The intrinsic stability of H2B-ubiquitylated nucleosomes and their in vitro assembly/disassembly by histone chaperone NAP1

Apart the gene-regulatory functions as docking sites for histone ‘readers’, some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acce...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 3; p. 129497
Main Author Krajewski, Wladyslaw A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Apart the gene-regulatory functions as docking sites for histone ‘readers’, some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors. We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under ‘physiological’ ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1. H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under ‘physiological’ conditions in vitro. The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation). [Display omitted] •We evaluated stability of H2BK34-ubiquitylated nucleosome at increased temperatures.•H2BK34ub mark increases mobility of only one H2A-H2B independently of dimer acceptors.•The lability of one H2A-H2B dimer is an ‘intrinsic’ property of H2BK34ub nucleosomes.•Despite its dimer-displacement action NAP1 can assembly H2BK34ub nucleosomes in vitro.•This supposes a mechanism for MOF-MSL-independent deposition of H2BK34ub mark.
AbstractList Apart the gene-regulatory functions as docking sites for histone ‘readers’, some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors.We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under ‘physiological’ ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1.H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under ‘physiological’ conditions in vitro.The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation).
Apart the gene-regulatory functions as docking sites for histone ‘readers’, some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors. We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under ‘physiological’ ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1. H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under ‘physiological’ conditions in vitro. The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation). [Display omitted] •We evaluated stability of H2BK34-ubiquitylated nucleosome at increased temperatures.•H2BK34ub mark increases mobility of only one H2A-H2B independently of dimer acceptors.•The lability of one H2A-H2B dimer is an ‘intrinsic’ property of H2BK34ub nucleosomes.•Despite its dimer-displacement action NAP1 can assembly H2BK34ub nucleosomes in vitro.•This supposes a mechanism for MOF-MSL-independent deposition of H2BK34ub mark.
Apart the gene-regulatory functions as docking sites for histone 'readers', some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors. We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under 'physiological' ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1. H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under 'physiological' conditions in vitro. The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation).
Apart the gene-regulatory functions as docking sites for histone 'readers', some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors.BACKGROUNDApart the gene-regulatory functions as docking sites for histone 'readers', some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors.We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under 'physiological' ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1.METHODSWe evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under 'physiological' ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1.H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under 'physiological' conditions in vitro.RESULTSH2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under 'physiological' conditions in vitro.The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation).CONCLUSIONS AND GENERAL SIGNIFICANCEThe increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation).
ArticleNumber 129497
Author Krajewski, Wladyslaw A.
Author_xml – sequence: 1
  givenname: Wladyslaw A.
  surname: Krajewski
  fullname: Krajewski, Wladyslaw A.
  email: wkrajewski@hotmail.com
  organization: N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31785324$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFN0DIRy7Z2o4dxxyQ2gooUgUcytmynQk7q2y8tZ1Ky9OTVVoOHOhcZix9_8ia74ycjHEEQt5ytuaMNxfbtffuF4xrwbhZc2Gk0S_IirdaVC1jzQlZsZrJSvJGnZKznLdsLmXUK3Jac92qWsgV-X23AYpjSThmDDQX53HAcqCxpzfiqpo83k_ze3AFOjpOYYCY4w4ydWNHywYwzXH6gCVF6nKGnR8OFx3mp5n6A91gLvPnadi4PaTj9O3yB39NXvZuyPDmsZ-Tn58_3V3fVLffv3y9vrytQm1UqaRueCM9h14Ir5l3Td8zqQ3rTC870JppqYUygUnBQBqmmTB9q7QSkrcq1Ofk_bJ3n-L9BLnYHeYAw-BGiFO2QmrdCC5V-zxaC1abxgg-o-8e0cnvoLP7hDuXDvbptDMgFyCkmHOC_i_CmT0atFu7GLRHg3YxOMc-_BMLWFzBODtyODwX_riEYb7nA0KyOSCMATpMEIrtIv5_wR_s-7gT
CitedBy_id crossref_primary_10_1134_S1062360420060028
crossref_primary_10_1021_acs_biochem_2c00422
crossref_primary_10_1016_j_bbagrm_2024_195018
crossref_primary_10_3389_fgene_2022_873398
crossref_primary_10_1083_jcb_202408193
Cites_doi 10.1038/nchembio.501
10.1006/jmbi.1995.0606
10.1016/j.molcel.2011.06.015
10.1098/rsob.160090
10.1016/j.jmb.2018.09.014
10.1021/bi1006157
10.1007/BF01674427
10.1016/S0076-6879(03)75002-2
10.1016/j.cell.2006.04.029
10.1073/pnas.0907862106
10.1002/cbic.201600551
10.1128/MCB.19.2.1605
10.1016/0167-4781(94)90009-4
10.1073/pnas.1018308108
10.1021/acs.biochem.6b01252
10.1016/j.sbi.2018.11.006
10.1016/j.pep.2015.02.007
10.1128/MCB.00835-15
10.1016/j.jmb.2010.08.039
10.1016/j.cell.2007.01.030
10.1016/S0076-6879(80)65044-7
10.1016/j.str.2008.12.016
10.1073/pnas.1222198110
10.1021/bi201645c
10.1016/j.sbi.2008.04.003
10.1016/j.molcel.2013.03.012
10.1074/jbc.M112.361824
10.1016/j.biosystems.2017.11.005
10.1021/pr9003739
10.1016/j.abb.2019.03.015
10.3389/fonc.2012.00026
10.1016/j.bpj.2016.10.041
10.1016/j.bbagrm.2011.08.001
10.1101/gad.177238.111
10.1016/j.molcel.2006.03.035
10.1016/j.bbagrm.2014.03.001
10.1016/j.jmb.2004.03.032
10.1021/cb9002255
10.1038/nrm3941
10.1038/nchembio.315
10.1016/j.molcel.2013.01.033
10.1038/emboj.2012.80
10.1021/ja308908p
10.1016/j.bbagrm.2012.04.001
10.1126/science.1085703
10.1016/j.molcel.2011.05.015
10.1016/j.molcel.2012.09.019
10.1038/38444
10.1021/cr500350x
10.1016/j.molcel.2008.04.025
10.1016/j.bbagrm.2012.08.015
10.1093/nar/gky526
10.1016/j.molcel.2014.04.013
10.1002/bies.950120306
10.1016/j.molcel.2010.01.037
10.1021/bi300129b
10.1139/o06-088
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2019.129497
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 31785324
10_1016_j_bbagen_2019_129497
S0304416519302867
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c395t-476164b1ef22b70ba6ff04790d9f4de770747259c0420e4907029f857524185c3
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Tue Aug 05 10:44:07 EDT 2025
Mon Jul 21 09:29:13 EDT 2025
Wed Feb 19 02:31:14 EST 2025
Tue Jul 01 00:22:13 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Fri Feb 23 02:47:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Under “H2A/H2B stability/destabilization”
Chromatin
SDS
DTT
Ubiquitylation
PTM
Hexasomes
PAGE
Ub
bp
BSA
EMSA
Histones
Nucleosomes
EtBr
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-476164b1ef22b70ba6ff04790d9f4de770747259c0420e4907029f857524185c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31785324
PQID 2320396921
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2477621458
proquest_miscellaneous_2320396921
pubmed_primary_31785324
crossref_primary_10_1016_j_bbagen_2019_129497
crossref_citationtrail_10_1016_j_bbagen_2019_129497
elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_129497
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
2020-Mar
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chatterjee, McGinty, Fierz, Muir (bb0170) 2010; 6
Dyer, Edayathumangalam, White, Bao, Chakravarthy, Muthurajan, Luger (bb0250) 2004; 375
Park, Luger (bb0295) 2008; 18
Luger, Mader, Richmond, Sargent, Richmond (bb0005) 1997; 389
McGinty, Kohn, Chatterjee, Chiang, Pratt, Muir (bb0160) 2009; 4
Saavedra (bb0020) 1990; 12
Machida, Sekine, Nishiyama, Horikoshi, Kurumizaka (bb0145) 2016; 6
Venkatesh, Workman (bb0035) 2015; 16
Davies, Lindsey (bb0195) 1994; 1218
Lee, Gibbons, Lee, Nikolovska-Coleska, Dou (bb0240) 2015; 110
Andrews, Chen, Zevin, Stargell, Luger (bb0300) 2010; 37
Vasudevan, Chua, Davey (bb0010) 2010; 403
Wu, Li, Zhou, Qin, Dou (bb0220) 2014; 54
Krajewski, Razin (bb0015) 1993; 18
Hsieh, Kulaeva, Patel, Dyer, Luger, Reinberg, Studitsky (bb0155) 2013; 110
Arimura, Tachiwana, Oda, Sato, Kurumizaka (bb0075) 2012; 51
Das, Tyler (bb0025) 2013; 1819
Fleming, Kao, Hillyer, Pikaart, Osley (bb0150) 2008; 31
Krajewski (bb0105) 2018; 430
Cao, Yan (bb0110) 2012; 2
Prakash, Fournier (bb0045) 2018; 164
Krajewski (bb0090) 2016; 5
Krajewski, Vassiliev (bb0280) 2019; 666
Bowman, Poirier (bb0050) 2015; 115
Wu, Lee, Zhou, Nguyen, Muir, Tan, Dou (bb0215) 2013; 49
Correll, Schubert, Grigoryev (bb0245) 2012; 31
Mao, Kyriss, Hodges, Duan, Morris, Lavine, Topping, Gloss, Wyrick (bb0235) 2016; 44
Lee, Lee (bb0140) 2017; 56
Werner, Ruthenburg (bb0125) 2011; 43
Li, He, Liu, Liu, Tang, Li, Sun, Li, Zhou, Zhu, Bi, Zhou, Zheng, Tian (bb0225) 2017; 18
Rothbart, Strahl (bb0040) 2014; 1839
Zlatanova, Bishop, Victor, Jackson, Van Holde (bb0055) 2009; 17
Krajewski, Vassiliev (bb0265) 2010; 49
Fierz, Kilic, Hieb, Luger, Muir (bb0200) 2012; 134
Kundu, Wang, Roeder (bb0270) 1999; 19
Polach, Widom (bb0095) 1995; 254
Whitcomb, Fierz, McGinty, Holt, Ito, Muir, Allis (bb0175) 2012; 287
Kulaeva, Hsieh, Chang, Luse, Studitsky (bb0085) 2013; 1829
Fierz, Chatterjee, McGinty, Bar-Dagan, Raleigh, Muir (bb0135) 2011; 7
Wyrick, Kyriss, Davis (bb0230) 2012; 1819
Krajewski, Li, Dou (bb0100) 2018; 46
Batta, Zhang, Yen, Goffman, Pugh (bb0190) 2011; 25
Chandrasekharan, Huang, Sun (bb0130) 2009; 106
Thastrom, Bingham, Widom (bb0260) 2004; 338
Pavri, Zhu, Li, Trojer, Mandal, Shilatifard, Reinberg (bb0185) 2006; 125
Wu, Zee, Wang, Garcia, Dou (bb0205) 2011; 43
Lis (bb0255) 1980; 65
Tweedie-Cullen, Reck, Mansuy (bb0210) 2009; 8
Belotserkovskaya, Oh, Bondarenko, Orphanides, Studitsky, Reinberg (bb0180) 2003; 301
Wang, Zhai, Xu, Joo, Jackson, Erdjument-Bromage, Tempst, Xiong, Zhang (bb0065) 2006; 22
Park, Luger (bb0290) 2006; 84
Groth, Rocha, Verreault, Almouzni (bb0080) 2007; 128
Rychkov, Ilatovskiy, Nazarov, Shvetsov, Lebedev, Konev, Isaev-Ivanov, Onufriev (bb0070) 2017; 112
Weake (bb0120) 2014
Soares, Buratowski (bb0165) 2013; 49
Krajewski, Vassiliev (bb0275) 2012; 51
Katan-Khaykovich, Struhl (bb0030) 2011; 108
Armeev, Gribkova, Pospelova, Komarova, Shaytan (bb0060) 2018; 56
Trujillo, Osley (bb0115) 2012; 48
Chen, D’Arcy, Radebaugh, Krzizike, Giebler, Huang, Nyborg, Luger, Stargell (bb0285) 2016; 36
Groth (10.1016/j.bbagen.2019.129497_bb0080) 2007; 128
Kundu (10.1016/j.bbagen.2019.129497_bb0270) 1999; 19
Park (10.1016/j.bbagen.2019.129497_bb0290) 2006; 84
Arimura (10.1016/j.bbagen.2019.129497_bb0075) 2012; 51
Krajewski (10.1016/j.bbagen.2019.129497_bb0275) 2012; 51
Rychkov (10.1016/j.bbagen.2019.129497_bb0070) 2017; 112
Tweedie-Cullen (10.1016/j.bbagen.2019.129497_bb0210) 2009; 8
Thastrom (10.1016/j.bbagen.2019.129497_bb0260) 2004; 338
Lee (10.1016/j.bbagen.2019.129497_bb0240) 2015; 110
Kulaeva (10.1016/j.bbagen.2019.129497_bb0085) 2013; 1829
Mao (10.1016/j.bbagen.2019.129497_bb0235) 2016; 44
Li (10.1016/j.bbagen.2019.129497_bb0225) 2017; 18
Krajewski (10.1016/j.bbagen.2019.129497_bb0015) 1993; 18
Hsieh (10.1016/j.bbagen.2019.129497_bb0155) 2013; 110
Luger (10.1016/j.bbagen.2019.129497_bb0005) 1997; 389
Fierz (10.1016/j.bbagen.2019.129497_bb0135) 2011; 7
Venkatesh (10.1016/j.bbagen.2019.129497_bb0035) 2015; 16
Bowman (10.1016/j.bbagen.2019.129497_bb0050) 2015; 115
Soares (10.1016/j.bbagen.2019.129497_bb0165) 2013; 49
McGinty (10.1016/j.bbagen.2019.129497_bb0160) 2009; 4
Krajewski (10.1016/j.bbagen.2019.129497_bb0265) 2010; 49
Lis (10.1016/j.bbagen.2019.129497_bb0255) 1980; 65
Andrews (10.1016/j.bbagen.2019.129497_bb0300) 2010; 37
Das (10.1016/j.bbagen.2019.129497_bb0025) 2013; 1819
Armeev (10.1016/j.bbagen.2019.129497_bb0060) 2018; 56
Polach (10.1016/j.bbagen.2019.129497_bb0095) 1995; 254
Fierz (10.1016/j.bbagen.2019.129497_bb0200) 2012; 134
Machida (10.1016/j.bbagen.2019.129497_bb0145) 2016; 6
Prakash (10.1016/j.bbagen.2019.129497_bb0045) 2018; 164
Pavri (10.1016/j.bbagen.2019.129497_bb0185) 2006; 125
Katan-Khaykovich (10.1016/j.bbagen.2019.129497_bb0030) 2011; 108
Wu (10.1016/j.bbagen.2019.129497_bb0205) 2011; 43
Saavedra (10.1016/j.bbagen.2019.129497_bb0020) 1990; 12
Belotserkovskaya (10.1016/j.bbagen.2019.129497_bb0180) 2003; 301
Werner (10.1016/j.bbagen.2019.129497_bb0125) 2011; 43
Chatterjee (10.1016/j.bbagen.2019.129497_bb0170) 2010; 6
Vasudevan (10.1016/j.bbagen.2019.129497_bb0010) 2010; 403
Fleming (10.1016/j.bbagen.2019.129497_bb0150) 2008; 31
Wang (10.1016/j.bbagen.2019.129497_bb0065) 2006; 22
Trujillo (10.1016/j.bbagen.2019.129497_bb0115) 2012; 48
Rothbart (10.1016/j.bbagen.2019.129497_bb0040) 2014; 1839
Wyrick (10.1016/j.bbagen.2019.129497_bb0230) 2012; 1819
Dyer (10.1016/j.bbagen.2019.129497_bb0250) 2004; 375
Weake (10.1016/j.bbagen.2019.129497_bb0120) 2014
Lee (10.1016/j.bbagen.2019.129497_bb0140) 2017; 56
Wu (10.1016/j.bbagen.2019.129497_bb0215) 2013; 49
Krajewski (10.1016/j.bbagen.2019.129497_bb0090) 2016; 5
Chen (10.1016/j.bbagen.2019.129497_bb0285) 2016; 36
Wu (10.1016/j.bbagen.2019.129497_bb0220) 2014; 54
Cao (10.1016/j.bbagen.2019.129497_bb0110) 2012; 2
Whitcomb (10.1016/j.bbagen.2019.129497_bb0175) 2012; 287
Zlatanova (10.1016/j.bbagen.2019.129497_bb0055) 2009; 17
Davies (10.1016/j.bbagen.2019.129497_bb0195) 1994; 1218
Correll (10.1016/j.bbagen.2019.129497_bb0245) 2012; 31
Chandrasekharan (10.1016/j.bbagen.2019.129497_bb0130) 2009; 106
Krajewski (10.1016/j.bbagen.2019.129497_bb0105) 2018; 430
Krajewski (10.1016/j.bbagen.2019.129497_bb0280) 2019; 666
Krajewski (10.1016/j.bbagen.2019.129497_bb0100) 2018; 46
Park (10.1016/j.bbagen.2019.129497_bb0295) 2008; 18
Batta (10.1016/j.bbagen.2019.129497_bb0190) 2011; 25
References_xml – volume: 5
  start-page: 492
  year: 2016
  end-page: 501
  ident: bb0090
  article-title: On the role of inter-nucleosomal interactions and intrinsic nucleosome dynamics in chromatin function
  publication-title: Biochem. Biophys. Rep.
– volume: 110
  start-page: 7654
  year: 2013
  end-page: 7659
  ident: bb0155
  article-title: Histone chaperone FACT action during transcription through chromatin by RNA polymerase II
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 115
  start-page: 2274
  year: 2015
  end-page: 2295
  ident: bb0050
  article-title: Post-translational modifications of histones that influence nucleosome dynamics
  publication-title: Chem. Rev.
– volume: 254
  start-page: 130
  year: 1995
  end-page: 149
  ident: bb0095
  article-title: Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation
  publication-title: J. Mol. Biol.
– volume: 134
  start-page: 19548
  year: 2012
  end-page: 19551
  ident: bb0200
  article-title: Stability of nucleosomes containing homogenously ubiquitylated H2A and H2B prepared using semisynthesis
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 282
  year: 2008
  end-page: 289
  ident: bb0295
  article-title: Histone chaperones in nucleosome eviction and histone exchange
  publication-title: Curr. Opin. Struct. Biol.
– volume: 54
  start-page: 920
  year: 2014
  end-page: 931
  ident: bb0220
  article-title: H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb
  publication-title: Mol. Cell
– volume: 19
  start-page: 1605
  year: 1999
  end-page: 1615
  ident: bb0270
  article-title: Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity
  publication-title: Mol. Cell. Biol.
– volume: 4
  start-page: 958
  year: 2009
  end-page: 968
  ident: bb0160
  article-title: Structure-activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B
  publication-title: ACS Chem. Biol.
– volume: 2
  start-page: 26
  year: 2012
  ident: bb0110
  article-title: Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer
  publication-title: Front. Oncol.
– volume: 7
  start-page: 113
  year: 2011
  end-page: 119
  ident: bb0135
  article-title: Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction
  publication-title: Nat. Chem. Biol.
– volume: 56
  start-page: 977
  year: 2017
  end-page: 985
  ident: bb0140
  article-title: Single-molecule investigations on histone H2A-H2B dynamics in the nucleosome
  publication-title: Biochemistry
– start-page: 257
  year: 2014
  end-page: 307
  ident: bb0120
  article-title: Histone ubiquitylation control of gene expression
  publication-title: Fundamentals of Chromatin
– volume: 18
  start-page: 176
  year: 2017
  end-page: 180
  ident: bb0225
  article-title: Chemical synthesis of K34-Ubiquitylated H2B for nucleosome reconstitution and single-particle cryo-electron microscopy structural analysis
  publication-title: Chembiochem
– volume: 49
  start-page: 1019
  year: 2013
  end-page: 1020
  ident: bb0165
  article-title: Histone crosstalk: H2Bub and H3K4 methylation
  publication-title: Mol. Cell
– volume: 1819
  start-page: 892
  year: 2012
  end-page: 901
  ident: bb0230
  article-title: Ascending the nucleosome face: recognition and function of structured domains in the histone H2A-H2B dimer
  publication-title: Biochim. Biophys. Acta
– volume: 108
  start-page: 1296
  year: 2011
  end-page: 1301
  ident: bb0030
  article-title: Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 128
  start-page: 721
  year: 2007
  end-page: 733
  ident: bb0080
  article-title: Chromatin challenges during DNA replication and repair
  publication-title: Cell
– volume: 37
  start-page: 834
  year: 2010
  end-page: 842
  ident: bb0300
  article-title: The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions
  publication-title: Mol. Cell
– volume: 106
  start-page: 16686
  year: 2009
  end-page: 16691
  ident: bb0130
  article-title: Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 301
  start-page: 1090
  year: 2003
  end-page: 1093
  ident: bb0180
  article-title: FACT facilitates transcription-dependent nucleosome alteration
  publication-title: Science
– volume: 6
  start-page: 1
  year: 2016
  end-page: 9
  ident: bb0145
  article-title: Structural and biochemical analyses of monoubiquitinated human histones H2B and H4
  publication-title: Open Biol.
– volume: 1839
  start-page: 627
  year: 2014
  end-page: 643
  ident: bb0040
  article-title: Interpreting the language of histone and DNA modifications
  publication-title: Biochim. Biophys. Acta
– volume: 1819
  start-page: 332
  year: 2013
  end-page: 342
  ident: bb0025
  article-title: Histone exchange and histone modifications during transcription and aging
  publication-title: Biochim. Biophys. Acta
– volume: 17
  start-page: 160
  year: 2009
  end-page: 171
  ident: bb0055
  article-title: The nucleosome family: dynamic and growing
  publication-title: Structure
– volume: 49
  start-page: 6531
  year: 2010
  end-page: 6540
  ident: bb0265
  article-title: The Saccharomyces cerevisiae Swi/Snf complex can catalyze formation of dimeric nucleosome structures in vitro
  publication-title: Biochemistry
– volume: 110
  start-page: 89
  year: 2015
  end-page: 94
  ident: bb0240
  article-title: One-pot refolding of core histones from bacterial inclusion bodies allows rapid reconstitution of histone octamer
  publication-title: Protein Expr. Purif.
– volume: 338
  start-page: 695
  year: 2004
  end-page: 709
  ident: bb0260
  article-title: Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning
  publication-title: J. Mol. Biol.
– volume: 31
  start-page: 2416
  year: 2012
  end-page: 2426
  ident: bb0245
  article-title: Short nucleosome repeats impose rotational modulations on chromatin fibre folding
  publication-title: EMBO J.
– volume: 65
  start-page: 347
  year: 1980
  end-page: 353
  ident: bb0255
  article-title: Fractionation of DNA fragments by polyethylene glycol induced precipitation
  publication-title: Methods Enzymol.
– volume: 125
  start-page: 703
  year: 2006
  end-page: 717
  ident: bb0185
  article-title: Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II
  publication-title: Cell
– volume: 49
  start-page: 1108
  year: 2013
  end-page: 1120
  ident: bb0215
  article-title: ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes
  publication-title: Mol. Cell
– volume: 112
  start-page: 460
  year: 2017
  end-page: 472
  ident: bb0070
  article-title: Partially assembled nucleosome structures at atomic detail
  publication-title: Biophys. J.
– volume: 12
  start-page: 125
  year: 1990
  end-page: 128
  ident: bb0020
  article-title: Environmental stimuli and transcriptional activity generate transient changes in DNA torsional tension
  publication-title: Bioessays
– volume: 43
  start-page: 5
  year: 2011
  end-page: 7
  ident: bb0125
  article-title: The United States of histone ubiquitylation and methylation
  publication-title: Mol. Cell
– volume: 666
  start-page: 22
  year: 2019
  end-page: 30
  ident: bb0280
  article-title: Analysis of histone ubiquitylation by MSL1/MSL2 proteins in vitro
  publication-title: Arch. Biochem. Biophys.
– volume: 18
  start-page: 167
  year: 1993
  end-page: 175
  ident: bb0015
  article-title: DNA-protein interactions and spatial organization of DNA
  publication-title: Mol. Biol. Rep.
– volume: 8
  start-page: 4966
  year: 2009
  end-page: 4982
  ident: bb0210
  article-title: Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain
  publication-title: J. Proteome Res.
– volume: 44
  start-page: 9142
  year: 2016
  end-page: 9152
  ident: bb0235
  article-title: A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT
  publication-title: Nucleic Acids Res.
– volume: 164
  start-page: 49
  year: 2018
  end-page: 59
  ident: bb0045
  article-title: Evidence for the implication of the histone code in building the genome structure
  publication-title: Biosystems
– volume: 22
  start-page: 383
  year: 2006
  end-page: 394
  ident: bb0065
  article-title: Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage
  publication-title: Mol. Cell
– volume: 56
  start-page: 46
  year: 2018
  end-page: 55
  ident: bb0060
  article-title: Linking chromatin composition and structural dynamics at the nucleosome level, Curr
  publication-title: Opin. Struct. Biol.
– volume: 6
  start-page: 267
  year: 2010
  end-page: 269
  ident: bb0170
  article-title: Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation
  publication-title: Nat. Chem. Biol.
– volume: 403
  start-page: 1
  year: 2010
  end-page: 10
  ident: bb0010
  article-title: Crystal structures of nucleosome core particles containing the ’601′ strong positioning sequence
  publication-title: J. Mol. Biol.
– volume: 84
  start-page: 549
  year: 2006
  end-page: 558
  ident: bb0290
  article-title: Structure and function of nucleosome assembly proteins
  publication-title: Biochem. Cell Biol.
– volume: 389
  start-page: 251
  year: 1997
  end-page: 260
  ident: bb0005
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
– volume: 51
  start-page: 3302
  year: 2012
  end-page: 3309
  ident: bb0075
  article-title: Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome
  publication-title: Biochemistry
– volume: 375
  start-page: 23
  year: 2004
  end-page: 44
  ident: bb0250
  article-title: Reconstitution of nucleosome core particles from recombinant histones and DNA
  publication-title: Methods Enzymol.
– volume: 1218
  start-page: 187
  year: 1994
  end-page: 193
  ident: bb0195
  article-title: Histone H2B (and H2A) ubiquitination allows normal histone octamer and core particle reconstitution
  publication-title: Biochim. Biophys. Acta
– volume: 1829
  start-page: 76
  year: 2013
  end-page: 83
  ident: bb0085
  article-title: Mechanism of transcription through a nucleosome by RNA polymerase II
  publication-title: Biochim. Biophys. Acta
– volume: 48
  start-page: 734
  year: 2012
  end-page: 746
  ident: bb0115
  article-title: A role for H2B ubiquitylation in DNA replication
  publication-title: Mol. Cell
– volume: 25
  start-page: 2254
  year: 2011
  end-page: 2265
  ident: bb0190
  article-title: Genome-wide function of H2B ubiquitylation in promoter and genic regions
  publication-title: Genes Dev.
– volume: 287
  start-page: 23718
  year: 2012
  end-page: 23725
  ident: bb0175
  article-title: Histone monoubiquitylation position determines specificity and direction of enzymatic cross-talk with histone methyltransferases Dot1L and PRC2
  publication-title: J. Biol. Chem.
– volume: 46
  start-page: 7631
  year: 2018
  end-page: 7642
  ident: bb0100
  article-title: Effects of histone H2B ubiquitylation on the nucleosome structure and dynamics
  publication-title: Nucleic Acids Res.
– volume: 36
  start-page: 1287
  year: 2016
  end-page: 1296
  ident: bb0285
  article-title: Histone chaperone Nap1 is a major regulator of histone H2A-H2B dynamics at the inducible GAL locus
  publication-title: Mol. Cell. Biol.
– volume: 43
  start-page: 132
  year: 2011
  end-page: 144
  ident: bb0205
  article-title: The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation
  publication-title: Mol. Cell
– volume: 51
  start-page: 4354
  year: 2012
  end-page: 4363
  ident: bb0275
  article-title: Remodeling of nucleosome-dimer particles with yIsw2 promotes their association with ALL-1 SET domain in vitro
  publication-title: Biochemistry
– volume: 430
  start-page: 5002
  year: 2018
  end-page: 5014
  ident: bb0105
  article-title: Effects of DNA superhelical stress on stability of H2B-ubiquitylated nucleosomes
  publication-title: J. Mol. Biol.
– volume: 16
  start-page: 178
  year: 2015
  end-page: 189
  ident: bb0035
  article-title: Histone exchange, chromatin structure and the regulation of transcription
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 31
  start-page: 57
  year: 2008
  end-page: 66
  ident: bb0150
  article-title: H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation
  publication-title: Mol. Cell
– volume: 7
  start-page: 113
  year: 2011
  ident: 10.1016/j.bbagen.2019.129497_bb0135
  article-title: Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.501
– volume: 254
  start-page: 130
  year: 1995
  ident: 10.1016/j.bbagen.2019.129497_bb0095
  article-title: Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1995.0606
– volume: 43
  start-page: 5
  year: 2011
  ident: 10.1016/j.bbagen.2019.129497_bb0125
  article-title: The United States of histone ubiquitylation and methylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.06.015
– volume: 44
  start-page: 9142
  year: 2016
  ident: 10.1016/j.bbagen.2019.129497_bb0235
  article-title: A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.bbagen.2019.129497_bb0145
  article-title: Structural and biochemical analyses of monoubiquitinated human histones H2B and H4
  publication-title: Open Biol.
  doi: 10.1098/rsob.160090
– volume: 430
  start-page: 5002
  year: 2018
  ident: 10.1016/j.bbagen.2019.129497_bb0105
  article-title: Effects of DNA superhelical stress on stability of H2B-ubiquitylated nucleosomes
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.09.014
– volume: 49
  start-page: 6531
  year: 2010
  ident: 10.1016/j.bbagen.2019.129497_bb0265
  article-title: The Saccharomyces cerevisiae Swi/Snf complex can catalyze formation of dimeric nucleosome structures in vitro
  publication-title: Biochemistry
  doi: 10.1021/bi1006157
– volume: 18
  start-page: 167
  year: 1993
  ident: 10.1016/j.bbagen.2019.129497_bb0015
  article-title: DNA-protein interactions and spatial organization of DNA
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/BF01674427
– volume: 375
  start-page: 23
  year: 2004
  ident: 10.1016/j.bbagen.2019.129497_bb0250
  article-title: Reconstitution of nucleosome core particles from recombinant histones and DNA
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(03)75002-2
– volume: 125
  start-page: 703
  year: 2006
  ident: 10.1016/j.bbagen.2019.129497_bb0185
  article-title: Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II
  publication-title: Cell
  doi: 10.1016/j.cell.2006.04.029
– volume: 106
  start-page: 16686
  year: 2009
  ident: 10.1016/j.bbagen.2019.129497_bb0130
  article-title: Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0907862106
– volume: 18
  start-page: 176
  year: 2017
  ident: 10.1016/j.bbagen.2019.129497_bb0225
  article-title: Chemical synthesis of K34-Ubiquitylated H2B for nucleosome reconstitution and single-particle cryo-electron microscopy structural analysis
  publication-title: Chembiochem
  doi: 10.1002/cbic.201600551
– volume: 19
  start-page: 1605
  year: 1999
  ident: 10.1016/j.bbagen.2019.129497_bb0270
  article-title: Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.19.2.1605
– volume: 1218
  start-page: 187
  year: 1994
  ident: 10.1016/j.bbagen.2019.129497_bb0195
  article-title: Histone H2B (and H2A) ubiquitination allows normal histone octamer and core particle reconstitution
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0167-4781(94)90009-4
– volume: 108
  start-page: 1296
  year: 2011
  ident: 10.1016/j.bbagen.2019.129497_bb0030
  article-title: Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1018308108
– volume: 56
  start-page: 977
  year: 2017
  ident: 10.1016/j.bbagen.2019.129497_bb0140
  article-title: Single-molecule investigations on histone H2A-H2B dynamics in the nucleosome
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.6b01252
– volume: 56
  start-page: 46
  year: 2018
  ident: 10.1016/j.bbagen.2019.129497_bb0060
  article-title: Linking chromatin composition and structural dynamics at the nucleosome level, Curr
  publication-title: Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2018.11.006
– volume: 110
  start-page: 89
  year: 2015
  ident: 10.1016/j.bbagen.2019.129497_bb0240
  article-title: One-pot refolding of core histones from bacterial inclusion bodies allows rapid reconstitution of histone octamer
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2015.02.007
– volume: 36
  start-page: 1287
  year: 2016
  ident: 10.1016/j.bbagen.2019.129497_bb0285
  article-title: Histone chaperone Nap1 is a major regulator of histone H2A-H2B dynamics at the inducible GAL locus
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00835-15
– volume: 403
  start-page: 1
  year: 2010
  ident: 10.1016/j.bbagen.2019.129497_bb0010
  article-title: Crystal structures of nucleosome core particles containing the ’601′ strong positioning sequence
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.08.039
– volume: 128
  start-page: 721
  year: 2007
  ident: 10.1016/j.bbagen.2019.129497_bb0080
  article-title: Chromatin challenges during DNA replication and repair
  publication-title: Cell
  doi: 10.1016/j.cell.2007.01.030
– volume: 65
  start-page: 347
  year: 1980
  ident: 10.1016/j.bbagen.2019.129497_bb0255
  article-title: Fractionation of DNA fragments by polyethylene glycol induced precipitation
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(80)65044-7
– volume: 17
  start-page: 160
  year: 2009
  ident: 10.1016/j.bbagen.2019.129497_bb0055
  article-title: The nucleosome family: dynamic and growing
  publication-title: Structure
  doi: 10.1016/j.str.2008.12.016
– volume: 110
  start-page: 7654
  year: 2013
  ident: 10.1016/j.bbagen.2019.129497_bb0155
  article-title: Histone chaperone FACT action during transcription through chromatin by RNA polymerase II
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1222198110
– volume: 51
  start-page: 4354
  year: 2012
  ident: 10.1016/j.bbagen.2019.129497_bb0275
  article-title: Remodeling of nucleosome-dimer particles with yIsw2 promotes their association with ALL-1 SET domain in vitro
  publication-title: Biochemistry
  doi: 10.1021/bi201645c
– volume: 18
  start-page: 282
  year: 2008
  ident: 10.1016/j.bbagen.2019.129497_bb0295
  article-title: Histone chaperones in nucleosome eviction and histone exchange
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2008.04.003
– volume: 49
  start-page: 1019
  year: 2013
  ident: 10.1016/j.bbagen.2019.129497_bb0165
  article-title: Histone crosstalk: H2Bub and H3K4 methylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.03.012
– volume: 287
  start-page: 23718
  year: 2012
  ident: 10.1016/j.bbagen.2019.129497_bb0175
  article-title: Histone monoubiquitylation position determines specificity and direction of enzymatic cross-talk with histone methyltransferases Dot1L and PRC2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.361824
– volume: 164
  start-page: 49
  year: 2018
  ident: 10.1016/j.bbagen.2019.129497_bb0045
  article-title: Evidence for the implication of the histone code in building the genome structure
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2017.11.005
– volume: 8
  start-page: 4966
  year: 2009
  ident: 10.1016/j.bbagen.2019.129497_bb0210
  article-title: Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain
  publication-title: J. Proteome Res.
  doi: 10.1021/pr9003739
– volume: 5
  start-page: 492
  year: 2016
  ident: 10.1016/j.bbagen.2019.129497_bb0090
  article-title: On the role of inter-nucleosomal interactions and intrinsic nucleosome dynamics in chromatin function
  publication-title: Biochem. Biophys. Rep.
– volume: 666
  start-page: 22
  year: 2019
  ident: 10.1016/j.bbagen.2019.129497_bb0280
  article-title: Analysis of histone ubiquitylation by MSL1/MSL2 proteins in vitro
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2019.03.015
– volume: 2
  start-page: 26
  year: 2012
  ident: 10.1016/j.bbagen.2019.129497_bb0110
  article-title: Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2012.00026
– volume: 112
  start-page: 460
  year: 2017
  ident: 10.1016/j.bbagen.2019.129497_bb0070
  article-title: Partially assembled nucleosome structures at atomic detail
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.10.041
– volume: 1819
  start-page: 332
  year: 2013
  ident: 10.1016/j.bbagen.2019.129497_bb0025
  article-title: Histone exchange and histone modifications during transcription and aging
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2011.08.001
– volume: 25
  start-page: 2254
  year: 2011
  ident: 10.1016/j.bbagen.2019.129497_bb0190
  article-title: Genome-wide function of H2B ubiquitylation in promoter and genic regions
  publication-title: Genes Dev.
  doi: 10.1101/gad.177238.111
– volume: 22
  start-page: 383
  year: 2006
  ident: 10.1016/j.bbagen.2019.129497_bb0065
  article-title: Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.03.035
– volume: 1839
  start-page: 627
  year: 2014
  ident: 10.1016/j.bbagen.2019.129497_bb0040
  article-title: Interpreting the language of histone and DNA modifications
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2014.03.001
– volume: 338
  start-page: 695
  year: 2004
  ident: 10.1016/j.bbagen.2019.129497_bb0260
  article-title: Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.03.032
– volume: 4
  start-page: 958
  year: 2009
  ident: 10.1016/j.bbagen.2019.129497_bb0160
  article-title: Structure-activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb9002255
– volume: 16
  start-page: 178
  year: 2015
  ident: 10.1016/j.bbagen.2019.129497_bb0035
  article-title: Histone exchange, chromatin structure and the regulation of transcription
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3941
– volume: 6
  start-page: 267
  year: 2010
  ident: 10.1016/j.bbagen.2019.129497_bb0170
  article-title: Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.315
– volume: 49
  start-page: 1108
  year: 2013
  ident: 10.1016/j.bbagen.2019.129497_bb0215
  article-title: ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.01.033
– volume: 31
  start-page: 2416
  year: 2012
  ident: 10.1016/j.bbagen.2019.129497_bb0245
  article-title: Short nucleosome repeats impose rotational modulations on chromatin fibre folding
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.80
– start-page: 257
  year: 2014
  ident: 10.1016/j.bbagen.2019.129497_bb0120
  article-title: Histone ubiquitylation control of gene expression
– volume: 134
  start-page: 19548
  year: 2012
  ident: 10.1016/j.bbagen.2019.129497_bb0200
  article-title: Stability of nucleosomes containing homogenously ubiquitylated H2A and H2B prepared using semisynthesis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308908p
– volume: 1819
  start-page: 892
  year: 2012
  ident: 10.1016/j.bbagen.2019.129497_bb0230
  article-title: Ascending the nucleosome face: recognition and function of structured domains in the histone H2A-H2B dimer
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2012.04.001
– volume: 301
  start-page: 1090
  year: 2003
  ident: 10.1016/j.bbagen.2019.129497_bb0180
  article-title: FACT facilitates transcription-dependent nucleosome alteration
  publication-title: Science
  doi: 10.1126/science.1085703
– volume: 43
  start-page: 132
  year: 2011
  ident: 10.1016/j.bbagen.2019.129497_bb0205
  article-title: The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.05.015
– volume: 48
  start-page: 734
  year: 2012
  ident: 10.1016/j.bbagen.2019.129497_bb0115
  article-title: A role for H2B ubiquitylation in DNA replication
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.09.019
– volume: 389
  start-page: 251
  year: 1997
  ident: 10.1016/j.bbagen.2019.129497_bb0005
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
  doi: 10.1038/38444
– volume: 115
  start-page: 2274
  year: 2015
  ident: 10.1016/j.bbagen.2019.129497_bb0050
  article-title: Post-translational modifications of histones that influence nucleosome dynamics
  publication-title: Chem. Rev.
  doi: 10.1021/cr500350x
– volume: 31
  start-page: 57
  year: 2008
  ident: 10.1016/j.bbagen.2019.129497_bb0150
  article-title: H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.04.025
– volume: 1829
  start-page: 76
  year: 2013
  ident: 10.1016/j.bbagen.2019.129497_bb0085
  article-title: Mechanism of transcription through a nucleosome by RNA polymerase II
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2012.08.015
– volume: 46
  start-page: 7631
  year: 2018
  ident: 10.1016/j.bbagen.2019.129497_bb0100
  article-title: Effects of histone H2B ubiquitylation on the nucleosome structure and dynamics
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky526
– volume: 54
  start-page: 920
  year: 2014
  ident: 10.1016/j.bbagen.2019.129497_bb0220
  article-title: H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.04.013
– volume: 12
  start-page: 125
  year: 1990
  ident: 10.1016/j.bbagen.2019.129497_bb0020
  article-title: Environmental stimuli and transcriptional activity generate transient changes in DNA torsional tension
  publication-title: Bioessays
  doi: 10.1002/bies.950120306
– volume: 37
  start-page: 834
  year: 2010
  ident: 10.1016/j.bbagen.2019.129497_bb0300
  article-title: The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.01.037
– volume: 51
  start-page: 3302
  year: 2012
  ident: 10.1016/j.bbagen.2019.129497_bb0075
  article-title: Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome
  publication-title: Biochemistry
  doi: 10.1021/bi300129b
– volume: 84
  start-page: 549
  year: 2006
  ident: 10.1016/j.bbagen.2019.129497_bb0290
  article-title: Structure and function of nucleosome assembly proteins
  publication-title: Biochem. Cell Biol.
  doi: 10.1139/o06-088
SSID ssj0000595
Score 2.3291492
Snippet Apart the gene-regulatory functions as docking sites for histone ‘readers’, some histone modifications could directly affect nucleosome structure. The...
Apart the gene-regulatory functions as docking sites for histone 'readers', some histone modifications could directly affect nucleosome structure. The...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129497
SubjectTerms Chromatin
Hexasomes
histone code
Histones
mice
Nucleosomes
Ubiquitylation
Title The intrinsic stability of H2B-ubiquitylated nucleosomes and their in vitro assembly/disassembly by histone chaperone NAP1
URI https://dx.doi.org/10.1016/j.bbagen.2019.129497
https://www.ncbi.nlm.nih.gov/pubmed/31785324
https://www.proquest.com/docview/2320396921
https://www.proquest.com/docview/2477621458
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelpWwvo-u-snVFg72qsT4cRY9paMlaGgZboW_CkiXmkdpd4gyyh_3tu_NHy6BrYW-2kbC4O-l-4u5-R8jHcZJpz03GVIBNrnJhmJHGM58FJWOu0iRiofDFfDS7VGdX6dUWmfa1MJhW2Z397ZnenNbdl2EnzeFNUQy_YFAP4ARCEHCSI6woV0qjlR_9vkvzAPiQtpEExXB0Xz7X5Hg5B5sWWVC5OQLHp5D66X739C_42bih0z3yrMOPdNIu8TnZCuU-2W07Sm72yZNp38DtBfkFJkCLsl4WJaiCAgxsEmE3tIp0Jo7Z2hU_1vC-ALiZ0xKJjatVdR1WNCtz2kQQYDr9WdTLigLGDtdusRnmxap_pm5DG77iMlD_LUPKcXiaTz7zl-Ty9OTrdMa6VgvMS5PWDOQG9ybHQxTC6cRloxiRfD7JTVR50Bp59uGm5GGPJ0HBjToRJmJ3T4HsN16-Itsl_OMNoZG7GGQAsWuvnONOhrGOAVsccx-lGBDZS9j6jocc22EsbJ9w9t22erGoF9vqZUDY7ayblofjkfG6V579y54suIpHZn7odW1BYRg_ycpQrVcWwGcizcgI_sAYpcG9cJWOB-R1ayi36wWoBuBIqLf_vbZ35KnA-36TA3dAtuvlOrwHUFS7w8bqD8nO5NP5bP4H8g0K7A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lNG9jK37yj412KsXW5at6DELK-7ahsFa6JuwZIl6pHabOIXsr9-dPzoG2wp7s40OC53u7nfo9DuAD9MwlzZSeSAcGrkouApUrGxgcydiX4gk9HRR-GSRZmfiy3lyvgPz4S4MlVX2vr_z6a237r9M-tWcXJXl5Bsd6iGcIAiCQTKV92CX2KmSEezODo-yxS-HnLTNV2h8QALDDbq2zMsYtFsiQo3UR4x9gtif_hyh_oZA20h08Age9hCSzbpZPoYdV-3D_a6p5HYf9uZDD7cn8AN3ASurZlVWqA2GSLCthd2y2rOMfwo2prze4PsSEWfBKuI2rtf1pVuzvCpYe4iA4uymbFY1Q5jtLs1yOynK9fDMzJa1lMWVY_YiJ9ZxfFrMvkZP4ezg8-k8C_puC4GNVdIEQqaYOpnIec6NDE2eek_882GhvCiclES1j8mSRTMPncCkOuTKU4NPTgQ4Nn4Gowr_8QKYj4x3scNll1YYE5nYTaV31OU4sj7mY4iHFda2pyKnjhhLPdScfdedXjTpRXd6GUNwK3XVUXHcMV4OytO_bSmN0eIOyfeDrjUqjI5Q8srVm7VG_BnGKlU8-scYITHCRCKZjuF5t1Fu54toDfERFy__e27vYC87PTnWx4eLo1fwgFP635bEvYZRs9q4N4iRGvO2t4GfEBYNnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+intrinsic+stability+of+H2B-ubiquitylated+nucleosomes+and+their+in+vitro+assembly%2Fdisassembly+by+histone+chaperone+NAP1&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Krajewski%2C+Wladyslaw+A&rft.date=2020-03-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=3+p.129497-&rft_id=info:doi/10.1016%2Fj.bbagen.2019.129497&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon