8ZXxriUTG6QeExPe93Su-DBxEhvfGNa6i1NM0Ov0La9QTDj4t6A7zqDjQn0YRGT6SL1SO_6ADMdx3AymJzHSB3SW2wdGvow8_O5wxd6hu8ueBz4FLfJmtVtNDtffYs8nZ89nlxOrm8vrk6OryeQ1yJNimldsobVggFMpdTalrJgRQOshgqAAbMZ1CBg2hTacKHLoWnb2HwqNK8g3yJ7y7vz4N96E5N69X3A4aXKZFbllZCVGFJimYLgYwzGqnlwnQ4LxZka_apvv2r0q778DtzhLw5c0qOAFLRr_6WPlrRD60OnP3xoG5X0ovXBBo3gosr_PvEJI5aXjw |
CitedBy_id | crossref_primary_10_1080_10447318_2024_2325178 crossref_primary_10_1007_s12525_024_00697_0 crossref_primary_10_1111_ijcs_12876 |
Cites_doi | 10.1177/0093650214565915 10.1016/j.lmot.2020.101681 10.1002/mar.4220030307 10.1089/cyber.2015.0005 10.1037/h0036657 10.1287/mnsc.2019.3546 10.1146/annurev.psych.55.090902.142015 10.1080/08824090701624148 10.1037/0022-3514.39.5.752 10.1002/bdm.1753 10.1007/s12525-018-0313-6 10.1007/978-3-319-60042-0_39 10.1037/a0014589 10.1080/0144929X.2019.1583285 10.1086/209158 10.1051/shsconf/20173402005 10.1109/MIC.2017.72 10.1002/dir.20087 10.1016/S0167-8116(00)00005-7 10.1108/JRIM-03-2021-270 10.1287/isre.1120.0445 10.1093/jcr/ucy068 10.1016/j.jbusres.2020.10.016 10.1287/mksc.2014.0872 10.1007/978-0-387-85820-3_1 10.1177/0092070300282008 10.1080/07421222.2018.1523564 10.25300/MISQ/2014/38.2.02 10.1016/j.jretai.2011.10.003 10.4324/9781315209302 10.1198/000313001317098149 10.1080/00913367.2016.1269304 10.2307/3094873 10.1509/jm.10.0377 10.2753/JEC1086-4415160205 10.1287/mnsc.1070.0810 10.1086/209206 10.1287/isre.2019.0861 10.1086/208954 10.1145/3407190 10.1017/iop.2015.13 10.1037/0022-3514.37.10.1915 10.1016/j.jretai.2014.05.003 10.2307/3151549 10.1016/j.intmar.2009.02.009 10.1016/j.dss.2020.113268 10.1002/dir.10007 10.1002/bdm.724 10.1177/0022242919873901 10.1016/j.foodqual.2015.06.004 10.1007/978-0-387-78213-3_3 10.2753/JEC1086-4415160105 10.1287/mksc.19.1.4.15178 10.1177/0146167208316691 |
ContentType | Journal Article |
Copyright | 2022 Taylor & Francis Group, LLC 2022 2022 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 – notice: 2022 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/15332861.2022.2049113 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1533-287X |
EndPage | 453 |
ExternalDocumentID | 10_1080_15332861_2022_2049113 2049113 |
Genre | Research Article |
GroupedDBID | .7I .DC .QK 0BK 0R~ 2DF 4.4 5GY 5VS 8VB AAGZJ AAMFJ AAMIU AAPUL AATTQ AAWTL AAZMC ABCCY ABFIM ABJNI ABLIJ ABPEM ABTAI ABXUL ABXYU ACGFO ACGFS ACGOD ACTIO ACTOA ADAHI ADCVX ADEYR ADKVQ AECIN AEGXH AEISY AEKEX AEMXT AEOZL AEPSL AEYOC AEZRU AGDLA AGMYJ AGRBW AHDZW AHQJS AIAGR AIJEM AKBVH AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO DU5 EBS EBU EIHBH E~B E~C G-F GTTXZ H13 HF~ HZ~ IPNFZ ITG ITH J.O KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ QWB RIG RNANH ROSJB RSYQP S-F STATR TBQAZ TDBHL TEK TFH TFL TFW TH9 TNTFI TRJHH TUROJ TWQ UT5 UT9 VAE ZL0 ~01 ~S~ AAGDL AAHIA AAYXX ADMLS ADYSH AEFOU AFRVT AIYEW AMPGV CITATION K1G 7SC 8FD JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c395t-4b960d0950ccb88aaf68404dc09c7cc0c0f2c9c5cbd4ae15a64aeafdf3b5a17c3 |
ISSN | 1533-2861 |
IngestDate | Sun Jul 13 05:00:03 EDT 2025 Tue Jul 01 03:43:25 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 Wed Dec 25 09:04:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c395t-4b960d0950ccb88aaf68404dc09c7cc0c0f2c9c5cbd4ae15a64aeafdf3b5a17c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2827375875 |
PQPubID | 53216 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1080_15332861_2022_2049113 proquest_journals_2827375875 informaworld_taylorfrancis_310_1080_15332861_2022_2049113 crossref_citationtrail_10_1080_15332861_2022_2049113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-03 |
PublicationDateYYYYMMDD | 2023-07-03 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Binghamton |
PublicationPlace_xml | – name: Binghamton |
PublicationTitle | Journal of Internet commerce |
PublicationYear | 2023 |
Publisher | Routledge Taylor & Francis Ltd |
Publisher_xml | – name: Routledge – name: Taylor & Francis Ltd |
References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 Hayes A. F. (CIT0025) 2013 |
References_xml | – ident: CIT0055 doi: 10.1177/0093650214565915 – ident: CIT0016 doi: 10.1016/j.lmot.2020.101681 – ident: CIT0017 doi: 10.1002/mar.4220030307 – ident: CIT0058 doi: 10.1089/cyber.2015.0005 – ident: CIT0027 doi: 10.1037/h0036657 – ident: CIT0033 doi: 10.1287/mnsc.2019.3546 – ident: CIT0011 doi: 10.1146/annurev.psych.55.090902.142015 – ident: CIT0029 – ident: CIT0006 – ident: CIT0046 doi: 10.1080/08824090701624148 – ident: CIT0008 doi: 10.1037/0022-3514.39.5.752 – ident: CIT0021 doi: 10.1002/bdm.1753 – ident: CIT0053 doi: 10.1007/s12525-018-0313-6 – ident: CIT0018 doi: 10.1007/978-3-319-60042-0_39 – ident: CIT0059 doi: 10.1037/a0014589 – ident: CIT0002 doi: 10.1080/0144929X.2019.1583285 – ident: CIT0007 doi: 10.1086/209158 – ident: CIT0051 doi: 10.1051/shsconf/20173402005 – ident: CIT0048 doi: 10.1109/MIC.2017.72 – ident: CIT0015 doi: 10.1002/dir.20087 – ident: CIT0013 doi: 10.1016/S0167-8116(00)00005-7 – ident: CIT0056 doi: 10.1108/JRIM-03-2021-270 – ident: CIT0057 doi: 10.1287/isre.1120.0445 – ident: CIT0035 doi: 10.1093/jcr/ucy068 – ident: CIT0012 doi: 10.1016/j.jbusres.2020.10.016 – ident: CIT0047 doi: 10.1287/mksc.2014.0872 – ident: CIT0043 doi: 10.1007/978-0-387-85820-3_1 – ident: CIT0054 doi: 10.1177/0092070300282008 – ident: CIT0022 doi: 10.1080/07421222.2018.1523564 – ident: CIT0050 doi: 10.25300/MISQ/2014/38.2.02 – ident: CIT0005 doi: 10.1016/j.jretai.2011.10.003 – ident: CIT0020 doi: 10.4324/9781315209302 – ident: CIT0034 doi: 10.1198/000313001317098149 – ident: CIT0028 doi: 10.1080/00913367.2016.1269304 – ident: CIT0042 doi: 10.2307/3094873 – ident: CIT0049 doi: 10.1509/jm.10.0377 – ident: CIT0001 doi: 10.2753/JEC1086-4415160205 – ident: CIT0009 doi: 10.1287/mnsc.1070.0810 – ident: CIT0026 doi: 10.1086/209206 – ident: CIT0052 doi: 10.1287/isre.2019.0861 – ident: CIT0041 doi: 10.1086/208954 – ident: CIT0014 doi: 10.1145/3407190 – ident: CIT0031 doi: 10.1017/iop.2015.13 – ident: CIT0040 doi: 10.1037/0022-3514.37.10.1915 – ident: CIT0023 doi: 10.1016/j.jretai.2014.05.003 – ident: CIT0032 doi: 10.2307/3151549 – ident: CIT0037 doi: 10.1016/j.intmar.2009.02.009 – volume-title: Introduction to mediation, moderation, and conditional process analysis: A regression-based approach year: 2013 ident: CIT0025 – ident: CIT0044 doi: 10.1016/j.dss.2020.113268 – ident: CIT0039 doi: 10.1002/dir.10007 – ident: CIT0030 doi: 10.1002/bdm.724 – ident: CIT0003 – ident: CIT0019 doi: 10.1177/0022242919873901 – ident: CIT0045 doi: 10.1016/j.foodqual.2015.06.004 – ident: CIT0036 doi: 10.1007/978-0-387-78213-3_3 – ident: CIT0010 doi: 10.2753/JEC1086-4415160105 – ident: CIT0024 doi: 10.1287/mksc.19.1.4.15178 – ident: CIT0038 doi: 10.1177/0146167208316691 |
SSID | ssj0018808 |
Score | 2.2999501 |
Snippet | Whereas much research has looked at how recommendation systems influence online purchase intentions, this article illustrates the dual process model by which... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 432 |
SubjectTerms | Avoidance Consumers Decision making Electronic commerce Labels Low and high involvement online purchase intention recommendation label Recommender systems risk avoidance social proof |
Title | A Dual Process Model of the Influence of Recommender Systems on Purchase Intentions in Online Shopping Environments |
URI | https://www.tandfonline.com/doi/abs/10.1080/15332861.2022.2049113 https://www.proquest.com/docview/2827375875 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiFeEFcxGMgPvFUpaezcHiPWqZtGQZCKiBcrdhy100inNX3hJ_CrOY7t1FPHNnhJW1eO235fj885PheE3qdlXYVlpeq2ytijgR96iYwij459zqOUAObKNfBpFk3n9LQIi8HgtxO1tGn5SPy6Ma_kf1CFMcBVZcn-A7L9TWEAngO-cAWE4XovjLPhkcr-MMH-XV-zC3vof2K7j-hyI7D8z65rnK1Rrk4JvqhOULCNdX7Bpo8q1-VHh98Wq8sum2riJMP9RZnVjkXZDrt1rrZ0KTbG8u_F_1ft_cv4Ynm-7INuZsoPKddio2P5F-XS9UcEpItdJT2D8p3WIE58kpawxAsSXYF9JN2xuHDFchA49COOjKXGIaq3a6prDe_sBDp0Ut1ZLTaCT6rS7ijIdrLd-uxx_-wzO56fnbF8UuQP0H4Qx-rIfz-bHv343p9JgaRLdPVd_QVsPljif7hxmWuazrU6uDv7fqfM5E_QYwMczjSlnqKBbJ6hhzYJ4jlaZ1gxCxtm4Y5ZeFVjYBbumaUGHGZhwyy8arBlFt4yCy8brJmFLbOwy6wXaH48yT9OPdOewxMkDVuPcrB-K1DRfSF4kpRlrQoH0Ur4qYiF8IVfByIVoeAVLeU4LCN4ANFQEx6W41iQl2ivWTXyFcIStOBUpCGlQUlrCi_BcJfKmIhUC0lxgKj9KZkwtetVC5ULNjYlbi0CTCHADAIHaNRPu9TFW-6akLo4sbYjc615zMgdcw8tqMzIiDULEjAPwCSPw9e3v_0GPdr-mQ7RXnu1kW9B3W35O8PDP64gprM |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-QwDLaWQQIusMsu4rmbA9cOnSZpmyPiocICQjBI3KLWbQEBHQSdC78eu03RAEIcOFV9OGoTJ7ZT-_sANk1a5jrNGbe1iDwV-NqLizD01MDPstBIGnPeGjg-CZMLdXipLydqYTitkmPosgWKaNZqnty8Gd2lxG2xjxLEIYd3ARdTKZqxcgqmtSFz2IPp4dlhkrz-SyANjVvUVOmxVFfH81lDbyzUG_zSD-t1Y4T2FwC7129zT2774zrr4_M7ZMfvfd9PmHc-qthuleoX_CiqRZjpUuR_w9O22B3TA67IQDCf2p0YlYKcSXHQsZ7wBQ5u7-8btjrhsNHFqBKnzEBF5lM0CfSN5oubSrSwp-L8esSgEVdib6II7w9c7O8NdxLPkTd4KI2uPZVRbJSTA-cjZnGcpiXDyqgcfYMRoo9-GaBBjVmu0mKg05AOpDilzHQ6iFAuQa8aVcUyiIJ8JINGKxWkqlR0SmFdwa5myASDuAKqGzCLDtmcCTbu7MABoHYdarlDrevQFei_ij200B5fCZhJbbB1s6dStgQoVn4hu96pjnWrxJOlcDeSFLBFevUbTf-D2WR4fGSPDk7-r8Ec3ZJNPrFch179OC42yGuqs79uWrwAFpIIjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xRUJ74bHsijc-7DXdNLbzOFZAVZ5CPKS9WbETA6KkFU0v_HpmEhvxEOLAKcpjrGQ8tmecme8D-JvltpB5QbitZRKIKJRBWsZxIHqh1nHGsc9pa-D0LB5ei6P_0mcTTl1aJcXQtgWKaOZqGtyTwvqMuH_kokRpTNFdRLVUAgcs_wHzMVWNdmD-6uJoOHz5lYAGmragqTwgKV_G81lDbxaoN_ClH6brZg0aLIH2b9-mntx3Z7Xumqd3wI7f-rxlWHQeKuu3JrUCc2X1CxZ8gvwqTPtsf4YPuBIDRmxqIza2DF1Jdug5T-gChbYPDw1XHXPI6GxcsXPin8LFkzXp843ds7uKtaCn7PJ2TJARN-zgVQneb7geHFztDQNH3RAYnsk6EBojowLdt9AYnaZ5bglURhQmzExiTGhCG5nMSKMLkZc9mcd4QLOxXMu8lxj-BzrVuCrXgJXoIWUmk0JEubACTzGoK8nRjIle0KyD8P2ljMM1J3qNkeo5-FOvUEUKVU6h69B9EZu0wB5fCWSvjUHVzY6KbelPFP9CdstbjnJzxFRhsJtwDNcSufGNpndh4Xx_oE4Oz4434Sfe4U0yMd-CTv04K7fRZar1jhsUz8KjBzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual+Process+Model+of+the+Influence+of+Recommender+Systems+on+Purchase+Intentions+in+Online+Shopping+Environments&rft.jtitle=Journal+of+Internet+commerce&rft.au=Xu%2C+Lina&rft.au=Roy%2C+Abhijit&rft.au=Niculescu%2C+Mihai&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1533-2861&rft.eissn=1533-287X&rft.volume=22&rft.issue=3&rft.spage=432&rft.epage=453&rft_id=info:doi/10.1080%2F15332861.2022.2049113&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1533-2861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1533-2861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1533-2861&client=summon |