Alteration of the groove width of DNA induced by the multimodal hydrogen bonding of denaturants with DNA bases in its grooves affects their stability
Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understan...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 3; p. 129498 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2019.129498 |
Cover
Loading…
Abstract | Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood.
In this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change.
It has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm+ forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm+ with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm+ than urea. The distinct hydrogen bonding capability of Gdm+ and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm+ decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA.
Our study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules.
[Display omitted]
•GdmCl and urea intrude into groove region of DNA by striping surrounding water•The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other.•The interaction of Gdm+ decreases the width of the minor and major groove of DNA.•The interaction of urea marginally increase the minor groove width of DNA |
---|---|
AbstractList | Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood.
In this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change.
It has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm+ forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm+ with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm+ than urea. The distinct hydrogen bonding capability of Gdm+ and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm+ decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA.
Our study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules.
[Display omitted]
•GdmCl and urea intrude into groove region of DNA by striping surrounding water•The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other.•The interaction of Gdm+ decreases the width of the minor and major groove of DNA.•The interaction of urea marginally increase the minor groove width of DNA Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood.In this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change.It has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm⁺ and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm⁺ forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm⁺ with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm⁺ than urea. The distinct hydrogen bonding capability of Gdm⁺ and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm⁺ decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA.Our study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules. Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood. In this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change. It has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm than urea. The distinct hydrogen bonding capability of Gdm and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA. Our study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules. Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood.BACKGROUNDDenaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood.In this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change.METHODSIn this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change.It has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm+ forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm+ with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm+ than urea. The distinct hydrogen bonding capability of Gdm+ and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm+ decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA.RESULTS AND CONCLUSIONIt has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm+ forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm+ with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm+ than urea. The distinct hydrogen bonding capability of Gdm+ and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm+ decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA.Our study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules.GENERAL SIGNIFICANCEOur study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules. |
ArticleNumber | 129498 |
Author | Sarkar, Sunipa Singh, Prashant Chandra |
Author_xml | – sequence: 1 givenname: Sunipa surname: Sarkar fullname: Sarkar, Sunipa – sequence: 2 givenname: Prashant Chandra surname: Singh fullname: Singh, Prashant Chandra email: sppcs@iacs.res.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31785326$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAYRi1URKeFN0DISzYZfEucsEAalatUwQbWlq8zHiV2sZ1W8yC8L05TWLCg3lj-db5jy98FOAsxWABeYrTFCHdvjlul5N6GLUF42GIysKF_Aja456TpEerOwAZRxBqGu_YcXOR8RHW1Q_sMnFPM-5aSbgN-7cZikyw-BhgdLAcL9ynGWwvvvCmHZfb-6w76YGZtDVSne2Sax-KnaOQIDyeTYn0GVDEYH_ZLwtggy5xkKLlqqmVRKJltriLo63S9I0PpnNX1XKU-wVyk8qMvp-fgqZNjti8e9kvw4-OH71efm-tvn75c7a4bTYe2NFS6jlLWGc6Ybo2WmCCL-9ZJxZTlwzC0lGulqUOKoxYR5pQmXLqWczI4Ti_B69V7k-LP2eYiJp-1HUcZbJyzIIzzjmBGhsdRShDtMcGooq8e0FlN1oib5CeZTuLPr1eArYBOMedk3V8EI7GUK45iLVcs5Yq13Bp7-09M-3JfXUnSj4-F361hW__z1tsksvY21FJ9qhUIE_3_Bb8BZL3C5g |
CitedBy_id | crossref_primary_10_1016_j_csbj_2022_05_037 crossref_primary_10_1016_j_seppur_2024_129788 crossref_primary_10_1021_acs_jpcb_2c08265 crossref_primary_10_1039_D3CP04060G crossref_primary_10_1631_jzus_B2200634 crossref_primary_10_1039_D0CP01548B crossref_primary_10_1016_j_bbagen_2020_129735 crossref_primary_10_3390_ijms23158547 crossref_primary_10_1016_j_clim_2021_108848 |
Cites_doi | 10.1590/S1678-77572007000300002 10.1006/jmbi.1998.1994 10.1002/anie.201701420 10.1093/bioinformatics/btv190 10.1016/0079-6107(92)90007-S 10.1021/jp8030336 10.1093/nar/gkg680 10.1073/pnas.83.16.5948 10.1021/acs.jpcb.6b06325 10.1039/b822719e 10.1021/bi00063a009 10.1073/pnas.78.4.2179 10.1021/nl101262u 10.1021/ja3031505 10.1073/pnas.1315453111 10.1021/bi047823b 10.1021/acs.jpcb.7b11928 10.1073/pnas.0930122100 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H 10.1021/bi00769a018 10.1021/acs.jpcb.5b11823 10.1016/0022-2836(81)90009-7 10.1093/nar/2.4.477 10.1021/jz4021475 10.1021/jp003020w 10.1021/ja0753546 10.1021/ja01128a060 10.1016/S0006-3495(98)77686-6 10.1529/biophysj.106.097782 10.1021/ja406019s 10.1016/j.ijbiomac.2018.01.053 10.1021/acs.biochem.6b00309 10.1039/c0cp00602e 10.1073/pnas.96.7.3906 10.1038/nrg1455 10.1021/jp512414f 10.1021/ja304519d 10.1021/bi00127a010 10.1016/j.bpj.2018.02.013 10.1016/S0021-9258(18)96519-1 10.1073/pnas.79.19.5798 10.1063/1.328693 10.1016/S0734-9750(97)00003-7 10.1093/nar/29.24.5121 10.1063/1.1768938 10.1529/biophysj.107.125799 10.1002/jcc.20145 10.1021/jp030534x 10.1021/jp406647b 10.1080/14686996.2016.1243000 10.1016/0378-1119(93)90051-4 10.1016/S0006-3495(98)77503-4 10.1021/acs.accounts.6b00581 10.1128/IAI.01950-14 10.1016/j.polymer.2008.01.027 10.1073/pnas.69.12.3805 10.1021/jacs.8b12444 10.1093/nar/28.17.3379 10.1016/0006-291X(90)91270-3 10.1093/nar/gkp026 10.1002/marc.201300411 10.1093/nar/gku499 10.1021/j100308a038 10.1021/acs.jpcb.5b02939 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2019.129498 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 31785326 10_1016_j_bbagen_2019_129498 S0304416519302879 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-3af63346d744c5dca120e185fab4be7999537cbc3f0b705024fbc27af57729f73 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 10:21:23 EDT 2025 Fri Jul 11 00:25:33 EDT 2025 Wed Feb 19 02:31:14 EST 2025 Tue Jul 01 00:22:13 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 Fri Feb 23 02:47:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Guanidinium chloride Urea Melting temperature Molecular dynamic simulation DNA |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-3af63346d744c5dca120e185fab4be7999537cbc3f0b705024fbc27af57729f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31785326 |
PQID | 2320381210 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2477621429 proquest_miscellaneous_2320381210 pubmed_primary_31785326 crossref_primary_10_1016_j_bbagen_2019_129498 crossref_citationtrail_10_1016_j_bbagen_2019_129498 elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_129498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 2020-Mar 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yoon, Thirumalai, Hyeon (bb0130) 2013; 135 Xiong, Zhou, Wu, Zhu, Chen, Tan (bb0065) 2013; 34 Mishra, Ekka, Maiti (bb0280) 2016; 120 Nakano, Tateishi-Karimata, Tanaka, Sugimoto (bb0325) 2014; 118 Grayling, Sandman, Reeve (bb0090) 1996 Pabbathi, Samanta (bb0175) 2015; 119 Dumont, Monari (bb0055) 2013; 4 Wang, Hu, Liu, Luo (bb0070) 2017; 50 Hédoux, Krenzlin, Paccou, Guinet, Flament, Siepmann (bb0340) 2010; 12 Chandran, Ghoshdastidar, Senapati (bb0185) 2012; 134 Kumar, Grubmuller (bb0265) 2015; 31 Bennion, Daggett (bb0330) 2003; 100 Korenberg, Croyle, Cox (bb0010) 1987; 41 Lindahl, Nyberg (bb0095) 1972; 11 Perez, Marchan, Svozil, Sponer, Cheatham, Laughton, Orozco (bb0195) 2007; 92 Thomas (bb0270) 1993; 135 Tateishi-Karimata, Sugimoto (bb0320) 2014; 42 Cheng, Pettitt (bb0100) 1992; 58 Jobling, Gill (bb0020) 2004; 5 Mark, Nilsson (bb0200) 2001; 105 Bedell, Edmondson, Shriver (bb0080) 2005; 44 Parui, Manna, Jana (bb0125) 2016; 120 Hou, Lin, Yuann, Lin, Wang, Kan Ls (bb0300) 2001; 29 Van der Spoel, Hess, Vvan Buuren, Meulenhoff, Sijbers, Feenstra, Vvan Drunen, Berendsen (bb0190) 2016 Ueda, Zouzumi, Maruyama, Nakano, Sugimoto, Miyoshi (bb0110) 2016; 17 Smith, Berendsen, van Gunsteren (bb0230) 2004; 108 Harries, May, Gelbart, Ben-Shaul (bb0085) 1998; 75 Jha, Marqusee (bb0335) 2014; 111 Schneider, Patel, Berman (bb0295) 1998; 75 Deng, Bloomfield, Benevides, Thomas (bb0310) 2000; 28 Kasavajhala, Bikkina, Patil, MacKerell, Priyakumar (bb0135) 2015; 119 Weerasinghe, Smith (bb0220) 2004; 121 Zhai, Cui, Yang (bb0040) 1997; 15 Ahmed, Kaushik, Chaudhary, Kukreti (bb0050) 2018; 111 Tanious, Veal, Buczak, Ratmeyer, Wilson (bb0285) 1992; 31 Hess, Bekker, Berendsen, Fraaije (bb0235) 1997; 18 Berendsen, Grigera, Straatsma (bb0240) 1987; 91 Parrinello, Rahman (bb0245) 1981; 52 Mondal, Samajdar, Mukherjee, Bhattacharyya, Bagchi (bb0030) 2018; 122 Gannon, Larsson, Greer, Thompson (bb0215) 2008; 112 Pérez, Luque, Orozco (bb0180) 2007; 129 Camilloni, Rocco, Eberini, Gianazza, Broglia, Tiana (bb0115) 2008; 94 Pohl, Jovin, Baehr, Holbrook (bb0160) 1972; 69 Padroni, Withers, Taladriz-Sender, Reichenbach, Parkinson, Burley (bb0315) 2019; 141 Seeman (bb0060) 2010; 10 Lu, Olson (bb0260) 2003; 31 Oprzeska-Zingrebe, Smiatek (bb0140) 2018; 114 El Hassan, Calladine (bb0255) 1998; 282 Eriksson, Kim, Kubista, Norden (bb0155) 1993; 32 Frenkel, Smit (bb0250) 2001 Patra, Anders, Erwin, Winter (bb0105) 2017; 56 Xia, Das, Shakhnovich, Zhou (bb0120) 2012; 134 Hoare, Kohane (bb0075) 2008; 49 Kawahara, Tanford (bb0210) 1966; 241 Baliban, Michael, Shammassian, Mudakha, Khan, Cocklin, Zentner, Latimer, Bouillaut, Hunter, Marx, Sardesai, Welles, Jacobson, Weiner, Kutzler (bb0025) 2014; 82 Drew, Dickerson (bb0170) 1981; 151 Wang, Wolf, Caldwell, Kollman, Case (bb0205) 2004; 26 Feuerstein, Pattabiraman, Marton (bb0305) 1986; 83 Wang, Takabe, Bidlingmaier, Ill, Verma (bb0035) 1999; 96 Kypr, Kejnovská, Renčiuk, Vorlíčková (bb0275) 2009; 37 Barcellona, Cardiel, Gratton (bb0150) 1990; 170 da Silva, Sales-Peres, de Oliveira, de Oliveira, Sales-Peres (bb0015) 2007; 15 Drew, Wing, Takano, Broka, Tanaka, Itakura, Dickerson (bb0165) 1981; 78 Liu, Liu (bb0045) 2009 Lomedico (bb0005) 1982; 79 Gosting, Akeley (bb0225) 1952; 74 Parodi, Kendall, Nicolini (bb0290) 1975; 2 Suresh, Padhi, Patil, Priyakumar (bb0145) 2016; 55 Kawahara (10.1016/j.bbagen.2019.129498_bb0210) 1966; 241 Wang (10.1016/j.bbagen.2019.129498_bb0070) 2017; 50 Suresh (10.1016/j.bbagen.2019.129498_bb0145) 2016; 55 Xiong (10.1016/j.bbagen.2019.129498_bb0065) 2013; 34 El Hassan (10.1016/j.bbagen.2019.129498_bb0255) 1998; 282 Eriksson (10.1016/j.bbagen.2019.129498_bb0155) 1993; 32 Yoon (10.1016/j.bbagen.2019.129498_bb0130) 2013; 135 Bedell (10.1016/j.bbagen.2019.129498_bb0080) 2005; 44 Dumont (10.1016/j.bbagen.2019.129498_bb0055) 2013; 4 Tateishi-Karimata (10.1016/j.bbagen.2019.129498_bb0320) 2014; 42 Mark (10.1016/j.bbagen.2019.129498_bb0200) 2001; 105 Tanious (10.1016/j.bbagen.2019.129498_bb0285) 1992; 31 da Silva (10.1016/j.bbagen.2019.129498_bb0015) 2007; 15 Lindahl (10.1016/j.bbagen.2019.129498_bb0095) 1972; 11 Pohl (10.1016/j.bbagen.2019.129498_bb0160) 1972; 69 Parodi (10.1016/j.bbagen.2019.129498_bb0290) 1975; 2 Wang (10.1016/j.bbagen.2019.129498_bb0035) 1999; 96 Schneider (10.1016/j.bbagen.2019.129498_bb0295) 1998; 75 Pabbathi (10.1016/j.bbagen.2019.129498_bb0175) 2015; 119 Hou (10.1016/j.bbagen.2019.129498_bb0300) 2001; 29 Deng (10.1016/j.bbagen.2019.129498_bb0310) 2000; 28 Nakano (10.1016/j.bbagen.2019.129498_bb0325) 2014; 118 Padroni (10.1016/j.bbagen.2019.129498_bb0315) 2019; 141 Baliban (10.1016/j.bbagen.2019.129498_bb0025) 2014; 82 Hoare (10.1016/j.bbagen.2019.129498_bb0075) 2008; 49 Smith (10.1016/j.bbagen.2019.129498_bb0230) 2004; 108 Drew (10.1016/j.bbagen.2019.129498_bb0165) 1981; 78 Seeman (10.1016/j.bbagen.2019.129498_bb0060) 2010; 10 Grayling (10.1016/j.bbagen.2019.129498_bb0090) 1996 Kypr (10.1016/j.bbagen.2019.129498_bb0275) 2009; 37 Wang (10.1016/j.bbagen.2019.129498_bb0205) 2004; 26 Mishra (10.1016/j.bbagen.2019.129498_bb0280) 2016; 120 Korenberg (10.1016/j.bbagen.2019.129498_bb0010) 1987; 41 Bennion (10.1016/j.bbagen.2019.129498_bb0330) 2003; 100 Parui (10.1016/j.bbagen.2019.129498_bb0125) 2016; 120 Frenkel (10.1016/j.bbagen.2019.129498_bb0250) 2001 Chandran (10.1016/j.bbagen.2019.129498_bb0185) 2012; 134 Feuerstein (10.1016/j.bbagen.2019.129498_bb0305) 1986; 83 Berendsen (10.1016/j.bbagen.2019.129498_bb0240) 1987; 91 Harries (10.1016/j.bbagen.2019.129498_bb0085) 1998; 75 Jobling (10.1016/j.bbagen.2019.129498_bb0020) 2004; 5 Perez (10.1016/j.bbagen.2019.129498_bb0195) 2007; 92 Jha (10.1016/j.bbagen.2019.129498_bb0335) 2014; 111 Mondal (10.1016/j.bbagen.2019.129498_bb0030) 2018; 122 Xia (10.1016/j.bbagen.2019.129498_bb0120) 2012; 134 Ahmed (10.1016/j.bbagen.2019.129498_bb0050) 2018; 111 Parrinello (10.1016/j.bbagen.2019.129498_bb0245) 1981; 52 Gannon (10.1016/j.bbagen.2019.129498_bb0215) 2008; 112 Weerasinghe (10.1016/j.bbagen.2019.129498_bb0220) 2004; 121 Camilloni (10.1016/j.bbagen.2019.129498_bb0115) 2008; 94 Kasavajhala (10.1016/j.bbagen.2019.129498_bb0135) 2015; 119 Hess (10.1016/j.bbagen.2019.129498_bb0235) 1997; 18 Liu (10.1016/j.bbagen.2019.129498_bb0045) 2009 Gosting (10.1016/j.bbagen.2019.129498_bb0225) 1952; 74 Lu (10.1016/j.bbagen.2019.129498_bb0260) 2003; 31 Drew (10.1016/j.bbagen.2019.129498_bb0170) 1981; 151 Cheng (10.1016/j.bbagen.2019.129498_bb0100) 1992; 58 Van der Spoel (10.1016/j.bbagen.2019.129498_bb0190) 2016 Thomas (10.1016/j.bbagen.2019.129498_bb0270) 1993; 135 Ueda (10.1016/j.bbagen.2019.129498_bb0110) 2016; 17 Patra (10.1016/j.bbagen.2019.129498_bb0105) 2017; 56 Zhai (10.1016/j.bbagen.2019.129498_bb0040) 1997; 15 Hédoux (10.1016/j.bbagen.2019.129498_bb0340) 2010; 12 Barcellona (10.1016/j.bbagen.2019.129498_bb0150) 1990; 170 Kumar (10.1016/j.bbagen.2019.129498_bb0265) 2015; 31 Lomedico (10.1016/j.bbagen.2019.129498_bb0005) 1982; 79 Oprzeska-Zingrebe (10.1016/j.bbagen.2019.129498_bb0140) 2018; 114 Pérez (10.1016/j.bbagen.2019.129498_bb0180) 2007; 129 |
References_xml | – volume: 15 start-page: 156 year: 2007 end-page: 161 ident: bb0015 article-title: Use of DNA technology in forensic dentistry publication-title: J. Appl. Oral Sci. – volume: 122 start-page: 2227 year: 2018 end-page: 2242 ident: bb0030 article-title: Unique features of metformin: a combined experimental, theoretical, and simulation study of its structure, dynamics, and interaction energetics with DNA grooves publication-title: J. Phys. Chem. B – volume: 119 start-page: 3755 year: 2015 end-page: 3761 ident: bb0135 article-title: Dispersion interactions between urea and nucleobases contribute to the destabilization of RNA by urea in aqueous solution publication-title: J. Phys. Chem. B – year: 2016 ident: bb0190 article-title: Gromacs User Manual – volume: 28 start-page: 3379 year: 2000 end-page: 3385 ident: bb0310 article-title: Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy publication-title: Nucleic Acids Res. – start-page: 437 year: 1996 end-page: 467 ident: bb0090 article-title: DNA stability and DNA binding proteins publication-title: Adv. Protein Chem., Academic Press, Place Published – volume: 118 start-page: 379 year: 2014 end-page: 389 ident: bb0325 article-title: Choline ion interactions with DNA atoms explain unique stabilization of A–T Base pairs in DNA duplexes: a microscopic view publication-title: J. Phys. Chem. B – volume: 50 start-page: 733 year: 2017 end-page: 739 ident: bb0070 article-title: Bioresponsive DNA hydrogels: beyond the conventional stimuli responsiveness publication-title: Acc. Chem. Res. – volume: 52 start-page: 7182 year: 1981 end-page: 7190 ident: bb0245 article-title: Polymorphic transitions in single crystals: a new molecular dynamics method publication-title: J. Appl. Phys. – volume: 112 start-page: 8906 year: 2008 end-page: 8911 ident: bb0215 article-title: Guanidinium chloride molecular diffusion in aqueous and mixed water−ethanol solutions publication-title: J. Phys. Chem. B – volume: 55 start-page: 5653 year: 2016 end-page: 5664 ident: bb0145 article-title: Urea mimics nucleobases by preserving the helical integrity of B-DNA duplexes via hydrogen bonding and Stackin interactions publication-title: Biochemistry – volume: 26 start-page: 114 year: 2004 ident: bb0205 article-title: Development and testing of a general amber force field publication-title: J. Comput. Chem. – volume: 29 start-page: 5121 year: 2001 end-page: 5128 ident: bb0300 article-title: Effects of polyamines on the thermal stability and formation kinetics of DNA duplexes with abnormal structure publication-title: Nucleic Acids Res. – volume: 120 start-page: 2691 year: 2016 end-page: 2700 ident: bb0280 article-title: Influence of ionic liquids on thermodynamics of small molecule-DNA interaction: the binding of ethidium bromide to calf thymus DNA publication-title: J. Phys. Chem. B – volume: 114 start-page: 1551 year: 2018 end-page: 1562 ident: bb0140 article-title: Preferential binding of urea to single-stranded DNA structures: a molecular dynamics study publication-title: Biophys. J. – volume: 41 start-page: 963 year: 1987 end-page: 978 ident: bb0010 article-title: Isolation and regional mapping of DNA sequences unique to human chromosome 21 publication-title: Am. J. Hum. Genet. – volume: 2 start-page: 477 year: 1975 end-page: 486 ident: bb0290 article-title: A clarification of the complex spectrum observed with the ultraviolet circular dichroism of ethidium bromide bound to DNA publication-title: Nucleic Acids Res. – volume: 37 start-page: 1713 year: 2009 end-page: 1725 ident: bb0275 article-title: Circular dichroism and conformational polymorphism of DNA publication-title: Nucleic Acids Res. – volume: 83 start-page: 5948 year: 1986 end-page: 5952 ident: bb0305 article-title: Spermine-DNA interactions: a theoretical study publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2001 ident: bb0250 article-title: Understanding Molecular Simulation: From Algorithms to Applications – volume: 31 start-page: 5108 year: 2003 end-page: 5121 ident: bb0260 article-title: 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures publication-title: Nucleic Acids Res. – volume: 94 start-page: 4654 year: 2008 end-page: 4661 ident: bb0115 article-title: Urea and Guanidinium chloride denature protein L in different ways in molecular dynamics simulations publication-title: Biophys. J. – volume: 100 start-page: 5142 year: 2003 end-page: 5147 ident: bb0330 article-title: The molecular basis for the chemical denaturation of proteins by urea publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 start-page: 13189 year: 2010 end-page: 13196 ident: bb0340 article-title: Influence of urea and guanidine hydrochloride on lysozyme stability and thermal denaturation; a correlation between activity, protein dynamics and conformational changes publication-title: Phys. Chem. Chem.Phys. – volume: 5 start-page: 739 year: 2004 ident: bb0020 article-title: Encoded evidence: DNA in forensic analysis publication-title: Nat. Rev. Genet. – volume: 75 start-page: 2422 year: 1998 end-page: 2434 ident: bb0295 article-title: Hydration of the phosphate group in double-helical DNA publication-title: Biophys. J. – volume: 108 start-page: 1065 year: 2004 end-page: 1071 ident: bb0230 article-title: Computer simulation of urea−water mixtures: a test of force field parameters for use in biomolecular simulation publication-title: J. Phys. Chem. B – volume: 58 start-page: 225 year: 1992 end-page: 257 ident: bb0100 article-title: Stabilities of double- and triple-strand helical nucleic acids publication-title: Prog. Biophys. Mol. Biol. – volume: 129 start-page: 14739 year: 2007 end-page: 14745 ident: bb0180 article-title: Dynamics of B-DNA on the microsecond time scale publication-title: J. Am. Chem. Soc. – volume: 92 start-page: 3817 year: 2007 end-page: 3829 ident: bb0195 article-title: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers publication-title: Biophys. J. – volume: 134 start-page: 18266 year: 2012 end-page: 18274 ident: bb0120 article-title: Collapse of unfolded proteins in a mixture of denaturants publication-title: J. Am. Chem. Soc. – volume: 79 start-page: 5798 year: 1982 end-page: 5802 ident: bb0005 article-title: Use of recombinant DNA technology to program eukaryotic cells to synthesize rat proinsulin: a rapid expression assay for cloned genes publication-title: Proc. Natl. Acad. Sci. – volume: 31 start-page: 3103 year: 1992 end-page: 3112 ident: bb0285 article-title: DAPI (4′,6-diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites publication-title: Biochemistry – volume: 18 start-page: 1463 year: 1997 end-page: 1472 ident: bb0235 article-title: LINCS: a linear constraint solver for molecular simulations publication-title: J. Comp. Chem. – volume: 241 start-page: 3228 year: 1966 end-page: 3232 ident: bb0210 article-title: Viscosity and density of aqueous solutions of urea and guanidine hydrochloride publication-title: J. Biol. Chem. – volume: 49 start-page: 1993 year: 2008 end-page: 2007 ident: bb0075 article-title: Hydrogels in drug delivery: progress and challenges publication-title: Polymer – volume: 282 start-page: 331 year: 1998 end-page: 343 ident: bb0255 article-title: Two distinct modes of protein-induced bending in DNA publication-title: J. Mol. Biol. – volume: 42 start-page: 8831 year: 2014 end-page: 8844 ident: bb0320 article-title: Structure, stability and behaviour of nucleic acids in ionic liquids publication-title: Nucleic Acids Res. – volume: 82 start-page: 4080 year: 2014 end-page: 4091 ident: bb0025 article-title: An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of clostridium difficile induces protective antibody responses in vivo publication-title: Infect. Immun. – volume: 31 start-page: 2583 year: 2015 end-page: 2585 ident: bb0265 article-title: do_x3dna: a tool to analyze structural fluctuations of dsDNA or dsRNA from molecular dynamics simulations publication-title: Bioinformatics (Oxford, England) – start-page: 2625 year: 2009 end-page: 2636 ident: bb0045 article-title: DNA nanomachines and their functional evolution publication-title: Chem. Comm. – volume: 74 start-page: 2058 year: 1952 end-page: 2060 ident: bb0225 article-title: A study of the diffusion of urea in water at 25° with the Gouy interference Method1 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4119 year: 2013 end-page: 4124 ident: bb0055 article-title: Benzophenone and DNA: evidence for a double insertion mode and its spectral signature publication-title: J. Phys. Chem. Lett. – volume: 151 start-page: 535 year: 1981 end-page: 556 ident: bb0170 article-title: Structure of a B-DNA dodecamer. III. Geometry of hydration publication-title: J. Mol. Biol. – volume: 105 start-page: 9954 year: 2001 end-page: 9960 ident: bb0200 article-title: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K publication-title: J. Phys. Chem. A – volume: 44 start-page: 915 year: 2005 end-page: 925 ident: bb0080 article-title: Role of a surface tryptophan in defining the structure, stability, and DNA binding of the hyperthermophile protein Sac7d publication-title: Biochemistry – volume: 134 start-page: 20330 year: 2012 end-page: 20339 ident: bb0185 article-title: Groove binding mechanism of ionic liquids: a key factor in long-term stability of DNA in hydrated ionic liquids? publication-title: J. Am. Chem. Soc. – volume: 121 start-page: 2180 year: 2004 end-page: 2186 ident: bb0220 article-title: A Kirkwood-Buff derived force field for the simulation of aqueous guanidinium chloride solutions publication-title: J. Chem. Phys. – volume: 34 start-page: 1271 year: 2013 end-page: 1283 ident: bb0065 article-title: Responsive DNA-based hydrogels and their applications publication-title: Macromol. Rapid Commun. – volume: 32 start-page: 2987 year: 1993 end-page: 2998 ident: bb0155 article-title: Binding of 4′,6-diamidino-2-phenylindole (DAPI) to AT regions of DNA: evidence for an allosteric conformational change publication-title: Biochemistry – volume: 69 start-page: 3805 year: 1972 end-page: 3809 ident: bb0160 article-title: Ethidium bromide as a cooperative effector of a DNA structure publication-title: Proc. Natl. Acad. Sci. – volume: 170 start-page: 270 year: 1990 end-page: 280 ident: bb0150 article-title: Time-resolved fluorescence of DAPI in solution and bound to polydeoxynucleotides publication-title: Biochem. Biophys. Res. Commun. – volume: 135 start-page: 77 year: 1993 end-page: 79 ident: bb0270 article-title: The denaturation of DNA publication-title: Gene – volume: 75 start-page: 159 year: 1998 end-page: 173 ident: bb0085 article-title: Structure, stability, and thermodynamics of lamellar DNA-lipid complexes publication-title: Biophys. J. – volume: 141 start-page: 9555 year: 2019 end-page: 9563 ident: bb0315 article-title: Sequence-selective minor groove recognition of a DNA duplex containing synthetic genetic components publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 43 year: 1997 end-page: 58 ident: bb0040 article-title: DNA based biosensors publication-title: Biotechnol. Adv. – volume: 10 start-page: 1971 year: 2010 end-page: 1978 ident: bb0060 article-title: Structural DNA nanotechnology: growing along with nano letters publication-title: Nano Lett. – volume: 91 start-page: 6269 year: 1987 end-page: 6271 ident: bb0240 article-title: The missing term in effective pair potentials publication-title: J. Phys. Chem. – volume: 96 start-page: 3906 year: 1999 ident: bb0035 article-title: Sustained correction of bleeding disorder in hemophilia B mice by gene therapy publication-title: Proc. Natl. Acad. Sci. – volume: 56 start-page: 5045 year: 2017 end-page: 5049 ident: bb0105 article-title: Osmolyte effects on the conformational dynamics of a DNA hairpin at ambient and extreme environmental conditions publication-title: Angew. Chem. – volume: 17 start-page: 753 year: 2016 end-page: 759 ident: bb0110 article-title: Effects of trimethylamine N-oxide and urea on DNA duplex and G-quadruplex publication-title: Sci. Technol. Adv. Mater. – volume: 120 start-page: 9599 year: 2016 end-page: 9607 ident: bb0125 article-title: Destabilization of hydrophobic core of chicken villin headpiece in guanidinium chloride induced denaturation: hint of π-cation interaction publication-title: J. Phys. Chem. B – volume: 111 start-page: 4856 year: 2014 ident: bb0335 article-title: Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride publication-title: Proc. Natl. Acad. Sci. – volume: 11 start-page: 3610 year: 1972 end-page: 3618 ident: bb0095 article-title: Rate of depurination of native deoxyribonucleic acid publication-title: Biochemistry – volume: 111 start-page: 455 year: 2018 end-page: 461 ident: bb0050 article-title: Structural polymorphism of a cytosine-rich DNA sequence forming i-motif structure: exploring pH based biosensors publication-title: Int. J. Biol. Macromol. – volume: 135 start-page: 12112 year: 2013 end-page: 12121 ident: bb0130 article-title: Urea-induced denaturation of PreQ1-riboswitch publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 11099 year: 2015 end-page: 11105 ident: bb0175 article-title: Spectroscopic and molecular docking study of the interaction of DNA with a morpholinium ionic liquid publication-title: J. Phys. Chem. B – volume: 78 start-page: 2179 year: 1981 end-page: 2183 ident: bb0165 article-title: Structure of a B-DNA dodecamer: conformation and dynamics publication-title: Proc. Natl. Acad. Sci. – volume: 15 start-page: 156 year: 2007 ident: 10.1016/j.bbagen.2019.129498_bb0015 article-title: Use of DNA technology in forensic dentistry publication-title: J. Appl. Oral Sci. doi: 10.1590/S1678-77572007000300002 – volume: 282 start-page: 331 year: 1998 ident: 10.1016/j.bbagen.2019.129498_bb0255 article-title: Two distinct modes of protein-induced bending in DNA publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.1994 – volume: 56 start-page: 5045 year: 2017 ident: 10.1016/j.bbagen.2019.129498_bb0105 article-title: Osmolyte effects on the conformational dynamics of a DNA hairpin at ambient and extreme environmental conditions publication-title: Angew. Chem. doi: 10.1002/anie.201701420 – volume: 31 start-page: 2583 year: 2015 ident: 10.1016/j.bbagen.2019.129498_bb0265 article-title: do_x3dna: a tool to analyze structural fluctuations of dsDNA or dsRNA from molecular dynamics simulations publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btv190 – start-page: 437 year: 1996 ident: 10.1016/j.bbagen.2019.129498_bb0090 article-title: DNA stability and DNA binding proteins – volume: 58 start-page: 225 year: 1992 ident: 10.1016/j.bbagen.2019.129498_bb0100 article-title: Stabilities of double- and triple-strand helical nucleic acids publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/0079-6107(92)90007-S – volume: 112 start-page: 8906 year: 2008 ident: 10.1016/j.bbagen.2019.129498_bb0215 article-title: Guanidinium chloride molecular diffusion in aqueous and mixed water−ethanol solutions publication-title: J. Phys. Chem. B doi: 10.1021/jp8030336 – volume: 31 start-page: 5108 year: 2003 ident: 10.1016/j.bbagen.2019.129498_bb0260 article-title: 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg680 – volume: 83 start-page: 5948 year: 1986 ident: 10.1016/j.bbagen.2019.129498_bb0305 article-title: Spermine-DNA interactions: a theoretical study publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.83.16.5948 – volume: 120 start-page: 9599 year: 2016 ident: 10.1016/j.bbagen.2019.129498_bb0125 article-title: Destabilization of hydrophobic core of chicken villin headpiece in guanidinium chloride induced denaturation: hint of π-cation interaction publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.6b06325 – start-page: 2625 year: 2009 ident: 10.1016/j.bbagen.2019.129498_bb0045 article-title: DNA nanomachines and their functional evolution publication-title: Chem. Comm. doi: 10.1039/b822719e – volume: 32 start-page: 2987 year: 1993 ident: 10.1016/j.bbagen.2019.129498_bb0155 article-title: Binding of 4′,6-diamidino-2-phenylindole (DAPI) to AT regions of DNA: evidence for an allosteric conformational change publication-title: Biochemistry doi: 10.1021/bi00063a009 – volume: 78 start-page: 2179 year: 1981 ident: 10.1016/j.bbagen.2019.129498_bb0165 article-title: Structure of a B-DNA dodecamer: conformation and dynamics publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.78.4.2179 – volume: 10 start-page: 1971 year: 2010 ident: 10.1016/j.bbagen.2019.129498_bb0060 article-title: Structural DNA nanotechnology: growing along with nano letters publication-title: Nano Lett. doi: 10.1021/nl101262u – volume: 134 start-page: 18266 year: 2012 ident: 10.1016/j.bbagen.2019.129498_bb0120 article-title: Collapse of unfolded proteins in a mixture of denaturants publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3031505 – volume: 111 start-page: 4856 year: 2014 ident: 10.1016/j.bbagen.2019.129498_bb0335 article-title: Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1315453111 – volume: 44 start-page: 915 year: 2005 ident: 10.1016/j.bbagen.2019.129498_bb0080 article-title: Role of a surface tryptophan in defining the structure, stability, and DNA binding of the hyperthermophile protein Sac7d publication-title: Biochemistry doi: 10.1021/bi047823b – volume: 122 start-page: 2227 year: 2018 ident: 10.1016/j.bbagen.2019.129498_bb0030 article-title: Unique features of metformin: a combined experimental, theoretical, and simulation study of its structure, dynamics, and interaction energetics with DNA grooves publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b11928 – volume: 100 start-page: 5142 year: 2003 ident: 10.1016/j.bbagen.2019.129498_bb0330 article-title: The molecular basis for the chemical denaturation of proteins by urea publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0930122100 – volume: 18 start-page: 1463 year: 1997 ident: 10.1016/j.bbagen.2019.129498_bb0235 article-title: LINCS: a linear constraint solver for molecular simulations publication-title: J. Comp. Chem. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H – volume: 11 start-page: 3610 year: 1972 ident: 10.1016/j.bbagen.2019.129498_bb0095 article-title: Rate of depurination of native deoxyribonucleic acid publication-title: Biochemistry doi: 10.1021/bi00769a018 – year: 2016 ident: 10.1016/j.bbagen.2019.129498_bb0190 – volume: 41 start-page: 963 year: 1987 ident: 10.1016/j.bbagen.2019.129498_bb0010 article-title: Isolation and regional mapping of DNA sequences unique to human chromosome 21 publication-title: Am. J. Hum. Genet. – volume: 120 start-page: 2691 year: 2016 ident: 10.1016/j.bbagen.2019.129498_bb0280 article-title: Influence of ionic liquids on thermodynamics of small molecule-DNA interaction: the binding of ethidium bromide to calf thymus DNA publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b11823 – volume: 151 start-page: 535 year: 1981 ident: 10.1016/j.bbagen.2019.129498_bb0170 article-title: Structure of a B-DNA dodecamer. III. Geometry of hydration publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(81)90009-7 – volume: 2 start-page: 477 year: 1975 ident: 10.1016/j.bbagen.2019.129498_bb0290 article-title: A clarification of the complex spectrum observed with the ultraviolet circular dichroism of ethidium bromide bound to DNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/2.4.477 – volume: 4 start-page: 4119 year: 2013 ident: 10.1016/j.bbagen.2019.129498_bb0055 article-title: Benzophenone and DNA: evidence for a double insertion mode and its spectral signature publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz4021475 – volume: 105 start-page: 9954 year: 2001 ident: 10.1016/j.bbagen.2019.129498_bb0200 article-title: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K publication-title: J. Phys. Chem. A doi: 10.1021/jp003020w – volume: 129 start-page: 14739 year: 2007 ident: 10.1016/j.bbagen.2019.129498_bb0180 article-title: Dynamics of B-DNA on the microsecond time scale publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0753546 – volume: 74 start-page: 2058 year: 1952 ident: 10.1016/j.bbagen.2019.129498_bb0225 article-title: A study of the diffusion of urea in water at 25° with the Gouy interference Method1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01128a060 – volume: 75 start-page: 2422 year: 1998 ident: 10.1016/j.bbagen.2019.129498_bb0295 article-title: Hydration of the phosphate group in double-helical DNA publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)77686-6 – volume: 92 start-page: 3817 year: 2007 ident: 10.1016/j.bbagen.2019.129498_bb0195 article-title: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers publication-title: Biophys. J. doi: 10.1529/biophysj.106.097782 – volume: 135 start-page: 12112 year: 2013 ident: 10.1016/j.bbagen.2019.129498_bb0130 article-title: Urea-induced denaturation of PreQ1-riboswitch publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406019s – volume: 111 start-page: 455 year: 2018 ident: 10.1016/j.bbagen.2019.129498_bb0050 article-title: Structural polymorphism of a cytosine-rich DNA sequence forming i-motif structure: exploring pH based biosensors publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.01.053 – volume: 55 start-page: 5653 year: 2016 ident: 10.1016/j.bbagen.2019.129498_bb0145 article-title: Urea mimics nucleobases by preserving the helical integrity of B-DNA duplexes via hydrogen bonding and Stackin interactions publication-title: Biochemistry doi: 10.1021/acs.biochem.6b00309 – volume: 12 start-page: 13189 year: 2010 ident: 10.1016/j.bbagen.2019.129498_bb0340 article-title: Influence of urea and guanidine hydrochloride on lysozyme stability and thermal denaturation; a correlation between activity, protein dynamics and conformational changes publication-title: Phys. Chem. Chem.Phys. doi: 10.1039/c0cp00602e – volume: 96 start-page: 3906 year: 1999 ident: 10.1016/j.bbagen.2019.129498_bb0035 article-title: Sustained correction of bleeding disorder in hemophilia B mice by gene therapy publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.96.7.3906 – volume: 5 start-page: 739 year: 2004 ident: 10.1016/j.bbagen.2019.129498_bb0020 article-title: Encoded evidence: DNA in forensic analysis publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1455 – volume: 119 start-page: 3755 year: 2015 ident: 10.1016/j.bbagen.2019.129498_bb0135 article-title: Dispersion interactions between urea and nucleobases contribute to the destabilization of RNA by urea in aqueous solution publication-title: J. Phys. Chem. B doi: 10.1021/jp512414f – volume: 134 start-page: 20330 year: 2012 ident: 10.1016/j.bbagen.2019.129498_bb0185 article-title: Groove binding mechanism of ionic liquids: a key factor in long-term stability of DNA in hydrated ionic liquids? publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304519d – volume: 31 start-page: 3103 year: 1992 ident: 10.1016/j.bbagen.2019.129498_bb0285 article-title: DAPI (4′,6-diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites publication-title: Biochemistry doi: 10.1021/bi00127a010 – volume: 114 start-page: 1551 year: 2018 ident: 10.1016/j.bbagen.2019.129498_bb0140 article-title: Preferential binding of urea to single-stranded DNA structures: a molecular dynamics study publication-title: Biophys. J. doi: 10.1016/j.bpj.2018.02.013 – volume: 241 start-page: 3228 year: 1966 ident: 10.1016/j.bbagen.2019.129498_bb0210 article-title: Viscosity and density of aqueous solutions of urea and guanidine hydrochloride publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)96519-1 – volume: 79 start-page: 5798 year: 1982 ident: 10.1016/j.bbagen.2019.129498_bb0005 article-title: Use of recombinant DNA technology to program eukaryotic cells to synthesize rat proinsulin: a rapid expression assay for cloned genes publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.79.19.5798 – volume: 52 start-page: 7182 year: 1981 ident: 10.1016/j.bbagen.2019.129498_bb0245 article-title: Polymorphic transitions in single crystals: a new molecular dynamics method publication-title: J. Appl. Phys. doi: 10.1063/1.328693 – volume: 15 start-page: 43 year: 1997 ident: 10.1016/j.bbagen.2019.129498_bb0040 article-title: DNA based biosensors publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(97)00003-7 – volume: 29 start-page: 5121 year: 2001 ident: 10.1016/j.bbagen.2019.129498_bb0300 article-title: Effects of polyamines on the thermal stability and formation kinetics of DNA duplexes with abnormal structure publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.24.5121 – volume: 121 start-page: 2180 year: 2004 ident: 10.1016/j.bbagen.2019.129498_bb0220 article-title: A Kirkwood-Buff derived force field for the simulation of aqueous guanidinium chloride solutions publication-title: J. Chem. Phys. doi: 10.1063/1.1768938 – volume: 94 start-page: 4654 year: 2008 ident: 10.1016/j.bbagen.2019.129498_bb0115 article-title: Urea and Guanidinium chloride denature protein L in different ways in molecular dynamics simulations publication-title: Biophys. J. doi: 10.1529/biophysj.107.125799 – volume: 26 start-page: 114 year: 2004 ident: 10.1016/j.bbagen.2019.129498_bb0205 article-title: Development and testing of a general amber force field publication-title: J. Comput. Chem. doi: 10.1002/jcc.20145 – volume: 108 start-page: 1065 year: 2004 ident: 10.1016/j.bbagen.2019.129498_bb0230 article-title: Computer simulation of urea−water mixtures: a test of force field parameters for use in biomolecular simulation publication-title: J. Phys. Chem. B doi: 10.1021/jp030534x – volume: 118 start-page: 379 year: 2014 ident: 10.1016/j.bbagen.2019.129498_bb0325 article-title: Choline ion interactions with DNA atoms explain unique stabilization of A–T Base pairs in DNA duplexes: a microscopic view publication-title: J. Phys. Chem. B doi: 10.1021/jp406647b – volume: 17 start-page: 753 year: 2016 ident: 10.1016/j.bbagen.2019.129498_bb0110 article-title: Effects of trimethylamine N-oxide and urea on DNA duplex and G-quadruplex publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2016.1243000 – volume: 135 start-page: 77 year: 1993 ident: 10.1016/j.bbagen.2019.129498_bb0270 article-title: The denaturation of DNA publication-title: Gene doi: 10.1016/0378-1119(93)90051-4 – volume: 75 start-page: 159 year: 1998 ident: 10.1016/j.bbagen.2019.129498_bb0085 article-title: Structure, stability, and thermodynamics of lamellar DNA-lipid complexes publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)77503-4 – year: 2001 ident: 10.1016/j.bbagen.2019.129498_bb0250 – volume: 50 start-page: 733 year: 2017 ident: 10.1016/j.bbagen.2019.129498_bb0070 article-title: Bioresponsive DNA hydrogels: beyond the conventional stimuli responsiveness publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00581 – volume: 82 start-page: 4080 year: 2014 ident: 10.1016/j.bbagen.2019.129498_bb0025 article-title: An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of clostridium difficile induces protective antibody responses in vivo publication-title: Infect. Immun. doi: 10.1128/IAI.01950-14 – volume: 49 start-page: 1993 year: 2008 ident: 10.1016/j.bbagen.2019.129498_bb0075 article-title: Hydrogels in drug delivery: progress and challenges publication-title: Polymer doi: 10.1016/j.polymer.2008.01.027 – volume: 69 start-page: 3805 year: 1972 ident: 10.1016/j.bbagen.2019.129498_bb0160 article-title: Ethidium bromide as a cooperative effector of a DNA structure publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.69.12.3805 – volume: 141 start-page: 9555 year: 2019 ident: 10.1016/j.bbagen.2019.129498_bb0315 article-title: Sequence-selective minor groove recognition of a DNA duplex containing synthetic genetic components publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12444 – volume: 28 start-page: 3379 year: 2000 ident: 10.1016/j.bbagen.2019.129498_bb0310 article-title: Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.17.3379 – volume: 170 start-page: 270 year: 1990 ident: 10.1016/j.bbagen.2019.129498_bb0150 article-title: Time-resolved fluorescence of DAPI in solution and bound to polydeoxynucleotides publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(90)91270-3 – volume: 37 start-page: 1713 year: 2009 ident: 10.1016/j.bbagen.2019.129498_bb0275 article-title: Circular dichroism and conformational polymorphism of DNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp026 – volume: 34 start-page: 1271 year: 2013 ident: 10.1016/j.bbagen.2019.129498_bb0065 article-title: Responsive DNA-based hydrogels and their applications publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201300411 – volume: 42 start-page: 8831 year: 2014 ident: 10.1016/j.bbagen.2019.129498_bb0320 article-title: Structure, stability and behaviour of nucleic acids in ionic liquids publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku499 – volume: 91 start-page: 6269 year: 1987 ident: 10.1016/j.bbagen.2019.129498_bb0240 article-title: The missing term in effective pair potentials publication-title: J. Phys. Chem. doi: 10.1021/j100308a038 – volume: 119 start-page: 11099 year: 2015 ident: 10.1016/j.bbagen.2019.129498_bb0175 article-title: Spectroscopic and molecular docking study of the interaction of DNA with a morpholinium ionic liquid publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b02939 |
SSID | ssj0000595 |
Score | 2.3521883 |
Snippet | Denaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129498 |
SubjectTerms | chlorides DNA drugs electrostatic interactions guanidinium Guanidinium chloride hydrogen bonding Melting temperature Molecular dynamic simulation molecular dynamics nucleobases spectroscopy Urea |
Title | Alteration of the groove width of DNA induced by the multimodal hydrogen bonding of denaturants with DNA bases in its grooves affects their stability |
URI | https://dx.doi.org/10.1016/j.bbagen.2019.129498 https://www.ncbi.nlm.nih.gov/pubmed/31785326 https://www.proquest.com/docview/2320381210 https://www.proquest.com/docview/2477621429 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB1VRVW5IOgHBGhlJK5uNmuv3T1GgSqAlEup1Ju1_qJBbbZqUlAu_Av-LzP2blEPpRJXa7y2PLbf887zGOC9UKEsbDjmoWgEl1IX3NrC8kLVCtmGiKFJKt-Zmp7Jz-fV-QZM-rswJKvs9v68p6fduisZdqM5vJ7Ph6cU1EM6QRQEQVLTJT5si2b50a-_Mg-kD1WOJEhO1v31uaTxshYXLWVBHdVHCHyyPn4Inh6inwmGTp7Ds44_snHu4gvYCIsd2MovSq53YHvSP-C2C7_HlyllMo48ayNDpse-IU_-EdjPuV9dUNmH2ZjhoRzd65ldJ5OkMLxqPTZysfY3Lfac2TbdfaEauE1RKlBSzzD6h5s-QVC4xA-xOZbmNpasyUoRlkIRDElokuGu9-Ds5OPXyZR3rzBwJ-pqxUUTlRBSeS2lq7xrRmUREOVjY6UNGglmJbSzTsTC6qJCzI_WlbqJFRH3qMU-bC7aRXgFzNUyelz1SkdNVhaPWyrGMvoyOu_LAYh-8I3rUpTTSxmXpteifTfZZYZcZrLLBsDval3nFB2P2Over-beVDOIIo_UfNdPA4O-pNBKswjt7dIgL6WQK56f_2EjNSLPCAnAAF7mOXTXX2RxyJtK9fq_-_YGnpb0KyDJ497C5urmNhwgX1rZw7QgDuHJ-NOX6ewPbzAVxg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVKhcEJRXeBqJq8lm7bW7xyhQpbTkQiv1Zq1fNKhkqyYF5Yfwf5mxd4s4lEpcrfFDHnvms_15BuCdUKEsbNjjoWgEl1IX3NrC8kLVCtGGiKFJLN-5mp3IT6fV6RZM-78wRKvsbH-26cladyWjbjZHF4vF6As96iGcIAiCTlLXd2CbolNVA9ieHBzO5n8McpWSr5A8pwr9D7pE87IW9y0FQh3X79H3yXrvJg91EwJNnmj_AdzvICSb5FE-hK2w3IW7OankZhd2pn0Ot0fwa3Keoibj5LM2MgR77CtC5R-B_Vz49RmVfZhPGJ7LUcOe2U0SSSTD763HTs42_rLFkTPbpu8vVAMtFUUDJQINo2vc1AR5wxU2xBZYmvtYsSaTRVh6jWCIQxMTd_MYTvY_Hk9nvEvEwJ2oqzUXTVRCSOW1lK7yrhmXRUBHHxsrbdCIMSuhnXUiFlYXFbr9aF2pm1gRdo9aPIHBsl2GZ8BcLaPHja901CRl8cSlYiyjL6PzvhyC6CffuC5KOSXLODc9He2bySozpDKTVTYEfl3rIkfpuEVe93o1f602g47klppv-2VgUJf0utIsQ3u1MghN6dUVj9D_kJEanc8YMcAQnuY1dD1eBHIInUr1_L_H9gZ2Zsefj8zRwfzwBdwr6WYgseVewmB9eRVeIXxa29fd9vgN4dsYdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alteration+of+the+groove+width+of+DNA+induced+by+the+multimodal+hydrogen+bonding+of+denaturants+with+DNA+bases+in+its+grooves+affects+their+stability&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Sarkar%2C+Sunipa&rft.au=Singh%2C+Prashant+Chandra&rft.date=2020-03-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=3&rft.spage=129498&rft_id=info:doi/10.1016%2Fj.bbagen.2019.129498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2019_129498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |