Hydrolytic enzymes conjugated to quantum dots mostly retain whole catalytic activity
Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1840; no. 9; pp. 2935 - 2943 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot–enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin–biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot.
The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation.
We demonstrate that all enzymes retain full catalytic activity in the quantum dot–enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation.
We reasoned that avidin–biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity.
Overall our results demonstrate for the first time that streptavidin–biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme.
[Display omitted]
•Three enzymes were conjugated to quantum dots using streptavidin biotin chemistry.•Hen lysozyme activity was diminished after biotinylation due to reduced charge.•QD conjugated alkaline phosphatase and acetylcholinesterase retained full activity.•All enzyme–QD conjugates displayed bright luminescence. |
---|---|
AbstractList | Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot–enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin–biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot.The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation.We demonstrate that all enzymes retain full catalytic activity in the quantum dot–enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation.We reasoned that avidin–biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity.Overall our results demonstrate for the first time that streptavidin–biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme. Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot-enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot-enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin-biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot.BACKGROUNDTagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot-enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot-enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin-biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot.The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation.METHODSThe catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation.We demonstrate that all enzymes retain full catalytic activity in the quantum dot-enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation.RESULTSWe demonstrate that all enzymes retain full catalytic activity in the quantum dot-enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation.We reasoned that avidin-biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity.CONCLUSIONSWe reasoned that avidin-biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity.Overall our results demonstrate for the first time that streptavidin-biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme.GENERAL SIGNIFICANCEOverall our results demonstrate for the first time that streptavidin-biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme. Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot–enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin–biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot. The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation. We demonstrate that all enzymes retain full catalytic activity in the quantum dot–enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation. We reasoned that avidin–biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity. Overall our results demonstrate for the first time that streptavidin–biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme. [Display omitted] •Three enzymes were conjugated to quantum dots using streptavidin biotin chemistry.•Hen lysozyme activity was diminished after biotinylation due to reduced charge.•QD conjugated alkaline phosphatase and acetylcholinesterase retained full activity.•All enzyme–QD conjugates displayed bright luminescence. Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot-enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot-enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin-biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot. The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation. We demonstrate that all enzymes retain full catalytic activity in the quantum dot-enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation. We reasoned that avidin-biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity. Overall our results demonstrate for the first time that streptavidin-biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme. |
Author | Chandra, Anil Iyer, Aditya Swaminathan, Rajaram |
Author_xml | – sequence: 1 givenname: Aditya surname: Iyer fullname: Iyer, Aditya – sequence: 2 givenname: Anil surname: Chandra fullname: Chandra, Anil – sequence: 3 givenname: Rajaram surname: Swaminathan fullname: Swaminathan, Rajaram email: rsw@iitg.ernet.in |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24937605$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1TAQRq2qqL0tvAFCXrJJGNuxnbBAQlV_kCqxKWvLsZ3iq8RubacoPH1zlcKCBZ3NbM75pJnvDB2HGBxC7wnUBIj4tK_7Xt-7UFMgTQ2iBmBHaEdaSasWQByjHTBoqoYIforOct7DOrzjJ-iUNh2TAvgO3d0sNsVxKd5gF34vk8vYxLCf73VxFpeIH2cdyjxhG0vGU8xlXHByRfuAf_2Mo8NGF70FaFP8ky_LW_Rm0GN27172OfpxdXl3cVPdfr_-dvH1tjKs46WiVgsg3HIJPWcW-MCgb4y0ZACQrZFDJxlwY_uBd0zLhgxa0pZJOrS96Ft2jj5uuQ8pPs4uFzX5bNw46uDinBVdD6akaSl5FSWcUyY61h3QDy_o3E_OqofkJ50W9edpK9BsgEkx5-SGvwgBdehG7dXWjTp0o0CotZtV-_yPZnzRxcdQkvbja_KXTXbrP5-8Syob74Jx1idnirLR_z_gGSy6rCQ |
CitedBy_id | crossref_primary_10_1016_j_molcatb_2016_09_007 crossref_primary_10_1021_acsnano_5b03459 crossref_primary_10_1016_j_molliq_2022_120270 crossref_primary_10_1016_j_jconrel_2016_11_016 crossref_primary_10_3390_ijms241914416 crossref_primary_10_1002_cmtd_202200067 crossref_primary_10_1021_jp5110467 crossref_primary_10_1038_s41592_021_01355_5 crossref_primary_10_1016_j_talanta_2018_10_049 crossref_primary_10_1021_acs_langmuir_7b02588 crossref_primary_10_1080_00219592_2024_2419109 crossref_primary_10_1016_j_chemosphere_2024_142804 crossref_primary_10_1039_C5CC00418G |
Cites_doi | 10.1126/science.2911722 10.1146/annurev.bioeng.7.060804.100432 10.1103/PhysRevLett.110.256801 10.1016/j.cplett.2007.07.075 10.1016/0006-3002(52)90045-0 10.1016/0005-2744(69)90397-0 10.1021/jp072636j 10.1016/j.jlumin.2012.12.048 10.1021/ac0713048 10.1021/bc800179j 10.1021/ac300714j 10.1021/nl062706i 10.1186/1477-3155-9-46 10.1021/jp907839j 10.1039/b822836c 10.1021/cm980610m 10.1021/cn1000827 10.1016/j.bios.2012.08.059 10.5483/BMBRep.2013.46.2.016 10.1016/j.bios.2007.02.013 10.1039/b925477c 10.1038/nmat3118 10.1002/adma.201304366 10.1016/j.ejpb.2008.04.018 10.1021/ac035083r 10.1088/1748-6041/3/3/034001 10.1039/c3nr03655c 10.1038/nmat1390 10.1016/j.bios.2009.10.013 10.1021/cr300143v 10.1021/nl102889y 10.1007/s10295-010-0848-9 10.1088/0957-4484/18/19/195105 10.1021/nl0803848 10.1016/0076-6879(90)84262-F 10.1016/j.ccr.2013.08.030 10.1007/s00216-009-3107-z 10.1016/j.bios.2006.09.003 10.1021/ja028922k 10.1038/35067589 10.1002/anie.200503084 10.1021/bc0001241 10.1021/bi00307a003 10.1021/bc0601018 10.1021/am404659f 10.1021/jp075239h 10.1021/ja111201c 10.1002/bit.260400406 10.1021/bc200396r 10.1021/nl071546n 10.1002/adma.201204502 10.1016/j.bios.2013.12.038 10.1021/jp052613+ 10.1038/nmeth.1248 10.1021/ac902531g 10.1021/la403156h 10.1110/ps.062351506 10.1021/nl101052f 10.1039/b716330d 10.1016/j.bios.2014.01.038 10.1038/nphoton.2012.328 10.1039/c2cp42562a 10.1021/bi00534a024 10.1002/chem.200800681 10.1016/j.colsurfb.2013.05.017 10.1021/bc200065z 10.1126/science.1104274 10.1103/PhysRevE.85.031117 10.1163/156856206778667433 10.1158/0008-5472.CAN-06-1185 10.1021/la001164w 10.1021/nl0479031 10.1016/j.bios.2014.02.041 10.1021/la7026303 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. Copyright © 2014 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Copyright © 2014 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2014.06.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 2943 |
ExternalDocumentID | 24937605 10_1016_j_bbagen_2014_06_003 S0304416514002232 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c395t-2da6015d570b53d05f30b4c7d1f0078c7f97305cdbf593a741fa728372f8b6b83 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Sun Aug 24 02:56:38 EDT 2025 Fri Jul 11 01:34:34 EDT 2025 Thu Apr 03 07:02:05 EDT 2025 Thu Apr 24 22:58:40 EDT 2025 Tue Jul 01 00:22:03 EDT 2025 Fri Feb 23 02:32:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Alkaline phosphatase Semiconductor nanocrystals Acetylcholinesterase Hen egg white lysozyme Enzyme catalytic activity Luminescence |
Language | English |
License | Copyright © 2014 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-2da6015d570b53d05f30b4c7d1f0078c7f97305cdbf593a741fa728372f8b6b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24937605 |
PQID | 1552369391 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000214821 proquest_miscellaneous_1552369391 pubmed_primary_24937605 crossref_primary_10_1016_j_bbagen_2014_06_003 crossref_citationtrail_10_1016_j_bbagen_2014_06_003 elsevier_sciencedirect_doi_10_1016_j_bbagen_2014_06_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Waiskopf, Shweky, Lieberman, Banin, Soreq (bb0160) 2011; 2 Shugar (bb0345) 1952; 8 Cabral, Sgobbi, Kataoka, Machado (bb0285) 2013; 111 The Huy, Seo, Zhang, Lee (bb0050) 2014; 57 Bayer, Ben-Hur, Wilchek (bb0375) 1990; 184 Huang, Li, Chen (bb0120) 2007; 22 Liu, Lu, Li, Yao, Li (bb0110) 2007; 22 Ipe, Niemeyer (bb0255) 2006; 45 Hofmann, Titus, Montibeller, Finn (bb0335) 1982; 21 Shi, Pan, Zhang, Zhang, Li, Yi, Yang (bb0040) 2014; 56 Bahari, Gilad, Borovok, Kahel-Raifer, Dassa, Nataf, Shoham, Lamed, Bayer (bb0290) 2011; 38 Pardo-Yissar, Katz, Wasserman, Willner (bb0330) 2003; 125 Pulkkinen, Pikkarainen, Wirth, Tarvainen, Haapa-aho, Korhonen, Seppälä, Järvinen (bb0210) 2008; 70 Yuan, Gaponik, Eychmuller (bb0215) 2012; 84 Duconge, Pons, Pestourie, Herin, Theze, Gombert, Mahler, Hinnen, Kuhnast, Dolle, Dubertret, Tavitian (bb0075) 2008; 19 Kim, Chaudhary, Ozkan (bb0140) 2007; 18 Mu, Zhang, Xu, Sun, Xu, Li, Chen (bb0060) 2014; 20 Bucking, Massadeh, Merkulov, Xu, Nann (bb0365) 2010; 396 Liu, Li, Voznyy, Hu, Fu, Zhou, Xia, Sargent, Tang (bb0045) 2014; 26 Blanco-Canosa, Wu, Susumu, Petryayeva, Jennings, Dawson, Algar, Medintz (bb0185) 2014; 263–264 Medintz, Uyeda, Goldman, Mattoussi (bb0100) 2005; 4 Tang, Kemp, Hoogland, Jeong, Liu, Levina, Furukawa, Wang, Debnath, Cha, Chou, Fischer, Amassian, Asbury, Sargent (bb0015) 2011; 10 Cao, Ye, Tong, Tang (bb0105) 2008; 14 Tada, Higuchi, Wanatabe, Ohuchi (bb0070) 2007; 67 Yu, Kuo, Liang, Chien, Wu, Chang, Jan, Lin (bb0220) 2012; 23 Esposito, Kumar, Lindenberg, Van den Broeck (bb0030) 2012; 85 Shirasaki, Supran, Bawendi, Bulović (bb0055) 2013; 7 Davies, Neuberger, Wilson (bb0305) 1969; 178 Soreq, Seidman (bb0325) 2001; 2 Resch-Genger, Grabolle, Cavaliere-Jaricot, Nitschke, Nann (bb0005) 2008; 5 Bardhan, Chen, Bartels, Perez-Torres, Botero, McAninch, Contreras, Schiff, Pautler, Halas, Joshi (bb0200) 2010; 10 Freeman, Li, Tel-Vered, Sharon, Elbaz, Willner (bb0145) 2009; 134 Khalid, Gobel, Huhn, Montenegro, Rivera-Gil, Lisdat, Parak (bb0320) 2011; 9 Nehilla, Vu, Desai (bb0370) 2005; 109 Sarkar, Narayanan, Pålsson, Dias, Monkman, Pal (bb0165) 2007; 111 Gole, Dash, Ramakrishnan, Sainkar, Mandale, Rao, Sastry (bb0265) 2001; 17 Pathak, Davidson, Silva (bb0355) 2007; 7 Algar, Prasuhn, Stewart, Jennings, Blanco-Canosa, Dawson, Medintz (bb0170) 2011; 22 Rudra, Dave, Haynie (bb0300) 2006; 17 Vannoy, Xu, Leblanc (bb0310) 2010; 114 Goldman, Clapp, Anderson, Uyeda, Mauro, Medintz, Mattoussi (bb0135) 2004; 76 Aubin-Tam, Hamad-Schifferli (bb0175) 2008; 3 Sahoo, Goswami, Nag, Maiti (bb0360) 2007; 445 Yu, Lin, Lin (bb0235) 2008 Ohyanagi, Nagahori, Shimawaki, Hinou, Yamashita, Sasaki, Jin, Iwanaga, Kinjo, Nishimura (bb0080) 2011; 133 Gole, Murphy (bb0240) 2008; 24 Claussen, Hildebrandt, Susumu, Ancona, Medintz (bb0020) 2014; 6 Sapsford, Algar, Berti, Gemmill, Casey, Oh, Stewart, Medintz (bb0180) 2013; 113 Wang, Nie, Lu, Liu, Wang, Fu, Liu, Xia (bb0190) 2014; 30 Akshath, Shubha, Bhatt, Thakur (bb0125) 2014; 57 Ning, Zhitomirsky, Adinolfi, Sutherland, Xu, Voznyy, Maraghechi, Lan, Hoogland, Ren, Sargent (bb0010) 2013; 25 Venturelli, Fazio, Giovannetti (bb0035) 2013; 110 Torchynska (bb0090) 2013; 137 Claussen, Algar, Hildebrandt, Susumu, Ancona, Medintz (bb0025) 2013; 5 Wang, Kantrowitz (bb0315) 2006; 15 Narayanan, Sarkar, Pal (bb0245) 2007; 111 Lee, Park, Min, Cha, Choi, Yoo (bb0295) 2010; 25 Yuan, Guo, Wang (bb0130) 2008; 80 Gole, Dash, Soman, Sainkar, Rao, Sastry (bb0270) 2001; 12 Kwon (bb0095) 2013; 46 Brennan, Hatzakis, Tshikhudo, Dirvianskyte, Razumas, Patkar, Vind, Svendsen, Nolte, Rowan, Brust (bb0250) 2006; 17 Wu, He, Wang, Yan (bb0115) 2010; 82 Bagalkot, Zhang, Levy-Nissenbaum, Jon, Kantoff, Langery, Farokhzad (bb0155) 2007; 7 Crumbliss, Perine, Stonehuerner, Tubergen, Zhao, Henkens, O'Daly (bb0275) 1992; 40 Tekle, Van Deurs, Sandvig, Iversen (bb0205) 2008; 8 Li, Wong, Mann (bb0195) 1999; 11 Lin, Tseng (bb0280) 2013; 41 Michalet, Pinaud, Bentolila, Tsay, Doose, Li, Sundaresan, Wu, Gambhir, Weiss (bb0065) 2005; 307 Verma, Giri, Thanh, Tung, Mondal, Pal, Pal (bb0230) 2010; 20 Aubin, Morales, Hamad-Schifferli (bb0260) 2005; 5 Weber, Ohlendorf, Wendoloski, Salemme (bb0350) 1989; 243 Song, Luo, Ye, Huang, Zhong, Huang, Hou, Wang (bb0225) 2012; 14 Alivisatos, Gu, Larabell (bb0085) 2005; 7 Finn, Titus, Hofmann (bb0340) 1984; 23 Freeman, Finder, Gill, Willner (bb0150) 2010; 10 Venturelli (10.1016/j.bbagen.2014.06.003_bb0035) 2013; 110 Verma (10.1016/j.bbagen.2014.06.003_bb0230) 2010; 20 The Huy (10.1016/j.bbagen.2014.06.003_bb0050) 2014; 57 Akshath (10.1016/j.bbagen.2014.06.003_bb0125) 2014; 57 Sapsford (10.1016/j.bbagen.2014.06.003_bb0180) 2013; 113 Pulkkinen (10.1016/j.bbagen.2014.06.003_bb0210) 2008; 70 Shirasaki (10.1016/j.bbagen.2014.06.003_bb0055) 2013; 7 Michalet (10.1016/j.bbagen.2014.06.003_bb0065) 2005; 307 Wang (10.1016/j.bbagen.2014.06.003_bb0190) 2014; 30 Yuan (10.1016/j.bbagen.2014.06.003_bb0130) 2008; 80 Davies (10.1016/j.bbagen.2014.06.003_bb0305) 1969; 178 Weber (10.1016/j.bbagen.2014.06.003_bb0350) 1989; 243 Aubin-Tam (10.1016/j.bbagen.2014.06.003_bb0175) 2008; 3 Khalid (10.1016/j.bbagen.2014.06.003_bb0320) 2011; 9 Waiskopf (10.1016/j.bbagen.2014.06.003_bb0160) 2011; 2 Claussen (10.1016/j.bbagen.2014.06.003_bb0025) 2013; 5 Pardo-Yissar (10.1016/j.bbagen.2014.06.003_bb0330) 2003; 125 Li (10.1016/j.bbagen.2014.06.003_bb0195) 1999; 11 Torchynska (10.1016/j.bbagen.2014.06.003_bb0090) 2013; 137 Crumbliss (10.1016/j.bbagen.2014.06.003_bb0275) 1992; 40 Bahari (10.1016/j.bbagen.2014.06.003_bb0290) 2011; 38 Brennan (10.1016/j.bbagen.2014.06.003_bb0250) 2006; 17 Blanco-Canosa (10.1016/j.bbagen.2014.06.003_bb0185) 2014; 263–264 Tekle (10.1016/j.bbagen.2014.06.003_bb0205) 2008; 8 Shugar (10.1016/j.bbagen.2014.06.003_bb0345) 1952; 8 Ning (10.1016/j.bbagen.2014.06.003_bb0010) 2013; 25 Wu (10.1016/j.bbagen.2014.06.003_bb0115) 2010; 82 Kim (10.1016/j.bbagen.2014.06.003_bb0140) 2007; 18 Lee (10.1016/j.bbagen.2014.06.003_bb0295) 2010; 25 Algar (10.1016/j.bbagen.2014.06.003_bb0170) 2011; 22 Esposito (10.1016/j.bbagen.2014.06.003_bb0030) 2012; 85 Bucking (10.1016/j.bbagen.2014.06.003_bb0365) 2010; 396 Cabral (10.1016/j.bbagen.2014.06.003_bb0285) 2013; 111 Freeman (10.1016/j.bbagen.2014.06.003_bb0150) 2010; 10 Liu (10.1016/j.bbagen.2014.06.003_bb0110) 2007; 22 Gole (10.1016/j.bbagen.2014.06.003_bb0270) 2001; 12 Tada (10.1016/j.bbagen.2014.06.003_bb0070) 2007; 67 Bardhan (10.1016/j.bbagen.2014.06.003_bb0200) 2010; 10 Goldman (10.1016/j.bbagen.2014.06.003_bb0135) 2004; 76 Freeman (10.1016/j.bbagen.2014.06.003_bb0145) 2009; 134 Huang (10.1016/j.bbagen.2014.06.003_bb0120) 2007; 22 Yuan (10.1016/j.bbagen.2014.06.003_bb0215) 2012; 84 Bayer (10.1016/j.bbagen.2014.06.003_bb0375) 1990; 184 Tang (10.1016/j.bbagen.2014.06.003_bb0015) 2011; 10 Finn (10.1016/j.bbagen.2014.06.003_bb0340) 1984; 23 Ohyanagi (10.1016/j.bbagen.2014.06.003_bb0080) 2011; 133 Gole (10.1016/j.bbagen.2014.06.003_bb0265) 2001; 17 Nehilla (10.1016/j.bbagen.2014.06.003_bb0370) 2005; 109 Ipe (10.1016/j.bbagen.2014.06.003_bb0255) 2006; 45 Pathak (10.1016/j.bbagen.2014.06.003_bb0355) 2007; 7 Soreq (10.1016/j.bbagen.2014.06.003_bb0325) 2001; 2 Rudra (10.1016/j.bbagen.2014.06.003_bb0300) 2006; 17 Bagalkot (10.1016/j.bbagen.2014.06.003_bb0155) 2007; 7 Yu (10.1016/j.bbagen.2014.06.003_bb0220) 2012; 23 Liu (10.1016/j.bbagen.2014.06.003_bb0045) 2014; 26 Yu (10.1016/j.bbagen.2014.06.003_bb0235) 2008 Duconge (10.1016/j.bbagen.2014.06.003_bb0075) 2008; 19 Sarkar (10.1016/j.bbagen.2014.06.003_bb0165) 2007; 111 Wang (10.1016/j.bbagen.2014.06.003_bb0315) 2006; 15 Aubin (10.1016/j.bbagen.2014.06.003_bb0260) 2005; 5 Medintz (10.1016/j.bbagen.2014.06.003_bb0100) 2005; 4 Gole (10.1016/j.bbagen.2014.06.003_bb0240) 2008; 24 Kwon (10.1016/j.bbagen.2014.06.003_bb0095) 2013; 46 Narayanan (10.1016/j.bbagen.2014.06.003_bb0245) 2007; 111 Vannoy (10.1016/j.bbagen.2014.06.003_bb0310) 2010; 114 Lin (10.1016/j.bbagen.2014.06.003_bb0280) 2013; 41 Hofmann (10.1016/j.bbagen.2014.06.003_bb0335) 1982; 21 Sahoo (10.1016/j.bbagen.2014.06.003_bb0360) 2007; 445 Song (10.1016/j.bbagen.2014.06.003_bb0225) 2012; 14 Cao (10.1016/j.bbagen.2014.06.003_bb0105) 2008; 14 Claussen (10.1016/j.bbagen.2014.06.003_bb0020) 2014; 6 Shi (10.1016/j.bbagen.2014.06.003_bb0040) 2014; 56 Mu (10.1016/j.bbagen.2014.06.003_bb0060) 2014; 20 Resch-Genger (10.1016/j.bbagen.2014.06.003_bb0005) 2008; 5 Alivisatos (10.1016/j.bbagen.2014.06.003_bb0085) 2005; 7 |
References_xml | – volume: 5 start-page: 763 year: 2008 end-page: 775 ident: bb0005 article-title: Quantum dots versus organic dyes as fluorescent labels publication-title: Nat. Methods – volume: 22 start-page: 825 year: 2011 end-page: 858 ident: bb0170 article-title: The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry publication-title: Bioconjug. Chem. – volume: 21 start-page: 978 year: 1982 end-page: 984 ident: bb0335 article-title: Avidin binding of carboxyl-substituted biotin and analogs publication-title: Biochemistry – volume: 137 start-page: 157 year: 2013 end-page: 161 ident: bb0090 article-title: Emission of double core infrared (CdSeTe)/ZnS quantum dots conjugated to antibodies publication-title: J. Lumin. – volume: 24 start-page: 266 year: 2008 end-page: 272 ident: bb0240 article-title: Azide-derivatized gold nanorods: functional materials for “click” chemistry publication-title: Langmuir – volume: 14 start-page: 16258 year: 2012 end-page: 16266 ident: bb0225 article-title: Spectroscopic studies on the interaction between EcoRI and CdS QDs and conformation of EcoRI in EcoRI–CdS QDs bioconjugates publication-title: Phys. Chem. Chem. Phys. – volume: 56 start-page: 39 year: 2014 end-page: 45 ident: bb0040 article-title: A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma publication-title: Biosens. Bioelectron. – volume: 111 start-page: 12294 year: 2007 end-page: 12298 ident: bb0165 article-title: Direct conjugation of semiconductor nanocrystals to a globular protein to study protein-folding intermediates publication-title: J. Phys. Chem. B – volume: 445 start-page: 217 year: 2007 end-page: 220 ident: bb0360 article-title: Spontaneous formation of a protein corona prevents the loss of quantum dot fluorescence in physiological buffers publication-title: Chem. Phys. Lett. – volume: 10 start-page: 4920 year: 2010 end-page: 4928 ident: bb0200 article-title: Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo publication-title: Nano Lett. – volume: 85 start-page: 031117 year: 2012 ident: bb0030 article-title: Stochastically driven single-level quantum dot: a nanoscale finite-time thermodynamic machine and its various operational modes publication-title: Phys. Rev. E. – volume: 17 start-page: 1373 year: 2006 end-page: 1375 ident: bb0250 article-title: Bionanoconjugation via click chemistry: the creation of functional hybrids of lipases and gold nanoparticles publication-title: Bioconjug. Chem. – volume: 263–264 start-page: 101 year: 2014 end-page: 137 ident: bb0185 article-title: Recent progress in the bioconjugation of quantum dots publication-title: Coord. Chem. Rev. – volume: 113 start-page: 1904 year: 2013 end-page: 2074 ident: bb0180 article-title: Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology publication-title: Chem. Rev. – volume: 15 start-page: 2395 year: 2006 end-page: 2401 ident: bb0315 article-title: Trapping the tetrahedral intermediate in the alkaline phosphatase reaction by substitution of the active site serine with threonine publication-title: Protein Sci. – volume: 41 start-page: 379 year: 2013 end-page: 385 ident: bb0280 article-title: A method for fluorescence sensing of adenosine and alkaline phosphatase based on the inhibition of S-adenosylhomocysteine hydrolase activity publication-title: Biosens. Bioelectron. – volume: 46 start-page: 65 year: 2013 end-page: 72 ident: bb0095 article-title: Single-molecule fluorescence in situ hybridization: quantitative imaging of single RNA molecules publication-title: BMB Rep. – volume: 10 start-page: 765 year: 2011 end-page: 771 ident: bb0015 article-title: Colloidal-quantum-dot photovoltaics using atomic-ligand passivation publication-title: Nat. Mater. – volume: 4 start-page: 435 year: 2005 end-page: 446 ident: bb0100 article-title: Quantum dot bioconjugates for imaging, labelling and sensing publication-title: Nat. Mater. – volume: 23 start-page: 2554 year: 1984 end-page: 2558 ident: bb0340 article-title: Ligands for insulin receptor isolation publication-title: Biochemistry – volume: 5 start-page: 12156 year: 2013 end-page: 12170 ident: bb0025 article-title: Biophotonic logic devices based on quantum dots and temporally-staggered Forster energy transfer relays publication-title: Nanoscale – volume: 8 start-page: 1858 year: 2008 end-page: 1865 ident: bb0205 article-title: Cellular trafficking of quantum dot-ligand bioconjugates and their induction of changes in normal routing of unconjugated ligands publication-title: Nano Lett. – volume: 12 start-page: 684 year: 2001 end-page: 690 ident: bb0270 article-title: On the preparation, characterization, and enzymatic activity of fungal protease–gold colloid bioconjugates publication-title: Bioconjug. Chem. – volume: 114 start-page: 766 year: 2010 end-page: 773 ident: bb0310 article-title: Bioimaging and self-assembly of lysozyme fibrils utilizing CdSe/ZnS quantum dots publication-title: J. Phys. Chem. C – volume: 7 start-page: 55 year: 2005 end-page: 76 ident: bb0085 article-title: Quantum dots as cellular probes publication-title: Annu. Rev. Biomed. Eng. – volume: 19 start-page: 1921 year: 2008 end-page: 1926 ident: bb0075 article-title: Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales publication-title: Bioconjug. Chem. – volume: 11 start-page: 23 year: 1999 end-page: 26 ident: bb0195 article-title: Organization of inorganic nanoparticles using biotin–streptavidin connectors publication-title: Chem. Mater. – volume: 109 start-page: 20724 year: 2005 end-page: 20730 ident: bb0370 article-title: Stoichiometry-dependent formation of quantum dot-antibody bioconjugates: a complementary atomic force microscopy and agarose gel electrophoresis study publication-title: J. Phys. Chem. B – volume: 3 start-page: 034001 year: 2008 ident: bb0175 article-title: Structure and function of nanoparticle–protein conjugates publication-title: Biomed. Mater. – volume: 84 start-page: 5047 year: 2012 end-page: 5052 ident: bb0215 article-title: Application of polymer quantum dot-enzyme hybrids in the biosensor development and test paper fabrication publication-title: Anal. Chem. – volume: 111 start-page: 11539 year: 2007 end-page: 11543 ident: bb0245 article-title: Structural and functional characterization of enzyme–quantum dot conjugates: covalent attachment of CdS nanocrystal to alpha-chymotrypsin publication-title: J. Phys. Chem. C – volume: 70 start-page: 66 year: 2008 end-page: 74 ident: bb0210 article-title: Three-step tumor targeting of paclitaxel using biotinylated PLA–PEG nanoparticles and avidin–biotin technology: formulation development and in vitro anticancer activity publication-title: Eur. J. Pharm. Biopharm. – volume: 45 start-page: 504 year: 2006 end-page: 507 ident: bb0255 article-title: Nanohybrids composed of quantum dots and cytochrome P450 as photocatalysts publication-title: Angew. Chem. Int. Ed. Engl. – volume: 20 start-page: 8200106 year: 2014 ident: bb0060 article-title: Direct-current and alternating-current driving Si quantum dots-based light emitting device publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 111 start-page: 30 year: 2013 end-page: 35 ident: bb0285 article-title: On the behavior of acetylcholinesterase immobilized on carbon nanotubes in the presence of inhibitors publication-title: Colloids Surf. B – volume: 80 start-page: 1141 year: 2008 end-page: 1145 ident: bb0130 article-title: Utilizing a CdTe quantum dots–enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide publication-title: Anal. Chem. – volume: 110 start-page: 256801 year: 2013 ident: bb0035 article-title: Minimal self-contained quantum refrigeration machine based on four quantum dots publication-title: Phys. Rev. Lett. – volume: 76 start-page: 684 year: 2004 end-page: 688 ident: bb0135 article-title: Multiplexed toxin analysis using four colors of quantum dot fluororeagents publication-title: Anal. Chem. – volume: 18 start-page: 195105 year: 2007 ident: bb0140 article-title: Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection publication-title: Nanotechnology – volume: 125 start-page: 622 year: 2003 end-page: 623 ident: bb0330 article-title: Acetylcholine esterase-labeled CdS nanoparticles on electrodes: photoelectrochemical sensing of the enzyme inhibitors publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 2718 year: 2014 end-page: 2724 ident: bb0045 article-title: Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids publication-title: Adv. Mater. – volume: 243 start-page: 85 year: 1989 end-page: 88 ident: bb0350 article-title: Structural origins of high-affinity biotin binding to streptavidin publication-title: Science – volume: 25 start-page: 1566 year: 2010 end-page: 1570 ident: bb0295 article-title: A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents publication-title: Biosens. Bioelectron. – volume: 2 start-page: 294 year: 2001 end-page: 302 ident: bb0325 article-title: Acetylcholinesterase—new roles for an old actor publication-title: Nat. Rev. Neurosci. – volume: 10 start-page: 2192 year: 2010 end-page: 2196 ident: bb0150 article-title: Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS quantum dots publication-title: Nano Lett. – volume: 134 start-page: 653 year: 2009 end-page: 656 ident: bb0145 article-title: Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing publication-title: Analyst – volume: 133 start-page: 12507 year: 2011 end-page: 12517 ident: bb0080 article-title: Importance of sialic acid residues illuminated by live animal imaging using phosphorylcholine self-assembled monolayer-coated quantum dots publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 714 year: 2012 end-page: 724 ident: bb0220 article-title: Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis publication-title: Bioconjug. Chem. – volume: 184 start-page: 80 year: 1990 end-page: 89 ident: bb0375 article-title: Isolation and properties of streptavidin publication-title: Methods Enzymol. – volume: 307 start-page: 538 year: 2005 end-page: 544 ident: bb0065 article-title: Quantum dots for live cells, in vivo imaging, and diagnostics publication-title: Science – volume: 22 start-page: 3203 year: 2007 end-page: 3209 ident: bb0110 article-title: Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes publication-title: Biosens. Bioelectron. – volume: 22 start-page: 1835 year: 2007 end-page: 1838 ident: bb0120 article-title: A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots publication-title: Biosens. Bioelectron. – volume: 5 start-page: 519 year: 2005 end-page: 522 ident: bb0260 article-title: Labeling ribonuclease S with a 3 publication-title: Nano Lett. – volume: 20 start-page: 3722 year: 2010 end-page: 3728 ident: bb0230 article-title: Superparamagnetic fluorescent nickel–enzyme nanobioconjugates: synthesis and characterization of a novel multifunctional biological probe publication-title: J. Mater. Chem. – volume: 396 start-page: 1087 year: 2010 end-page: 1094 ident: bb0365 article-title: Electrophoretic properties of BSA-coated quantum dots publication-title: Anal. Bioanal. Chem. – volume: 9 start-page: 46 year: 2011 ident: bb0320 article-title: Light triggered detection of aminophenyl phosphate with a quantum dot based enzyme electrode publication-title: J. Nanobiotechnol. – volume: 2 start-page: 141 year: 2011 end-page: 150 ident: bb0160 article-title: Quantum dot labeling of butyrylcholinesterase maintains substrate and inhibitor interactions and cell adherence features publication-title: ACS Chem. Neurosci. – volume: 57 start-page: 310 year: 2014 end-page: 316 ident: bb0050 article-title: Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots publication-title: Biosens. Bioelectron. – volume: 7 start-page: 1839 year: 2007 end-page: 1845 ident: bb0355 article-title: Characterization of the functional binding properties of antibody conjugated quantum dots publication-title: Nano Lett. – volume: 67 start-page: 1138 year: 2007 end-page: 1144 ident: bb0070 article-title: In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice publication-title: Cancer Res. – volume: 8 start-page: 302 year: 1952 end-page: 309 ident: bb0345 article-title: The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme publication-title: Biochim. Biophys. Acta – volume: 38 start-page: 825 year: 2011 end-page: 832 ident: bb0290 article-title: Glycoside hydrolases as components of putative carbohydrate biosensor proteins in publication-title: J. Ind. Microbiol. Biotechnol. – volume: 17 start-page: 1301 year: 2006 end-page: 1315 ident: bb0300 article-title: Antimicrobial polypeptide multilayer nanocoatings publication-title: J. Biomater. Sci. Polym. Ed. – volume: 25 start-page: 1719 year: 2013 end-page: 1723 ident: bb0010 article-title: Graded doping for enhanced colloidal quantum dot photovoltaics publication-title: Adv. Mater. – volume: 17 start-page: 1674 year: 2001 end-page: 1679 ident: bb0265 article-title: Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity publication-title: Langmuir – volume: 7 start-page: 13 year: 2013 end-page: 23 ident: bb0055 article-title: Emergence of colloidal quantum-dot light-emitting technologies publication-title: Nat. Photonics – start-page: 1308 year: 2008 end-page: 1310 ident: bb0235 article-title: Site-specific immobilization of CMP-sialic acid synthetase on magnetic nanoparticles and its use in the synthesis of CMP-sialic acid publication-title: Chem. Commun. – volume: 178 start-page: 294 year: 1969 end-page: 305 ident: bb0305 article-title: The dependence of lysozyme activity on pH and ionic strength publication-title: Biochim. Biophys. Acta – volume: 82 start-page: 1427 year: 2010 end-page: 1433 ident: bb0115 article-title: Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids publication-title: Anal. Chem. – volume: 14 start-page: 9633 year: 2008 end-page: 9640 ident: bb0105 article-title: A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing publication-title: Chem. Eur. J. – volume: 7 start-page: 3065 year: 2007 end-page: 3070 ident: bb0155 article-title: Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer publication-title: Nano Lett. – volume: 57 start-page: 317 year: 2014 end-page: 323 ident: bb0125 article-title: Quantum dots as optical labels for ultrasensitive detection of polyphenols publication-title: Biosens. Bioelectron. – volume: 40 start-page: 483 year: 1992 end-page: 490 ident: bb0275 article-title: Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition publication-title: Biotechnol. Bioeng. – volume: 30 start-page: 2161 year: 2014 end-page: 2169 ident: bb0190 article-title: Assembly of multivalent protein ligands and quantum dots: a multifaceted investigation publication-title: Langmuir – volume: 6 start-page: 3771 year: 2014 end-page: 3778 ident: bb0020 article-title: Complex logic functions implemented with quantum dot bionanophotonic circuits publication-title: ACS Appl. Mater. Interfaces – volume: 243 start-page: 85 year: 1989 ident: 10.1016/j.bbagen.2014.06.003_bb0350 article-title: Structural origins of high-affinity biotin binding to streptavidin publication-title: Science doi: 10.1126/science.2911722 – volume: 7 start-page: 55 year: 2005 ident: 10.1016/j.bbagen.2014.06.003_bb0085 article-title: Quantum dots as cellular probes publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.7.060804.100432 – volume: 110 start-page: 256801 year: 2013 ident: 10.1016/j.bbagen.2014.06.003_bb0035 article-title: Minimal self-contained quantum refrigeration machine based on four quantum dots publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.256801 – volume: 445 start-page: 217 year: 2007 ident: 10.1016/j.bbagen.2014.06.003_bb0360 article-title: Spontaneous formation of a protein corona prevents the loss of quantum dot fluorescence in physiological buffers publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.07.075 – volume: 8 start-page: 302 year: 1952 ident: 10.1016/j.bbagen.2014.06.003_bb0345 article-title: The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme publication-title: Biochim. Biophys. Acta doi: 10.1016/0006-3002(52)90045-0 – volume: 178 start-page: 294 year: 1969 ident: 10.1016/j.bbagen.2014.06.003_bb0305 article-title: The dependence of lysozyme activity on pH and ionic strength publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2744(69)90397-0 – volume: 111 start-page: 11539 year: 2007 ident: 10.1016/j.bbagen.2014.06.003_bb0245 article-title: Structural and functional characterization of enzyme–quantum dot conjugates: covalent attachment of CdS nanocrystal to alpha-chymotrypsin publication-title: J. Phys. Chem. C doi: 10.1021/jp072636j – volume: 137 start-page: 157 year: 2013 ident: 10.1016/j.bbagen.2014.06.003_bb0090 article-title: Emission of double core infrared (CdSeTe)/ZnS quantum dots conjugated to antibodies publication-title: J. Lumin. doi: 10.1016/j.jlumin.2012.12.048 – volume: 80 start-page: 1141 year: 2008 ident: 10.1016/j.bbagen.2014.06.003_bb0130 article-title: Utilizing a CdTe quantum dots–enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide publication-title: Anal. Chem. doi: 10.1021/ac0713048 – volume: 19 start-page: 1921 year: 2008 ident: 10.1016/j.bbagen.2014.06.003_bb0075 article-title: Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales publication-title: Bioconjug. Chem. doi: 10.1021/bc800179j – volume: 84 start-page: 5047 year: 2012 ident: 10.1016/j.bbagen.2014.06.003_bb0215 article-title: Application of polymer quantum dot-enzyme hybrids in the biosensor development and test paper fabrication publication-title: Anal. Chem. doi: 10.1021/ac300714j – volume: 7 start-page: 1839 year: 2007 ident: 10.1016/j.bbagen.2014.06.003_bb0355 article-title: Characterization of the functional binding properties of antibody conjugated quantum dots publication-title: Nano Lett. doi: 10.1021/nl062706i – volume: 9 start-page: 46 year: 2011 ident: 10.1016/j.bbagen.2014.06.003_bb0320 article-title: Light triggered detection of aminophenyl phosphate with a quantum dot based enzyme electrode publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-9-46 – volume: 114 start-page: 766 year: 2010 ident: 10.1016/j.bbagen.2014.06.003_bb0310 article-title: Bioimaging and self-assembly of lysozyme fibrils utilizing CdSe/ZnS quantum dots publication-title: J. Phys. Chem. C doi: 10.1021/jp907839j – volume: 134 start-page: 653 year: 2009 ident: 10.1016/j.bbagen.2014.06.003_bb0145 article-title: Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing publication-title: Analyst doi: 10.1039/b822836c – volume: 11 start-page: 23 year: 1999 ident: 10.1016/j.bbagen.2014.06.003_bb0195 article-title: Organization of inorganic nanoparticles using biotin–streptavidin connectors publication-title: Chem. Mater. doi: 10.1021/cm980610m – volume: 2 start-page: 141 year: 2011 ident: 10.1016/j.bbagen.2014.06.003_bb0160 article-title: Quantum dot labeling of butyrylcholinesterase maintains substrate and inhibitor interactions and cell adherence features publication-title: ACS Chem. Neurosci. doi: 10.1021/cn1000827 – volume: 41 start-page: 379 year: 2013 ident: 10.1016/j.bbagen.2014.06.003_bb0280 article-title: A method for fluorescence sensing of adenosine and alkaline phosphatase based on the inhibition of S-adenosylhomocysteine hydrolase activity publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.08.059 – volume: 46 start-page: 65 year: 2013 ident: 10.1016/j.bbagen.2014.06.003_bb0095 article-title: Single-molecule fluorescence in situ hybridization: quantitative imaging of single RNA molecules publication-title: BMB Rep. doi: 10.5483/BMBRep.2013.46.2.016 – volume: 22 start-page: 3203 year: 2007 ident: 10.1016/j.bbagen.2014.06.003_bb0110 article-title: Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2007.02.013 – volume: 20 start-page: 3722 year: 2010 ident: 10.1016/j.bbagen.2014.06.003_bb0230 article-title: Superparamagnetic fluorescent nickel–enzyme nanobioconjugates: synthesis and characterization of a novel multifunctional biological probe publication-title: J. Mater. Chem. doi: 10.1039/b925477c – volume: 10 start-page: 765 year: 2011 ident: 10.1016/j.bbagen.2014.06.003_bb0015 article-title: Colloidal-quantum-dot photovoltaics using atomic-ligand passivation publication-title: Nat. Mater. doi: 10.1038/nmat3118 – volume: 26 start-page: 2718 year: 2014 ident: 10.1016/j.bbagen.2014.06.003_bb0045 article-title: Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids publication-title: Adv. Mater. doi: 10.1002/adma.201304366 – volume: 70 start-page: 66 year: 2008 ident: 10.1016/j.bbagen.2014.06.003_bb0210 article-title: Three-step tumor targeting of paclitaxel using biotinylated PLA–PEG nanoparticles and avidin–biotin technology: formulation development and in vitro anticancer activity publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2008.04.018 – volume: 76 start-page: 684 year: 2004 ident: 10.1016/j.bbagen.2014.06.003_bb0135 article-title: Multiplexed toxin analysis using four colors of quantum dot fluororeagents publication-title: Anal. Chem. doi: 10.1021/ac035083r – volume: 3 start-page: 034001 year: 2008 ident: 10.1016/j.bbagen.2014.06.003_bb0175 article-title: Structure and function of nanoparticle–protein conjugates publication-title: Biomed. Mater. doi: 10.1088/1748-6041/3/3/034001 – volume: 5 start-page: 12156 year: 2013 ident: 10.1016/j.bbagen.2014.06.003_bb0025 article-title: Biophotonic logic devices based on quantum dots and temporally-staggered Forster energy transfer relays publication-title: Nanoscale doi: 10.1039/c3nr03655c – volume: 4 start-page: 435 year: 2005 ident: 10.1016/j.bbagen.2014.06.003_bb0100 article-title: Quantum dot bioconjugates for imaging, labelling and sensing publication-title: Nat. Mater. doi: 10.1038/nmat1390 – volume: 25 start-page: 1566 year: 2010 ident: 10.1016/j.bbagen.2014.06.003_bb0295 article-title: A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2009.10.013 – volume: 113 start-page: 1904 year: 2013 ident: 10.1016/j.bbagen.2014.06.003_bb0180 article-title: Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology publication-title: Chem. Rev. doi: 10.1021/cr300143v – volume: 10 start-page: 4920 year: 2010 ident: 10.1016/j.bbagen.2014.06.003_bb0200 article-title: Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo publication-title: Nano Lett. doi: 10.1021/nl102889y – volume: 38 start-page: 825 year: 2011 ident: 10.1016/j.bbagen.2014.06.003_bb0290 article-title: Glycoside hydrolases as components of putative carbohydrate biosensor proteins in Clostridium thermocellum publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-010-0848-9 – volume: 18 start-page: 195105 year: 2007 ident: 10.1016/j.bbagen.2014.06.003_bb0140 article-title: Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection publication-title: Nanotechnology doi: 10.1088/0957-4484/18/19/195105 – volume: 8 start-page: 1858 year: 2008 ident: 10.1016/j.bbagen.2014.06.003_bb0205 article-title: Cellular trafficking of quantum dot-ligand bioconjugates and their induction of changes in normal routing of unconjugated ligands publication-title: Nano Lett. doi: 10.1021/nl0803848 – volume: 184 start-page: 80 year: 1990 ident: 10.1016/j.bbagen.2014.06.003_bb0375 article-title: Isolation and properties of streptavidin publication-title: Methods Enzymol. doi: 10.1016/0076-6879(90)84262-F – volume: 263–264 start-page: 101 year: 2014 ident: 10.1016/j.bbagen.2014.06.003_bb0185 article-title: Recent progress in the bioconjugation of quantum dots publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2013.08.030 – volume: 396 start-page: 1087 year: 2010 ident: 10.1016/j.bbagen.2014.06.003_bb0365 article-title: Electrophoretic properties of BSA-coated quantum dots publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-009-3107-z – volume: 22 start-page: 1835 year: 2007 ident: 10.1016/j.bbagen.2014.06.003_bb0120 article-title: A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2006.09.003 – volume: 20 start-page: 8200106 year: 2014 ident: 10.1016/j.bbagen.2014.06.003_bb0060 article-title: Direct-current and alternating-current driving Si quantum dots-based light emitting device publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 125 start-page: 622 year: 2003 ident: 10.1016/j.bbagen.2014.06.003_bb0330 article-title: Acetylcholine esterase-labeled CdS nanoparticles on electrodes: photoelectrochemical sensing of the enzyme inhibitors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028922k – volume: 2 start-page: 294 year: 2001 ident: 10.1016/j.bbagen.2014.06.003_bb0325 article-title: Acetylcholinesterase—new roles for an old actor publication-title: Nat. Rev. Neurosci. doi: 10.1038/35067589 – volume: 45 start-page: 504 year: 2006 ident: 10.1016/j.bbagen.2014.06.003_bb0255 article-title: Nanohybrids composed of quantum dots and cytochrome P450 as photocatalysts publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200503084 – volume: 12 start-page: 684 year: 2001 ident: 10.1016/j.bbagen.2014.06.003_bb0270 article-title: On the preparation, characterization, and enzymatic activity of fungal protease–gold colloid bioconjugates publication-title: Bioconjug. Chem. doi: 10.1021/bc0001241 – volume: 23 start-page: 2554 year: 1984 ident: 10.1016/j.bbagen.2014.06.003_bb0340 article-title: Ligands for insulin receptor isolation publication-title: Biochemistry doi: 10.1021/bi00307a003 – volume: 17 start-page: 1373 year: 2006 ident: 10.1016/j.bbagen.2014.06.003_bb0250 article-title: Bionanoconjugation via click chemistry: the creation of functional hybrids of lipases and gold nanoparticles publication-title: Bioconjug. Chem. doi: 10.1021/bc0601018 – volume: 6 start-page: 3771 year: 2014 ident: 10.1016/j.bbagen.2014.06.003_bb0020 article-title: Complex logic functions implemented with quantum dot bionanophotonic circuits publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am404659f – volume: 111 start-page: 12294 year: 2007 ident: 10.1016/j.bbagen.2014.06.003_bb0165 article-title: Direct conjugation of semiconductor nanocrystals to a globular protein to study protein-folding intermediates publication-title: J. Phys. Chem. B doi: 10.1021/jp075239h – volume: 133 start-page: 12507 year: 2011 ident: 10.1016/j.bbagen.2014.06.003_bb0080 article-title: Importance of sialic acid residues illuminated by live animal imaging using phosphorylcholine self-assembled monolayer-coated quantum dots publication-title: J. Am. Chem. Soc. doi: 10.1021/ja111201c – volume: 40 start-page: 483 year: 1992 ident: 10.1016/j.bbagen.2014.06.003_bb0275 article-title: Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260400406 – volume: 23 start-page: 714 year: 2012 ident: 10.1016/j.bbagen.2014.06.003_bb0220 article-title: Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis publication-title: Bioconjug. Chem. doi: 10.1021/bc200396r – volume: 7 start-page: 3065 year: 2007 ident: 10.1016/j.bbagen.2014.06.003_bb0155 article-title: Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer publication-title: Nano Lett. doi: 10.1021/nl071546n – volume: 25 start-page: 1719 year: 2013 ident: 10.1016/j.bbagen.2014.06.003_bb0010 article-title: Graded doping for enhanced colloidal quantum dot photovoltaics publication-title: Adv. Mater. doi: 10.1002/adma.201204502 – volume: 56 start-page: 39 year: 2014 ident: 10.1016/j.bbagen.2014.06.003_bb0040 article-title: A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.12.038 – volume: 109 start-page: 20724 year: 2005 ident: 10.1016/j.bbagen.2014.06.003_bb0370 article-title: Stoichiometry-dependent formation of quantum dot-antibody bioconjugates: a complementary atomic force microscopy and agarose gel electrophoresis study publication-title: J. Phys. Chem. B doi: 10.1021/jp052613+ – volume: 5 start-page: 763 year: 2008 ident: 10.1016/j.bbagen.2014.06.003_bb0005 article-title: Quantum dots versus organic dyes as fluorescent labels publication-title: Nat. Methods doi: 10.1038/nmeth.1248 – volume: 82 start-page: 1427 year: 2010 ident: 10.1016/j.bbagen.2014.06.003_bb0115 article-title: Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids publication-title: Anal. Chem. doi: 10.1021/ac902531g – volume: 30 start-page: 2161 year: 2014 ident: 10.1016/j.bbagen.2014.06.003_bb0190 article-title: Assembly of multivalent protein ligands and quantum dots: a multifaceted investigation publication-title: Langmuir doi: 10.1021/la403156h – volume: 15 start-page: 2395 year: 2006 ident: 10.1016/j.bbagen.2014.06.003_bb0315 article-title: Trapping the tetrahedral intermediate in the alkaline phosphatase reaction by substitution of the active site serine with threonine publication-title: Protein Sci. doi: 10.1110/ps.062351506 – volume: 10 start-page: 2192 year: 2010 ident: 10.1016/j.bbagen.2014.06.003_bb0150 article-title: Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS quantum dots publication-title: Nano Lett. doi: 10.1021/nl101052f – start-page: 1308 year: 2008 ident: 10.1016/j.bbagen.2014.06.003_bb0235 article-title: Site-specific immobilization of CMP-sialic acid synthetase on magnetic nanoparticles and its use in the synthesis of CMP-sialic acid publication-title: Chem. Commun. doi: 10.1039/b716330d – volume: 57 start-page: 317 year: 2014 ident: 10.1016/j.bbagen.2014.06.003_bb0125 article-title: Quantum dots as optical labels for ultrasensitive detection of polyphenols publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.01.038 – volume: 7 start-page: 13 year: 2013 ident: 10.1016/j.bbagen.2014.06.003_bb0055 article-title: Emergence of colloidal quantum-dot light-emitting technologies publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.328 – volume: 14 start-page: 16258 year: 2012 ident: 10.1016/j.bbagen.2014.06.003_bb0225 article-title: Spectroscopic studies on the interaction between EcoRI and CdS QDs and conformation of EcoRI in EcoRI–CdS QDs bioconjugates publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp42562a – volume: 21 start-page: 978 year: 1982 ident: 10.1016/j.bbagen.2014.06.003_bb0335 article-title: Avidin binding of carboxyl-substituted biotin and analogs publication-title: Biochemistry doi: 10.1021/bi00534a024 – volume: 14 start-page: 9633 year: 2008 ident: 10.1016/j.bbagen.2014.06.003_bb0105 article-title: A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing publication-title: Chem. Eur. J. doi: 10.1002/chem.200800681 – volume: 111 start-page: 30 year: 2013 ident: 10.1016/j.bbagen.2014.06.003_bb0285 article-title: On the behavior of acetylcholinesterase immobilized on carbon nanotubes in the presence of inhibitors publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2013.05.017 – volume: 22 start-page: 825 year: 2011 ident: 10.1016/j.bbagen.2014.06.003_bb0170 article-title: The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry publication-title: Bioconjug. Chem. doi: 10.1021/bc200065z – volume: 307 start-page: 538 year: 2005 ident: 10.1016/j.bbagen.2014.06.003_bb0065 article-title: Quantum dots for live cells, in vivo imaging, and diagnostics publication-title: Science doi: 10.1126/science.1104274 – volume: 85 start-page: 031117 year: 2012 ident: 10.1016/j.bbagen.2014.06.003_bb0030 article-title: Stochastically driven single-level quantum dot: a nanoscale finite-time thermodynamic machine and its various operational modes publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.85.031117 – volume: 17 start-page: 1301 year: 2006 ident: 10.1016/j.bbagen.2014.06.003_bb0300 article-title: Antimicrobial polypeptide multilayer nanocoatings publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1163/156856206778667433 – volume: 67 start-page: 1138 year: 2007 ident: 10.1016/j.bbagen.2014.06.003_bb0070 article-title: In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-1185 – volume: 17 start-page: 1674 year: 2001 ident: 10.1016/j.bbagen.2014.06.003_bb0265 article-title: Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity publication-title: Langmuir doi: 10.1021/la001164w – volume: 5 start-page: 519 year: 2005 ident: 10.1016/j.bbagen.2014.06.003_bb0260 article-title: Labeling ribonuclease S with a 3nm Au nanoparticle by two-step assembly publication-title: Nano Lett. doi: 10.1021/nl0479031 – volume: 57 start-page: 310 year: 2014 ident: 10.1016/j.bbagen.2014.06.003_bb0050 article-title: Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.02.041 – volume: 24 start-page: 266 year: 2008 ident: 10.1016/j.bbagen.2014.06.003_bb0240 article-title: Azide-derivatized gold nanorods: functional materials for “click” chemistry publication-title: Langmuir doi: 10.1021/la7026303 |
SSID | ssj0000595 ssj0025309 |
Score | 2.1994722 |
Snippet | Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that... Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot-enzyme bioconjugates (QDEnzBio) that... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2935 |
SubjectTerms | Acetylcholinesterase Acetylcholinesterase - chemistry active sites Alkaline phosphatase Alkaline Phosphatase - chemistry Animals biotin Biotin - chemistry Biotinylation Catalysis catalytic activity chemical elements Chickens egg albumen Enzyme catalytic activity Enzyme Stability glucose Hen egg white lysozyme hens ionic strength Luminescence lysine lysozyme Muramidase - chemistry polypeptides quantum dots Quantum Dots - chemistry Semiconductor nanocrystals streptavidin Streptavidin - chemistry value added |
Title | Hydrolytic enzymes conjugated to quantum dots mostly retain whole catalytic activity |
URI | https://dx.doi.org/10.1016/j.bbagen.2014.06.003 https://www.ncbi.nlm.nih.gov/pubmed/24937605 https://www.proquest.com/docview/1552369391 https://www.proquest.com/docview/2000214821 |
Volume | 1840 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF9EKfpS1PpZK1vo63qX7G728iiHcnrUh6rUtyX7BSd3ifUSJH3o396ZfCiliOBTSJgNy-zszG9254OQb8JHPMlkxnzsHRNRSJnhI8usTRMVfKqygI7i96tkcisu7-TdChn3uTAYVtnp_lanN9q6-zLouDl4mM0G13ipB3ACLD4aIo56WAiFUn7y5yXMA-CDbG8SBEPqPn2uifEyBjYtVkGNRFPFs2-d9b95eg1-NmbofJN87PAjPW2nuEVWfL5NPrQdJettsj7uG7h9IjeT2j0W8xooqc9_1wu_pOD93ld4cuZoWdBfFfC1WlDwTJd0USzLeU0x_nCW0yfsm0ubw53mB5j_gG0mdsjt-dnNeMK6JgrM8lSWLHYZ-FzSSTU0kruhDHxohFUuCggPrAopbHJpnQky5RkAjJApLIkTh5FJzIjvktW8yP0-obDZlQO4NnSJEjYBZAPuEuexdGDiMm8PCO95p21XYRwbXcx1H0p2r1uOa-S4biLq-AFhz6Me2gobb9Crfln0P5KiwQi8MfJrv4oalgJvRrLcF9VSYx06nqQ8jV6nwZymGKumAs1eKwLP8wUfFoOL5OG75_aZbOBbG712RFbLx8p_AbhTmuNGno_J2unFdHKFz-mPn9O__3j_vw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7ChpJeSps-kj5V6FXs2rKs9TEsDU6T7KUbyE1YL9iwa6dZm-L--s74kVJKCPRqj4wYSTPfWDPzAXxJfCTSQhbcx97xJAoZN2JuubVZqoLPVBEoULxcpvlV8u1aXu_BYqyFobTKwfb3Nr2z1sOT6aDN6e16Pf1Ol3oIJ9DjkyMSaIf3qTuVnMD-ydl5vvxjkGVHvkLynAaMFXRdmpcxeG6pEWqUdI08R_asfz3UQwi080Snz-HZACHZST_LF7Dny0N40pNKtodwsBg53F7CKm_dXbVpUZL58le79TuGAfBNQz_PHKsr9qNB1TZbhsHpjm2rXb1pGaUgrkv2k6hzWfd_p_sAlUAQ08QruDr9ulrkfOBR4FZksuaxKzDskk6qmZHCzWQQM5NY5aJACMGqkOE5l9aZIDNRIMYIhaKuOHGYm9TMxWuYlFXpj4DheVcOEdvMpSqxKYIbjJiEiKVDL1d4ewxi1J22Q5Nx4rrY6DGb7Eb3Gtekcd0l1Ylj4PejbvsmG4_Iq3FZ9F-bRaMfeGTk53EVNS4FXY4Upa-anaZWdCLNRBY9LENlTTE1TkWZN_0WuJ8vhrGUXyTf_vfcPsFBvrq80Bdny_N38JTe9Mls72FS3zX-A6Kf2nwcdvdvvX4A3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrolytic+enzymes+conjugated+to+quantum+dots+mostly+retain+whole+catalytic+activity&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Iyer%2C+Aditya&rft.au=Chandra%2C+Anil&rft.au=Swaminathan%2C+Rajaram&rft.date=2014-09-01&rft.issn=0006-3002&rft.volume=1840&rft.issue=9&rft.spage=2935&rft_id=info:doi/10.1016%2Fj.bbagen.2014.06.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |