Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead
Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicabilit...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1865; no. 2; p. 129777 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity.
Scope of review
The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems.
Major conclusions
In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment.
General significance
This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.
•Engineering nanocarriers have gained attention in cancer due to receptor targeting.•EPR based nanomedicines exhibit limited success due to poor drug retention in target cells.•TME is an important key domain for designing any NCs for effective drug targeting.•The active targeting is meant for improving targeting of NCs for better therapeutic efficacy. |
---|---|
AbstractList | BackgroundIn past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity.Scope of reviewThe applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems.Major conclusionsIn spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment.General significanceThis review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells. Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells. •Engineering nanocarriers have gained attention in cancer due to receptor targeting.•EPR based nanomedicines exhibit limited success due to poor drug retention in target cells.•TME is an important key domain for designing any NCs for effective drug targeting.•The active targeting is meant for improving targeting of NCs for better therapeutic efficacy. Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells. Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells. |
ArticleNumber | 129777 |
Author | Akhter, Md. Habban Tarique, Mohammed Afaq, Sarah Hosawi, Salman Choudhry, Hani Malik, Arshi Beg, Sarwar |
Author_xml | – sequence: 1 givenname: Md. Habban surname: Akhter fullname: Akhter, Md. Habban organization: Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India – sequence: 2 givenname: Sarwar surname: Beg fullname: Beg, Sarwar email: sarwar.beg@gmail.com organization: Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India – sequence: 3 givenname: Mohammed surname: Tarique fullname: Tarique, Mohammed organization: Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India – sequence: 4 givenname: Arshi surname: Malik fullname: Malik, Arshi organization: Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia – sequence: 5 givenname: Sarah surname: Afaq fullname: Afaq, Sarah organization: Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia – sequence: 6 givenname: Hani surname: Choudhry fullname: Choudhry, Hani organization: Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia – sequence: 7 givenname: Salman surname: Hosawi fullname: Hosawi, Salman organization: Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33130062$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaDZp_0EpOvbirT4sa5VDoYT0AwKB0p7FWB47WmxpK2kL_ffR4rSHHhodJGZ43pfRvJfkLMSAhLzhbMsZ797vt30PE4atYKK2hNFavyAbvtOi2THWnZENk6xtWt6pC3KZ857Vo4x6SS6k5LIiYkOWb-jwUGJqesg40AJpwuLDRONIMUw-IKbaDxCig5Q8JgoT-JALzXH2VXFcYsrX9GQUCj2kOCXMmUIYqHuAea4uWMsHhOEVOR9hzvj66b0iPz7dfr_50tzdf_568_GucdKo0tSrjg5aKNWOfS9Q9Fq0To0chHBm6DpZf4tGy9FoBi2C0rwfx1FK2Ruj5BV5t_rWaX4eMRe7-OxwniFgPGZbjbkRnHf8ebRV3a7jrRAVffuEHvsFB3tIfoH02_7ZZgXaFXAp5pxw_ItwZk-h2b1dQ7On0OwaWpVd_yNzvkDxMZQEfn5O_GEVY93nrxqPzc5jcDj4hK7YIfr_GzwCnXa0Qg |
CitedBy_id | crossref_primary_10_3390_gels8040219 crossref_primary_10_1021_acsomega_3c01153 crossref_primary_10_1080_1061186X_2024_2356735 crossref_primary_10_3390_biomedicines12020326 crossref_primary_10_1021_acsomega_3c01375 crossref_primary_10_1080_00914037_2023_2206659 crossref_primary_10_2147_IJN_S414882 crossref_primary_10_1016_j_ijbiomac_2023_125238 crossref_primary_10_1186_s11671_024_03985_y crossref_primary_10_1080_26895293_2022_2103592 crossref_primary_10_1080_1061186X_2024_2309661 crossref_primary_10_1080_10717544_2022_2075986 crossref_primary_10_3389_fpubh_2023_1238961 crossref_primary_10_1080_1061186X_2025_2468749 crossref_primary_10_1002_ppsc_202400049 crossref_primary_10_2147_DDDT_S447496 crossref_primary_10_1155_2022_9396760 crossref_primary_10_1016_j_colsurfb_2022_112597 crossref_primary_10_1080_00914037_2023_2291105 crossref_primary_10_2147_IJN_S335588 crossref_primary_10_1016_j_jep_2022_114993 crossref_primary_10_3390_pharmaceutics14081711 crossref_primary_10_1080_03639045_2024_2372290 crossref_primary_10_3390_gels8020082 crossref_primary_10_3390_gels7040230 crossref_primary_10_3390_molecules29051076 crossref_primary_10_1007_s11051_025_06228_y crossref_primary_10_3390_biomedicines9101496 crossref_primary_10_3390_pharmaceutics13101538 crossref_primary_10_3390_pharmaceutics13122153 crossref_primary_10_3390_ph16030349 crossref_primary_10_3390_ph16020207 |
Cites_doi | 10.3390/molecules24050927 10.1002/adhm.201300602 10.1016/j.jconrel.2014.03.007 10.1080/21691401.2017.1366333 10.1039/C8TB00038G 10.1371/journal.pone.0077769 10.1016/j.colsurfb.2014.09.009 10.3109/1061186X.2011.611518 10.12659/MSM.899005 10.1016/S0065-230X(05)94002-5 10.1038/natrevmats.2016.14 10.1160/TH06-08-0470 10.1002/anie.201400268 10.1039/c3nr90022c 10.1172/JCI39104 10.1158/0008-5472.CAN-06-4309 10.1002/cncr.10372 10.1038/nrclinonc.2010.139 10.1021/acs.nanolett.6b00820 10.4103/0019-509X.146794 10.1016/j.semcancer.2015.09.007 10.2353/ajpath.2006.050435 10.1080/10717544.2018.1435747 10.1038/nbt.3330 10.3390/pharmaceutics3010001 10.2147/IJN.S168808 10.1088/1361-648X/ab5a14 10.1016/j.bbagen.2011.07.016 10.2217/17435889.3.5.703 10.1038/nrc1456 10.1016/j.bbrc.2017.02.039 10.1016/S0939-6411(02)00081-4 10.1002/ddr.21399 10.1016/j.semcancer.2019.10.020 10.1021/nn300149c 10.1593/neo.05469 10.1016/S1357-2725(99)00070-9 10.1016/j.semcancer.2019.12.016 10.1002/adma.201905751 10.1016/j.biomaterials.2015.10.019 10.3390/pharmaceutics11020063 10.1021/nn502807n 10.1016/j.actbio.2015.08.029 10.1016/j.jconrel.2010.06.008 10.2147/IJN.S124770 10.3389/fimmu.2019.00147 10.1016/j.carbpol.2017.05.007 10.1021/mp400659t 10.2174/1567201801666160906104254 10.3390/biom8030050 10.1038/s41467-018-03705-y 10.1186/s12989-017-0199-z 10.1016/j.ejphar.2017.05.064 10.3390/cancers9050052 10.1080/2162402X.2017.1408745 10.4155/tde.11.13 10.1016/j.clim.2006.06.006 10.1039/C9NR03931G 10.1038/nature20791 10.1158/1535-7163.MCT-09-0110 10.1002/adtp.201800091 10.1016/j.msec.2016.03.059 10.1039/C4NR04853A 10.1016/j.nantod.2016.10.005 10.1172/JCI116001 10.1016/0167-4889(93)90137-E 10.1021/acs.biomac.6b01688 10.1126/science.1260419 10.1038/nrd4519 10.1016/j.semcancer.2019.11.002 10.1016/j.biocel.2016.01.005 10.1016/j.ijbiomac.2017.08.020 10.3109/10717544.2015.1040527 10.1016/S0092-8674(00)81813-9 10.1039/C8NR02513D 10.1016/j.addr.2009.03.009 10.1016/j.ijbiomac.2019.10.272 10.1016/j.ccr.2009.10.013 10.2147/IJN.S187240 10.1016/j.ijpharm.2006.08.025 10.1517/17425240902780166 10.3109/09687688.2010.521200 10.15252/embr.201439246 10.1371/journal.pone.0195542 10.1016/j.jconrel.2016.07.051 10.1021/acs.molpharmaceut.8b00307 10.1002/cncr.26436 10.1007/s11095-013-1067-7 10.1016/j.actbio.2018.06.034 10.1158/1541-7786.MCR-08-0244 10.1002/anie.201104449 10.1038/s41467-018-06602-6 10.3109/1061186X.2015.1058801 10.2147/IJN.S161908 10.2174/156720111793663606 10.2147/IJN.S146315 10.1016/j.nano.2017.02.010 10.1371/journal.pone.0083332 10.1080/1061186X.2018.1519029 10.1007/s11095-012-0874-6 10.1016/j.jconrel.2020.02.025 10.2217/nnm.16.5 10.1073/pnas.88.13.5572 10.1186/1748-717X-1-11 10.3389/fchem.2020.00571 10.1080/21691401.2018.1468768 10.1021/ja2108905 10.1016/j.bbamem.2006.12.013 10.1186/s12951-015-0083-7 10.1016/j.jconrel.2014.12.018 10.1016/j.ejpb.2005.02.006 10.1080/21691401.2018.1439838 10.1016/j.ajps.2013.07.001 10.1016/S1734-1140(13)71465-8 10.1007/s11706-017-0401-0 10.1016/j.addr.2009.03.010 10.15171/bi.2017.32 10.1016/j.tibtech.2016.08.011 10.1016/j.trecan.2018.02.005 10.1158/1535-7163.MCT-16-0569 10.1021/nl052396o 10.1155/2016/4273943 10.1016/j.jconrel.2016.01.002 10.1002/anie.200902672 10.1186/s12918-017-0491-4 10.1021/acsnano.6b07933 10.1016/j.cca.2014.05.004 10.1038/s41598-019-39107-3 10.1016/S0168-3659(03)00239-6 10.1074/jbc.M110.162156 10.1021/acsnano.9b03824 10.3390/ijms20040840 10.1016/j.jconrel.2016.01.015 10.1158/0008-5472.CAN-05-4199 10.1021/acs.chemrev.7b00013 10.1038/nature12327 10.1126/scitranslmed.aaa4963 10.1016/j.chemosphere.2015.09.086 10.1016/j.semcancer.2019.08.030 10.1002/anie.201311227 10.1080/19420862.2016.1156829 10.1016/j.addr.2013.11.009 10.1016/S0378-5173(02)00075-3 10.2147/IJN.S161932 10.1074/jbc.M009128200 10.1016/S0005-2736(01)00292-9 10.1016/j.jconrel.2016.09.004 10.1186/s13045-017-0444-9 10.1016/j.nantod.2015.11.003 10.1080/10717544.2017.1378940 10.1002/qaj.228 10.1016/j.jconrel.2014.03.057 10.1016/j.semcancer.2019.08.023 10.2174/1389201015666140608143235 10.1089/hum.2017.218 10.1007/978-3-319-72041-8_11 10.1039/C4TB01934B 10.1021/acsnano.9b05425 10.3892/mco.2017.1231 10.1080/1061186X.2017.1365876 10.1021/acsnano.5b00147 10.18632/oncotarget.10978 10.3402/nano.v3i0.18496 10.1039/C4BM00323C 10.3389/fonc.2015.00115 10.1016/j.jtbi.2012.11.031 10.1016/j.ddtec.2007.10.003 10.1055/s-0037-1616105 10.1101/cshperspect.a016949 10.1016/j.ejpb.2015.03.007 10.1016/j.addr.2012.10.002 10.1016/j.ymthe.2017.04.023 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129777 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 33130062 10_1016_j_bbagen_2020_129777 S0304416520302889 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-395030a72554fbb2e2b724c5f1a22c9d663977e973f970a4ea571bfff333b9953 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 03:03:47 EDT 2025 Fri Jul 11 11:42:54 EDT 2025 Wed Feb 19 02:28:47 EST 2025 Tue Jul 01 00:22:14 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 Fri Feb 23 02:46:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Receptor targeting Drug delivery Theranostics Nanomedicines Cancer Tumor metastasis |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-395030a72554fbb2e2b724c5f1a22c9d663977e973f970a4ea571bfff333b9953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 33130062 |
PQID | 2456861422 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551921161 proquest_miscellaneous_2456861422 pubmed_primary_33130062 crossref_primary_10_1016_j_bbagen_2020_129777 crossref_citationtrail_10_1016_j_bbagen_2020_129777 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129777 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Wempe, Anchordoquy (bb0145) 2011; 2 Fathi, Sahandi Zangabad, Barar, Aghanejad, Erfan-Niya, Omidi (bb0280) 2018; 106 Caracciolo, Farokhzad, Mahmoudi (bb0475) 2019 Schellekens, Hennink, Brinks (bb0495) 2013; 30 Blanco, Shen, Ferrari (bb0200) 2015; 33 Barar, Kafil, Majd, Barzegari, Khani, Johari-Ahar, Asgari, Coukos, Omidi (bb0790) 2015; 13 Verderio, Avvakumova, Alessio, Bellini, Colombo, Galbiati (bb0090) 2014; 3 Ojima, Takagi, Suzuma, Oh, Suzuma, Ohashi, Watanabe, Suganami, Murakami, Kurimoto, Honda, Yoshimura (bb0655) 2006 Jan; 168 Halamoda-Kenzaoui, Bremer-Hoffmann (bb0435) 2018; 13 Barar, Omidi (bb0050) 2013; 3 Wang, Zhang, Lv, Fu, Jiang, Xin, Yao (bb0335) 2017; 24 Ferluga, Tome, Herpai, D'Agostino, Debinski (bb0915) 2016; 7 Akhter, Ahsan, Rahman, Anwar, Rizwanullah (bb0240) 2018; 8 Pascual, Avgustinova, Mejetta, Martin, Castellanos, Attolini (bb0720) 2017; 541 Trapani, Denora, Trapani, Laquintana (bb0210) 2012; 20 Korc, Chandrasekar, Yamanaka, Friess, Buchier, Beger (bb0575) 1992; 90 Uhlen, Fagerberg, Hallstrom, Lindskog, Oksvold (bb0930) 2015; 347 Zwicke, Mansoori, Jeffery (bb0750) 2012; 3 Aggarwal, Hall, McLeland, Dobrovolskaia, McNeil (bb0085) 2009 Jun 21; 61 Bandara, Bates, Lu, Hoylman, Low (bb0755) 2017; 16 Aillon, Xie, El-Gendy, Berkland, Forrest (bb0295) 2009; 61 Parodi, Haddix, Taghipour, Scaria, Taraballi, Cevenini (bb0515) 2014; 8 Ak, Yilmaz, Guneş, Sanlier (bb0775) 2018; 46 Ahsan, Rao, Ahmad (bb0095) 2018; 1048 Das, Mohanty, Sahoo (bb0225) 2009; 6 Srinivasarao, Galliford, Low (bb0925) 2015; 14 Goppert, Muller (bb0100) 2005; 60 Mohanty, Das, Kanwar, Sahoo (bb0215) 2011; 8 Moghimi, Muir, Illum, Davis, Kolb-Bachofen (bb0120) 1993; 1179 Caracciolo, Farokhzad, Mahmoudi (bb0415) 2017; 35 The Official Web Site of the Nobel Prize (bb0570) 1986 Zhou, Fan, Deng, Lemons, Arhontoulis, BBowne (bb0520) 2016; 16 Y-R Zhang, Li, He, Du, Wang (bb0315) 2019; 11 Sugahara, Teesalu, Karmali, Kotamraju, Agemy, Girard (bb0525) 2009; 16 Daniels, Delgado, Helguera, Penichet (bb0890) 2006; 121 Hofmann, Guschel, Bernd, Bereiter-Hahn, Kaufmann, Tandi (bb0555) 2006; 8 bb0270 Moyano, Goldsmith, Solfiell, Landesman-Milo, Miranda, Peer (bb0445) 2012 Mar 7; 134 Ke, Xiang (bb0885) 2018; 13 Longmire, Choyke, Kobayashi (bb0305) 2008; 3 Behzadi, Serpooshan, Sakhtianchi, Muller, Landfester, Crespy (bb0425) 2014; 123 Daniels, Bernabeu, Rodriguez, Patel, Kozman, Chiappetta (bb0840) 2012 Chavakis, Willuweit, Lupu, Preissner, Kanse (bb0920) 2001; 86 Dos Santos, Allen, Doppen, Anantha, Cox, Gallagher (bb0135) 2007; 1768 Ichihara, Shimizu, Imoto, Hashiguchi, Uehara, Ishida (bb0490) 2010; 3 Yu, Li, Liu, Li, Yuan, Han, Wu (bb0675) 2017; 10 Bandara, Hansen, Low (bb0250) 2014; 11 Wang, Reinhard, Li, Qian, Jiang, Du (bb0905) 2017; 25 Wee, Wang (bb0595) 2017; 9 Large, Soucy, Hebert, Auguste (bb0260) 2019; 2 Mo, Jiang, Gu (bb0390) 2014; 53 Braun (bb0460) 2016; 64 Fathi, Zangabad, Aghanejad, Barar, Erfan-Niya, Omidi (bb0800) 2017 Sep 15; 172 Banerjee, Qi, Gogoi, Wong, Mitragotri (bb0290) 2016; 238 Sanhai, Spiegel, Ferrari (bb0565) 2007; 4 Chauhan, Popovic, Chen, Cui, Fukumura, Bawendi (bb0330) 2011; 50 Chistiakov, Chekhonin, Chekhonin (bb0625) 2017; 810 Meng, Liang, Wu, Xu, Zeng, Yu, Ning, Xu, Zheng (bb0685) 2018; 7 Zhao, Lin, Wong, Shen, Yang, Xu (bb0910) 2016; 224 Pickup, Mouw, Weaver (bb0160) 2014; 15 Kapoor, Kumar (bb0715) 2014; 51 Johnstone, Masin, Mayer, Bally (bb0140) 2001; 1513 Rosenblum, Joshi, Tao, Karp, Peer (bb0360) 2018; 9 Yin, Huai, Chen, Yang, Zhang, Gan (bb0725) 2015; 26 Chen, Ke, Zhou, Yi, Brunzelle, Li, Yong (bb0745) 2013; 500 Khawar, Kim, Kuh (bb0510) 2015; 201 Suri, Jones, Patan, Bartunkova, Maisonpierre, Davis, Sato, Yancopoulos (bb0650) 1996; 87 Lara, Alnasser, Polo, Garry, Lo Giudice, Hristov, Rocks, Salvati, Yan, Dawson (bb0455) 2017; 11 Wykosky, Debinski (bb0660) 2008 Dec; 6 Srinivasarao, Low (bb0935) 2017; 117 Shadmani, Mehrafrooz, Montazeri, Naghdabadi (bb0480) 2020; 32 Wagner, Wiig (bb0545) 2015; 5 Pandya, Murray, Pollok, Renbarger (bb0440) 2016; 2016 Afzal, Ameeduzzafar, Alharbi, Alruwaili, Al-Abassi, Malki (bb0010) 2019 Farrera, Fadeel (bb0450) 2015 Sep; 95 Din, Aman, Ullah, Qureshi, Mustapha, Shafique (bb0235) 2017; 12 Mellman, Yarden (bb0940) 2013; 5 Theek, Gremse, Kunjachan, Fokong, Pola, Pechar (bb0165) 2014; 182 Akhtar, Ahamed, Alhadlaq, Alrokayan, Kumar (bb0220) 2014; 436 Ranjbar-Navazi, Eskandani, Johari-Ahar, Nemati, Akbari, Davaran, Omidi (bb0805) 2018; 26 Kalluri, Weinberg (bb0610) 2009; 119 Chithrani, Ghazani, Chan (bb0110) 2006; 6 Allen, Brock, Kondow-McConaghy, Pellois (bb0405) 2018; 11 Mukherjee, Satapathy, Mondal (bb0265) 2013; 14 Liu, Dai, Li, Liu, Wang, Lei (bb0860) 2016; 6 Bellacosa, Kumar, Di Cristofano, Testa (bb0670) 2005; 94 Fortuni, Inose, Ricci, Fujita, Zundert, Masuhara (bb0395) 2019; 9 Lee, Na, Bae (bb0765) 2003; 91 Koua, Sun, Zhaib, Hea (bb0380) 2013; 8 Roncato, Rruga, Porcu, Casarin, Ronca, Maccarinelli (bb0605) 2018; 9 Johnson, Scholler, Ohkuri, Kosaka, Patel, McGettigan (bb0630) 2015; 7 Wu, Frieboes, McDougall, Chaplain, Cristini, Lowengrub (bb0550) 2013; 320 Mirshafiee, Kim, Park, Mahmoudi, Kraft (bb0430) 2016; 75 Li, Lin, Wang, Luo, Lin, Zhang, Hou, Liu, Liu (bb0065) 2019; 13 Matsumura, Maeda (bb0175) 1986; 46 Li, Yang, Xu (bb0170) 2019; 27 Han, Qi, Huang, Li, Zhan, Zhao (bb0350) 2018; 6 Deshpande, Jhaveri, Pattni, Biswas, Torchilina (bb0845) 2018; 25 Zhang, Wang, Liu, Zheng, Zheng, Yi, Zhao, Gu, Wang, Wang, Zhao, Shi, Kang, Liu (bb0070) 2019; 13 Caracciolo, Pozzi, Capriotti (bb0465) 2012; 3 Soe, Kwon, Thapa, Ou, Nguyen, Gautam, Choi, Ku, Yong, Kim (bb0875) 2019; 11 Leamon, Low (bb0760) 1991; 88 Brown, Warden, Starr, Deng, Badie, Yuan, Forman, Barish (bb0695) 2013; 8 Liu, Wang, Wang, Liu, Qin, Ma (bb0740) 2015; 10 Suzuki, Itakura, Matsui, Nakayama, Nishi, Nishimoto (bb0505) 2017; 18 Wu, Li, Feng, Zhang, Chu (bb0370) 2015; 3 Mahmoudi, Bertrand, Zopea, Farokhzada (bb0420) 2016; 11 Manganelli (bb0485) 2016; 144 Karbownik, Nowak (bb0735) 2013; 65 Knop, Hoogenboom, Fischer, Schubert (bb0130) 2010; 49 Ma, Cheetham, Cui (bb0810) 2016; 11 Luo, Xie, Long, Zhou, Xu, Shi (bb0680) 2013; 8 Zanganeh, Spitler, Erfanzadeh, Alkilany, Mahmoudid (bb0410) 2016; 75 Lv, Li, Xu, Zhang, Chen, Gao (bb0620) 2018; 76 Shi, Mi, Shen, Webster (bb0900) 2019; 15 Hoshyar, Gray, Han, Bao (bb0310) 2016; 11 Omidi, Barar (bb0055) 2014; 4 Kim, Federman, Gordon, Hall, Chawla (bb0080) 2017; 6 Yu, Tai, Xue, Lee, Lee (bb0230) 2010; 27 Heldin, Rubin, Pietras, Östman (bb0540) 2004; 4 Engin, Nikitovic, Neagu, Henrich-Noack, Docea, Shtilman (bb0500) 2017; 14 Tang, Soroush, Tong, Kiani, Wang (bb0710) 2017; 12 Roma-Rodrigues, Mendes, Baptista, Fernandes (bb0155) 2019; 20 Johari-Ahar, Barar, Alizadeh, Davaran, Omidi, Rashidi (bb0795) 2016; 24 Hoppenz, Els-Heindl, Beck-Sickinger (bb0815) 2020 Donaghy (bb0830) 2016; 8 Gessner, Lieske, Paulke, Muller (bb0105) 2002; 54 Nagayama, Ogawara, Minato, Fukuoka, Takakura, Hashida, Higaki, Kimura (bb0115) 2007; 329 Toole (bb0730) 2009; 15 Zafar, Beg, Panda, Rahman, Alharbi, Jain, Ahmad (bb0035) 2019 Zimmermann, Zouhair, Azria, Ozsahin (bb0580) 2006; 1 Mamot, Drummond, Greiser, Hong, Kirpotin (bb0600) 2003; 63 Akhter, Rizwanullah, Ahmad, Ahsan, Mujtaba, Amin (bb0205) 2017; 46 Ju, Mo, Xue, Zhang, Zhao, Xue (bb0530) 2014; 53 Shimosaki, Nakahata, Ichikawa, Kitanaka, Kameda, Hidaka, Kubuki, Kurosawa, Zhang, Sudo, Shimoda, Morishita (bb0855) 2017; 485 Trepel, Stoneham, Eleftherohorinou, Mazarakis, Pasqualini, Arap, Hajitou (bb0045) 2009; 8 Mirza, Karim (bb0870) 2019 Fathi, Sahandi Zangabad, Majidi, Barar, Erfan-Niya, Omidi (bb0275) 2017; 7 Ponka, Lok (bb0835) 1999; 31 Bertrand, Wu, Xu, Kamaly, Farokhzad (bb0365) 2014; 66 Islam, Barua, Barua (bb0320) 2017; 11 Anselmo, Zhang, Kumar, Vogus, Menegatti, Helgeson (bb0355) 2015; 9 Quadir, Morton, Mensah, Shopsowitz, Dobbelaar, Effenberger (bb0770) 2017; 13 Maeda, Nakamura, Fang (bb0185) 2013; 65 Fathi, Barar, Erfan-Niya, Omidi (bb0285) 2020; 154 Ahmed, Ratnayake, Savoldo, Perlaky, Dotti, Wels, Bhattacharjee, Gilbertson, Shine, Weiss, Rooney, Heslop, Gottschalk (bb0700) 2007 Jun 15; 67 Salazar, Zabel (bb0690) 2019; 10 Dixit, Novak, Miller, Zhu, Kenney, Broome (bb0880) 2015; 7 Lu, Utama, Kitiyotsawat, Babiuch, Jiang, Stenzel (bb0345) 2015; 3 Yang, Fan, Gao, Li, Li, Sun (bb0385) 2018; 13 Raja, Khurana, Choudhari, Kesari, Kamal, Garg (bb0005) 2019 Stylianopoulos, Munn, Jain (bb0535) 2018; 4 Yao, D’Angelo, Butler, Theron, Smith, Marchiò (bb0020) 2016; 240 Baldeshwiler (bb0560) 2003; 7 Kim, Kim, Kang, Jeong, Park, Lee (bb0635) 2018; 13 Wilhelm, Tavares, Dai, Ohta, Audet, Dvorak (bb0195) 2016; 1 Pu, Liu, Li, Zhu, Hou (bb0640) 2017; 23 Minner, Rump, Tennstedt, Simon, Burandt, Terracciano (bb0585) 2012; 118 Hofer, Schweighofer (bb0645) 2007 Mar; 97 Herbst, Shin (bb0590) 2002; 94 Wei, Lu, Cui, Peng, Wu, Li (bb0780) 2017; 11 Bao, Jin, Chivukula, Zhang, Liu, Liu (bb0150) 2013; 30 Dayanir, Meyer, Lashkari, Rahimi (bb0665) 2001; 276 Akhter, Amin (bb0025) 2017; 14 Sadzuka, Nakade, Hirama, Miyagishima, Nozawa, Hirota (bb0125) 2002; 238 Priwitaningrum, Blonde, Sridhar, Baarlen, Hennink, Prakash (bb0340) 2016; 244 Walther, Nagel, Gimenez, Morl, Gurevich, Beck-Sickinger (bb0945) 2010; 285 Jain, Stylianopoulos (bb0180) 2010; 7 Kirpotin, Drummond, Shao, Shalaby, Hong, Nielsen (bb0245) 2006; 66 Sun, Kang, Liu, Zhou, Luo, Qiao (bb0825) 2017 Sep; 78 Block, Gyllenhaal, Lowe, Amedei, Amin, Amin (bb0015) 2015; 35 Akhter, Madhav, Ahmad (bb0040) 2018; 46 Peiris, He, Covarrubias, Raghunathan, Turan, Lorkowski (bb0705) 2018; 10 Selbo, Weyergang, Høgset, Norum, Berstad, Vikdal (bb0400) 2010; 148 Tang, Fan, Borst, Cheng (bb0300) 2012; 6 Nichols, Bae (bb0190) 2014; 190 Ahmad, Lee, Shaikh, Kumar, Rao, S-Y Park, Jin, Han (bb0030) 2019 Zhang, Li, Li, Liu, Li, Li (bb0075) 2018; 29 El-Dakdouki, Pure, Huang (bb0375) 2013; 5 Parmar, Jain, Uppal, Mehta, Kaur, Singh (bb0785) 2018; 46 Habault, Poyet (bb0820) 2019; 24 Francia, Yang, Deville, Reker-Smit, Nelissen, Salvati (bb0470) 2019; 13 Yuan, Qiu, Zhang, Gao, He (bb0850) 2016; 23 Saxena, Delgado, Sharma, Sharma, Guzman, Tinoco (bb0865) 2018; 13 Lia, Lin, Cai, Wang, Luo, Yao, Zhang, Hou, Liu, Liu (bb0060) 2020; 321 Liu, Shaurova, Salazar (10.1016/j.bbagen.2020.129777_bb0690) 2019; 10 Hofmann (10.1016/j.bbagen.2020.129777_bb0555) 2006; 8 Moghimi (10.1016/j.bbagen.2020.129777_bb0120) 1993; 1179 The Official Web Site of the Nobel Prize (10.1016/j.bbagen.2020.129777_bb0570) Wilhelm (10.1016/j.bbagen.2020.129777_bb0195) 2016; 1 Johari-Ahar (10.1016/j.bbagen.2020.129777_bb0795) 2016; 24 Priwitaningrum (10.1016/j.bbagen.2020.129777_bb0340) 2016; 244 Zhou (10.1016/j.bbagen.2020.129777_bb0520) 2016; 16 Lee (10.1016/j.bbagen.2020.129777_bb0765) 2003; 91 Li (10.1016/j.bbagen.2020.129777_bb0170) 2019; 27 Ranjbar-Navazi (10.1016/j.bbagen.2020.129777_bb0805) 2018; 26 Theek (10.1016/j.bbagen.2020.129777_bb0165) 2014; 182 Braun (10.1016/j.bbagen.2020.129777_bb0460) 2016; 64 Raja (10.1016/j.bbagen.2020.129777_bb0005) 2019 Trapani (10.1016/j.bbagen.2020.129777_bb0210) 2012; 20 Liu (10.1016/j.bbagen.2020.129777_bb0860) 2016; 6 Kim (10.1016/j.bbagen.2020.129777_bb0080) 2017; 6 Xu (10.1016/j.bbagen.2020.129777_bb0145) 2011; 2 Khawar (10.1016/j.bbagen.2020.129777_bb0510) 2015; 201 Wykosky (10.1016/j.bbagen.2020.129777_bb0660) 2008; 6 Johnstone (10.1016/j.bbagen.2020.129777_bb0140) 2001; 1513 Daniels (10.1016/j.bbagen.2020.129777_bb0890) 2006; 121 Pu (10.1016/j.bbagen.2020.129777_bb0640) 2017; 23 Quadir (10.1016/j.bbagen.2020.129777_bb0770) 2017; 13 Wang (10.1016/j.bbagen.2020.129777_bb0335) 2017; 24 Stylianopoulos (10.1016/j.bbagen.2020.129777_bb0535) 2018; 4 Fathi (10.1016/j.bbagen.2020.129777_bb0280) 2018; 106 Aillon (10.1016/j.bbagen.2020.129777_bb0295) 2009; 61 Ak (10.1016/j.bbagen.2020.129777_bb0775) 2018; 46 Zimmermann (10.1016/j.bbagen.2020.129777_bb0580) 2006; 1 Ahmed (10.1016/j.bbagen.2020.129777_bb0700) 2007; 67 Chen (10.1016/j.bbagen.2020.129777_bb0745) 2013; 500 Zhang (10.1016/j.bbagen.2020.129777_bb0070) 2019; 13 Liu (10.1016/j.bbagen.2020.129777_bb0615) 2018; 15 Akhter (10.1016/j.bbagen.2020.129777_bb0240) 2018; 8 Jain (10.1016/j.bbagen.2020.129777_bb0180) 2010; 7 Parmar (10.1016/j.bbagen.2020.129777_bb0785) 2018; 46 Fathi (10.1016/j.bbagen.2020.129777_bb0285) 2020; 154 Deshpande (10.1016/j.bbagen.2020.129777_bb0845) 2018; 25 Kalluri (10.1016/j.bbagen.2020.129777_bb0610) 2009; 119 Wu (10.1016/j.bbagen.2020.129777_bb0370) 2015; 3 Yao (10.1016/j.bbagen.2020.129777_bb0020) 2016; 240 Akhter (10.1016/j.bbagen.2020.129777_bb0040) 2018; 46 Wu (10.1016/j.bbagen.2020.129777_bb0550) 2013; 320 Caracciolo (10.1016/j.bbagen.2020.129777_bb0465) 2012; 3 Yu (10.1016/j.bbagen.2020.129777_bb0230) 2010; 27 Fortuni (10.1016/j.bbagen.2020.129777_bb0395) 2019; 9 Ponka (10.1016/j.bbagen.2020.129777_bb0835) 1999; 31 Kim (10.1016/j.bbagen.2020.129777_bb0635) 2018; 13 Sadzuka (10.1016/j.bbagen.2020.129777_bb0125) 2002; 238 Akhtar (10.1016/j.bbagen.2020.129777_bb0220) 2014; 436 Kapoor (10.1016/j.bbagen.2020.129777_bb0715) 2014; 51 Shi (10.1016/j.bbagen.2020.129777_bb0900) 2019; 15 Das (10.1016/j.bbagen.2020.129777_bb0225) 2009; 6 Roma-Rodrigues (10.1016/j.bbagen.2020.129777_bb0155) 2019; 20 Tang (10.1016/j.bbagen.2020.129777_bb0710) 2017; 12 Yin (10.1016/j.bbagen.2020.129777_bb0725) 2015; 26 Fathi (10.1016/j.bbagen.2020.129777_bb0275) 2017; 7 Uhlen (10.1016/j.bbagen.2020.129777_bb0930) 2015; 347 Engin (10.1016/j.bbagen.2020.129777_bb0500) 2017; 14 Soe (10.1016/j.bbagen.2020.129777_bb0875) 2019; 11 Banerjee (10.1016/j.bbagen.2020.129777_bb0290) 2016; 238 Behzadi (10.1016/j.bbagen.2020.129777_bb0425) 2014; 123 Baldeshwiler (10.1016/j.bbagen.2020.129777_bb0560) 2003; 7 Bertrand (10.1016/j.bbagen.2020.129777_bb0365) 2014; 66 Pickup (10.1016/j.bbagen.2020.129777_bb0160) 2014; 15 Srinivasarao (10.1016/j.bbagen.2020.129777_bb0925) 2015; 14 Chistiakov (10.1016/j.bbagen.2020.129777_bb0625) 2017; 810 Peiris (10.1016/j.bbagen.2020.129777_bb0705) 2018; 10 Ahsan (10.1016/j.bbagen.2020.129777_bb0095) 2018; 1048 Hoshyar (10.1016/j.bbagen.2020.129777_bb0310) 2016; 11 Mamot (10.1016/j.bbagen.2020.129777_bb0600) 2003; 63 Caracciolo (10.1016/j.bbagen.2020.129777_bb0415) 2017; 35 Herbst (10.1016/j.bbagen.2020.129777_bb0590) 2002; 94 Wang (10.1016/j.bbagen.2020.129777_bb0905) 2017; 25 Kirpotin (10.1016/j.bbagen.2020.129777_bb0245) 2006; 66 Lu (10.1016/j.bbagen.2020.129777_bb0345) 2015; 3 Chauhan (10.1016/j.bbagen.2020.129777_bb0330) 2011; 50 Wei (10.1016/j.bbagen.2020.129777_bb0780) 2017; 11 Pascual (10.1016/j.bbagen.2020.129777_bb0720) 2017; 541 Liu (10.1016/j.bbagen.2020.129777_bb0740) 2015; 10 Ahmad (10.1016/j.bbagen.2020.129777_bb0030) 2019 Leamon (10.1016/j.bbagen.2020.129777_bb0760) 1991; 88 Karbownik (10.1016/j.bbagen.2020.129777_bb0735) 2013; 65 Tang (10.1016/j.bbagen.2020.129777_bb0300) 2012; 6 Barar (10.1016/j.bbagen.2020.129777_bb0790) 2015; 13 Zanganeh (10.1016/j.bbagen.2020.129777_bb0410) 2016; 75 Roncato (10.1016/j.bbagen.2020.129777_bb0605) 2018; 9 Luo (10.1016/j.bbagen.2020.129777_bb0680) 2013; 8 Bao (10.1016/j.bbagen.2020.129777_bb0150) 2013; 30 Ojima (10.1016/j.bbagen.2020.129777_bb0655) 2006; 168 Mohanty (10.1016/j.bbagen.2020.129777_bb0215) 2011; 8 Farrera (10.1016/j.bbagen.2020.129777_bb0450) 2015; 95 Li (10.1016/j.bbagen.2020.129777_bb0065) 2019; 13 Saxena (10.1016/j.bbagen.2020.129777_bb0865) 2018; 13 Mellman (10.1016/j.bbagen.2020.129777_bb0940) 2013; 5 Lia (10.1016/j.bbagen.2020.129777_bb0060) 2020; 321 Wagner (10.1016/j.bbagen.2020.129777_bb0545) 2015; 5 Chavakis (10.1016/j.bbagen.2020.129777_bb0920) 2001; 86 Verderio (10.1016/j.bbagen.2020.129777_bb0090) 2014; 3 Habault (10.1016/j.bbagen.2020.129777_bb0820) 2019; 24 Sanhai (10.1016/j.bbagen.2020.129777_bb0565) 2007; 4 Omidi (10.1016/j.bbagen.2020.129777_bb0055) 2014; 4 Maeda (10.1016/j.bbagen.2020.129777_bb0185) 2013; 65 Dixit (10.1016/j.bbagen.2020.129777_bb0880) 2015; 7 Francia (10.1016/j.bbagen.2020.129777_bb0470) 2019; 13 Donaghy (10.1016/j.bbagen.2020.129777_bb0830) 2016; 8 Han (10.1016/j.bbagen.2020.129777_bb0350) 2018; 6 Suzuki (10.1016/j.bbagen.2020.129777_bb0505) 2017; 18 Longmire (10.1016/j.bbagen.2020.129777_bb0305) 2008; 3 Daniels (10.1016/j.bbagen.2020.129777_bb0840) 2012 Ke (10.1016/j.bbagen.2020.129777_bb0885) 2018; 13 Lara (10.1016/j.bbagen.2020.129777_bb0455) 2017; 11 Blanco (10.1016/j.bbagen.2020.129777_bb0200) 2015; 33 Hofer (10.1016/j.bbagen.2020.129777_bb0645) 2007; 97 Chithrani (10.1016/j.bbagen.2020.129777_bb0110) 2006; 6 Matsumura (10.1016/j.bbagen.2020.129777_bb0175) 1986; 46 Srinivasarao (10.1016/j.bbagen.2020.129777_bb0935) 2017; 117 Fathi (10.1016/j.bbagen.2020.129777_bb0800) 2017; 172 Gessner (10.1016/j.bbagen.2020.129777_bb0105) 2002; 54 Knop (10.1016/j.bbagen.2020.129777_bb0130) 2010; 49 Ichihara (10.1016/j.bbagen.2020.129777_bb0490) 2010; 3 Allen (10.1016/j.bbagen.2020.129777_bb0405) 2018; 11 Akhter (10.1016/j.bbagen.2020.129777_bb0025) 2017; 14 Mirshafiee (10.1016/j.bbagen.2020.129777_bb0430) 2016; 75 Barar (10.1016/j.bbagen.2020.129777_bb0050) 2013; 3 Korc (10.1016/j.bbagen.2020.129777_bb0575) 1992; 90 Brown (10.1016/j.bbagen.2020.129777_bb0695) 2013; 8 Sugahara (10.1016/j.bbagen.2020.129777_bb0525) 2009; 16 Wee (10.1016/j.bbagen.2020.129777_bb0595) 2017; 9 Aggarwal (10.1016/j.bbagen.2020.129777_bb0085) 2009; 61 Ferluga (10.1016/j.bbagen.2020.129777_bb0915) 2016; 7 Mirza (10.1016/j.bbagen.2020.129777_bb0870) 2019 Meng (10.1016/j.bbagen.2020.129777_bb0685) 2018; 7 Parodi (10.1016/j.bbagen.2020.129777_bb0515) 2014; 8 Dayanir (10.1016/j.bbagen.2020.129777_bb0665) 2001; 276 Heldin (10.1016/j.bbagen.2020.129777_bb0540) 2004; 4 Shimosaki (10.1016/j.bbagen.2020.129777_bb0855) 2017; 485 Rosenblum (10.1016/j.bbagen.2020.129777_bb0360) 2018; 9 Large (10.1016/j.bbagen.2020.129777_bb0260) 2019; 2 Bellacosa (10.1016/j.bbagen.2020.129777_bb0670) 2005; 94 Block (10.1016/j.bbagen.2020.129777_bb0015) 2015; 35 Trepel (10.1016/j.bbagen.2020.129777_bb0045) 2009; 8 Halamoda-Kenzaoui (10.1016/j.bbagen.2020.129777_bb0435) 2018; 13 Yu (10.1016/j.bbagen.2020.129777_bb0675) 2017; 10 Afzal (10.1016/j.bbagen.2020.129777_bb0010) 2019 Goppert (10.1016/j.bbagen.2020.129777_bb0100) 2005; 60 Zhao (10.1016/j.bbagen.2020.129777_bb0910) 2016; 224 Lv (10.1016/j.bbagen.2020.129777_bb0620) 2018; 76 Koua (10.1016/j.bbagen.2020.129777_bb0380) 2013; 8 El-Dakdouki (10.1016/j.bbagen.2020.129777_bb0375) 2013; 5 Zafar (10.1016/j.bbagen.2020.129777_bb0035) 2019 Ma (10.1016/j.bbagen.2020.129777_bb0810) 2016; 11 Yuan (10.1016/j.bbagen.2020.129777_bb0850) 2016; 23 Johnson (10.1016/j.bbagen.2020.129777_bb0630) 2015; 7 Shadmani (10.1016/j.bbagen.2020.129777_bb0480) 2020; 32 Nagayama (10.1016/j.bbagen.2020.129777_bb0115) 2007; 329 Caracciolo (10.1016/j.bbagen.2020.129777_bb0475) 2019 Manganelli (10.1016/j.bbagen.2020.129777_bb0485) 2016; 144 Mukherjee (10.1016/j.bbagen.2020.129777_bb0265) 2013; 14 Pandya (10.1016/j.bbagen.2020.129777_bb0440) 2016; 2016 Dos Santos (10.1016/j.bbagen.2020.129777_bb0135) 2007; 1768 Anselmo (10.1016/j.bbagen.2020.129777_bb0355) 2015; 9 Bandara (10.1016/j.bbagen.2020.129777_bb0755) 2017; 16 Bandara (10.1016/j.bbagen.2020.129777_bb0250) 2014; 11 Toole (10.1016/j.bbagen.2020.129777_bb0730) 2009; 15 Moyano (10.1016/j.bbagen.2020.129777_bb0445) 2012; 134 Sun (10.1016/j.bbagen.2020.129777_bb0825) 2017; 78 Din (10.1016/j.bbagen.2020.129777_bb0235) 2017; 12 Selbo (10.1016/j.bbagen.2020.129777_bb0400) 2010; 148 Ju (10.1016/j.bbagen.2020.129777_bb0530) 2014; 53 Schellekens (10.1016/j.bbagen.2020.129777_bb0495) 2013; 30 Akhter (10.1016/j.bbagen.2020.129777_bb0205) 2017; 46 Mo (10.1016/j.bbagen.2020.129777_bb0390) 2014; 53 Mahmoudi (10.1016/j.bbagen.2020.129777_bb0420) 2016; 11 Minner (10.1016/j.bbagen.2020.129777_bb0585) 2012; 118 Nichols (10.1016/j.bbagen.2020.129777_bb0190) 2014; 190 Zhang (10.1016/j.bbagen.2020.129777_bb0075) 2018; 29 Walther (10.1016/j.bbagen.2020.129777_bb0945) 2010; 285 Hoppenz (10.1016/j.bbagen.2020.129777_bb0815) 2020 Zwicke (10.1016/j.bbagen.2020.129777_bb0750) 2012; 3 Islam (10.1016/j.bbagen.2020.129777_bb0320) 2017; 11 Yang (10.1016/j.bbagen.2020.129777_bb0385) 2018; 13 Suri (10.1016/j.bbagen.2020.129777_bb0650) 1996; 87 Y-R Zhang (10.1016/j.bbagen.2020.129777_bb0315) 2019; 11 |
References_xml | – volume: 3 start-page: 149 year: 2013 end-page: 162 ident: bb0050 article-title: Dysregulated pH in tumor microenvironment checkmates cancer therapy publication-title: Bioimpacts – volume: 25 start-page: 1556 year: 2017 end-page: 1566 ident: bb0905 article-title: Antitumoral cascade-targeting ligand for IL-6 receptor-mediated gene delivery to glioma publication-title: Mol. Ther. – volume: 30 start-page: 1729 year: 2013 end-page: 1734 ident: bb0495 article-title: The immunogenicity of polyethylene glycol: facts and fiction publication-title: Pharm. Res. – volume: 321 start-page: 222 year: 2020 end-page: 235 ident: bb0060 article-title: Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy publication-title: J. Control. Release – volume: 190 start-page: 451 year: 2014 end-page: 464 ident: bb0190 article-title: EPR: evidence and fallacy publication-title: J. Control. Release – volume: 436 start-page: 78 year: 2014 end-page: 92 ident: bb0220 article-title: Targeted anticancer therapy: overexpressed receptors and nanotechnology publication-title: Clin. Chim. Acta – volume: 11 start-page: 1884 year: 2017 end-page: 1893 ident: bb0455 article-title: Identification of receptor binding to the biomolecular corona of nanoparticles publication-title: ACS Nano – volume: 201 start-page: 78 year: 2015 end-page: 89 ident: bb0510 article-title: Improving drug delivery to solid tumors: priming the tumor microenvironment publication-title: J. Control. Release – volume: 26 start-page: 267 year: 2018 end-page: 277 ident: bb0805 article-title: Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy publication-title: J. Drug Target. – volume: 66 start-page: 6732 year: 2006 ident: bb0245 article-title: Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models publication-title: Cancer Res. – volume: 24 start-page: 927 year: 2019 ident: bb0820 article-title: Recent advances in cell penetrating peptide-based anticancer therapies publication-title: Molecules – volume: 11 start-page: 13 year: 2016 end-page: 30 ident: bb0810 article-title: Building nanostructures with drugs publication-title: Nano Today – volume: 27 start-page: 423 year: 2019 end-page: 433 ident: bb0170 article-title: Stimuli-responsive nanoscale drug delivery systems for cancer therapy publication-title: J. Drug Target. – volume: 97 start-page: 355 year: 2007 Mar end-page: 363 ident: bb0645 article-title: Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis publication-title: Thromb. Haemost. – volume: 9 year: 2017 ident: bb0595 article-title: Epidermal growth factor receptor cell proliferation signaling pathways publication-title: Cancers (Basel) – volume: 64 start-page: 34 year: 2016 end-page: 42 ident: bb0460 article-title: Modification of the protein corona–nanoparticle complex by physiological factors publication-title: Mater. Sci. Eng. C – volume: 18 start-page: 535 year: 2017 end-page: 543 ident: bb0505 article-title: Tumor microenvironment-sensitive liposomes penetrate tumor tissue via attenuated interaction of the extracellular matrix and tumor cells and accompanying actin depolymerization publication-title: Biomacromolecules – volume: 12 start-page: 7291 year: 2017 end-page: 7309 ident: bb0235 article-title: Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors publication-title: Int. J. Nanomedicine – volume: 121 start-page: 159 year: 2006 end-page: 176 ident: bb0890 article-title: The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells publication-title: Clin. Immunol. – volume: 7 year: 2018 ident: bb0685 article-title: Monocytes/Macrophages promote vascular CXCR4 expression via the ERK pathway in hepatocellular carcinoma publication-title: Oncoimmunology – volume: 65 start-page: 1056 year: 2013 end-page: 1074 ident: bb0735 article-title: Hyaluronan: towards novel anti-cancer therapeutics publication-title: Pharmacol. Rep. – volume: 1 year: 2016 ident: bb0195 article-title: Analysis of nanoparticle delivery to tumours publication-title: Nat. Rev. Mater. – volume: 16 start-page: 3268 year: 2016 end-page: 3277 ident: bb0520 article-title: Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy publication-title: Nano Lett. – volume: 3 start-page: 2024 year: 2015 end-page: 2042 ident: bb0370 article-title: Engineering and functionalization of biomaterials via surface modification publication-title: J. Mater. Chem. B – volume: 148 start-page: 2 year: 2010 end-page: 12 ident: bb0400 article-title: Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules publication-title: J. Control. Release – volume: 16 start-page: 461 year: 2017 end-page: 468 ident: bb0755 article-title: Folate-hapten mediated immunotherapy synergizes with vascular endothelial growth factor receptor inhibitors in treating murine models of cancer publication-title: Mol. Cancer Ther. – volume: 182 start-page: 83 year: 2014 end-page: 89 ident: bb0165 article-title: Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging publication-title: J. Control. Release – volume: 13 start-page: 5419 year: 2018 end-page: 5431 ident: bb0435 article-title: Main trends of immune effects triggered by nanomedicines in preclinical studies publication-title: Int. J. Nanomedicine – volume: 3 start-page: 1085 year: 2015 end-page: 1095 ident: bb0345 article-title: Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids publication-title: Biomater. Sci. – volume: 13 start-page: 11107 year: 2019 end-page: 11121 ident: bb0470 article-title: Corona composition can affect the mechanisms cells use to internalize nanoparticles publication-title: ACS Nano – volume: 14 start-page: 597 year: 2017 end-page: 612 ident: bb0025 article-title: An investigative approach to the treatment modalities of squamous cell carcinoma publication-title: Curr. Drug Deliv. – volume: 49 start-page: 6288 year: 2010 end-page: 6308 ident: bb0130 article-title: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 2383 year: 2009 end-page: 2391 ident: bb0045 article-title: Heterotypic bystander effect for tumor cell killing after adenoassociated virus/phage-mediated, vascular-targeted suicide gene transfer publication-title: Mol. Cancer Ther. – volume: 23 start-page: 247 year: 2017 end-page: 257 ident: bb0640 article-title: Fibroblast growth factor receptor 1 (FGFR1), partly related to vascular endothelial growth factor receptor 2 (VEGFR2) and microvessel density, is an independent prognostic factor for non-small cell lung cancer publication-title: Med. Sci. Monit. – volume: 9 start-page: 3169 year: 2015 end-page: 3177 ident: bb0355 article-title: Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting publication-title: ACS Nano – volume: 14 start-page: 1250 year: 2013 end-page: 1263 ident: bb0265 article-title: Potentials and challenges of active targeting at the tumor cells by engineered polymeric nanoparticles publication-title: Curr. Pharm. Biotechnol. – volume: 54 start-page: 165 year: 2002 end-page: 170 ident: bb0105 article-title: Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis publication-title: Eur. J. Pharm. Biopharm. – volume: 7 start-page: 653 year: 2010 end-page: 664 ident: bb0180 article-title: Delivering nanomedicine to solid tumors publication-title: Nat. Rev. Clin. Oncol. – volume: 5 start-page: 3904 year: 2013 end-page: 3911 ident: bb0375 article-title: Development of drug loaded nanoparticles for tumor targeting. Part 2: enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models publication-title: Nanoscale – volume: 25 start-page: 517 year: 2018 end-page: 532 ident: bb0845 article-title: Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer publication-title: Drug Deliv. – volume: 172 start-page: 130 year: 2017 Sep 15 end-page: 141 ident: bb0800 article-title: Folate-conjugated thermosensitive O-maleoyl modified chitosan micellar nanoparticles for targeted delivery of erlotinib publication-title: Carbohydr. Polym. – volume: 11 start-page: 673 year: 2016 end-page: 692 ident: bb0310 article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction publication-title: Nanomedicine – volume: 810 start-page: 70 year: 2017 end-page: 82 ident: bb0625 article-title: The EGFR variant III mutant as a target for immunotherapy of glioblastoma multiforme publication-title: Eur. J. Pharmacol. – volume: 1048 start-page: 175 year: 2018 end-page: 198 ident: bb0095 article-title: Nanoparticle-protein interaction: the significance and role of protein corona publication-title: Adv. Exp. Med. Biol. – volume: 13 start-page: 12912 year: 2019 end-page: 12928 ident: bb0065 article-title: Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy publication-title: ACS Nano – volume: 11 start-page: 817 year: 2016 end-page: 832 ident: bb0420 article-title: Emerging understanding of the protein corona at the nano-bio interfaces publication-title: Nano Today – volume: 5 year: 2015 ident: bb0545 article-title: Tumor interstitial fluid formation, characterization, and clinical implications publication-title: Front. Oncol. – volume: 106 start-page: 266 year: 2018 end-page: 276 ident: bb0280 article-title: Thermo-sensitive chitosan copolymer-gold hybrid nanoparticles as a nanocarrier for delivery of erlotinib publication-title: Int. J. Biol. Macromol. – volume: 46 start-page: 873 year: 2017 end-page: 884 ident: bb0205 article-title: Nanocarriers in advanced drug targeting: setting novel paradigm in cancer therapeutics publication-title: Artif Cells Artif. Cells Nanomed. Biotechnol. – volume: 27 start-page: 286 year: 2010 end-page: 298 ident: bb0230 article-title: Receptor-targeted nanocarriers for therapeutic delivery to cancer publication-title: Mol. Membr. Biol. – volume: 46 start-page: 704 year: 2018 end-page: 719 ident: bb0785 article-title: Anti-proliferate and apoptosis triggering potential of methotrexate-transferrin conjugate encapsulated PLGA nanoparticles with enhanced cellular uptake by high-affinity folate receptors publication-title: Artif. Cells Nanomed. Biotechnol. – volume: 78 start-page: 283 year: 2017 Sep end-page: 291 ident: bb0825 article-title: RGD peptide-based target drug delivery of doxorubicin nanomedicine publication-title: Drug Dev. Res. – volume: 10 year: 2017 ident: bb0675 article-title: Chimeric antigen receptor T cells: a novel therapy for solid tumors publication-title: J. Hematol. Oncol. – volume: 95 start-page: 3 year: 2015 Sep end-page: 12 ident: bb0450 article-title: It takes two to tango: understanding the interactions between engineered nanomaterials and the immune system publication-title: Eur. J. Pharm. Biopharm. – volume: 29 start-page: 160 year: 2018 end-page: 179 ident: bb0075 article-title: The first approved gene therapy product for cancer ad-p53 (gendicine): 12 years in the clinic publication-title: Hum. Gene Ther. – volume: 329 start-page: 192 year: 2007 end-page: 198 ident: bb0115 article-title: Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor publication-title: Int. J. Pharm. – volume: 7 start-page: 269 year: 2017 end-page: 277 ident: bb0275 article-title: Stimuli-responsive chitosan-based nanocarriers for cancer therapy publication-title: Bioimpacts – volume: 91 start-page: 103 year: 2003 end-page: 113 ident: bb0765 article-title: Polymeric micelle for tumor pH and folate-mediated targeting publication-title: J. Control. Release – volume: 1768 start-page: 1367 year: 2007 end-page: 1377 ident: bb0135 article-title: Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding publication-title: Biochim. Biophys. Acta – volume: 10 start-page: 6445 year: 2015 end-page: 6454 ident: bb0740 article-title: Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation publication-title: Int. J. Nanomedicine – volume: 6 start-page: 861 year: 2017 end-page: 865 ident: bb0080 article-title: Rexin-G®, a tumor-targeted retrovector for malignant peripheral nerve sheath tumor: a case report publication-title: Mol. Clin. Oncol. – volume: 238 start-page: 176 year: 2016 end-page: 185 ident: bb0290 article-title: Role of nanoparticle size, shape and surface chemistry in oral drug delivery publication-title: J. Control. Release – volume: 35 start-page: S276 year: 2015 end-page: S304 ident: bb0015 article-title: Designing a broad-spectrum integrative approach for cancer prevention and treatment publication-title: Semin. Cancer Biol. – volume: 12 start-page: 671 year: 2017 end-page: 681 ident: bb0710 article-title: Targeted multidrug delivery system to overcome chemoresistance in breast cancer publication-title: Int. J. Nanomedicine – volume: 320 start-page: 131 year: 2013 end-page: 151 ident: bb0550 article-title: The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems publication-title: J. Theor. Biol. – volume: 24 start-page: 120 year: 2016 end-page: 133 ident: bb0795 article-title: Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells publication-title: J. Drug Target. – volume: 123 start-page: 143 year: 2014 end-page: 149 ident: bb0425 article-title: Protein corona change the drug release profile of nanocarriers: the “overlooked” factor at the nanobio interface publication-title: Colloids Surf. B: Biointerfaces – volume: 13 start-page: 8339 year: 2018 end-page: 8354 ident: bb0885 article-title: Transferrin receptor-targeted HMSN for sorafenib delivery in refractory differentiated thyroid cancer therapy publication-title: Int. J. Nanomedicine – volume: 224 start-page: 112 year: 2016 end-page: 125 ident: bb0910 article-title: Glioma-targeted therapy using cilengitide nanoparticles combined with UTMD enhanced delivery publication-title: J. Control. Release – volume: 2 start-page: 451 year: 2011 end-page: 460 ident: bb0145 article-title: The effect of cholesterol domains on PEGylated liposomal gene delivery in vitro publication-title: Ther. Deliv. – volume: 117 start-page: 12133 year: 2017 end-page: 12164 ident: bb0935 article-title: Ligand-targeted drug delivery publication-title: Chem. Rev. – year: 2019 ident: bb0010 article-title: Nanomedicine in treatment of breast cancer – a challenge to conventional therapy publication-title: Semin. Cancer Biol. – volume: 134 start-page: 3965 year: 2012 Mar 7 end-page: 3967 ident: bb0445 article-title: Rotello VM Nanoparticle hydrophobicity dictates immune response publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 6861 year: 2018 end-page: 6871 ident: bb0705 article-title: multi-ligand nanoparticles incorporating four different ligands publication-title: Nanoscale – volume: 33 start-page: 941 year: 2015 end-page: 951 ident: bb0200 article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery publication-title: Nat. Biotechnol. – volume: 23 start-page: 1171 year: 2016 end-page: 1183 ident: bb0850 article-title: Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma publication-title: Drug Deliv. – year: 2019 ident: bb0030 article-title: Targeting integrins for cancer management using nanotherapeutic approaches: recent advances and challenges publication-title: Semin. Cancer Biol. – year: 2019 ident: bb0475 article-title: Biological identity of nanoparticles in vivo: clinical implications of the protein corona publication-title: Trends Biotechnol. – volume: 144 start-page: 995 year: 2016 end-page: 1001 ident: bb0485 article-title: QSAR model for predicting cell viability of human embryonic kidney cells exposed to SiO2 nanoparticles publication-title: Chemosphere – volume: 4 start-page: 806 year: 2004 end-page: 813 ident: bb0540 article-title: High interstitial fluid pressure – an obstacle in cancer therapy publication-title: Nat. Rev. Cancer – volume: 154 start-page: 1175 year: 2020 end-page: 1184 ident: bb0285 article-title: Methotrexate-conjugated chitosan-grafted pH- and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer publication-title: Int. J. Biol. Macromol. – volume: 11 start-page: 328 year: 2017 end-page: 343 ident: bb0780 article-title: Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin publication-title: Front. Mater. Sci. – volume: 6 start-page: 662 year: 2006 end-page: 668 ident: bb0110 article-title: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells publication-title: Nano Lett. – volume: 86 start-page: 686 year: 2001 end-page: 693 ident: bb0920 article-title: Release of soluble urokinase receptor from vascular cells publication-title: Thromb. Haemost. – volume: 15 start-page: 7462 year: 2009 end-page: 7468 ident: bb0730 article-title: Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities publication-title: Cancer Res. – ident: bb0270 – volume: 6 start-page: 285 year: 2009 end-page: 304 ident: bb0225 article-title: Ligand-based targeted therapy for cancer tissue publication-title: Expert Opin. Drug Deliv. – volume: 51 start-page: 282 year: 2014 end-page: 289 ident: bb0715 article-title: Cancer stem cell: a rogue responsible for tumor development and metastasis publication-title: Indian J. Cancer – volume: 32 start-page: 115101 year: 2020 ident: bb0480 article-title: Protein corona impact on nanoparticle-cell interactions: toward an energy-based model of endocytosis publication-title: J. Phys. Condens. Matter – volume: 94 start-page: 29 year: 2005 end-page: 86 ident: bb0670 article-title: Activation of AKT kinases in cancer: implications for therapeutic targeting publication-title: Adv. Cancer Res. – volume: 11 start-page: 1007 year: 2014 end-page: 1013 ident: bb0250 article-title: Effect of receptor occupancy on folate receptor internalization publication-title: Mol. Pharm. – volume: 500 start-page: 486 year: 2013 end-page: 489 ident: bb0745 article-title: Structural basis for molecular recognition of folic acid by folate receptors publication-title: Nature – volume: 8 start-page: 1 year: 2018 end-page: 13 ident: bb0240 article-title: Advancement in nanotheranostics for effective skin cancer therapy: state of the art publication-title: Curr. Nanomed. – volume: 20 start-page: 1 year: 2012 end-page: 22 ident: bb0210 article-title: Recent advances in ligand targeted therapy publication-title: J. Drug Target. – volume: 94 start-page: 1593 year: 2002 end-page: 1611 ident: bb0590 article-title: Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy publication-title: Cancer – volume: 8 year: 2013 ident: bb0695 article-title: Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis publication-title: PLoS One – volume: 541 start-page: 41 year: 2017 end-page: 45 ident: bb0720 article-title: Targeting metastasis-initiating cells through the fatty acid receptor CD36 publication-title: Nature – volume: 7 year: 2015 ident: bb0630 article-title: Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma publication-title: Sci. Transl. Med. – volume: 13 start-page: 26 year: 2015 ident: bb0790 article-title: Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells publication-title: J. Nanobiotechnol. – volume: 485 start-page: 144 year: 2017 end-page: 151 ident: bb0855 article-title: Development of a complete human IgG monoclonal antibody to transferrin receptor 1 targeted for adult T-cell leukemia/lymphoma publication-title: Biochem. Biophys. Res. Commun. – volume: 61 start-page: 457 year: 2009 end-page: 466 ident: bb0295 article-title: Effects of nanomaterial physicochemical properties on in vivo toxicity publication-title: Adv. Drug Deliv. Rev. – volume: 2 start-page: 1800091 year: 2019 ident: bb0260 article-title: Advances in receptor-mediated, tumor-targeted drug delivery publication-title: Adv. Ther. – volume: 46 start-page: 1 year: 2018 end-page: 11 ident: bb0040 article-title: Epidermal growth factor based active targeting: a paradigm shift towards advance tumor therapy publication-title: Artif. Cells Nanomed. Biotechnol. – year: 2019 ident: bb0870 article-title: Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges publication-title: Semin. Cancer Biol. – volume: 30 start-page: 342 year: 2013 end-page: 351 ident: bb0150 article-title: Effect of PEGylation on biodistribution and gene silencing of siRNA/lipid nanoparticle complexes publication-title: Pharm. Res. – volume: 15 start-page: 3216 year: 2018 end-page: 3226 ident: bb0615 article-title: Tumor-targeted nanoparticles deliver a vitamin D-based drug payload for the treatment of EGFR tyrosine kinase inhibitor-resistant lung cancer publication-title: Mol. Pharm. – volume: 24 start-page: 1401 year: 2017 end-page: 1409 ident: bb0335 article-title: Glioma and microenvironment dual targeted nanocarrier for improved antiglioblastoma efficacy publication-title: Drug Deliv. – volume: 67 start-page: 5957 year: 2007 Jun 15 end-page: 5964 ident: bb0700 article-title: Regression of experimental medulloblastoma following transfer of HER2-specific T cells publication-title: Cancer Res. – volume: 6 year: 2016 ident: bb0860 article-title: Self-assembled targeted nanoparticles based on transferrin-modified eight-arm-polyethylene glycol–dihydroartemisinin conjugate publication-title: Sci. Rep. – volume: 66 start-page: 2 year: 2014 end-page: 25 ident: bb0365 article-title: Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology publication-title: Adv. Drug Deliv. Rev. – volume: 53 start-page: 5815 year: 2014 end-page: 5820 ident: bb0390 article-title: Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery publication-title: Angew. Chem. Int. Ed. Engl. – volume: 13 start-page: 4333 year: 2018 end-page: 4344 ident: bb0385 article-title: Enhanced endosomal escape by photothermal activation for improved small interfering RNA delivery and antitumor effect publication-title: Int. J. Nanomedicine – volume: 347 year: 2015 ident: bb0930 article-title: Tissue-based map of the human proteome publication-title: Science – volume: 14 start-page: 203 year: 2015 end-page: 219 ident: bb0925 article-title: Principles in the design of ligand-targeted cancer therapeutics and imaging agents publication-title: Nat. Rev. Drug Discov. – volume: 3 start-page: 703 year: 2008 end-page: 717 ident: bb0305 article-title: Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats publication-title: Nanomedicine – volume: 8 start-page: 659 year: 2016 end-page: 671 ident: bb0830 article-title: Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates publication-title: MAbs – volume: 7 start-page: 59860 year: 2016 end-page: 59876 ident: bb0915 article-title: Simultaneous targeting of Eph receptors in glioblastoma publication-title: Oncotarget – volume: 240 start-page: 267 year: 2016 end-page: 286 ident: bb0020 article-title: Ligand-targeted theranostic nanomedicines against cancer publication-title: J. Control. Release – volume: 53 start-page: 6253 year: 2014 end-page: 6258 ident: bb0530 article-title: Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration publication-title: Angew. Chem. Int. Ed. – volume: 88 start-page: 5572 year: 1991 end-page: 5576 ident: bb0760 article-title: Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 46 start-page: 926 year: 2018 end-page: 937 ident: bb0775 article-title: In vitro and in vivo evaluation of folate receptor-targeted a novel magnetic drug delivery system for ovarian cancer therapy publication-title: Artif. Cells Nanomed. Biotechnol. – volume: 20 start-page: 840 year: 2019 ident: bb0155 article-title: Targeting tumor microenvironment for cancer therapy publication-title: Int. J. Mol. Sci. – volume: 168 start-page: 331 year: 2006 Jan end-page: 339 ident: bb0655 article-title: EphrinA1 inhibits vascular endothelial growth factor-induced intracellular signaling and suppresses retinal neovascularization and blood-retinal barrier breakdown publication-title: Am. J. Pathol. – year: 2019 ident: bb0035 article-title: Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems publication-title: Semin. Cancer Biol. – volume: 14 year: 2017 ident: bb0500 article-title: Mechanistic understanding of nanoparticles' interactions with extracellular matrix: the cell and immune system publication-title: Part. Fibre Toxicol. – volume: 1513 start-page: 25 year: 2001 end-page: 37 ident: bb0140 article-title: Surface-associated serum proteins inhibit the uptake of phosphatidylserine and poly(ethylene glycol) liposomes by mouse macrophages publication-title: Biochim. Biophys. Acta – volume: 4 start-page: 35 year: 2007 end-page: 41 ident: bb0565 article-title: A critical path approach to advance nanoengineered medical products publication-title: Drug Discov. Today Technol. – volume: 8 year: 2013 ident: bb0680 article-title: EGFRvIII mediates hepatocellular carcinoma cell invasion by promoting S100 calcium binding protein A11 expression publication-title: PLoS One – volume: 9 year: 2019 ident: bb0395 article-title: Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems publication-title: Sci. Rep. – volume: 11 year: 2019 ident: bb0875 article-title: Transferrin-conjugated polymeric nanoparticle for receptor-mediated delivery of doxorubicin in doxorubicin-resistant breast cancer cells publication-title: Pharmaceutics – volume: 63 start-page: 3154 year: 2003 ident: bb0600 article-title: Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells publication-title: Cancer Res. – volume: 1179 start-page: 157 year: 1993 end-page: 165 ident: bb0120 article-title: Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum publication-title: Biochim. Biophys. Acta – volume: 50 start-page: 11417 year: 2011 end-page: 11420 ident: bb0330 article-title: Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration publication-title: Angew. Chem. – year: 2019 ident: bb0005 article-title: Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy publication-title: Semin. Cancer Biol. – volume: 11 start-page: 113 year: 2017 ident: bb0320 article-title: Multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles publication-title: BMC Syst. Biol. – volume: 46 start-page: 6387 year: 1986 end-page: 6392 ident: bb0175 article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs publication-title: Cancer Res. – volume: 10 start-page: 147 year: 2019 ident: bb0690 article-title: Support of tumor endothelial cells by chemokine receptors publication-title: Front. Immunol. – volume: 15 start-page: 1243 year: 2014 end-page: 1253 ident: bb0160 article-title: The extracellular matrix modulates the hallmarks of cancer publication-title: EMBO Rep. – volume: 3 year: 2012 ident: bb0750 article-title: Utilizing the folate receptor for active targeting of cancer nanotherapeutics publication-title: Nano Rev. – volume: 26 start-page: 274 year: 2015 end-page: 285 ident: bb0725 article-title: Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid publication-title: Acta Biomater. – volume: 11 year: 2019 ident: bb0315 article-title: Strategies to improve tumor penetration of nanomedicines through nanoparticle design publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. – year: 1986 ident: bb0570 article-title: The Nobel Prize in Physiology or Medicine – volume: 7 start-page: 1782 year: 2015 end-page: 1790 ident: bb0880 article-title: Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors publication-title: Nanoscale – volume: 75 start-page: 295 year: 2016 end-page: 304 ident: bb0430 article-title: Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake publication-title: Biomaterials – volume: 3 start-page: 354 year: 2012 end-page: 357 ident: bb0465 article-title: Cancer cell targeting of lipid gene vectors by protein corona publication-title: Nanotechnology – volume: 9 year: 2018 ident: bb0605 article-title: Improvement and extension of anti-EGFR targeting in breast cancer therapy by integration with the Avidin-Nucleic-Acid-Nano-Assemblies publication-title: Nat. Commun. – volume: 7 start-page: 157 year: 2003 end-page: 161 ident: bb0560 article-title: History of FDA good laboratory practices publication-title: Qual. Assur. J. – volume: 13 start-page: 1797 year: 2017 end-page: 1808 ident: bb0770 article-title: Ligand-decorated click polypeptide derived nanoparticles for targeted drug delivery applications publication-title: Nanomed – volume: 4 year: 2018 ident: bb0535 article-title: Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside publication-title: Trends Cancer – volume: 3 start-page: 1 year: 2010 end-page: 11 ident: bb0490 article-title: Anti-PEG IgM response against PEGylated liposomes in mice and rats publication-title: Pharmaceutics – volume: 76 start-page: 257 year: 2018 end-page: 274 ident: bb0620 article-title: Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer publication-title: Acta Biomater. – volume: 13 start-page: 1905751 year: 2019 end-page: 1905761 ident: bb0070 article-title: Dual-locking nanoparticles disrupt the PD-1/PD-L1 pathway for efficient cancer immunotherapy publication-title: Adv. Mater. – volume: 8 start-page: 89 year: 2006 end-page: 95 ident: bb0555 article-title: Lowering of tumor interstitial fluid pressure reduces tumor cell proliferation in a xenograft tumor model publication-title: Neoplasia – year: 2020 ident: bb0815 article-title: Peptide-drug conjugates and their targets in advanced cancer therapies publication-title: Front. Chem. – volume: 75 start-page: 143 year: 2016 end-page: 147 ident: bb0410 article-title: Protein corona: opportunities and challenges publication-title: Int. J. Biochem. Cell Biol. – volume: 6 start-page: 3331 year: 2018 end-page: 3339 ident: bb0350 article-title: The effects of surface charge on the intra-tumor penetration of drug delivery vehicles with tumor progression publication-title: J. Mater. Chem. B – volume: 8 start-page: 1 year: 2013 end-page: 10 ident: bb0380 article-title: The endocytosis and intracellular fate of nanomedicines: implication for rational design publication-title: Asian J. Pharm. Sci. – year: 2012 ident: bb0840 article-title: The transferrin receptor and the targeted delivery of therapeutic agents against cancer publication-title: Biochim. Biophys. Acta – volume: 2016 start-page: 4273943 year: 2016 ident: bb0440 article-title: The immune system in cancer pathogenesis: potential therapeutic approaches publication-title: J. Immunol. Res. – volume: 8 start-page: 9874 year: 2014 end-page: 9883 ident: bb0515 article-title: Bromelain surface modification increases the diffusion of silica nanoparticles in the tumor extracellular matrix publication-title: ACS Nano – volume: 35 start-page: 257 year: 2017 end-page: 264 ident: bb0415 article-title: Biological identity of nanoparticles in vivo: clinical implications of the protein corona publication-title: Trends Biotechnol. – volume: 6 start-page: 3954 year: 2012 end-page: 3966 ident: bb0300 article-title: Synthesis and biological response of size-specific, monodisperse drug–silica nanoconjugates publication-title: ACS Nano – volume: 1 start-page: 11 year: 2006 ident: bb0580 article-title: The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications publication-title: Radiat. Oncol. – volume: 13 start-page: 4817 year: 2018 end-page: 4830 ident: bb0635 article-title: Tumor-specific delivery of therapeutic siRNAs by anti-EGFR immunonanoparticles publication-title: Int. J. Nanomedicine – volume: 285 start-page: 41578 year: 2010 end-page: 41590 ident: bb0945 article-title: Ligand-induced internalization and recycling of the human neuropeptide Y2 receptor is regulated by its carboxyl-terminal tail publication-title: J. Biol. Chem. – volume: 6 start-page: 1795 year: 2008 Dec end-page: 1806 ident: bb0660 article-title: The EphA2 receptor and EphrinA1 ligand in solid tumors: function and therapeutic targeting publication-title: Mol. Cancer Res. – volume: 3 start-page: 957 year: 2014 end-page: 976 ident: bb0090 article-title: Delivering colloidal nanoparticles to mammalian cells: a nano–bio interface perspective publication-title: Adv. Healthc. Mater. – volume: 60 start-page: 361 year: 2005 end-page: 372 ident: bb0100 article-title: Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN) publication-title: Eur. J. Pharm. Biopharm. – volume: 61 start-page: 428 year: 2009 Jun 21 end-page: 437 ident: bb0085 article-title: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy publication-title: Adv. Drug Deliv. Rev. – volume: 118 start-page: 1268 year: 2012 end-page: 1275 ident: bb0585 article-title: Epidermal growth factor receptor protein expression and genomic alterations in renal cell carcinoma publication-title: Cancer – volume: 4 start-page: 55 year: 2014 end-page: 67 ident: bb0055 article-title: Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines publication-title: Bioimpacts – volume: 8 start-page: 45 year: 2011 end-page: 58 ident: bb0215 article-title: Receptor mediated tumor targeting: an emerging approach for cancer therapy publication-title: Curr. Drug Deliv. – volume: 244 start-page: 257 year: 2016 end-page: 268 ident: bb0340 article-title: Tumor stroma-containing 3D spheroid arrays: a tool to study nanoparticle penetration publication-title: J. Control. Release – volume: 31 start-page: 1111 year: 1999 end-page: 1137 ident: bb0835 article-title: The transferrin receptor: role in health and disease publication-title: Int. J. Biochem. Cell Biol. – volume: 276 start-page: 17686 year: 2001 end-page: 17692 ident: bb0665 article-title: Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation publication-title: J. Biol. Chem. – volume: 87 start-page: 1171 year: 1996 end-page: 1180 ident: bb0650 article-title: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis publication-title: Cell – volume: 119 start-page: 1420 year: 2009 end-page: 1428 ident: bb0610 article-title: The basics of epithelial-mesenchymal transition publication-title: J. Clin. Invest. – volume: 11 year: 2018 ident: bb0405 article-title: Efficient delivery of macromolecules into human cells by improving the endosomal escape activity of cell-penetrating peptides: lessons learned from dfTAT and its analogs publication-title: Biomolecules – volume: 15 start-page: 15057 year: 2019 end-page: 15071 ident: bb0900 article-title: Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier publication-title: Nanoscale – volume: 13 year: 2018 ident: bb0865 article-title: Inducing cell death in vitro in cancer cells by targeted delivery of cytochrome c via a transferrin conjugate publication-title: PLoS One – volume: 65 start-page: 71 year: 2013 end-page: 79 ident: bb0185 article-title: The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo publication-title: Adv. Drug Deliv. Rev. – volume: 16 start-page: 510 year: 2009 end-page: 520 ident: bb0525 article-title: Ruoslahti, Tissue-penetrating delivery of compounds and nanoparticles into tumors publication-title: Cancer Cell – volume: 5 start-page: a016949 year: 2013 ident: bb0940 article-title: Endocytosis and cancer publication-title: Cold Spring Harb. Perspect. Biol. – volume: 9 start-page: 1410 year: 2018 ident: bb0360 article-title: Progress and challenges towards targeted delivery of cancer therapeutics publication-title: Nat. Commun. – volume: 90 start-page: 1352 year: 1992 end-page: 1360 ident: bb0575 article-title: Over-expression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha publication-title: J. Clin. Invest. – volume: 238 start-page: 171 year: 2002 end-page: 180 ident: bb0125 article-title: Effects of mixed polyethyleneglycol modification on fixed aqueous layer thickness and antitumor activity of doxorubicin containing liposome publication-title: Int. J. Pharm. – volume: 24 start-page: 927 issue: 5 year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0820 article-title: Recent advances in cell penetrating peptide-based anticancer therapies publication-title: Molecules doi: 10.3390/molecules24050927 – volume: 3 start-page: 149 issue: 4 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0050 article-title: Dysregulated pH in tumor microenvironment checkmates cancer therapy publication-title: Bioimpacts – volume: 3 start-page: 957 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0090 article-title: Delivering colloidal nanoparticles to mammalian cells: a nano–bio interface perspective publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201300602 – volume: 182 start-page: 83 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0165 article-title: Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.03.007 – volume: 46 start-page: 873 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0205 article-title: Nanocarriers in advanced drug targeting: setting novel paradigm in cancer therapeutics publication-title: Artif Cells Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2017.1366333 – volume: 6 start-page: 3331 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0350 article-title: The effects of surface charge on the intra-tumor penetration of drug delivery vehicles with tumor progression publication-title: J. Mater. Chem. B doi: 10.1039/C8TB00038G – volume: 8 issue: 10 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0695 article-title: Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis publication-title: PLoS One doi: 10.1371/journal.pone.0077769 – volume: 123 start-page: 143 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0425 article-title: Protein corona change the drug release profile of nanocarriers: the “overlooked” factor at the nanobio interface publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2014.09.009 – volume: 20 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.bbagen.2020.129777_bb0210 article-title: Recent advances in ligand targeted therapy publication-title: J. Drug Target. doi: 10.3109/1061186X.2011.611518 – volume: 23 start-page: 247 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0640 article-title: Fibroblast growth factor receptor 1 (FGFR1), partly related to vascular endothelial growth factor receptor 2 (VEGFR2) and microvessel density, is an independent prognostic factor for non-small cell lung cancer publication-title: Med. Sci. Monit. doi: 10.12659/MSM.899005 – volume: 4 start-page: 55 issue: 2 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0055 article-title: Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines publication-title: Bioimpacts – volume: 94 start-page: 29 year: 2005 ident: 10.1016/j.bbagen.2020.129777_bb0670 article-title: Activation of AKT kinases in cancer: implications for therapeutic targeting publication-title: Adv. Cancer Res. doi: 10.1016/S0065-230X(05)94002-5 – volume: 1 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0195 article-title: Analysis of nanoparticle delivery to tumours publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.14 – volume: 97 start-page: 355 issue: 3 year: 2007 ident: 10.1016/j.bbagen.2020.129777_bb0645 article-title: Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis publication-title: Thromb. Haemost. doi: 10.1160/TH06-08-0470 – volume: 53 start-page: 5815 issue: 23 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0390 article-title: Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201400268 – volume: 5 start-page: 3904 issue: 9 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0375 article-title: Development of drug loaded nanoparticles for tumor targeting. Part 2: enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models publication-title: Nanoscale doi: 10.1039/c3nr90022c – volume: 119 start-page: 1420 issue: 6 year: 2009 ident: 10.1016/j.bbagen.2020.129777_bb0610 article-title: The basics of epithelial-mesenchymal transition publication-title: J. Clin. Invest. doi: 10.1172/JCI39104 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0240 article-title: Advancement in nanotheranostics for effective skin cancer therapy: state of the art publication-title: Curr. Nanomed. – volume: 67 start-page: 5957 issue: 12 year: 2007 ident: 10.1016/j.bbagen.2020.129777_bb0700 article-title: Regression of experimental medulloblastoma following transfer of HER2-specific T cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-4309 – volume: 94 start-page: 1593 issue: 5 year: 2002 ident: 10.1016/j.bbagen.2020.129777_bb0590 article-title: Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy publication-title: Cancer doi: 10.1002/cncr.10372 – volume: 7 start-page: 653 year: 2010 ident: 10.1016/j.bbagen.2020.129777_bb0180 article-title: Delivering nanomedicine to solid tumors publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2010.139 – volume: 16 start-page: 3268 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0520 article-title: Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00820 – volume: 51 start-page: 282 issue: 3 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0715 article-title: Cancer stem cell: a rogue responsible for tumor development and metastasis publication-title: Indian J. Cancer doi: 10.4103/0019-509X.146794 – volume: 35 start-page: S276 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0015 article-title: Designing a broad-spectrum integrative approach for cancer prevention and treatment publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2015.09.007 – volume: 46 start-page: 1 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0040 article-title: Epidermal growth factor based active targeting: a paradigm shift towards advance tumor therapy publication-title: Artif. Cells Nanomed. Biotechnol. – volume: 168 start-page: 331 issue: 1 year: 2006 ident: 10.1016/j.bbagen.2020.129777_bb0655 article-title: EphrinA1 inhibits vascular endothelial growth factor-induced intracellular signaling and suppresses retinal neovascularization and blood-retinal barrier breakdown publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2006.050435 – volume: 25 start-page: 517 issue: 1 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0845 article-title: Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer publication-title: Drug Deliv. doi: 10.1080/10717544.2018.1435747 – volume: 33 start-page: 941 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0200 article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3330 – volume: 3 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.bbagen.2020.129777_bb0490 article-title: Anti-PEG IgM response against PEGylated liposomes in mice and rats publication-title: Pharmaceutics doi: 10.3390/pharmaceutics3010001 – volume: 13 start-page: 5419 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0435 article-title: Main trends of immune effects triggered by nanomedicines in preclinical studies publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S168808 – volume: 32 start-page: 115101 issue: 11 year: 2020 ident: 10.1016/j.bbagen.2020.129777_bb0480 article-title: Protein corona impact on nanoparticle-cell interactions: toward an energy-based model of endocytosis publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab5a14 – year: 2012 ident: 10.1016/j.bbagen.2020.129777_bb0840 article-title: The transferrin receptor and the targeted delivery of therapeutic agents against cancer publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2011.07.016 – volume: 3 start-page: 703 year: 2008 ident: 10.1016/j.bbagen.2020.129777_bb0305 article-title: Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats publication-title: Nanomedicine doi: 10.2217/17435889.3.5.703 – volume: 4 start-page: 806 year: 2004 ident: 10.1016/j.bbagen.2020.129777_bb0540 article-title: High interstitial fluid pressure – an obstacle in cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1456 – volume: 15 start-page: 7462 year: 2009 ident: 10.1016/j.bbagen.2020.129777_bb0730 article-title: Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities publication-title: Cancer Res. – volume: 485 start-page: 144 issue: 1 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0855 article-title: Development of a complete human IgG monoclonal antibody to transferrin receptor 1 targeted for adult T-cell leukemia/lymphoma publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.02.039 – volume: 54 start-page: 165 year: 2002 ident: 10.1016/j.bbagen.2020.129777_bb0105 article-title: Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(02)00081-4 – volume: 78 start-page: 283 issue: 6 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0825 article-title: RGD peptide-based target drug delivery of doxorubicin nanomedicine publication-title: Drug Dev. Res. doi: 10.1002/ddr.21399 – year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0870 article-title: Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.10.020 – volume: 6 start-page: 3954 year: 2012 ident: 10.1016/j.bbagen.2020.129777_bb0300 article-title: Synthesis and biological response of size-specific, monodisperse drug–silica nanoconjugates publication-title: ACS Nano doi: 10.1021/nn300149c – volume: 8 start-page: 89 issue: 2 year: 2006 ident: 10.1016/j.bbagen.2020.129777_bb0555 article-title: Lowering of tumor interstitial fluid pressure reduces tumor cell proliferation in a xenograft tumor model publication-title: Neoplasia doi: 10.1593/neo.05469 – volume: 31 start-page: 1111 issue: 10 year: 1999 ident: 10.1016/j.bbagen.2020.129777_bb0835 article-title: The transferrin receptor: role in health and disease publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(99)00070-9 – year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0010 article-title: Nanomedicine in treatment of breast cancer – a challenge to conventional therapy publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.12.016 – volume: 13 start-page: 1905751 year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0070 article-title: Dual-locking nanoparticles disrupt the PD-1/PD-L1 pathway for efficient cancer immunotherapy publication-title: Adv. Mater. doi: 10.1002/adma.201905751 – volume: 75 start-page: 295 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0430 article-title: Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.019 – volume: 11 issue: 2 year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0875 article-title: Transferrin-conjugated polymeric nanoparticle for receptor-mediated delivery of doxorubicin in doxorubicin-resistant breast cancer cells publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11020063 – volume: 8 start-page: 9874 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0515 article-title: Bromelain surface modification increases the diffusion of silica nanoparticles in the tumor extracellular matrix publication-title: ACS Nano doi: 10.1021/nn502807n – year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0475 article-title: Biological identity of nanoparticles in vivo: clinical implications of the protein corona publication-title: Trends Biotechnol. – volume: 26 start-page: 274 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0725 article-title: Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.08.029 – volume: 148 start-page: 2 issue: 1 year: 2010 ident: 10.1016/j.bbagen.2020.129777_bb0400 article-title: Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules publication-title: J. Control. Release doi: 10.1016/j.jconrel.2010.06.008 – volume: 12 start-page: 671 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0710 article-title: Targeted multidrug delivery system to overcome chemoresistance in breast cancer publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S124770 – volume: 10 start-page: 147 year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0690 article-title: Support of tumor endothelial cells by chemokine receptors publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00147 – volume: 172 start-page: 130 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0800 article-title: Folate-conjugated thermosensitive O-maleoyl modified chitosan micellar nanoparticles for targeted delivery of erlotinib publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.05.007 – volume: 11 start-page: 1007 issue: 3 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0250 article-title: Effect of receptor occupancy on folate receptor internalization publication-title: Mol. Pharm. doi: 10.1021/mp400659t – volume: 14 start-page: 597 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0025 article-title: An investigative approach to the treatment modalities of squamous cell carcinoma publication-title: Curr. Drug Deliv. doi: 10.2174/1567201801666160906104254 – volume: 11 issue: 3 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0405 article-title: Efficient delivery of macromolecules into human cells by improving the endosomal escape activity of cell-penetrating peptides: lessons learned from dfTAT and its analogs publication-title: Biomolecules doi: 10.3390/biom8030050 – volume: 9 start-page: 1410 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0360 article-title: Progress and challenges towards targeted delivery of cancer therapeutics publication-title: Nat. Commun. doi: 10.1038/s41467-018-03705-y – volume: 14 issue: 1 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0500 article-title: Mechanistic understanding of nanoparticles' interactions with extracellular matrix: the cell and immune system publication-title: Part. Fibre Toxicol. doi: 10.1186/s12989-017-0199-z – volume: 810 start-page: 70 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0625 article-title: The EGFR variant III mutant as a target for immunotherapy of glioblastoma multiforme publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2017.05.064 – volume: 9 issue: 5 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0595 article-title: Epidermal growth factor receptor cell proliferation signaling pathways publication-title: Cancers (Basel) doi: 10.3390/cancers9050052 – volume: 7 issue: 3 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0685 article-title: Monocytes/Macrophages promote vascular CXCR4 expression via the ERK pathway in hepatocellular carcinoma publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1408745 – volume: 2 start-page: 451 year: 2011 ident: 10.1016/j.bbagen.2020.129777_bb0145 article-title: The effect of cholesterol domains on PEGylated liposomal gene delivery in vitro publication-title: Ther. Deliv. doi: 10.4155/tde.11.13 – volume: 121 start-page: 159 issue: 2 year: 2006 ident: 10.1016/j.bbagen.2020.129777_bb0890 article-title: The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells publication-title: Clin. Immunol. doi: 10.1016/j.clim.2006.06.006 – volume: 15 start-page: 15057 year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0900 article-title: Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier publication-title: Nanoscale doi: 10.1039/C9NR03931G – volume: 541 start-page: 41 issue: 7635 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0720 article-title: Targeting metastasis-initiating cells through the fatty acid receptor CD36 publication-title: Nature doi: 10.1038/nature20791 – volume: 8 start-page: 2383 year: 2009 ident: 10.1016/j.bbagen.2020.129777_bb0045 article-title: Heterotypic bystander effect for tumor cell killing after adenoassociated virus/phage-mediated, vascular-targeted suicide gene transfer publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-09-0110 – volume: 2 start-page: 1800091 year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0260 article-title: Advances in receptor-mediated, tumor-targeted drug delivery publication-title: Adv. Ther. doi: 10.1002/adtp.201800091 – volume: 64 start-page: 34 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0460 article-title: Modification of the protein corona–nanoparticle complex by physiological factors publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.03.059 – volume: 7 start-page: 1782 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0880 article-title: Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors publication-title: Nanoscale doi: 10.1039/C4NR04853A – volume: 11 start-page: 817 issue: 6 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0420 article-title: Emerging understanding of the protein corona at the nano-bio interfaces publication-title: Nano Today doi: 10.1016/j.nantod.2016.10.005 – volume: 90 start-page: 1352 issue: 4 year: 1992 ident: 10.1016/j.bbagen.2020.129777_bb0575 article-title: Over-expression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha publication-title: J. Clin. Invest. doi: 10.1172/JCI116001 – volume: 1179 start-page: 157 year: 1993 ident: 10.1016/j.bbagen.2020.129777_bb0120 article-title: Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4889(93)90137-E – volume: 18 start-page: 535 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0505 article-title: Tumor microenvironment-sensitive liposomes penetrate tumor tissue via attenuated interaction of the extracellular matrix and tumor cells and accompanying actin depolymerization publication-title: Biomacromolecules doi: 10.1021/acs.biomac.6b01688 – volume: 347 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0930 article-title: Tissue-based map of the human proteome publication-title: Science doi: 10.1126/science.1260419 – volume: 14 start-page: 203 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0925 article-title: Principles in the design of ligand-targeted cancer therapeutics and imaging agents publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4519 – volume: 3 start-page: 354 year: 2012 ident: 10.1016/j.bbagen.2020.129777_bb0465 article-title: Cancer cell targeting of lipid gene vectors by protein corona publication-title: Nanotechnology – year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0005 article-title: Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.11.002 – volume: 75 start-page: 143 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0410 article-title: Protein corona: opportunities and challenges publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2016.01.005 – volume: 106 start-page: 266 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0280 article-title: Thermo-sensitive chitosan copolymer-gold hybrid nanoparticles as a nanocarrier for delivery of erlotinib publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.08.020 – volume: 23 start-page: 1171 issue: 4 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0850 article-title: Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma publication-title: Drug Deliv. doi: 10.3109/10717544.2015.1040527 – volume: 87 start-page: 1171 issue: 7 year: 1996 ident: 10.1016/j.bbagen.2020.129777_bb0650 article-title: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis publication-title: Cell doi: 10.1016/S0092-8674(00)81813-9 – volume: 10 start-page: 6861 issue: 15 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0705 article-title: multi-ligand nanoparticles incorporating four different ligands publication-title: Nanoscale doi: 10.1039/C8NR02513D – volume: 61 start-page: 428 issue: 6 year: 2009 ident: 10.1016/j.bbagen.2020.129777_bb0085 article-title: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2009.03.009 – volume: 154 start-page: 1175 year: 2020 ident: 10.1016/j.bbagen.2020.129777_bb0285 article-title: Methotrexate-conjugated chitosan-grafted pH- and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.10.272 – volume: 16 start-page: 510 year: 2009 ident: 10.1016/j.bbagen.2020.129777_bb0525 article-title: Ruoslahti, Tissue-penetrating delivery of compounds and nanoparticles into tumors publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.10.013 – volume: 13 start-page: 8339 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0885 article-title: Transferrin receptor-targeted HMSN for sorafenib delivery in refractory differentiated thyroid cancer therapy publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S187240 – volume: 329 start-page: 192 year: 2007 ident: 10.1016/j.bbagen.2020.129777_bb0115 article-title: Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2006.08.025 – volume: 6 start-page: 285 issue: 3 year: 2009 ident: 10.1016/j.bbagen.2020.129777_bb0225 article-title: Ligand-based targeted therapy for cancer tissue publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425240902780166 – volume: 27 start-page: 286 year: 2010 ident: 10.1016/j.bbagen.2020.129777_bb0230 article-title: Receptor-targeted nanocarriers for therapeutic delivery to cancer publication-title: Mol. Membr. Biol. doi: 10.3109/09687688.2010.521200 – volume: 15 start-page: 1243 issue: 12 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0160 article-title: The extracellular matrix modulates the hallmarks of cancer publication-title: EMBO Rep. doi: 10.15252/embr.201439246 – volume: 13 issue: 4 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0865 article-title: Inducing cell death in vitro in cancer cells by targeted delivery of cytochrome c via a transferrin conjugate publication-title: PLoS One doi: 10.1371/journal.pone.0195542 – volume: 238 start-page: 176 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0290 article-title: Role of nanoparticle size, shape and surface chemistry in oral drug delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.07.051 – volume: 15 start-page: 3216 issue: 8 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0615 article-title: Tumor-targeted nanoparticles deliver a vitamin D-based drug payload for the treatment of EGFR tyrosine kinase inhibitor-resistant lung cancer publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.8b00307 – volume: 118 start-page: 1268 issue: 5 year: 2012 ident: 10.1016/j.bbagen.2020.129777_bb0585 article-title: Epidermal growth factor receptor protein expression and genomic alterations in renal cell carcinoma publication-title: Cancer doi: 10.1002/cncr.26436 – volume: 30 start-page: 1729 issue: 7 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0495 article-title: The immunogenicity of polyethylene glycol: facts and fiction publication-title: Pharm. Res. doi: 10.1007/s11095-013-1067-7 – volume: 76 start-page: 257 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0620 article-title: Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.06.034 – volume: 6 start-page: 1795 issue: 12 year: 2008 ident: 10.1016/j.bbagen.2020.129777_bb0660 article-title: The EphA2 receptor and EphrinA1 ligand in solid tumors: function and therapeutic targeting publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-08-0244 – volume: 50 start-page: 11417 year: 2011 ident: 10.1016/j.bbagen.2020.129777_bb0330 article-title: Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration publication-title: Angew. Chem. doi: 10.1002/anie.201104449 – volume: 9 issue: 1 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0605 article-title: Improvement and extension of anti-EGFR targeting in breast cancer therapy by integration with the Avidin-Nucleic-Acid-Nano-Assemblies publication-title: Nat. Commun. doi: 10.1038/s41467-018-06602-6 – volume: 24 start-page: 120 issue: 2 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0795 article-title: Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells publication-title: J. Drug Target. doi: 10.3109/1061186X.2015.1058801 – volume: 13 start-page: 4333 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0385 article-title: Enhanced endosomal escape by photothermal activation for improved small interfering RNA delivery and antitumor effect publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S161908 – volume: 8 start-page: 45 issue: 1 year: 2011 ident: 10.1016/j.bbagen.2020.129777_bb0215 article-title: Receptor mediated tumor targeting: an emerging approach for cancer therapy publication-title: Curr. Drug Deliv. doi: 10.2174/156720111793663606 – volume: 12 start-page: 7291 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0235 article-title: Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S146315 – volume: 13 start-page: 1797 issue: 5 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0770 article-title: Ligand-decorated click polypeptide derived nanoparticles for targeted drug delivery applications publication-title: Nanomed doi: 10.1016/j.nano.2017.02.010 – volume: 8 issue: 12 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0680 article-title: EGFRvIII mediates hepatocellular carcinoma cell invasion by promoting S100 calcium binding protein A11 expression publication-title: PLoS One doi: 10.1371/journal.pone.0083332 – volume: 27 start-page: 423 issue: 4 year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0170 article-title: Stimuli-responsive nanoscale drug delivery systems for cancer therapy publication-title: J. Drug Target. doi: 10.1080/1061186X.2018.1519029 – volume: 30 start-page: 342 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0150 article-title: Effect of PEGylation on biodistribution and gene silencing of siRNA/lipid nanoparticle complexes publication-title: Pharm. Res. doi: 10.1007/s11095-012-0874-6 – volume: 321 start-page: 222 year: 2020 ident: 10.1016/j.bbagen.2020.129777_bb0060 article-title: Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.02.025 – volume: 11 start-page: 673 issue: 6 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0310 article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction publication-title: Nanomedicine doi: 10.2217/nnm.16.5 – volume: 88 start-page: 5572 issue: 13 year: 1991 ident: 10.1016/j.bbagen.2020.129777_bb0760 article-title: Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.88.13.5572 – volume: 1 start-page: 11 year: 2006 ident: 10.1016/j.bbagen.2020.129777_bb0580 article-title: The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications publication-title: Radiat. Oncol. doi: 10.1186/1748-717X-1-11 – year: 2020 ident: 10.1016/j.bbagen.2020.129777_bb0815 article-title: Peptide-drug conjugates and their targets in advanced cancer therapies publication-title: Front. Chem. doi: 10.3389/fchem.2020.00571 – volume: 46 start-page: 704 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0785 article-title: Anti-proliferate and apoptosis triggering potential of methotrexate-transferrin conjugate encapsulated PLGA nanoparticles with enhanced cellular uptake by high-affinity folate receptors publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1468768 – volume: 134 start-page: 3965 issue: 9 year: 2012 ident: 10.1016/j.bbagen.2020.129777_bb0445 article-title: Rotello VM Nanoparticle hydrophobicity dictates immune response publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2108905 – volume: 1768 start-page: 1367 year: 2007 ident: 10.1016/j.bbagen.2020.129777_bb0135 article-title: Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2006.12.013 – volume: 13 start-page: 26 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0790 article-title: Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-015-0083-7 – volume: 201 start-page: 78 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0510 article-title: Improving drug delivery to solid tumors: priming the tumor microenvironment publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.12.018 – volume: 60 start-page: 361 year: 2005 ident: 10.1016/j.bbagen.2020.129777_bb0100 article-title: Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN) publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2005.02.006 – volume: 46 start-page: 926 issue: sup1 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0775 article-title: In vitro and in vivo evaluation of folate receptor-targeted a novel magnetic drug delivery system for ovarian cancer therapy publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1439838 – volume: 8 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0380 article-title: The endocytosis and intracellular fate of nanomedicines: implication for rational design publication-title: Asian J. Pharm. Sci. doi: 10.1016/j.ajps.2013.07.001 – volume: 65 start-page: 1056 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0735 article-title: Hyaluronan: towards novel anti-cancer therapeutics publication-title: Pharmacol. Rep. doi: 10.1016/S1734-1140(13)71465-8 – volume: 11 start-page: 328 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0780 article-title: Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin publication-title: Front. Mater. Sci. doi: 10.1007/s11706-017-0401-0 – volume: 6 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0860 article-title: Self-assembled targeted nanoparticles based on transferrin-modified eight-arm-polyethylene glycol–dihydroartemisinin conjugate publication-title: Sci. Rep. – volume: 61 start-page: 457 issue: 6 year: 2009 ident: 10.1016/j.bbagen.2020.129777_bb0295 article-title: Effects of nanomaterial physicochemical properties on in vivo toxicity publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2009.03.010 – ident: 10.1016/j.bbagen.2020.129777_bb0570 – volume: 7 start-page: 269 issue: 4 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0275 article-title: Stimuli-responsive chitosan-based nanocarriers for cancer therapy publication-title: Bioimpacts doi: 10.15171/bi.2017.32 – volume: 35 start-page: 257 issue: 3 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0415 article-title: Biological identity of nanoparticles in vivo: clinical implications of the protein corona publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.08.011 – volume: 4 issue: 4 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0535 article-title: Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside publication-title: Trends Cancer doi: 10.1016/j.trecan.2018.02.005 – volume: 16 start-page: 461 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0755 article-title: Folate-hapten mediated immunotherapy synergizes with vascular endothelial growth factor receptor inhibitors in treating murine models of cancer publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-16-0569 – volume: 6 start-page: 662 year: 2006 ident: 10.1016/j.bbagen.2020.129777_bb0110 article-title: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells publication-title: Nano Lett. doi: 10.1021/nl052396o – volume: 46 start-page: 6387 year: 1986 ident: 10.1016/j.bbagen.2020.129777_bb0175 article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs publication-title: Cancer Res. – volume: 2016 start-page: 4273943 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0440 article-title: The immune system in cancer pathogenesis: potential therapeutic approaches publication-title: J. Immunol. Res. doi: 10.1155/2016/4273943 – volume: 240 start-page: 267 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0020 article-title: Ligand-targeted theranostic nanomedicines against cancer publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.01.002 – volume: 49 start-page: 6288 year: 2010 ident: 10.1016/j.bbagen.2020.129777_bb0130 article-title: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200902672 – volume: 11 start-page: 113 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0320 article-title: Multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles publication-title: BMC Syst. Biol. doi: 10.1186/s12918-017-0491-4 – volume: 11 start-page: 1884 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0455 article-title: Identification of receptor binding to the biomolecular corona of nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.6b07933 – volume: 436 start-page: 78 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0220 article-title: Targeted anticancer therapy: overexpressed receptors and nanotechnology publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2014.05.004 – volume: 9 year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0395 article-title: Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems publication-title: Sci. Rep. doi: 10.1038/s41598-019-39107-3 – volume: 91 start-page: 103 issue: 1–2 year: 2003 ident: 10.1016/j.bbagen.2020.129777_bb0765 article-title: Polymeric micelle for tumor pH and folate-mediated targeting publication-title: J. Control. Release doi: 10.1016/S0168-3659(03)00239-6 – volume: 285 start-page: 41578 issue: 53 year: 2010 ident: 10.1016/j.bbagen.2020.129777_bb0945 article-title: Ligand-induced internalization and recycling of the human neuropeptide Y2 receptor is regulated by its carboxyl-terminal tail publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.162156 – volume: 13 start-page: 11107 year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0470 article-title: Corona composition can affect the mechanisms cells use to internalize nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.9b03824 – volume: 20 start-page: 840 issue: 4 year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0155 article-title: Targeting tumor microenvironment for cancer therapy publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20040840 – volume: 224 start-page: 112 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0910 article-title: Glioma-targeted therapy using cilengitide nanoparticles combined with UTMD enhanced delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.01.015 – volume: 63 start-page: 3154 year: 2003 ident: 10.1016/j.bbagen.2020.129777_bb0600 article-title: Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells publication-title: Cancer Res. – volume: 11 year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0315 article-title: Strategies to improve tumor penetration of nanomedicines through nanoparticle design publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. – volume: 66 start-page: 6732 year: 2006 ident: 10.1016/j.bbagen.2020.129777_bb0245 article-title: Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-4199 – volume: 117 start-page: 12133 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0935 article-title: Ligand-targeted drug delivery publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00013 – volume: 500 start-page: 486 issue: 7463 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0745 article-title: Structural basis for molecular recognition of folic acid by folate receptors publication-title: Nature doi: 10.1038/nature12327 – volume: 10 start-page: 6445 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0740 article-title: Hyaluronic acid-tagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation publication-title: Int. J. Nanomedicine – volume: 7 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0630 article-title: Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa4963 – volume: 144 start-page: 995 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0485 article-title: QSAR model for predicting cell viability of human embryonic kidney cells exposed to SiO2 nanoparticles publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.09.086 – year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0030 article-title: Targeting integrins for cancer management using nanotherapeutic approaches: recent advances and challenges publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.08.030 – volume: 53 start-page: 6253 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0530 article-title: Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201311227 – volume: 8 start-page: 659 issue: 4 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0830 article-title: Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates publication-title: MAbs doi: 10.1080/19420862.2016.1156829 – volume: 66 start-page: 2 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0365 article-title: Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2013.11.009 – volume: 238 start-page: 171 year: 2002 ident: 10.1016/j.bbagen.2020.129777_bb0125 article-title: Effects of mixed polyethyleneglycol modification on fixed aqueous layer thickness and antitumor activity of doxorubicin containing liposome publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(02)00075-3 – volume: 13 start-page: 4817 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0635 article-title: Tumor-specific delivery of therapeutic siRNAs by anti-EGFR immunonanoparticles publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S161932 – volume: 276 start-page: 17686 issue: 21 year: 2001 ident: 10.1016/j.bbagen.2020.129777_bb0665 article-title: Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M009128200 – volume: 1513 start-page: 25 year: 2001 ident: 10.1016/j.bbagen.2020.129777_bb0140 article-title: Surface-associated serum proteins inhibit the uptake of phosphatidylserine and poly(ethylene glycol) liposomes by mouse macrophages publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(01)00292-9 – volume: 244 start-page: 257 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0340 article-title: Tumor stroma-containing 3D spheroid arrays: a tool to study nanoparticle penetration publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.09.004 – volume: 10 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0675 article-title: Chimeric antigen receptor T cells: a novel therapy for solid tumors publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-017-0444-9 – volume: 11 start-page: 13 issue: 986 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0810 article-title: Building nanostructures with drugs publication-title: Nano Today doi: 10.1016/j.nantod.2015.11.003 – volume: 24 start-page: 1401 issue: 1 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0335 article-title: Glioma and microenvironment dual targeted nanocarrier for improved antiglioblastoma efficacy publication-title: Drug Deliv. doi: 10.1080/10717544.2017.1378940 – volume: 7 start-page: 157 year: 2003 ident: 10.1016/j.bbagen.2020.129777_bb0560 article-title: History of FDA good laboratory practices publication-title: Qual. Assur. J. doi: 10.1002/qaj.228 – volume: 190 start-page: 451 year: 2014 ident: 10.1016/j.bbagen.2020.129777_bb0190 article-title: EPR: evidence and fallacy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.03.057 – year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0035 article-title: Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.08.023 – volume: 14 start-page: 1250 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0265 article-title: Potentials and challenges of active targeting at the tumor cells by engineered polymeric nanoparticles publication-title: Curr. Pharm. Biotechnol. doi: 10.2174/1389201015666140608143235 – volume: 29 start-page: 160 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0075 article-title: The first approved gene therapy product for cancer ad-p53 (gendicine): 12 years in the clinic publication-title: Hum. Gene Ther. doi: 10.1089/hum.2017.218 – volume: 1048 start-page: 175 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0095 article-title: Nanoparticle-protein interaction: the significance and role of protein corona publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-72041-8_11 – volume: 3 start-page: 2024 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0370 article-title: Engineering and functionalization of biomaterials via surface modification publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01934B – volume: 13 start-page: 12912 year: 2019 ident: 10.1016/j.bbagen.2020.129777_bb0065 article-title: Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy publication-title: ACS Nano doi: 10.1021/acsnano.9b05425 – volume: 6 start-page: 861 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0080 article-title: Rexin-G®, a tumor-targeted retrovector for malignant peripheral nerve sheath tumor: a case report publication-title: Mol. Clin. Oncol. doi: 10.3892/mco.2017.1231 – volume: 26 start-page: 267 year: 2018 ident: 10.1016/j.bbagen.2020.129777_bb0805 article-title: Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy publication-title: J. Drug Target. doi: 10.1080/1061186X.2017.1365876 – volume: 9 start-page: 3169 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0355 article-title: Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting publication-title: ACS Nano doi: 10.1021/acsnano.5b00147 – volume: 7 start-page: 59860 year: 2016 ident: 10.1016/j.bbagen.2020.129777_bb0915 article-title: Simultaneous targeting of Eph receptors in glioblastoma publication-title: Oncotarget doi: 10.18632/oncotarget.10978 – volume: 3 year: 2012 ident: 10.1016/j.bbagen.2020.129777_bb0750 article-title: Utilizing the folate receptor for active targeting of cancer nanotherapeutics publication-title: Nano Rev. doi: 10.3402/nano.v3i0.18496 – volume: 3 start-page: 1085 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0345 article-title: Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids publication-title: Biomater. Sci. doi: 10.1039/C4BM00323C – volume: 5 year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0545 article-title: Tumor interstitial fluid formation, characterization, and clinical implications publication-title: Front. Oncol. doi: 10.3389/fonc.2015.00115 – volume: 320 start-page: 131 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0550 article-title: The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2012.11.031 – volume: 4 start-page: 35 year: 2007 ident: 10.1016/j.bbagen.2020.129777_bb0565 article-title: A critical path approach to advance nanoengineered medical products publication-title: Drug Discov. Today Technol. doi: 10.1016/j.ddtec.2007.10.003 – volume: 86 start-page: 686 year: 2001 ident: 10.1016/j.bbagen.2020.129777_bb0920 article-title: Release of soluble urokinase receptor from vascular cells publication-title: Thromb. Haemost. doi: 10.1055/s-0037-1616105 – volume: 5 start-page: a016949 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0940 article-title: Endocytosis and cancer publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016949 – volume: 95 start-page: 3 issue: Pt A year: 2015 ident: 10.1016/j.bbagen.2020.129777_bb0450 article-title: It takes two to tango: understanding the interactions between engineered nanomaterials and the immune system publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2015.03.007 – volume: 65 start-page: 71 year: 2013 ident: 10.1016/j.bbagen.2020.129777_bb0185 article-title: The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.10.002 – volume: 25 start-page: 1556 year: 2017 ident: 10.1016/j.bbagen.2020.129777_bb0905 article-title: Antitumoral cascade-targeting ligand for IL-6 receptor-mediated gene delivery to glioma publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.04.023 |
SSID | ssj0000595 |
Score | 2.4907417 |
SecondaryResourceType | review_article |
Snippet | Background
In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of... Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of... BackgroundIn past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129777 |
SubjectTerms | Animals Antineoplastic Agents - administration & dosage Antineoplastic Agents - pharmacokinetics Cancer cancer therapy Drug Carriers - chemistry Drug Carriers - metabolism Drug delivery Drug Delivery Systems - methods drugs ErbB Receptors - metabolism Humans nanocarriers nanomedicine Nanomedicine - methods Nanomedicines neoplasms Neoplasms - drug therapy Neoplasms - metabolism permeability Receptor targeting Theranostics Tumor metastasis Tumor Microenvironment - drug effects |
Title | Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129777 https://www.ncbi.nlm.nih.gov/pubmed/33130062 https://www.proquest.com/docview/2456861422 https://www.proquest.com/docview/2551921161 |
Volume | 1865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BThsxEB0hqgouVaFAQyEyUq8mrO1dx71FUVEAlQtF4mbZu3aVCjZRSA5c-HZm1rugHigSl1XWsiPLM5l5k3meAfjuvIvSFBmPGHxxFZzgJrqMS3USVUAHXzbdG35dFpNrdX6T36zBuLsLQ7TK1vYnm95Y63Zk0J7mYD6dDq4oqYdwIhf4QQyHdIlPKU1afvz4QvNA-JCnTILiNLu7PtdwvLzHHy1VQRVUZgGhkH7NPb0GPxs3dPoZPrX4kY3SFrdgLdTb8DF1lHzYho1x18DtC9whJAxzjKk5uaqKJdI3uio2iyy0dQhxvHY1OrQFta5j7o-bImBkqJFTXLG6my3ufzD6onrJGi4XWkbm6oqVXRcWfEWDXu3A9enP3-MJb7sr8FKafMnxgYfiNMYUKnovgvBaqDKPmROiNFVBKT8djJbR6BOHYsx15mOMUkpvTC53Yb2e1eErMI1hUGU8xmooce2kU6Us4jBiuFNJWZU9kN2h2rItPU4dMG5txzH7a5MoLInCJlH0gD-vmqfSG2_M15287D8qZNE7vLHyqBOvRRlRysTVYba6t5QWHhb0P9l_5iDoNBhHF1kP9pJuPO9XSkoXFmL_3Xv7BpuCaDQNUfwA1peLVThEHLT0_UbR-_BhdHYxuXwCzscGQQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCayDEN7Kbbs0ax7aMCuWmpJtqLeimBFtrW9rAF6EyRbGjKsTpDHoZf-9pGW3WGHLsAuhi1IhqBPJj-aFAnw0XkXpSkyHtH44io4wU10GZfqOKqACr5sqjdcXBbTmfp6nV_3YNKdhaGwylb2J5neSOu2ZdSu5mg5n4--k1MP6UQu8EaMx-YRPFb4-VIZg093f-I8kD_kyZWgOHXvzs81QV7e41dLaVAF5VlALqQf0k8P8c9GD509hYOWQLLTNMdn0Av1AJ6kkpK3A9ibdBXcnsMNcsKwRKOak66qWIr6Rl3FFpGFNhEhtteuRo22otp1zP1wc2SMDLfkHEdsbxar9QmjF9Ub1gRzoWhkrq5Y2ZVhwUeU6NULmJ19vppMeVtegZfS5BuOF1wUp9GoUNF7EYTXQpV5zJwQpakK8vnpYLSMRh87xDHXmY8xSim9Mbl8Cf16UYdDYBrtoMp4NNYQcu2kU6Us4jiivVNJWZVDkN2i2rLNPU4lMH7ZLsjsp01QWILCJiiGwO9HLVPujR39dYeX_WsPWVQPO0Z-6OC1iBH5TFwdFtu1Jb_wuKAfZf_og6zToCFdZEN4lfbG_XylJH9hIV7_99zew9706uLcnn-5_HYE-4Jiapqo8TfQ36y24S2Soo1_12z637a0B88 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Receptor-based+targeting+of+engineered+nanocarrier+against+solid+tumors%3A+Recent+progress+and+challenges+ahead&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Akhter%2C+Md+Habban&rft.au=Beg%2C+Sarwar&rft.au=Tarique%2C+Mohammed&rft.au=Malik%2C+Arshi&rft.date=2021-02-01&rft.issn=0304-4165&rft.volume=1865&rft.issue=2+p.129777-&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129777&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |