The intrinsic stability of H2B-ubiquitylated nucleosomes and their in vitro assembly/disassembly by histone chaperone NAP1
Apart the gene-regulatory functions as docking sites for histone ‘readers’, some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acce...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 3; p. 129497 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Apart the gene-regulatory functions as docking sites for histone ‘readers’, some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors.
We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under ‘physiological’ ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1.
H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under ‘physiological’ conditions in vitro.
The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation).
[Display omitted]
•We evaluated stability of H2BK34-ubiquitylated nucleosome at increased temperatures.•H2BK34ub mark increases mobility of only one H2A-H2B independently of dimer acceptors.•The lability of one H2A-H2B dimer is an ‘intrinsic’ property of H2BK34ub nucleosomes.•Despite its dimer-displacement action NAP1 can assembly H2BK34ub nucleosomes in vitro.•This supposes a mechanism for MOF-MSL-independent deposition of H2BK34ub mark. |
---|---|
AbstractList | Apart the gene-regulatory functions as docking sites for histone ‘readers’, some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors.We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under ‘physiological’ ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1.H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under ‘physiological’ conditions in vitro.The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation). Apart the gene-regulatory functions as docking sites for histone ‘readers’, some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors. We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under ‘physiological’ ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1. H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under ‘physiological’ conditions in vitro. The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation). [Display omitted] •We evaluated stability of H2BK34-ubiquitylated nucleosome at increased temperatures.•H2BK34ub mark increases mobility of only one H2A-H2B independently of dimer acceptors.•The lability of one H2A-H2B dimer is an ‘intrinsic’ property of H2BK34ub nucleosomes.•Despite its dimer-displacement action NAP1 can assembly H2BK34ub nucleosomes in vitro.•This supposes a mechanism for MOF-MSL-independent deposition of H2BK34ub mark. Apart the gene-regulatory functions as docking sites for histone 'readers', some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors. We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under 'physiological' ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1. H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under 'physiological' conditions in vitro. The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation). Apart the gene-regulatory functions as docking sites for histone 'readers', some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors.BACKGROUNDApart the gene-regulatory functions as docking sites for histone 'readers', some histone modifications could directly affect nucleosome structure. The H2BK34-ubiquitylation deposited by MOF-MSL complex, increases nucleosome dynamics in vitro and promotes donation of one H2A/H2B dimer to histone acceptors.We evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under 'physiological' ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1.METHODSWe evaluated temperature-depended stability of H2BK34-ubiquitylated nucleosomes under 'physiological' ionic conditions in the presence or absence of histone acceptor, and examined assembly and disassembly of ubiquitylated nucleosomes in vitro by recombinant mouse NAP1.H2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under 'physiological' conditions in vitro.RESULTSH2BK34ub modification is sufficient to promote selective eviction of only one H2A/H2B dimer independently of histone-binding agents. Despite the robust H2A/H2B dimer-displacement effect of mNAP1 with the H2BK34ub (but not unmodified) nucleosomes, NAP1 could assemble symmetrically- or asymmetrically ubiquitylated nucleosomes under 'physiological' conditions in vitro.The increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation).CONCLUSIONS AND GENERAL SIGNIFICANCEThe increased mobility of one nucleosomal H2A/H2B dimer is an intrinsic nucleosome destabilizing property of H2BK34 ubiquitylation that has the intranucleosome bases. The ability of NAP to reasonably efficiently assemble H2BK34-ubiquitylated nucleosomes supposes a potential mechanism for deposition/distribution of H2BK34ub mark in the MOF-MSL independent manner (for example, during histone dimer exchange upon transcription elongation). |
ArticleNumber | 129497 |
Author | Krajewski, Wladyslaw A. |
Author_xml | – sequence: 1 givenname: Wladyslaw A. surname: Krajewski fullname: Krajewski, Wladyslaw A. email: wkrajewski@hotmail.com organization: N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31785324$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFN0DIRy7Z2o4dxxyQ2gooUgUcytmynQk7q2y8tZ1Ky9OTVVoOHOhcZix9_8ia74ycjHEEQt5ytuaMNxfbtffuF4xrwbhZc2Gk0S_IirdaVC1jzQlZsZrJSvJGnZKznLdsLmXUK3Jac92qWsgV-X23AYpjSThmDDQX53HAcqCxpzfiqpo83k_ze3AFOjpOYYCY4w4ydWNHywYwzXH6gCVF6nKGnR8OFx3mp5n6A91gLvPnadi4PaTj9O3yB39NXvZuyPDmsZ-Tn58_3V3fVLffv3y9vrytQm1UqaRueCM9h14Ir5l3Td8zqQ3rTC870JppqYUygUnBQBqmmTB9q7QSkrcq1Ofk_bJ3n-L9BLnYHeYAw-BGiFO2QmrdCC5V-zxaC1abxgg-o-8e0cnvoLP7hDuXDvbptDMgFyCkmHOC_i_CmT0atFu7GLRHg3YxOMc-_BMLWFzBODtyODwX_riEYb7nA0KyOSCMATpMEIrtIv5_wR_s-7gT |
CitedBy_id | crossref_primary_10_1134_S1062360420060028 crossref_primary_10_1021_acs_biochem_2c00422 crossref_primary_10_1016_j_bbagrm_2024_195018 crossref_primary_10_3389_fgene_2022_873398 crossref_primary_10_1083_jcb_202408193 |
Cites_doi | 10.1038/nchembio.501 10.1006/jmbi.1995.0606 10.1016/j.molcel.2011.06.015 10.1098/rsob.160090 10.1016/j.jmb.2018.09.014 10.1021/bi1006157 10.1007/BF01674427 10.1016/S0076-6879(03)75002-2 10.1016/j.cell.2006.04.029 10.1073/pnas.0907862106 10.1002/cbic.201600551 10.1128/MCB.19.2.1605 10.1016/0167-4781(94)90009-4 10.1073/pnas.1018308108 10.1021/acs.biochem.6b01252 10.1016/j.sbi.2018.11.006 10.1016/j.pep.2015.02.007 10.1128/MCB.00835-15 10.1016/j.jmb.2010.08.039 10.1016/j.cell.2007.01.030 10.1016/S0076-6879(80)65044-7 10.1016/j.str.2008.12.016 10.1073/pnas.1222198110 10.1021/bi201645c 10.1016/j.sbi.2008.04.003 10.1016/j.molcel.2013.03.012 10.1074/jbc.M112.361824 10.1016/j.biosystems.2017.11.005 10.1021/pr9003739 10.1016/j.abb.2019.03.015 10.3389/fonc.2012.00026 10.1016/j.bpj.2016.10.041 10.1016/j.bbagrm.2011.08.001 10.1101/gad.177238.111 10.1016/j.molcel.2006.03.035 10.1016/j.bbagrm.2014.03.001 10.1016/j.jmb.2004.03.032 10.1021/cb9002255 10.1038/nrm3941 10.1038/nchembio.315 10.1016/j.molcel.2013.01.033 10.1038/emboj.2012.80 10.1021/ja308908p 10.1016/j.bbagrm.2012.04.001 10.1126/science.1085703 10.1016/j.molcel.2011.05.015 10.1016/j.molcel.2012.09.019 10.1038/38444 10.1021/cr500350x 10.1016/j.molcel.2008.04.025 10.1016/j.bbagrm.2012.08.015 10.1093/nar/gky526 10.1016/j.molcel.2014.04.013 10.1002/bies.950120306 10.1016/j.molcel.2010.01.037 10.1021/bi300129b 10.1139/o06-088 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2019.129497 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 31785324 10_1016_j_bbagen_2019_129497 S0304416519302867 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-476164b1ef22b70ba6ff04790d9f4de770747259c0420e4907029f857524185c3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Tue Aug 05 10:44:07 EDT 2025 Mon Jul 21 09:29:13 EDT 2025 Wed Feb 19 02:31:14 EST 2025 Tue Jul 01 00:22:13 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Fri Feb 23 02:47:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Under “H2A/H2B stability/destabilization” Chromatin SDS DTT Ubiquitylation PTM Hexasomes PAGE Ub bp BSA EMSA Histones Nucleosomes EtBr |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-476164b1ef22b70ba6ff04790d9f4de770747259c0420e4907029f857524185c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31785324 |
PQID | 2320396921 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2477621458 proquest_miscellaneous_2320396921 pubmed_primary_31785324 crossref_primary_10_1016_j_bbagen_2019_129497 crossref_citationtrail_10_1016_j_bbagen_2019_129497 elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_129497 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 2020-Mar 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chatterjee, McGinty, Fierz, Muir (bb0170) 2010; 6 Dyer, Edayathumangalam, White, Bao, Chakravarthy, Muthurajan, Luger (bb0250) 2004; 375 Park, Luger (bb0295) 2008; 18 Luger, Mader, Richmond, Sargent, Richmond (bb0005) 1997; 389 McGinty, Kohn, Chatterjee, Chiang, Pratt, Muir (bb0160) 2009; 4 Saavedra (bb0020) 1990; 12 Machida, Sekine, Nishiyama, Horikoshi, Kurumizaka (bb0145) 2016; 6 Venkatesh, Workman (bb0035) 2015; 16 Davies, Lindsey (bb0195) 1994; 1218 Lee, Gibbons, Lee, Nikolovska-Coleska, Dou (bb0240) 2015; 110 Andrews, Chen, Zevin, Stargell, Luger (bb0300) 2010; 37 Vasudevan, Chua, Davey (bb0010) 2010; 403 Wu, Li, Zhou, Qin, Dou (bb0220) 2014; 54 Krajewski, Razin (bb0015) 1993; 18 Hsieh, Kulaeva, Patel, Dyer, Luger, Reinberg, Studitsky (bb0155) 2013; 110 Arimura, Tachiwana, Oda, Sato, Kurumizaka (bb0075) 2012; 51 Das, Tyler (bb0025) 2013; 1819 Fleming, Kao, Hillyer, Pikaart, Osley (bb0150) 2008; 31 Krajewski (bb0105) 2018; 430 Cao, Yan (bb0110) 2012; 2 Prakash, Fournier (bb0045) 2018; 164 Krajewski (bb0090) 2016; 5 Krajewski, Vassiliev (bb0280) 2019; 666 Bowman, Poirier (bb0050) 2015; 115 Wu, Lee, Zhou, Nguyen, Muir, Tan, Dou (bb0215) 2013; 49 Correll, Schubert, Grigoryev (bb0245) 2012; 31 Mao, Kyriss, Hodges, Duan, Morris, Lavine, Topping, Gloss, Wyrick (bb0235) 2016; 44 Lee, Lee (bb0140) 2017; 56 Werner, Ruthenburg (bb0125) 2011; 43 Li, He, Liu, Liu, Tang, Li, Sun, Li, Zhou, Zhu, Bi, Zhou, Zheng, Tian (bb0225) 2017; 18 Rothbart, Strahl (bb0040) 2014; 1839 Zlatanova, Bishop, Victor, Jackson, Van Holde (bb0055) 2009; 17 Krajewski, Vassiliev (bb0265) 2010; 49 Fierz, Kilic, Hieb, Luger, Muir (bb0200) 2012; 134 Kundu, Wang, Roeder (bb0270) 1999; 19 Polach, Widom (bb0095) 1995; 254 Whitcomb, Fierz, McGinty, Holt, Ito, Muir, Allis (bb0175) 2012; 287 Kulaeva, Hsieh, Chang, Luse, Studitsky (bb0085) 2013; 1829 Fierz, Chatterjee, McGinty, Bar-Dagan, Raleigh, Muir (bb0135) 2011; 7 Wyrick, Kyriss, Davis (bb0230) 2012; 1819 Krajewski, Li, Dou (bb0100) 2018; 46 Batta, Zhang, Yen, Goffman, Pugh (bb0190) 2011; 25 Chandrasekharan, Huang, Sun (bb0130) 2009; 106 Thastrom, Bingham, Widom (bb0260) 2004; 338 Pavri, Zhu, Li, Trojer, Mandal, Shilatifard, Reinberg (bb0185) 2006; 125 Wu, Zee, Wang, Garcia, Dou (bb0205) 2011; 43 Lis (bb0255) 1980; 65 Tweedie-Cullen, Reck, Mansuy (bb0210) 2009; 8 Belotserkovskaya, Oh, Bondarenko, Orphanides, Studitsky, Reinberg (bb0180) 2003; 301 Wang, Zhai, Xu, Joo, Jackson, Erdjument-Bromage, Tempst, Xiong, Zhang (bb0065) 2006; 22 Park, Luger (bb0290) 2006; 84 Groth, Rocha, Verreault, Almouzni (bb0080) 2007; 128 Rychkov, Ilatovskiy, Nazarov, Shvetsov, Lebedev, Konev, Isaev-Ivanov, Onufriev (bb0070) 2017; 112 Weake (bb0120) 2014 Soares, Buratowski (bb0165) 2013; 49 Krajewski, Vassiliev (bb0275) 2012; 51 Katan-Khaykovich, Struhl (bb0030) 2011; 108 Armeev, Gribkova, Pospelova, Komarova, Shaytan (bb0060) 2018; 56 Trujillo, Osley (bb0115) 2012; 48 Chen, D’Arcy, Radebaugh, Krzizike, Giebler, Huang, Nyborg, Luger, Stargell (bb0285) 2016; 36 Groth (10.1016/j.bbagen.2019.129497_bb0080) 2007; 128 Kundu (10.1016/j.bbagen.2019.129497_bb0270) 1999; 19 Park (10.1016/j.bbagen.2019.129497_bb0290) 2006; 84 Arimura (10.1016/j.bbagen.2019.129497_bb0075) 2012; 51 Krajewski (10.1016/j.bbagen.2019.129497_bb0275) 2012; 51 Rychkov (10.1016/j.bbagen.2019.129497_bb0070) 2017; 112 Tweedie-Cullen (10.1016/j.bbagen.2019.129497_bb0210) 2009; 8 Thastrom (10.1016/j.bbagen.2019.129497_bb0260) 2004; 338 Lee (10.1016/j.bbagen.2019.129497_bb0240) 2015; 110 Kulaeva (10.1016/j.bbagen.2019.129497_bb0085) 2013; 1829 Mao (10.1016/j.bbagen.2019.129497_bb0235) 2016; 44 Li (10.1016/j.bbagen.2019.129497_bb0225) 2017; 18 Krajewski (10.1016/j.bbagen.2019.129497_bb0015) 1993; 18 Hsieh (10.1016/j.bbagen.2019.129497_bb0155) 2013; 110 Luger (10.1016/j.bbagen.2019.129497_bb0005) 1997; 389 Fierz (10.1016/j.bbagen.2019.129497_bb0135) 2011; 7 Venkatesh (10.1016/j.bbagen.2019.129497_bb0035) 2015; 16 Bowman (10.1016/j.bbagen.2019.129497_bb0050) 2015; 115 Soares (10.1016/j.bbagen.2019.129497_bb0165) 2013; 49 McGinty (10.1016/j.bbagen.2019.129497_bb0160) 2009; 4 Krajewski (10.1016/j.bbagen.2019.129497_bb0265) 2010; 49 Lis (10.1016/j.bbagen.2019.129497_bb0255) 1980; 65 Andrews (10.1016/j.bbagen.2019.129497_bb0300) 2010; 37 Das (10.1016/j.bbagen.2019.129497_bb0025) 2013; 1819 Armeev (10.1016/j.bbagen.2019.129497_bb0060) 2018; 56 Polach (10.1016/j.bbagen.2019.129497_bb0095) 1995; 254 Fierz (10.1016/j.bbagen.2019.129497_bb0200) 2012; 134 Machida (10.1016/j.bbagen.2019.129497_bb0145) 2016; 6 Prakash (10.1016/j.bbagen.2019.129497_bb0045) 2018; 164 Pavri (10.1016/j.bbagen.2019.129497_bb0185) 2006; 125 Katan-Khaykovich (10.1016/j.bbagen.2019.129497_bb0030) 2011; 108 Wu (10.1016/j.bbagen.2019.129497_bb0205) 2011; 43 Saavedra (10.1016/j.bbagen.2019.129497_bb0020) 1990; 12 Belotserkovskaya (10.1016/j.bbagen.2019.129497_bb0180) 2003; 301 Werner (10.1016/j.bbagen.2019.129497_bb0125) 2011; 43 Chatterjee (10.1016/j.bbagen.2019.129497_bb0170) 2010; 6 Vasudevan (10.1016/j.bbagen.2019.129497_bb0010) 2010; 403 Fleming (10.1016/j.bbagen.2019.129497_bb0150) 2008; 31 Wang (10.1016/j.bbagen.2019.129497_bb0065) 2006; 22 Trujillo (10.1016/j.bbagen.2019.129497_bb0115) 2012; 48 Rothbart (10.1016/j.bbagen.2019.129497_bb0040) 2014; 1839 Wyrick (10.1016/j.bbagen.2019.129497_bb0230) 2012; 1819 Dyer (10.1016/j.bbagen.2019.129497_bb0250) 2004; 375 Weake (10.1016/j.bbagen.2019.129497_bb0120) 2014 Lee (10.1016/j.bbagen.2019.129497_bb0140) 2017; 56 Wu (10.1016/j.bbagen.2019.129497_bb0215) 2013; 49 Krajewski (10.1016/j.bbagen.2019.129497_bb0090) 2016; 5 Chen (10.1016/j.bbagen.2019.129497_bb0285) 2016; 36 Wu (10.1016/j.bbagen.2019.129497_bb0220) 2014; 54 Cao (10.1016/j.bbagen.2019.129497_bb0110) 2012; 2 Whitcomb (10.1016/j.bbagen.2019.129497_bb0175) 2012; 287 Zlatanova (10.1016/j.bbagen.2019.129497_bb0055) 2009; 17 Davies (10.1016/j.bbagen.2019.129497_bb0195) 1994; 1218 Correll (10.1016/j.bbagen.2019.129497_bb0245) 2012; 31 Chandrasekharan (10.1016/j.bbagen.2019.129497_bb0130) 2009; 106 Krajewski (10.1016/j.bbagen.2019.129497_bb0105) 2018; 430 Krajewski (10.1016/j.bbagen.2019.129497_bb0280) 2019; 666 Krajewski (10.1016/j.bbagen.2019.129497_bb0100) 2018; 46 Park (10.1016/j.bbagen.2019.129497_bb0295) 2008; 18 Batta (10.1016/j.bbagen.2019.129497_bb0190) 2011; 25 |
References_xml | – volume: 5 start-page: 492 year: 2016 end-page: 501 ident: bb0090 article-title: On the role of inter-nucleosomal interactions and intrinsic nucleosome dynamics in chromatin function publication-title: Biochem. Biophys. Rep. – volume: 110 start-page: 7654 year: 2013 end-page: 7659 ident: bb0155 article-title: Histone chaperone FACT action during transcription through chromatin by RNA polymerase II publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 115 start-page: 2274 year: 2015 end-page: 2295 ident: bb0050 article-title: Post-translational modifications of histones that influence nucleosome dynamics publication-title: Chem. Rev. – volume: 254 start-page: 130 year: 1995 end-page: 149 ident: bb0095 article-title: Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation publication-title: J. Mol. Biol. – volume: 134 start-page: 19548 year: 2012 end-page: 19551 ident: bb0200 article-title: Stability of nucleosomes containing homogenously ubiquitylated H2A and H2B prepared using semisynthesis publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 282 year: 2008 end-page: 289 ident: bb0295 article-title: Histone chaperones in nucleosome eviction and histone exchange publication-title: Curr. Opin. Struct. Biol. – volume: 54 start-page: 920 year: 2014 end-page: 931 ident: bb0220 article-title: H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb publication-title: Mol. Cell – volume: 19 start-page: 1605 year: 1999 end-page: 1615 ident: bb0270 article-title: Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity publication-title: Mol. Cell. Biol. – volume: 4 start-page: 958 year: 2009 end-page: 968 ident: bb0160 article-title: Structure-activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B publication-title: ACS Chem. Biol. – volume: 2 start-page: 26 year: 2012 ident: bb0110 article-title: Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer publication-title: Front. Oncol. – volume: 7 start-page: 113 year: 2011 end-page: 119 ident: bb0135 article-title: Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction publication-title: Nat. Chem. Biol. – volume: 56 start-page: 977 year: 2017 end-page: 985 ident: bb0140 article-title: Single-molecule investigations on histone H2A-H2B dynamics in the nucleosome publication-title: Biochemistry – start-page: 257 year: 2014 end-page: 307 ident: bb0120 article-title: Histone ubiquitylation control of gene expression publication-title: Fundamentals of Chromatin – volume: 18 start-page: 176 year: 2017 end-page: 180 ident: bb0225 article-title: Chemical synthesis of K34-Ubiquitylated H2B for nucleosome reconstitution and single-particle cryo-electron microscopy structural analysis publication-title: Chembiochem – volume: 49 start-page: 1019 year: 2013 end-page: 1020 ident: bb0165 article-title: Histone crosstalk: H2Bub and H3K4 methylation publication-title: Mol. Cell – volume: 1819 start-page: 892 year: 2012 end-page: 901 ident: bb0230 article-title: Ascending the nucleosome face: recognition and function of structured domains in the histone H2A-H2B dimer publication-title: Biochim. Biophys. Acta – volume: 108 start-page: 1296 year: 2011 end-page: 1301 ident: bb0030 article-title: Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 128 start-page: 721 year: 2007 end-page: 733 ident: bb0080 article-title: Chromatin challenges during DNA replication and repair publication-title: Cell – volume: 37 start-page: 834 year: 2010 end-page: 842 ident: bb0300 article-title: The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions publication-title: Mol. Cell – volume: 106 start-page: 16686 year: 2009 end-page: 16691 ident: bb0130 article-title: Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 301 start-page: 1090 year: 2003 end-page: 1093 ident: bb0180 article-title: FACT facilitates transcription-dependent nucleosome alteration publication-title: Science – volume: 6 start-page: 1 year: 2016 end-page: 9 ident: bb0145 article-title: Structural and biochemical analyses of monoubiquitinated human histones H2B and H4 publication-title: Open Biol. – volume: 1839 start-page: 627 year: 2014 end-page: 643 ident: bb0040 article-title: Interpreting the language of histone and DNA modifications publication-title: Biochim. Biophys. Acta – volume: 1819 start-page: 332 year: 2013 end-page: 342 ident: bb0025 article-title: Histone exchange and histone modifications during transcription and aging publication-title: Biochim. Biophys. Acta – volume: 17 start-page: 160 year: 2009 end-page: 171 ident: bb0055 article-title: The nucleosome family: dynamic and growing publication-title: Structure – volume: 49 start-page: 6531 year: 2010 end-page: 6540 ident: bb0265 article-title: The Saccharomyces cerevisiae Swi/Snf complex can catalyze formation of dimeric nucleosome structures in vitro publication-title: Biochemistry – volume: 110 start-page: 89 year: 2015 end-page: 94 ident: bb0240 article-title: One-pot refolding of core histones from bacterial inclusion bodies allows rapid reconstitution of histone octamer publication-title: Protein Expr. Purif. – volume: 338 start-page: 695 year: 2004 end-page: 709 ident: bb0260 article-title: Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning publication-title: J. Mol. Biol. – volume: 31 start-page: 2416 year: 2012 end-page: 2426 ident: bb0245 article-title: Short nucleosome repeats impose rotational modulations on chromatin fibre folding publication-title: EMBO J. – volume: 65 start-page: 347 year: 1980 end-page: 353 ident: bb0255 article-title: Fractionation of DNA fragments by polyethylene glycol induced precipitation publication-title: Methods Enzymol. – volume: 125 start-page: 703 year: 2006 end-page: 717 ident: bb0185 article-title: Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II publication-title: Cell – volume: 49 start-page: 1108 year: 2013 end-page: 1120 ident: bb0215 article-title: ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes publication-title: Mol. Cell – volume: 112 start-page: 460 year: 2017 end-page: 472 ident: bb0070 article-title: Partially assembled nucleosome structures at atomic detail publication-title: Biophys. J. – volume: 12 start-page: 125 year: 1990 end-page: 128 ident: bb0020 article-title: Environmental stimuli and transcriptional activity generate transient changes in DNA torsional tension publication-title: Bioessays – volume: 43 start-page: 5 year: 2011 end-page: 7 ident: bb0125 article-title: The United States of histone ubiquitylation and methylation publication-title: Mol. Cell – volume: 666 start-page: 22 year: 2019 end-page: 30 ident: bb0280 article-title: Analysis of histone ubiquitylation by MSL1/MSL2 proteins in vitro publication-title: Arch. Biochem. Biophys. – volume: 18 start-page: 167 year: 1993 end-page: 175 ident: bb0015 article-title: DNA-protein interactions and spatial organization of DNA publication-title: Mol. Biol. Rep. – volume: 8 start-page: 4966 year: 2009 end-page: 4982 ident: bb0210 article-title: Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain publication-title: J. Proteome Res. – volume: 44 start-page: 9142 year: 2016 end-page: 9152 ident: bb0235 article-title: A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT publication-title: Nucleic Acids Res. – volume: 164 start-page: 49 year: 2018 end-page: 59 ident: bb0045 article-title: Evidence for the implication of the histone code in building the genome structure publication-title: Biosystems – volume: 22 start-page: 383 year: 2006 end-page: 394 ident: bb0065 article-title: Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage publication-title: Mol. Cell – volume: 56 start-page: 46 year: 2018 end-page: 55 ident: bb0060 article-title: Linking chromatin composition and structural dynamics at the nucleosome level, Curr publication-title: Opin. Struct. Biol. – volume: 6 start-page: 267 year: 2010 end-page: 269 ident: bb0170 article-title: Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation publication-title: Nat. Chem. Biol. – volume: 403 start-page: 1 year: 2010 end-page: 10 ident: bb0010 article-title: Crystal structures of nucleosome core particles containing the ’601′ strong positioning sequence publication-title: J. Mol. Biol. – volume: 84 start-page: 549 year: 2006 end-page: 558 ident: bb0290 article-title: Structure and function of nucleosome assembly proteins publication-title: Biochem. Cell Biol. – volume: 389 start-page: 251 year: 1997 end-page: 260 ident: bb0005 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature – volume: 51 start-page: 3302 year: 2012 end-page: 3309 ident: bb0075 article-title: Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome publication-title: Biochemistry – volume: 375 start-page: 23 year: 2004 end-page: 44 ident: bb0250 article-title: Reconstitution of nucleosome core particles from recombinant histones and DNA publication-title: Methods Enzymol. – volume: 1218 start-page: 187 year: 1994 end-page: 193 ident: bb0195 article-title: Histone H2B (and H2A) ubiquitination allows normal histone octamer and core particle reconstitution publication-title: Biochim. Biophys. Acta – volume: 1829 start-page: 76 year: 2013 end-page: 83 ident: bb0085 article-title: Mechanism of transcription through a nucleosome by RNA polymerase II publication-title: Biochim. Biophys. Acta – volume: 48 start-page: 734 year: 2012 end-page: 746 ident: bb0115 article-title: A role for H2B ubiquitylation in DNA replication publication-title: Mol. Cell – volume: 25 start-page: 2254 year: 2011 end-page: 2265 ident: bb0190 article-title: Genome-wide function of H2B ubiquitylation in promoter and genic regions publication-title: Genes Dev. – volume: 287 start-page: 23718 year: 2012 end-page: 23725 ident: bb0175 article-title: Histone monoubiquitylation position determines specificity and direction of enzymatic cross-talk with histone methyltransferases Dot1L and PRC2 publication-title: J. Biol. Chem. – volume: 46 start-page: 7631 year: 2018 end-page: 7642 ident: bb0100 article-title: Effects of histone H2B ubiquitylation on the nucleosome structure and dynamics publication-title: Nucleic Acids Res. – volume: 36 start-page: 1287 year: 2016 end-page: 1296 ident: bb0285 article-title: Histone chaperone Nap1 is a major regulator of histone H2A-H2B dynamics at the inducible GAL locus publication-title: Mol. Cell. Biol. – volume: 43 start-page: 132 year: 2011 end-page: 144 ident: bb0205 article-title: The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation publication-title: Mol. Cell – volume: 51 start-page: 4354 year: 2012 end-page: 4363 ident: bb0275 article-title: Remodeling of nucleosome-dimer particles with yIsw2 promotes their association with ALL-1 SET domain in vitro publication-title: Biochemistry – volume: 430 start-page: 5002 year: 2018 end-page: 5014 ident: bb0105 article-title: Effects of DNA superhelical stress on stability of H2B-ubiquitylated nucleosomes publication-title: J. Mol. Biol. – volume: 16 start-page: 178 year: 2015 end-page: 189 ident: bb0035 article-title: Histone exchange, chromatin structure and the regulation of transcription publication-title: Nat. Rev. Mol. Cell Biol. – volume: 31 start-page: 57 year: 2008 end-page: 66 ident: bb0150 article-title: H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation publication-title: Mol. Cell – volume: 7 start-page: 113 year: 2011 ident: 10.1016/j.bbagen.2019.129497_bb0135 article-title: Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.501 – volume: 254 start-page: 130 year: 1995 ident: 10.1016/j.bbagen.2019.129497_bb0095 article-title: Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1995.0606 – volume: 43 start-page: 5 year: 2011 ident: 10.1016/j.bbagen.2019.129497_bb0125 article-title: The United States of histone ubiquitylation and methylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.06.015 – volume: 44 start-page: 9142 year: 2016 ident: 10.1016/j.bbagen.2019.129497_bb0235 article-title: A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT publication-title: Nucleic Acids Res. – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.bbagen.2019.129497_bb0145 article-title: Structural and biochemical analyses of monoubiquitinated human histones H2B and H4 publication-title: Open Biol. doi: 10.1098/rsob.160090 – volume: 430 start-page: 5002 year: 2018 ident: 10.1016/j.bbagen.2019.129497_bb0105 article-title: Effects of DNA superhelical stress on stability of H2B-ubiquitylated nucleosomes publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2018.09.014 – volume: 49 start-page: 6531 year: 2010 ident: 10.1016/j.bbagen.2019.129497_bb0265 article-title: The Saccharomyces cerevisiae Swi/Snf complex can catalyze formation of dimeric nucleosome structures in vitro publication-title: Biochemistry doi: 10.1021/bi1006157 – volume: 18 start-page: 167 year: 1993 ident: 10.1016/j.bbagen.2019.129497_bb0015 article-title: DNA-protein interactions and spatial organization of DNA publication-title: Mol. Biol. Rep. doi: 10.1007/BF01674427 – volume: 375 start-page: 23 year: 2004 ident: 10.1016/j.bbagen.2019.129497_bb0250 article-title: Reconstitution of nucleosome core particles from recombinant histones and DNA publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(03)75002-2 – volume: 125 start-page: 703 year: 2006 ident: 10.1016/j.bbagen.2019.129497_bb0185 article-title: Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II publication-title: Cell doi: 10.1016/j.cell.2006.04.029 – volume: 106 start-page: 16686 year: 2009 ident: 10.1016/j.bbagen.2019.129497_bb0130 article-title: Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0907862106 – volume: 18 start-page: 176 year: 2017 ident: 10.1016/j.bbagen.2019.129497_bb0225 article-title: Chemical synthesis of K34-Ubiquitylated H2B for nucleosome reconstitution and single-particle cryo-electron microscopy structural analysis publication-title: Chembiochem doi: 10.1002/cbic.201600551 – volume: 19 start-page: 1605 year: 1999 ident: 10.1016/j.bbagen.2019.129497_bb0270 article-title: Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.2.1605 – volume: 1218 start-page: 187 year: 1994 ident: 10.1016/j.bbagen.2019.129497_bb0195 article-title: Histone H2B (and H2A) ubiquitination allows normal histone octamer and core particle reconstitution publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4781(94)90009-4 – volume: 108 start-page: 1296 year: 2011 ident: 10.1016/j.bbagen.2019.129497_bb0030 article-title: Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1018308108 – volume: 56 start-page: 977 year: 2017 ident: 10.1016/j.bbagen.2019.129497_bb0140 article-title: Single-molecule investigations on histone H2A-H2B dynamics in the nucleosome publication-title: Biochemistry doi: 10.1021/acs.biochem.6b01252 – volume: 56 start-page: 46 year: 2018 ident: 10.1016/j.bbagen.2019.129497_bb0060 article-title: Linking chromatin composition and structural dynamics at the nucleosome level, Curr publication-title: Opin. Struct. Biol. doi: 10.1016/j.sbi.2018.11.006 – volume: 110 start-page: 89 year: 2015 ident: 10.1016/j.bbagen.2019.129497_bb0240 article-title: One-pot refolding of core histones from bacterial inclusion bodies allows rapid reconstitution of histone octamer publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2015.02.007 – volume: 36 start-page: 1287 year: 2016 ident: 10.1016/j.bbagen.2019.129497_bb0285 article-title: Histone chaperone Nap1 is a major regulator of histone H2A-H2B dynamics at the inducible GAL locus publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00835-15 – volume: 403 start-page: 1 year: 2010 ident: 10.1016/j.bbagen.2019.129497_bb0010 article-title: Crystal structures of nucleosome core particles containing the ’601′ strong positioning sequence publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.08.039 – volume: 128 start-page: 721 year: 2007 ident: 10.1016/j.bbagen.2019.129497_bb0080 article-title: Chromatin challenges during DNA replication and repair publication-title: Cell doi: 10.1016/j.cell.2007.01.030 – volume: 65 start-page: 347 year: 1980 ident: 10.1016/j.bbagen.2019.129497_bb0255 article-title: Fractionation of DNA fragments by polyethylene glycol induced precipitation publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(80)65044-7 – volume: 17 start-page: 160 year: 2009 ident: 10.1016/j.bbagen.2019.129497_bb0055 article-title: The nucleosome family: dynamic and growing publication-title: Structure doi: 10.1016/j.str.2008.12.016 – volume: 110 start-page: 7654 year: 2013 ident: 10.1016/j.bbagen.2019.129497_bb0155 article-title: Histone chaperone FACT action during transcription through chromatin by RNA polymerase II publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1222198110 – volume: 51 start-page: 4354 year: 2012 ident: 10.1016/j.bbagen.2019.129497_bb0275 article-title: Remodeling of nucleosome-dimer particles with yIsw2 promotes their association with ALL-1 SET domain in vitro publication-title: Biochemistry doi: 10.1021/bi201645c – volume: 18 start-page: 282 year: 2008 ident: 10.1016/j.bbagen.2019.129497_bb0295 article-title: Histone chaperones in nucleosome eviction and histone exchange publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2008.04.003 – volume: 49 start-page: 1019 year: 2013 ident: 10.1016/j.bbagen.2019.129497_bb0165 article-title: Histone crosstalk: H2Bub and H3K4 methylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.03.012 – volume: 287 start-page: 23718 year: 2012 ident: 10.1016/j.bbagen.2019.129497_bb0175 article-title: Histone monoubiquitylation position determines specificity and direction of enzymatic cross-talk with histone methyltransferases Dot1L and PRC2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.361824 – volume: 164 start-page: 49 year: 2018 ident: 10.1016/j.bbagen.2019.129497_bb0045 article-title: Evidence for the implication of the histone code in building the genome structure publication-title: Biosystems doi: 10.1016/j.biosystems.2017.11.005 – volume: 8 start-page: 4966 year: 2009 ident: 10.1016/j.bbagen.2019.129497_bb0210 article-title: Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain publication-title: J. Proteome Res. doi: 10.1021/pr9003739 – volume: 5 start-page: 492 year: 2016 ident: 10.1016/j.bbagen.2019.129497_bb0090 article-title: On the role of inter-nucleosomal interactions and intrinsic nucleosome dynamics in chromatin function publication-title: Biochem. Biophys. Rep. – volume: 666 start-page: 22 year: 2019 ident: 10.1016/j.bbagen.2019.129497_bb0280 article-title: Analysis of histone ubiquitylation by MSL1/MSL2 proteins in vitro publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2019.03.015 – volume: 2 start-page: 26 year: 2012 ident: 10.1016/j.bbagen.2019.129497_bb0110 article-title: Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer publication-title: Front. Oncol. doi: 10.3389/fonc.2012.00026 – volume: 112 start-page: 460 year: 2017 ident: 10.1016/j.bbagen.2019.129497_bb0070 article-title: Partially assembled nucleosome structures at atomic detail publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.10.041 – volume: 1819 start-page: 332 year: 2013 ident: 10.1016/j.bbagen.2019.129497_bb0025 article-title: Histone exchange and histone modifications during transcription and aging publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2011.08.001 – volume: 25 start-page: 2254 year: 2011 ident: 10.1016/j.bbagen.2019.129497_bb0190 article-title: Genome-wide function of H2B ubiquitylation in promoter and genic regions publication-title: Genes Dev. doi: 10.1101/gad.177238.111 – volume: 22 start-page: 383 year: 2006 ident: 10.1016/j.bbagen.2019.129497_bb0065 article-title: Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.03.035 – volume: 1839 start-page: 627 year: 2014 ident: 10.1016/j.bbagen.2019.129497_bb0040 article-title: Interpreting the language of histone and DNA modifications publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2014.03.001 – volume: 338 start-page: 695 year: 2004 ident: 10.1016/j.bbagen.2019.129497_bb0260 article-title: Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.03.032 – volume: 4 start-page: 958 year: 2009 ident: 10.1016/j.bbagen.2019.129497_bb0160 article-title: Structure-activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B publication-title: ACS Chem. Biol. doi: 10.1021/cb9002255 – volume: 16 start-page: 178 year: 2015 ident: 10.1016/j.bbagen.2019.129497_bb0035 article-title: Histone exchange, chromatin structure and the regulation of transcription publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3941 – volume: 6 start-page: 267 year: 2010 ident: 10.1016/j.bbagen.2019.129497_bb0170 article-title: Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.315 – volume: 49 start-page: 1108 year: 2013 ident: 10.1016/j.bbagen.2019.129497_bb0215 article-title: ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.01.033 – volume: 31 start-page: 2416 year: 2012 ident: 10.1016/j.bbagen.2019.129497_bb0245 article-title: Short nucleosome repeats impose rotational modulations on chromatin fibre folding publication-title: EMBO J. doi: 10.1038/emboj.2012.80 – start-page: 257 year: 2014 ident: 10.1016/j.bbagen.2019.129497_bb0120 article-title: Histone ubiquitylation control of gene expression – volume: 134 start-page: 19548 year: 2012 ident: 10.1016/j.bbagen.2019.129497_bb0200 article-title: Stability of nucleosomes containing homogenously ubiquitylated H2A and H2B prepared using semisynthesis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308908p – volume: 1819 start-page: 892 year: 2012 ident: 10.1016/j.bbagen.2019.129497_bb0230 article-title: Ascending the nucleosome face: recognition and function of structured domains in the histone H2A-H2B dimer publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2012.04.001 – volume: 301 start-page: 1090 year: 2003 ident: 10.1016/j.bbagen.2019.129497_bb0180 article-title: FACT facilitates transcription-dependent nucleosome alteration publication-title: Science doi: 10.1126/science.1085703 – volume: 43 start-page: 132 year: 2011 ident: 10.1016/j.bbagen.2019.129497_bb0205 article-title: The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.05.015 – volume: 48 start-page: 734 year: 2012 ident: 10.1016/j.bbagen.2019.129497_bb0115 article-title: A role for H2B ubiquitylation in DNA replication publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.09.019 – volume: 389 start-page: 251 year: 1997 ident: 10.1016/j.bbagen.2019.129497_bb0005 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature doi: 10.1038/38444 – volume: 115 start-page: 2274 year: 2015 ident: 10.1016/j.bbagen.2019.129497_bb0050 article-title: Post-translational modifications of histones that influence nucleosome dynamics publication-title: Chem. Rev. doi: 10.1021/cr500350x – volume: 31 start-page: 57 year: 2008 ident: 10.1016/j.bbagen.2019.129497_bb0150 article-title: H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.04.025 – volume: 1829 start-page: 76 year: 2013 ident: 10.1016/j.bbagen.2019.129497_bb0085 article-title: Mechanism of transcription through a nucleosome by RNA polymerase II publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2012.08.015 – volume: 46 start-page: 7631 year: 2018 ident: 10.1016/j.bbagen.2019.129497_bb0100 article-title: Effects of histone H2B ubiquitylation on the nucleosome structure and dynamics publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky526 – volume: 54 start-page: 920 year: 2014 ident: 10.1016/j.bbagen.2019.129497_bb0220 article-title: H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.04.013 – volume: 12 start-page: 125 year: 1990 ident: 10.1016/j.bbagen.2019.129497_bb0020 article-title: Environmental stimuli and transcriptional activity generate transient changes in DNA torsional tension publication-title: Bioessays doi: 10.1002/bies.950120306 – volume: 37 start-page: 834 year: 2010 ident: 10.1016/j.bbagen.2019.129497_bb0300 article-title: The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.01.037 – volume: 51 start-page: 3302 year: 2012 ident: 10.1016/j.bbagen.2019.129497_bb0075 article-title: Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome publication-title: Biochemistry doi: 10.1021/bi300129b – volume: 84 start-page: 549 year: 2006 ident: 10.1016/j.bbagen.2019.129497_bb0290 article-title: Structure and function of nucleosome assembly proteins publication-title: Biochem. Cell Biol. doi: 10.1139/o06-088 |
SSID | ssj0000595 |
Score | 2.3291492 |
Snippet | Apart the gene-regulatory functions as docking sites for histone ‘readers’, some histone modifications could directly affect nucleosome structure. The... Apart the gene-regulatory functions as docking sites for histone 'readers', some histone modifications could directly affect nucleosome structure. The... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129497 |
SubjectTerms | Chromatin Hexasomes histone code Histones mice Nucleosomes Ubiquitylation |
Title | The intrinsic stability of H2B-ubiquitylated nucleosomes and their in vitro assembly/disassembly by histone chaperone NAP1 |
URI | https://dx.doi.org/10.1016/j.bbagen.2019.129497 https://www.ncbi.nlm.nih.gov/pubmed/31785324 https://www.proquest.com/docview/2320396921 https://www.proquest.com/docview/2477621458 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelpWwvo-u-snVFg72qsT4cRY9paMlaGgZboW_CkiXmkdpd4gyyh_3tu_NHy6BrYW-2kbC4O-l-4u5-R8jHcZJpz03GVIBNrnJhmJHGM58FJWOu0iRiofDFfDS7VGdX6dUWmfa1MJhW2Z397ZnenNbdl2EnzeFNUQy_YFAP4ARCEHCSI6woV0qjlR_9vkvzAPiQtpEExXB0Xz7X5Hg5B5sWWVC5OQLHp5D66X739C_42bih0z3yrMOPdNIu8TnZCuU-2W07Sm72yZNp38DtBfkFJkCLsl4WJaiCAgxsEmE3tIp0Jo7Z2hU_1vC-ALiZ0xKJjatVdR1WNCtz2kQQYDr9WdTLigLGDtdusRnmxap_pm5DG77iMlD_LUPKcXiaTz7zl-Ty9OTrdMa6VgvMS5PWDOQG9ybHQxTC6cRloxiRfD7JTVR50Bp59uGm5GGPJ0HBjToRJmJ3T4HsN16-Itsl_OMNoZG7GGQAsWuvnONOhrGOAVsccx-lGBDZS9j6jocc22EsbJ9w9t22erGoF9vqZUDY7ayblofjkfG6V579y54suIpHZn7odW1BYRg_ycpQrVcWwGcizcgI_sAYpcG9cJWOB-R1ayi36wWoBuBIqLf_vbZ35KnA-36TA3dAtuvlOrwHUFS7w8bqD8nO5NP5bP4H8g0K7A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lNG9jK37yj412KsXW5at6DELK-7ahsFa6JuwZIl6pHabOIXsr9-dPzoG2wp7s40OC53u7nfo9DuAD9MwlzZSeSAcGrkouApUrGxgcydiX4gk9HRR-GSRZmfiy3lyvgPz4S4MlVX2vr_z6a237r9M-tWcXJXl5Bsd6iGcIAiCQTKV92CX2KmSEezODo-yxS-HnLTNV2h8QALDDbq2zMsYtFsiQo3UR4x9gtif_hyh_oZA20h08Age9hCSzbpZPoYdV-3D_a6p5HYf9uZDD7cn8AN3ASurZlVWqA2GSLCthd2y2rOMfwo2prze4PsSEWfBKuI2rtf1pVuzvCpYe4iA4uymbFY1Q5jtLs1yOynK9fDMzJa1lMWVY_YiJ9ZxfFrMvkZP4ezg8-k8C_puC4GNVdIEQqaYOpnIec6NDE2eek_882GhvCiclES1j8mSRTMPncCkOuTKU4NPTgQ4Nn4Gowr_8QKYj4x3scNll1YYE5nYTaV31OU4sj7mY4iHFda2pyKnjhhLPdScfdedXjTpRXd6GUNwK3XVUXHcMV4OytO_bSmN0eIOyfeDrjUqjI5Q8srVm7VG_BnGKlU8-scYITHCRCKZjuF5t1Fu54toDfERFy__e27vYC87PTnWx4eLo1fwgFP635bEvYZRs9q4N4iRGvO2t4GfEBYNnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+intrinsic+stability+of+H2B-ubiquitylated+nucleosomes+and+their+in+vitro+assembly%2Fdisassembly+by+histone+chaperone+NAP1&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Krajewski%2C+Wladyslaw+A&rft.date=2020-03-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=3+p.129497-&rft_id=info:doi/10.1016%2Fj.bbagen.2019.129497&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |