Alteration of the groove width of DNA induced by the multimodal hydrogen bonding of denaturants with DNA bases in its grooves affects their stability

Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understan...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 3; p. 129498
Main Authors Sarkar, Sunipa, Singh, Prashant Chandra
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2020
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2019.129498

Cover

Loading…
Abstract Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood. In this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change. It has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm+ forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm+ with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm+ than urea. The distinct hydrogen bonding capability of Gdm+ and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm+ decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA. Our study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules. [Display omitted] •GdmCl and urea intrude into groove region of DNA by striping surrounding water•The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other.•The interaction of Gdm+ decreases the width of the minor and major groove of DNA.•The interaction of urea marginally increase the minor groove width of DNA
AbstractList Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood. In this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change. It has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm+ forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm+ with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm+ than urea. The distinct hydrogen bonding capability of Gdm+ and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm+ decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA. Our study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules. [Display omitted] •GdmCl and urea intrude into groove region of DNA by striping surrounding water•The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other.•The interaction of Gdm+ decreases the width of the minor and major groove of DNA.•The interaction of urea marginally increase the minor groove width of DNA
Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood.In this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change.It has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm⁺ and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm⁺ forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm⁺ with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm⁺ than urea. The distinct hydrogen bonding capability of Gdm⁺ and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm⁺ decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA.Our study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules.
Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood. In this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change. It has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm than urea. The distinct hydrogen bonding capability of Gdm and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA. Our study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules.
Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood.BACKGROUNDDenaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood.In this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change.METHODSIn this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change.It has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm+ forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm+ with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm+ than urea. The distinct hydrogen bonding capability of Gdm+ and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm+ decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA.RESULTS AND CONCLUSIONIt has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm+ forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm+ with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm+ than urea. The distinct hydrogen bonding capability of Gdm+ and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm+ decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA.Our study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules.GENERAL SIGNIFICANCEOur study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules.
ArticleNumber 129498
Author Sarkar, Sunipa
Singh, Prashant Chandra
Author_xml – sequence: 1
  givenname: Sunipa
  surname: Sarkar
  fullname: Sarkar, Sunipa
– sequence: 2
  givenname: Prashant Chandra
  surname: Singh
  fullname: Singh, Prashant Chandra
  email: sppcs@iacs.res.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31785326$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAYRi1URKeFN0DISzYZfEucsEAalatUwQbWlq8zHiV2sZ1W8yC8L05TWLCg3lj-db5jy98FOAsxWABeYrTFCHdvjlul5N6GLUF42GIysKF_Aja456TpEerOwAZRxBqGu_YcXOR8RHW1Q_sMnFPM-5aSbgN-7cZikyw-BhgdLAcL9ynGWwvvvCmHZfb-6w76YGZtDVSne2Sax-KnaOQIDyeTYn0GVDEYH_ZLwtggy5xkKLlqqmVRKJltriLo63S9I0PpnNX1XKU-wVyk8qMvp-fgqZNjti8e9kvw4-OH71efm-tvn75c7a4bTYe2NFS6jlLWGc6Ybo2WmCCL-9ZJxZTlwzC0lGulqUOKoxYR5pQmXLqWczI4Ti_B69V7k-LP2eYiJp-1HUcZbJyzIIzzjmBGhsdRShDtMcGooq8e0FlN1oib5CeZTuLPr1eArYBOMedk3V8EI7GUK45iLVcs5Yq13Bp7-09M-3JfXUnSj4-F361hW__z1tsksvY21FJ9qhUIE_3_Bb8BZL3C5g
CitedBy_id crossref_primary_10_1016_j_csbj_2022_05_037
crossref_primary_10_1016_j_seppur_2024_129788
crossref_primary_10_1021_acs_jpcb_2c08265
crossref_primary_10_1039_D3CP04060G
crossref_primary_10_1631_jzus_B2200634
crossref_primary_10_1039_D0CP01548B
crossref_primary_10_1016_j_bbagen_2020_129735
crossref_primary_10_3390_ijms23158547
crossref_primary_10_1016_j_clim_2021_108848
Cites_doi 10.1590/S1678-77572007000300002
10.1006/jmbi.1998.1994
10.1002/anie.201701420
10.1093/bioinformatics/btv190
10.1016/0079-6107(92)90007-S
10.1021/jp8030336
10.1093/nar/gkg680
10.1073/pnas.83.16.5948
10.1021/acs.jpcb.6b06325
10.1039/b822719e
10.1021/bi00063a009
10.1073/pnas.78.4.2179
10.1021/nl101262u
10.1021/ja3031505
10.1073/pnas.1315453111
10.1021/bi047823b
10.1021/acs.jpcb.7b11928
10.1073/pnas.0930122100
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1021/bi00769a018
10.1021/acs.jpcb.5b11823
10.1016/0022-2836(81)90009-7
10.1093/nar/2.4.477
10.1021/jz4021475
10.1021/jp003020w
10.1021/ja0753546
10.1021/ja01128a060
10.1016/S0006-3495(98)77686-6
10.1529/biophysj.106.097782
10.1021/ja406019s
10.1016/j.ijbiomac.2018.01.053
10.1021/acs.biochem.6b00309
10.1039/c0cp00602e
10.1073/pnas.96.7.3906
10.1038/nrg1455
10.1021/jp512414f
10.1021/ja304519d
10.1021/bi00127a010
10.1016/j.bpj.2018.02.013
10.1016/S0021-9258(18)96519-1
10.1073/pnas.79.19.5798
10.1063/1.328693
10.1016/S0734-9750(97)00003-7
10.1093/nar/29.24.5121
10.1063/1.1768938
10.1529/biophysj.107.125799
10.1002/jcc.20145
10.1021/jp030534x
10.1021/jp406647b
10.1080/14686996.2016.1243000
10.1016/0378-1119(93)90051-4
10.1016/S0006-3495(98)77503-4
10.1021/acs.accounts.6b00581
10.1128/IAI.01950-14
10.1016/j.polymer.2008.01.027
10.1073/pnas.69.12.3805
10.1021/jacs.8b12444
10.1093/nar/28.17.3379
10.1016/0006-291X(90)91270-3
10.1093/nar/gkp026
10.1002/marc.201300411
10.1093/nar/gku499
10.1021/j100308a038
10.1021/acs.jpcb.5b02939
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2019.129498
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 31785326
10_1016_j_bbagen_2019_129498
S0304416519302879
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-3af63346d744c5dca120e185fab4be7999537cbc3f0b705024fbc27af57729f73
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri Jul 11 10:21:23 EDT 2025
Fri Jul 11 00:25:33 EDT 2025
Wed Feb 19 02:31:14 EST 2025
Tue Jul 01 00:22:13 EDT 2025
Thu Apr 24 22:53:14 EDT 2025
Fri Feb 23 02:47:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Guanidinium chloride
Urea
Melting temperature
Molecular dynamic simulation
DNA
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-3af63346d744c5dca120e185fab4be7999537cbc3f0b705024fbc27af57729f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31785326
PQID 2320381210
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2477621429
proquest_miscellaneous_2320381210
pubmed_primary_31785326
crossref_primary_10_1016_j_bbagen_2019_129498
crossref_citationtrail_10_1016_j_bbagen_2019_129498
elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_129498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
2020-Mar
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yoon, Thirumalai, Hyeon (bb0130) 2013; 135
Xiong, Zhou, Wu, Zhu, Chen, Tan (bb0065) 2013; 34
Mishra, Ekka, Maiti (bb0280) 2016; 120
Nakano, Tateishi-Karimata, Tanaka, Sugimoto (bb0325) 2014; 118
Grayling, Sandman, Reeve (bb0090) 1996
Pabbathi, Samanta (bb0175) 2015; 119
Dumont, Monari (bb0055) 2013; 4
Wang, Hu, Liu, Luo (bb0070) 2017; 50
Hédoux, Krenzlin, Paccou, Guinet, Flament, Siepmann (bb0340) 2010; 12
Chandran, Ghoshdastidar, Senapati (bb0185) 2012; 134
Kumar, Grubmuller (bb0265) 2015; 31
Bennion, Daggett (bb0330) 2003; 100
Korenberg, Croyle, Cox (bb0010) 1987; 41
Lindahl, Nyberg (bb0095) 1972; 11
Perez, Marchan, Svozil, Sponer, Cheatham, Laughton, Orozco (bb0195) 2007; 92
Thomas (bb0270) 1993; 135
Tateishi-Karimata, Sugimoto (bb0320) 2014; 42
Cheng, Pettitt (bb0100) 1992; 58
Jobling, Gill (bb0020) 2004; 5
Mark, Nilsson (bb0200) 2001; 105
Bedell, Edmondson, Shriver (bb0080) 2005; 44
Parui, Manna, Jana (bb0125) 2016; 120
Hou, Lin, Yuann, Lin, Wang, Kan Ls (bb0300) 2001; 29
Van der Spoel, Hess, Vvan Buuren, Meulenhoff, Sijbers, Feenstra, Vvan Drunen, Berendsen (bb0190) 2016
Ueda, Zouzumi, Maruyama, Nakano, Sugimoto, Miyoshi (bb0110) 2016; 17
Smith, Berendsen, van Gunsteren (bb0230) 2004; 108
Harries, May, Gelbart, Ben-Shaul (bb0085) 1998; 75
Jha, Marqusee (bb0335) 2014; 111
Schneider, Patel, Berman (bb0295) 1998; 75
Deng, Bloomfield, Benevides, Thomas (bb0310) 2000; 28
Kasavajhala, Bikkina, Patil, MacKerell, Priyakumar (bb0135) 2015; 119
Weerasinghe, Smith (bb0220) 2004; 121
Zhai, Cui, Yang (bb0040) 1997; 15
Ahmed, Kaushik, Chaudhary, Kukreti (bb0050) 2018; 111
Tanious, Veal, Buczak, Ratmeyer, Wilson (bb0285) 1992; 31
Hess, Bekker, Berendsen, Fraaije (bb0235) 1997; 18
Berendsen, Grigera, Straatsma (bb0240) 1987; 91
Parrinello, Rahman (bb0245) 1981; 52
Mondal, Samajdar, Mukherjee, Bhattacharyya, Bagchi (bb0030) 2018; 122
Gannon, Larsson, Greer, Thompson (bb0215) 2008; 112
Pérez, Luque, Orozco (bb0180) 2007; 129
Camilloni, Rocco, Eberini, Gianazza, Broglia, Tiana (bb0115) 2008; 94
Pohl, Jovin, Baehr, Holbrook (bb0160) 1972; 69
Padroni, Withers, Taladriz-Sender, Reichenbach, Parkinson, Burley (bb0315) 2019; 141
Seeman (bb0060) 2010; 10
Lu, Olson (bb0260) 2003; 31
Oprzeska-Zingrebe, Smiatek (bb0140) 2018; 114
El Hassan, Calladine (bb0255) 1998; 282
Eriksson, Kim, Kubista, Norden (bb0155) 1993; 32
Frenkel, Smit (bb0250) 2001
Patra, Anders, Erwin, Winter (bb0105) 2017; 56
Xia, Das, Shakhnovich, Zhou (bb0120) 2012; 134
Hoare, Kohane (bb0075) 2008; 49
Kawahara, Tanford (bb0210) 1966; 241
Baliban, Michael, Shammassian, Mudakha, Khan, Cocklin, Zentner, Latimer, Bouillaut, Hunter, Marx, Sardesai, Welles, Jacobson, Weiner, Kutzler (bb0025) 2014; 82
Drew, Dickerson (bb0170) 1981; 151
Wang, Wolf, Caldwell, Kollman, Case (bb0205) 2004; 26
Feuerstein, Pattabiraman, Marton (bb0305) 1986; 83
Wang, Takabe, Bidlingmaier, Ill, Verma (bb0035) 1999; 96
Kypr, Kejnovská, Renčiuk, Vorlíčková (bb0275) 2009; 37
Barcellona, Cardiel, Gratton (bb0150) 1990; 170
da Silva, Sales-Peres, de Oliveira, de Oliveira, Sales-Peres (bb0015) 2007; 15
Drew, Wing, Takano, Broka, Tanaka, Itakura, Dickerson (bb0165) 1981; 78
Liu, Liu (bb0045) 2009
Lomedico (bb0005) 1982; 79
Gosting, Akeley (bb0225) 1952; 74
Parodi, Kendall, Nicolini (bb0290) 1975; 2
Suresh, Padhi, Patil, Priyakumar (bb0145) 2016; 55
Kawahara (10.1016/j.bbagen.2019.129498_bb0210) 1966; 241
Wang (10.1016/j.bbagen.2019.129498_bb0070) 2017; 50
Suresh (10.1016/j.bbagen.2019.129498_bb0145) 2016; 55
Xiong (10.1016/j.bbagen.2019.129498_bb0065) 2013; 34
El Hassan (10.1016/j.bbagen.2019.129498_bb0255) 1998; 282
Eriksson (10.1016/j.bbagen.2019.129498_bb0155) 1993; 32
Yoon (10.1016/j.bbagen.2019.129498_bb0130) 2013; 135
Bedell (10.1016/j.bbagen.2019.129498_bb0080) 2005; 44
Dumont (10.1016/j.bbagen.2019.129498_bb0055) 2013; 4
Tateishi-Karimata (10.1016/j.bbagen.2019.129498_bb0320) 2014; 42
Mark (10.1016/j.bbagen.2019.129498_bb0200) 2001; 105
Tanious (10.1016/j.bbagen.2019.129498_bb0285) 1992; 31
da Silva (10.1016/j.bbagen.2019.129498_bb0015) 2007; 15
Lindahl (10.1016/j.bbagen.2019.129498_bb0095) 1972; 11
Pohl (10.1016/j.bbagen.2019.129498_bb0160) 1972; 69
Parodi (10.1016/j.bbagen.2019.129498_bb0290) 1975; 2
Wang (10.1016/j.bbagen.2019.129498_bb0035) 1999; 96
Schneider (10.1016/j.bbagen.2019.129498_bb0295) 1998; 75
Pabbathi (10.1016/j.bbagen.2019.129498_bb0175) 2015; 119
Hou (10.1016/j.bbagen.2019.129498_bb0300) 2001; 29
Deng (10.1016/j.bbagen.2019.129498_bb0310) 2000; 28
Nakano (10.1016/j.bbagen.2019.129498_bb0325) 2014; 118
Padroni (10.1016/j.bbagen.2019.129498_bb0315) 2019; 141
Baliban (10.1016/j.bbagen.2019.129498_bb0025) 2014; 82
Hoare (10.1016/j.bbagen.2019.129498_bb0075) 2008; 49
Smith (10.1016/j.bbagen.2019.129498_bb0230) 2004; 108
Drew (10.1016/j.bbagen.2019.129498_bb0165) 1981; 78
Seeman (10.1016/j.bbagen.2019.129498_bb0060) 2010; 10
Grayling (10.1016/j.bbagen.2019.129498_bb0090) 1996
Kypr (10.1016/j.bbagen.2019.129498_bb0275) 2009; 37
Wang (10.1016/j.bbagen.2019.129498_bb0205) 2004; 26
Mishra (10.1016/j.bbagen.2019.129498_bb0280) 2016; 120
Korenberg (10.1016/j.bbagen.2019.129498_bb0010) 1987; 41
Bennion (10.1016/j.bbagen.2019.129498_bb0330) 2003; 100
Parui (10.1016/j.bbagen.2019.129498_bb0125) 2016; 120
Frenkel (10.1016/j.bbagen.2019.129498_bb0250) 2001
Chandran (10.1016/j.bbagen.2019.129498_bb0185) 2012; 134
Feuerstein (10.1016/j.bbagen.2019.129498_bb0305) 1986; 83
Berendsen (10.1016/j.bbagen.2019.129498_bb0240) 1987; 91
Harries (10.1016/j.bbagen.2019.129498_bb0085) 1998; 75
Jobling (10.1016/j.bbagen.2019.129498_bb0020) 2004; 5
Perez (10.1016/j.bbagen.2019.129498_bb0195) 2007; 92
Jha (10.1016/j.bbagen.2019.129498_bb0335) 2014; 111
Mondal (10.1016/j.bbagen.2019.129498_bb0030) 2018; 122
Xia (10.1016/j.bbagen.2019.129498_bb0120) 2012; 134
Ahmed (10.1016/j.bbagen.2019.129498_bb0050) 2018; 111
Parrinello (10.1016/j.bbagen.2019.129498_bb0245) 1981; 52
Gannon (10.1016/j.bbagen.2019.129498_bb0215) 2008; 112
Weerasinghe (10.1016/j.bbagen.2019.129498_bb0220) 2004; 121
Camilloni (10.1016/j.bbagen.2019.129498_bb0115) 2008; 94
Kasavajhala (10.1016/j.bbagen.2019.129498_bb0135) 2015; 119
Hess (10.1016/j.bbagen.2019.129498_bb0235) 1997; 18
Liu (10.1016/j.bbagen.2019.129498_bb0045) 2009
Gosting (10.1016/j.bbagen.2019.129498_bb0225) 1952; 74
Lu (10.1016/j.bbagen.2019.129498_bb0260) 2003; 31
Drew (10.1016/j.bbagen.2019.129498_bb0170) 1981; 151
Cheng (10.1016/j.bbagen.2019.129498_bb0100) 1992; 58
Van der Spoel (10.1016/j.bbagen.2019.129498_bb0190) 2016
Thomas (10.1016/j.bbagen.2019.129498_bb0270) 1993; 135
Ueda (10.1016/j.bbagen.2019.129498_bb0110) 2016; 17
Patra (10.1016/j.bbagen.2019.129498_bb0105) 2017; 56
Zhai (10.1016/j.bbagen.2019.129498_bb0040) 1997; 15
Hédoux (10.1016/j.bbagen.2019.129498_bb0340) 2010; 12
Barcellona (10.1016/j.bbagen.2019.129498_bb0150) 1990; 170
Kumar (10.1016/j.bbagen.2019.129498_bb0265) 2015; 31
Lomedico (10.1016/j.bbagen.2019.129498_bb0005) 1982; 79
Oprzeska-Zingrebe (10.1016/j.bbagen.2019.129498_bb0140) 2018; 114
Pérez (10.1016/j.bbagen.2019.129498_bb0180) 2007; 129
References_xml – volume: 15
  start-page: 156
  year: 2007
  end-page: 161
  ident: bb0015
  article-title: Use of DNA technology in forensic dentistry
  publication-title: J. Appl. Oral Sci.
– volume: 122
  start-page: 2227
  year: 2018
  end-page: 2242
  ident: bb0030
  article-title: Unique features of metformin: a combined experimental, theoretical, and simulation study of its structure, dynamics, and interaction energetics with DNA grooves
  publication-title: J. Phys. Chem. B
– volume: 119
  start-page: 3755
  year: 2015
  end-page: 3761
  ident: bb0135
  article-title: Dispersion interactions between urea and nucleobases contribute to the destabilization of RNA by urea in aqueous solution
  publication-title: J. Phys. Chem. B
– year: 2016
  ident: bb0190
  article-title: Gromacs User Manual
– volume: 28
  start-page: 3379
  year: 2000
  end-page: 3385
  ident: bb0310
  article-title: Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy
  publication-title: Nucleic Acids Res.
– start-page: 437
  year: 1996
  end-page: 467
  ident: bb0090
  article-title: DNA stability and DNA binding proteins
  publication-title: Adv. Protein Chem., Academic Press, Place Published
– volume: 118
  start-page: 379
  year: 2014
  end-page: 389
  ident: bb0325
  article-title: Choline ion interactions with DNA atoms explain unique stabilization of A–T Base pairs in DNA duplexes: a microscopic view
  publication-title: J. Phys. Chem. B
– volume: 50
  start-page: 733
  year: 2017
  end-page: 739
  ident: bb0070
  article-title: Bioresponsive DNA hydrogels: beyond the conventional stimuli responsiveness
  publication-title: Acc. Chem. Res.
– volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  ident: bb0245
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J. Appl. Phys.
– volume: 112
  start-page: 8906
  year: 2008
  end-page: 8911
  ident: bb0215
  article-title: Guanidinium chloride molecular diffusion in aqueous and mixed water−ethanol solutions
  publication-title: J. Phys. Chem. B
– volume: 55
  start-page: 5653
  year: 2016
  end-page: 5664
  ident: bb0145
  article-title: Urea mimics nucleobases by preserving the helical integrity of B-DNA duplexes via hydrogen bonding and Stackin interactions
  publication-title: Biochemistry
– volume: 26
  start-page: 114
  year: 2004
  ident: bb0205
  article-title: Development and testing of a general amber force field
  publication-title: J. Comput. Chem.
– volume: 29
  start-page: 5121
  year: 2001
  end-page: 5128
  ident: bb0300
  article-title: Effects of polyamines on the thermal stability and formation kinetics of DNA duplexes with abnormal structure
  publication-title: Nucleic Acids Res.
– volume: 120
  start-page: 2691
  year: 2016
  end-page: 2700
  ident: bb0280
  article-title: Influence of ionic liquids on thermodynamics of small molecule-DNA interaction: the binding of ethidium bromide to calf thymus DNA
  publication-title: J. Phys. Chem. B
– volume: 114
  start-page: 1551
  year: 2018
  end-page: 1562
  ident: bb0140
  article-title: Preferential binding of urea to single-stranded DNA structures: a molecular dynamics study
  publication-title: Biophys. J.
– volume: 41
  start-page: 963
  year: 1987
  end-page: 978
  ident: bb0010
  article-title: Isolation and regional mapping of DNA sequences unique to human chromosome 21
  publication-title: Am. J. Hum. Genet.
– volume: 2
  start-page: 477
  year: 1975
  end-page: 486
  ident: bb0290
  article-title: A clarification of the complex spectrum observed with the ultraviolet circular dichroism of ethidium bromide bound to DNA
  publication-title: Nucleic Acids Res.
– volume: 37
  start-page: 1713
  year: 2009
  end-page: 1725
  ident: bb0275
  article-title: Circular dichroism and conformational polymorphism of DNA
  publication-title: Nucleic Acids Res.
– volume: 83
  start-page: 5948
  year: 1986
  end-page: 5952
  ident: bb0305
  article-title: Spermine-DNA interactions: a theoretical study
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2001
  ident: bb0250
  article-title: Understanding Molecular Simulation: From Algorithms to Applications
– volume: 31
  start-page: 5108
  year: 2003
  end-page: 5121
  ident: bb0260
  article-title: 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures
  publication-title: Nucleic Acids Res.
– volume: 94
  start-page: 4654
  year: 2008
  end-page: 4661
  ident: bb0115
  article-title: Urea and Guanidinium chloride denature protein L in different ways in molecular dynamics simulations
  publication-title: Biophys. J.
– volume: 100
  start-page: 5142
  year: 2003
  end-page: 5147
  ident: bb0330
  article-title: The molecular basis for the chemical denaturation of proteins by urea
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  start-page: 13189
  year: 2010
  end-page: 13196
  ident: bb0340
  article-title: Influence of urea and guanidine hydrochloride on lysozyme stability and thermal denaturation; a correlation between activity, protein dynamics and conformational changes
  publication-title: Phys. Chem. Chem.Phys.
– volume: 5
  start-page: 739
  year: 2004
  ident: bb0020
  article-title: Encoded evidence: DNA in forensic analysis
  publication-title: Nat. Rev. Genet.
– volume: 75
  start-page: 2422
  year: 1998
  end-page: 2434
  ident: bb0295
  article-title: Hydration of the phosphate group in double-helical DNA
  publication-title: Biophys. J.
– volume: 108
  start-page: 1065
  year: 2004
  end-page: 1071
  ident: bb0230
  article-title: Computer simulation of urea−water mixtures: a test of force field parameters for use in biomolecular simulation
  publication-title: J. Phys. Chem. B
– volume: 58
  start-page: 225
  year: 1992
  end-page: 257
  ident: bb0100
  article-title: Stabilities of double- and triple-strand helical nucleic acids
  publication-title: Prog. Biophys. Mol. Biol.
– volume: 129
  start-page: 14739
  year: 2007
  end-page: 14745
  ident: bb0180
  article-title: Dynamics of B-DNA on the microsecond time scale
  publication-title: J. Am. Chem. Soc.
– volume: 92
  start-page: 3817
  year: 2007
  end-page: 3829
  ident: bb0195
  article-title: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers
  publication-title: Biophys. J.
– volume: 134
  start-page: 18266
  year: 2012
  end-page: 18274
  ident: bb0120
  article-title: Collapse of unfolded proteins in a mixture of denaturants
  publication-title: J. Am. Chem. Soc.
– volume: 79
  start-page: 5798
  year: 1982
  end-page: 5802
  ident: bb0005
  article-title: Use of recombinant DNA technology to program eukaryotic cells to synthesize rat proinsulin: a rapid expression assay for cloned genes
  publication-title: Proc. Natl. Acad. Sci.
– volume: 31
  start-page: 3103
  year: 1992
  end-page: 3112
  ident: bb0285
  article-title: DAPI (4′,6-diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites
  publication-title: Biochemistry
– volume: 18
  start-page: 1463
  year: 1997
  end-page: 1472
  ident: bb0235
  article-title: LINCS: a linear constraint solver for molecular simulations
  publication-title: J. Comp. Chem.
– volume: 241
  start-page: 3228
  year: 1966
  end-page: 3232
  ident: bb0210
  article-title: Viscosity and density of aqueous solutions of urea and guanidine hydrochloride
  publication-title: J. Biol. Chem.
– volume: 49
  start-page: 1993
  year: 2008
  end-page: 2007
  ident: bb0075
  article-title: Hydrogels in drug delivery: progress and challenges
  publication-title: Polymer
– volume: 282
  start-page: 331
  year: 1998
  end-page: 343
  ident: bb0255
  article-title: Two distinct modes of protein-induced bending in DNA
  publication-title: J. Mol. Biol.
– volume: 42
  start-page: 8831
  year: 2014
  end-page: 8844
  ident: bb0320
  article-title: Structure, stability and behaviour of nucleic acids in ionic liquids
  publication-title: Nucleic Acids Res.
– volume: 82
  start-page: 4080
  year: 2014
  end-page: 4091
  ident: bb0025
  article-title: An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of clostridium difficile induces protective antibody responses in vivo
  publication-title: Infect. Immun.
– volume: 31
  start-page: 2583
  year: 2015
  end-page: 2585
  ident: bb0265
  article-title: do_x3dna: a tool to analyze structural fluctuations of dsDNA or dsRNA from molecular dynamics simulations
  publication-title: Bioinformatics (Oxford, England)
– start-page: 2625
  year: 2009
  end-page: 2636
  ident: bb0045
  article-title: DNA nanomachines and their functional evolution
  publication-title: Chem. Comm.
– volume: 74
  start-page: 2058
  year: 1952
  end-page: 2060
  ident: bb0225
  article-title: A study of the diffusion of urea in water at 25° with the Gouy interference Method1
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4119
  year: 2013
  end-page: 4124
  ident: bb0055
  article-title: Benzophenone and DNA: evidence for a double insertion mode and its spectral signature
  publication-title: J. Phys. Chem. Lett.
– volume: 151
  start-page: 535
  year: 1981
  end-page: 556
  ident: bb0170
  article-title: Structure of a B-DNA dodecamer. III. Geometry of hydration
  publication-title: J. Mol. Biol.
– volume: 105
  start-page: 9954
  year: 2001
  end-page: 9960
  ident: bb0200
  article-title: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
  publication-title: J. Phys. Chem. A
– volume: 44
  start-page: 915
  year: 2005
  end-page: 925
  ident: bb0080
  article-title: Role of a surface tryptophan in defining the structure, stability, and DNA binding of the hyperthermophile protein Sac7d
  publication-title: Biochemistry
– volume: 134
  start-page: 20330
  year: 2012
  end-page: 20339
  ident: bb0185
  article-title: Groove binding mechanism of ionic liquids: a key factor in long-term stability of DNA in hydrated ionic liquids?
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 2180
  year: 2004
  end-page: 2186
  ident: bb0220
  article-title: A Kirkwood-Buff derived force field for the simulation of aqueous guanidinium chloride solutions
  publication-title: J. Chem. Phys.
– volume: 34
  start-page: 1271
  year: 2013
  end-page: 1283
  ident: bb0065
  article-title: Responsive DNA-based hydrogels and their applications
  publication-title: Macromol. Rapid Commun.
– volume: 32
  start-page: 2987
  year: 1993
  end-page: 2998
  ident: bb0155
  article-title: Binding of 4′,6-diamidino-2-phenylindole (DAPI) to AT regions of DNA: evidence for an allosteric conformational change
  publication-title: Biochemistry
– volume: 69
  start-page: 3805
  year: 1972
  end-page: 3809
  ident: bb0160
  article-title: Ethidium bromide as a cooperative effector of a DNA structure
  publication-title: Proc. Natl. Acad. Sci.
– volume: 170
  start-page: 270
  year: 1990
  end-page: 280
  ident: bb0150
  article-title: Time-resolved fluorescence of DAPI in solution and bound to polydeoxynucleotides
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 135
  start-page: 77
  year: 1993
  end-page: 79
  ident: bb0270
  article-title: The denaturation of DNA
  publication-title: Gene
– volume: 75
  start-page: 159
  year: 1998
  end-page: 173
  ident: bb0085
  article-title: Structure, stability, and thermodynamics of lamellar DNA-lipid complexes
  publication-title: Biophys. J.
– volume: 141
  start-page: 9555
  year: 2019
  end-page: 9563
  ident: bb0315
  article-title: Sequence-selective minor groove recognition of a DNA duplex containing synthetic genetic components
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 43
  year: 1997
  end-page: 58
  ident: bb0040
  article-title: DNA based biosensors
  publication-title: Biotechnol. Adv.
– volume: 10
  start-page: 1971
  year: 2010
  end-page: 1978
  ident: bb0060
  article-title: Structural DNA nanotechnology: growing along with nano letters
  publication-title: Nano Lett.
– volume: 91
  start-page: 6269
  year: 1987
  end-page: 6271
  ident: bb0240
  article-title: The missing term in effective pair potentials
  publication-title: J. Phys. Chem.
– volume: 96
  start-page: 3906
  year: 1999
  ident: bb0035
  article-title: Sustained correction of bleeding disorder in hemophilia B mice by gene therapy
  publication-title: Proc. Natl. Acad. Sci.
– volume: 56
  start-page: 5045
  year: 2017
  end-page: 5049
  ident: bb0105
  article-title: Osmolyte effects on the conformational dynamics of a DNA hairpin at ambient and extreme environmental conditions
  publication-title: Angew. Chem.
– volume: 17
  start-page: 753
  year: 2016
  end-page: 759
  ident: bb0110
  article-title: Effects of trimethylamine N-oxide and urea on DNA duplex and G-quadruplex
  publication-title: Sci. Technol. Adv. Mater.
– volume: 120
  start-page: 9599
  year: 2016
  end-page: 9607
  ident: bb0125
  article-title: Destabilization of hydrophobic core of chicken villin headpiece in guanidinium chloride induced denaturation: hint of π-cation interaction
  publication-title: J. Phys. Chem. B
– volume: 111
  start-page: 4856
  year: 2014
  ident: bb0335
  article-title: Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride
  publication-title: Proc. Natl. Acad. Sci.
– volume: 11
  start-page: 3610
  year: 1972
  end-page: 3618
  ident: bb0095
  article-title: Rate of depurination of native deoxyribonucleic acid
  publication-title: Biochemistry
– volume: 111
  start-page: 455
  year: 2018
  end-page: 461
  ident: bb0050
  article-title: Structural polymorphism of a cytosine-rich DNA sequence forming i-motif structure: exploring pH based biosensors
  publication-title: Int. J. Biol. Macromol.
– volume: 135
  start-page: 12112
  year: 2013
  end-page: 12121
  ident: bb0130
  article-title: Urea-induced denaturation of PreQ1-riboswitch
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 11099
  year: 2015
  end-page: 11105
  ident: bb0175
  article-title: Spectroscopic and molecular docking study of the interaction of DNA with a morpholinium ionic liquid
  publication-title: J. Phys. Chem. B
– volume: 78
  start-page: 2179
  year: 1981
  end-page: 2183
  ident: bb0165
  article-title: Structure of a B-DNA dodecamer: conformation and dynamics
  publication-title: Proc. Natl. Acad. Sci.
– volume: 15
  start-page: 156
  year: 2007
  ident: 10.1016/j.bbagen.2019.129498_bb0015
  article-title: Use of DNA technology in forensic dentistry
  publication-title: J. Appl. Oral Sci.
  doi: 10.1590/S1678-77572007000300002
– volume: 282
  start-page: 331
  year: 1998
  ident: 10.1016/j.bbagen.2019.129498_bb0255
  article-title: Two distinct modes of protein-induced bending in DNA
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.1994
– volume: 56
  start-page: 5045
  year: 2017
  ident: 10.1016/j.bbagen.2019.129498_bb0105
  article-title: Osmolyte effects on the conformational dynamics of a DNA hairpin at ambient and extreme environmental conditions
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201701420
– volume: 31
  start-page: 2583
  year: 2015
  ident: 10.1016/j.bbagen.2019.129498_bb0265
  article-title: do_x3dna: a tool to analyze structural fluctuations of dsDNA or dsRNA from molecular dynamics simulations
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btv190
– start-page: 437
  year: 1996
  ident: 10.1016/j.bbagen.2019.129498_bb0090
  article-title: DNA stability and DNA binding proteins
– volume: 58
  start-page: 225
  year: 1992
  ident: 10.1016/j.bbagen.2019.129498_bb0100
  article-title: Stabilities of double- and triple-strand helical nucleic acids
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/0079-6107(92)90007-S
– volume: 112
  start-page: 8906
  year: 2008
  ident: 10.1016/j.bbagen.2019.129498_bb0215
  article-title: Guanidinium chloride molecular diffusion in aqueous and mixed water−ethanol solutions
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp8030336
– volume: 31
  start-page: 5108
  year: 2003
  ident: 10.1016/j.bbagen.2019.129498_bb0260
  article-title: 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg680
– volume: 83
  start-page: 5948
  year: 1986
  ident: 10.1016/j.bbagen.2019.129498_bb0305
  article-title: Spermine-DNA interactions: a theoretical study
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.83.16.5948
– volume: 120
  start-page: 9599
  year: 2016
  ident: 10.1016/j.bbagen.2019.129498_bb0125
  article-title: Destabilization of hydrophobic core of chicken villin headpiece in guanidinium chloride induced denaturation: hint of π-cation interaction
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b06325
– start-page: 2625
  year: 2009
  ident: 10.1016/j.bbagen.2019.129498_bb0045
  article-title: DNA nanomachines and their functional evolution
  publication-title: Chem. Comm.
  doi: 10.1039/b822719e
– volume: 32
  start-page: 2987
  year: 1993
  ident: 10.1016/j.bbagen.2019.129498_bb0155
  article-title: Binding of 4′,6-diamidino-2-phenylindole (DAPI) to AT regions of DNA: evidence for an allosteric conformational change
  publication-title: Biochemistry
  doi: 10.1021/bi00063a009
– volume: 78
  start-page: 2179
  year: 1981
  ident: 10.1016/j.bbagen.2019.129498_bb0165
  article-title: Structure of a B-DNA dodecamer: conformation and dynamics
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.78.4.2179
– volume: 10
  start-page: 1971
  year: 2010
  ident: 10.1016/j.bbagen.2019.129498_bb0060
  article-title: Structural DNA nanotechnology: growing along with nano letters
  publication-title: Nano Lett.
  doi: 10.1021/nl101262u
– volume: 134
  start-page: 18266
  year: 2012
  ident: 10.1016/j.bbagen.2019.129498_bb0120
  article-title: Collapse of unfolded proteins in a mixture of denaturants
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3031505
– volume: 111
  start-page: 4856
  year: 2014
  ident: 10.1016/j.bbagen.2019.129498_bb0335
  article-title: Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1315453111
– volume: 44
  start-page: 915
  year: 2005
  ident: 10.1016/j.bbagen.2019.129498_bb0080
  article-title: Role of a surface tryptophan in defining the structure, stability, and DNA binding of the hyperthermophile protein Sac7d
  publication-title: Biochemistry
  doi: 10.1021/bi047823b
– volume: 122
  start-page: 2227
  year: 2018
  ident: 10.1016/j.bbagen.2019.129498_bb0030
  article-title: Unique features of metformin: a combined experimental, theoretical, and simulation study of its structure, dynamics, and interaction energetics with DNA grooves
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b11928
– volume: 100
  start-page: 5142
  year: 2003
  ident: 10.1016/j.bbagen.2019.129498_bb0330
  article-title: The molecular basis for the chemical denaturation of proteins by urea
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0930122100
– volume: 18
  start-page: 1463
  year: 1997
  ident: 10.1016/j.bbagen.2019.129498_bb0235
  article-title: LINCS: a linear constraint solver for molecular simulations
  publication-title: J. Comp. Chem.
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– volume: 11
  start-page: 3610
  year: 1972
  ident: 10.1016/j.bbagen.2019.129498_bb0095
  article-title: Rate of depurination of native deoxyribonucleic acid
  publication-title: Biochemistry
  doi: 10.1021/bi00769a018
– year: 2016
  ident: 10.1016/j.bbagen.2019.129498_bb0190
– volume: 41
  start-page: 963
  year: 1987
  ident: 10.1016/j.bbagen.2019.129498_bb0010
  article-title: Isolation and regional mapping of DNA sequences unique to human chromosome 21
  publication-title: Am. J. Hum. Genet.
– volume: 120
  start-page: 2691
  year: 2016
  ident: 10.1016/j.bbagen.2019.129498_bb0280
  article-title: Influence of ionic liquids on thermodynamics of small molecule-DNA interaction: the binding of ethidium bromide to calf thymus DNA
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b11823
– volume: 151
  start-page: 535
  year: 1981
  ident: 10.1016/j.bbagen.2019.129498_bb0170
  article-title: Structure of a B-DNA dodecamer. III. Geometry of hydration
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(81)90009-7
– volume: 2
  start-page: 477
  year: 1975
  ident: 10.1016/j.bbagen.2019.129498_bb0290
  article-title: A clarification of the complex spectrum observed with the ultraviolet circular dichroism of ethidium bromide bound to DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/2.4.477
– volume: 4
  start-page: 4119
  year: 2013
  ident: 10.1016/j.bbagen.2019.129498_bb0055
  article-title: Benzophenone and DNA: evidence for a double insertion mode and its spectral signature
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz4021475
– volume: 105
  start-page: 9954
  year: 2001
  ident: 10.1016/j.bbagen.2019.129498_bb0200
  article-title: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp003020w
– volume: 129
  start-page: 14739
  year: 2007
  ident: 10.1016/j.bbagen.2019.129498_bb0180
  article-title: Dynamics of B-DNA on the microsecond time scale
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0753546
– volume: 74
  start-page: 2058
  year: 1952
  ident: 10.1016/j.bbagen.2019.129498_bb0225
  article-title: A study of the diffusion of urea in water at 25° with the Gouy interference Method1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01128a060
– volume: 75
  start-page: 2422
  year: 1998
  ident: 10.1016/j.bbagen.2019.129498_bb0295
  article-title: Hydration of the phosphate group in double-helical DNA
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)77686-6
– volume: 92
  start-page: 3817
  year: 2007
  ident: 10.1016/j.bbagen.2019.129498_bb0195
  article-title: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.097782
– volume: 135
  start-page: 12112
  year: 2013
  ident: 10.1016/j.bbagen.2019.129498_bb0130
  article-title: Urea-induced denaturation of PreQ1-riboswitch
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406019s
– volume: 111
  start-page: 455
  year: 2018
  ident: 10.1016/j.bbagen.2019.129498_bb0050
  article-title: Structural polymorphism of a cytosine-rich DNA sequence forming i-motif structure: exploring pH based biosensors
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.01.053
– volume: 55
  start-page: 5653
  year: 2016
  ident: 10.1016/j.bbagen.2019.129498_bb0145
  article-title: Urea mimics nucleobases by preserving the helical integrity of B-DNA duplexes via hydrogen bonding and Stackin interactions
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.6b00309
– volume: 12
  start-page: 13189
  year: 2010
  ident: 10.1016/j.bbagen.2019.129498_bb0340
  article-title: Influence of urea and guanidine hydrochloride on lysozyme stability and thermal denaturation; a correlation between activity, protein dynamics and conformational changes
  publication-title: Phys. Chem. Chem.Phys.
  doi: 10.1039/c0cp00602e
– volume: 96
  start-page: 3906
  year: 1999
  ident: 10.1016/j.bbagen.2019.129498_bb0035
  article-title: Sustained correction of bleeding disorder in hemophilia B mice by gene therapy
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.96.7.3906
– volume: 5
  start-page: 739
  year: 2004
  ident: 10.1016/j.bbagen.2019.129498_bb0020
  article-title: Encoded evidence: DNA in forensic analysis
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1455
– volume: 119
  start-page: 3755
  year: 2015
  ident: 10.1016/j.bbagen.2019.129498_bb0135
  article-title: Dispersion interactions between urea and nucleobases contribute to the destabilization of RNA by urea in aqueous solution
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp512414f
– volume: 134
  start-page: 20330
  year: 2012
  ident: 10.1016/j.bbagen.2019.129498_bb0185
  article-title: Groove binding mechanism of ionic liquids: a key factor in long-term stability of DNA in hydrated ionic liquids?
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304519d
– volume: 31
  start-page: 3103
  year: 1992
  ident: 10.1016/j.bbagen.2019.129498_bb0285
  article-title: DAPI (4′,6-diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites
  publication-title: Biochemistry
  doi: 10.1021/bi00127a010
– volume: 114
  start-page: 1551
  year: 2018
  ident: 10.1016/j.bbagen.2019.129498_bb0140
  article-title: Preferential binding of urea to single-stranded DNA structures: a molecular dynamics study
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2018.02.013
– volume: 241
  start-page: 3228
  year: 1966
  ident: 10.1016/j.bbagen.2019.129498_bb0210
  article-title: Viscosity and density of aqueous solutions of urea and guanidine hydrochloride
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)96519-1
– volume: 79
  start-page: 5798
  year: 1982
  ident: 10.1016/j.bbagen.2019.129498_bb0005
  article-title: Use of recombinant DNA technology to program eukaryotic cells to synthesize rat proinsulin: a rapid expression assay for cloned genes
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.79.19.5798
– volume: 52
  start-page: 7182
  year: 1981
  ident: 10.1016/j.bbagen.2019.129498_bb0245
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
– volume: 15
  start-page: 43
  year: 1997
  ident: 10.1016/j.bbagen.2019.129498_bb0040
  article-title: DNA based biosensors
  publication-title: Biotechnol. Adv.
  doi: 10.1016/S0734-9750(97)00003-7
– volume: 29
  start-page: 5121
  year: 2001
  ident: 10.1016/j.bbagen.2019.129498_bb0300
  article-title: Effects of polyamines on the thermal stability and formation kinetics of DNA duplexes with abnormal structure
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.24.5121
– volume: 121
  start-page: 2180
  year: 2004
  ident: 10.1016/j.bbagen.2019.129498_bb0220
  article-title: A Kirkwood-Buff derived force field for the simulation of aqueous guanidinium chloride solutions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1768938
– volume: 94
  start-page: 4654
  year: 2008
  ident: 10.1016/j.bbagen.2019.129498_bb0115
  article-title: Urea and Guanidinium chloride denature protein L in different ways in molecular dynamics simulations
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.125799
– volume: 26
  start-page: 114
  year: 2004
  ident: 10.1016/j.bbagen.2019.129498_bb0205
  article-title: Development and testing of a general amber force field
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20145
– volume: 108
  start-page: 1065
  year: 2004
  ident: 10.1016/j.bbagen.2019.129498_bb0230
  article-title: Computer simulation of urea−water mixtures: a test of force field parameters for use in biomolecular simulation
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp030534x
– volume: 118
  start-page: 379
  year: 2014
  ident: 10.1016/j.bbagen.2019.129498_bb0325
  article-title: Choline ion interactions with DNA atoms explain unique stabilization of A–T Base pairs in DNA duplexes: a microscopic view
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp406647b
– volume: 17
  start-page: 753
  year: 2016
  ident: 10.1016/j.bbagen.2019.129498_bb0110
  article-title: Effects of trimethylamine N-oxide and urea on DNA duplex and G-quadruplex
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2016.1243000
– volume: 135
  start-page: 77
  year: 1993
  ident: 10.1016/j.bbagen.2019.129498_bb0270
  article-title: The denaturation of DNA
  publication-title: Gene
  doi: 10.1016/0378-1119(93)90051-4
– volume: 75
  start-page: 159
  year: 1998
  ident: 10.1016/j.bbagen.2019.129498_bb0085
  article-title: Structure, stability, and thermodynamics of lamellar DNA-lipid complexes
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)77503-4
– year: 2001
  ident: 10.1016/j.bbagen.2019.129498_bb0250
– volume: 50
  start-page: 733
  year: 2017
  ident: 10.1016/j.bbagen.2019.129498_bb0070
  article-title: Bioresponsive DNA hydrogels: beyond the conventional stimuli responsiveness
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00581
– volume: 82
  start-page: 4080
  year: 2014
  ident: 10.1016/j.bbagen.2019.129498_bb0025
  article-title: An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of clostridium difficile induces protective antibody responses in vivo
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.01950-14
– volume: 49
  start-page: 1993
  year: 2008
  ident: 10.1016/j.bbagen.2019.129498_bb0075
  article-title: Hydrogels in drug delivery: progress and challenges
  publication-title: Polymer
  doi: 10.1016/j.polymer.2008.01.027
– volume: 69
  start-page: 3805
  year: 1972
  ident: 10.1016/j.bbagen.2019.129498_bb0160
  article-title: Ethidium bromide as a cooperative effector of a DNA structure
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.69.12.3805
– volume: 141
  start-page: 9555
  year: 2019
  ident: 10.1016/j.bbagen.2019.129498_bb0315
  article-title: Sequence-selective minor groove recognition of a DNA duplex containing synthetic genetic components
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12444
– volume: 28
  start-page: 3379
  year: 2000
  ident: 10.1016/j.bbagen.2019.129498_bb0310
  article-title: Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.17.3379
– volume: 170
  start-page: 270
  year: 1990
  ident: 10.1016/j.bbagen.2019.129498_bb0150
  article-title: Time-resolved fluorescence of DAPI in solution and bound to polydeoxynucleotides
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(90)91270-3
– volume: 37
  start-page: 1713
  year: 2009
  ident: 10.1016/j.bbagen.2019.129498_bb0275
  article-title: Circular dichroism and conformational polymorphism of DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp026
– volume: 34
  start-page: 1271
  year: 2013
  ident: 10.1016/j.bbagen.2019.129498_bb0065
  article-title: Responsive DNA-based hydrogels and their applications
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201300411
– volume: 42
  start-page: 8831
  year: 2014
  ident: 10.1016/j.bbagen.2019.129498_bb0320
  article-title: Structure, stability and behaviour of nucleic acids in ionic liquids
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku499
– volume: 91
  start-page: 6269
  year: 1987
  ident: 10.1016/j.bbagen.2019.129498_bb0240
  article-title: The missing term in effective pair potentials
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100308a038
– volume: 119
  start-page: 11099
  year: 2015
  ident: 10.1016/j.bbagen.2019.129498_bb0175
  article-title: Spectroscopic and molecular docking study of the interaction of DNA with a morpholinium ionic liquid
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b02939
SSID ssj0000595
Score 2.3521883
Snippet Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129498
SubjectTerms chlorides
DNA
drugs
electrostatic interactions
guanidinium
Guanidinium chloride
hydrogen bonding
Melting temperature
Molecular dynamic simulation
molecular dynamics
nucleobases
spectroscopy
Urea
Title Alteration of the groove width of DNA induced by the multimodal hydrogen bonding of denaturants with DNA bases in its grooves affects their stability
URI https://dx.doi.org/10.1016/j.bbagen.2019.129498
https://www.ncbi.nlm.nih.gov/pubmed/31785326
https://www.proquest.com/docview/2320381210
https://www.proquest.com/docview/2477621429
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB1VRVW5IOgHBGhlJK5uNmuv3T1GgSqAlEup1Ju1_qJBbbZqUlAu_Av-LzP2blEPpRJXa7y2PLbf887zGOC9UKEsbDjmoWgEl1IX3NrC8kLVCtmGiKFJKt-Zmp7Jz-fV-QZM-rswJKvs9v68p6fduisZdqM5vJ7Ph6cU1EM6QRQEQVLTJT5si2b50a-_Mg-kD1WOJEhO1v31uaTxshYXLWVBHdVHCHyyPn4Inh6inwmGTp7Ds44_snHu4gvYCIsd2MovSq53YHvSP-C2C7_HlyllMo48ayNDpse-IU_-EdjPuV9dUNmH2ZjhoRzd65ldJ5OkMLxqPTZysfY3Lfac2TbdfaEauE1RKlBSzzD6h5s-QVC4xA-xOZbmNpasyUoRlkIRDElokuGu9-Ds5OPXyZR3rzBwJ-pqxUUTlRBSeS2lq7xrRmUREOVjY6UNGglmJbSzTsTC6qJCzI_WlbqJFRH3qMU-bC7aRXgFzNUyelz1SkdNVhaPWyrGMvoyOu_LAYh-8I3rUpTTSxmXpteifTfZZYZcZrLLBsDval3nFB2P2Over-beVDOIIo_UfNdPA4O-pNBKswjt7dIgL6WQK56f_2EjNSLPCAnAAF7mOXTXX2RxyJtK9fq_-_YGnpb0KyDJ497C5urmNhwgX1rZw7QgDuHJ-NOX6ewPbzAVxg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVKhcEJRXeBqJq8lm7bW7xyhQpbTkQiv1Zq1fNKhkqyYF5Yfwf5mxd4s4lEpcrfFDHnvms_15BuCdUKEsbNjjoWgEl1IX3NrC8kLVCtGGiKFJLN-5mp3IT6fV6RZM-78wRKvsbH-26cladyWjbjZHF4vF6As96iGcIAiCTlLXd2CbolNVA9ieHBzO5n8McpWSr5A8pwr9D7pE87IW9y0FQh3X79H3yXrvJg91EwJNnmj_AdzvICSb5FE-hK2w3IW7OankZhd2pn0Ot0fwa3Keoibj5LM2MgR77CtC5R-B_Vz49RmVfZhPGJ7LUcOe2U0SSSTD763HTs42_rLFkTPbpu8vVAMtFUUDJQINo2vc1AR5wxU2xBZYmvtYsSaTRVh6jWCIQxMTd_MYTvY_Hk9nvEvEwJ2oqzUXTVRCSOW1lK7yrhmXRUBHHxsrbdCIMSuhnXUiFlYXFbr9aF2pm1gRdo9aPIHBsl2GZ8BcLaPHja901CRl8cSlYiyjL6PzvhyC6CffuC5KOSXLODc9He2bySozpDKTVTYEfl3rIkfpuEVe93o1f602g47klppv-2VgUJf0utIsQ3u1MghN6dUVj9D_kJEanc8YMcAQnuY1dD1eBHIInUr1_L_H9gZ2Zsefj8zRwfzwBdwr6WYgseVewmB9eRVeIXxa29fd9vgN4dsYdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alteration+of+the+groove+width+of+DNA+induced+by+the+multimodal+hydrogen+bonding+of+denaturants+with+DNA+bases+in+its+grooves+affects+their+stability&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Sarkar%2C+Sunipa&rft.au=Singh%2C+Prashant+Chandra&rft.date=2020-03-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=3&rft.spage=129498&rft_id=info:doi/10.1016%2Fj.bbagen.2019.129498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2019_129498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon