Hydrolytic enzymes conjugated to quantum dots mostly retain whole catalytic activity

Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1840; no. 9; pp. 2935 - 2943
Main Authors Iyer, Aditya, Chandra, Anil, Swaminathan, Rajaram
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot–enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin–biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot. The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation. We demonstrate that all enzymes retain full catalytic activity in the quantum dot–enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation. We reasoned that avidin–biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity. Overall our results demonstrate for the first time that streptavidin–biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme. [Display omitted] •Three enzymes were conjugated to quantum dots using streptavidin biotin chemistry.•Hen lysozyme activity was diminished after biotinylation due to reduced charge.•QD conjugated alkaline phosphatase and acetylcholinesterase retained full activity.•All enzyme–QD conjugates displayed bright luminescence.
AbstractList Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot–enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin–biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot.The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation.We demonstrate that all enzymes retain full catalytic activity in the quantum dot–enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation.We reasoned that avidin–biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity.Overall our results demonstrate for the first time that streptavidin–biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme.
Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot-enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot-enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin-biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot.BACKGROUNDTagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot-enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot-enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin-biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot.The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation.METHODSThe catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation.We demonstrate that all enzymes retain full catalytic activity in the quantum dot-enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation.RESULTSWe demonstrate that all enzymes retain full catalytic activity in the quantum dot-enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation.We reasoned that avidin-biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity.CONCLUSIONSWe reasoned that avidin-biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity.Overall our results demonstrate for the first time that streptavidin-biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme.GENERAL SIGNIFICANCEOverall our results demonstrate for the first time that streptavidin-biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme.
Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot–enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin–biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot. The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation. We demonstrate that all enzymes retain full catalytic activity in the quantum dot–enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation. We reasoned that avidin–biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity. Overall our results demonstrate for the first time that streptavidin–biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme. [Display omitted] •Three enzymes were conjugated to quantum dots using streptavidin biotin chemistry.•Hen lysozyme activity was diminished after biotinylation due to reduced charge.•QD conjugated alkaline phosphatase and acetylcholinesterase retained full activity.•All enzyme–QD conjugates displayed bright luminescence.
Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot-enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot-enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin-biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot. The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation. We demonstrate that all enzymes retain full catalytic activity in the quantum dot-enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation. We reasoned that avidin-biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity. Overall our results demonstrate for the first time that streptavidin-biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme.
Author Chandra, Anil
Iyer, Aditya
Swaminathan, Rajaram
Author_xml – sequence: 1
  givenname: Aditya
  surname: Iyer
  fullname: Iyer, Aditya
– sequence: 2
  givenname: Anil
  surname: Chandra
  fullname: Chandra, Anil
– sequence: 3
  givenname: Rajaram
  surname: Swaminathan
  fullname: Swaminathan, Rajaram
  email: rsw@iitg.ernet.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24937605$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1TAQRq2qqL0tvAFCXrJJGNuxnbBAQlV_kCqxKWvLsZ3iq8RubacoPH1zlcKCBZ3NbM75pJnvDB2HGBxC7wnUBIj4tK_7Xt-7UFMgTQ2iBmBHaEdaSasWQByjHTBoqoYIforOct7DOrzjJ-iUNh2TAvgO3d0sNsVxKd5gF34vk8vYxLCf73VxFpeIH2cdyjxhG0vGU8xlXHByRfuAf_2Mo8NGF70FaFP8ky_LW_Rm0GN27172OfpxdXl3cVPdfr_-dvH1tjKs46WiVgsg3HIJPWcW-MCgb4y0ZACQrZFDJxlwY_uBd0zLhgxa0pZJOrS96Ft2jj5uuQ8pPs4uFzX5bNw46uDinBVdD6akaSl5FSWcUyY61h3QDy_o3E_OqofkJ50W9edpK9BsgEkx5-SGvwgBdehG7dXWjTp0o0CotZtV-_yPZnzRxcdQkvbja_KXTXbrP5-8Syob74Jx1idnirLR_z_gGSy6rCQ
CitedBy_id crossref_primary_10_1016_j_molcatb_2016_09_007
crossref_primary_10_1021_acsnano_5b03459
crossref_primary_10_1016_j_molliq_2022_120270
crossref_primary_10_1016_j_jconrel_2016_11_016
crossref_primary_10_3390_ijms241914416
crossref_primary_10_1002_cmtd_202200067
crossref_primary_10_1021_jp5110467
crossref_primary_10_1038_s41592_021_01355_5
crossref_primary_10_1016_j_talanta_2018_10_049
crossref_primary_10_1021_acs_langmuir_7b02588
crossref_primary_10_1080_00219592_2024_2419109
crossref_primary_10_1016_j_chemosphere_2024_142804
crossref_primary_10_1039_C5CC00418G
Cites_doi 10.1126/science.2911722
10.1146/annurev.bioeng.7.060804.100432
10.1103/PhysRevLett.110.256801
10.1016/j.cplett.2007.07.075
10.1016/0006-3002(52)90045-0
10.1016/0005-2744(69)90397-0
10.1021/jp072636j
10.1016/j.jlumin.2012.12.048
10.1021/ac0713048
10.1021/bc800179j
10.1021/ac300714j
10.1021/nl062706i
10.1186/1477-3155-9-46
10.1021/jp907839j
10.1039/b822836c
10.1021/cm980610m
10.1021/cn1000827
10.1016/j.bios.2012.08.059
10.5483/BMBRep.2013.46.2.016
10.1016/j.bios.2007.02.013
10.1039/b925477c
10.1038/nmat3118
10.1002/adma.201304366
10.1016/j.ejpb.2008.04.018
10.1021/ac035083r
10.1088/1748-6041/3/3/034001
10.1039/c3nr03655c
10.1038/nmat1390
10.1016/j.bios.2009.10.013
10.1021/cr300143v
10.1021/nl102889y
10.1007/s10295-010-0848-9
10.1088/0957-4484/18/19/195105
10.1021/nl0803848
10.1016/0076-6879(90)84262-F
10.1016/j.ccr.2013.08.030
10.1007/s00216-009-3107-z
10.1016/j.bios.2006.09.003
10.1021/ja028922k
10.1038/35067589
10.1002/anie.200503084
10.1021/bc0001241
10.1021/bi00307a003
10.1021/bc0601018
10.1021/am404659f
10.1021/jp075239h
10.1021/ja111201c
10.1002/bit.260400406
10.1021/bc200396r
10.1021/nl071546n
10.1002/adma.201204502
10.1016/j.bios.2013.12.038
10.1021/jp052613+
10.1038/nmeth.1248
10.1021/ac902531g
10.1021/la403156h
10.1110/ps.062351506
10.1021/nl101052f
10.1039/b716330d
10.1016/j.bios.2014.01.038
10.1038/nphoton.2012.328
10.1039/c2cp42562a
10.1021/bi00534a024
10.1002/chem.200800681
10.1016/j.colsurfb.2013.05.017
10.1021/bc200065z
10.1126/science.1104274
10.1103/PhysRevE.85.031117
10.1163/156856206778667433
10.1158/0008-5472.CAN-06-1185
10.1021/la001164w
10.1021/nl0479031
10.1016/j.bios.2014.02.041
10.1021/la7026303
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright © 2014 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2014.06.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 2943
ExternalDocumentID 24937605
10_1016_j_bbagen_2014_06_003
S0304416514002232
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c395t-2da6015d570b53d05f30b4c7d1f0078c7f97305cdbf593a741fa728372f8b6b83
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Sun Aug 24 02:56:38 EDT 2025
Fri Jul 11 01:34:34 EDT 2025
Thu Apr 03 07:02:05 EDT 2025
Thu Apr 24 22:58:40 EDT 2025
Tue Jul 01 00:22:03 EDT 2025
Fri Feb 23 02:32:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Alkaline phosphatase
Semiconductor nanocrystals
Acetylcholinesterase
Hen egg white lysozyme
Enzyme catalytic activity
Luminescence
Language English
License Copyright © 2014 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-2da6015d570b53d05f30b4c7d1f0078c7f97305cdbf593a741fa728372f8b6b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24937605
PQID 1552369391
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2000214821
proquest_miscellaneous_1552369391
pubmed_primary_24937605
crossref_primary_10_1016_j_bbagen_2014_06_003
crossref_citationtrail_10_1016_j_bbagen_2014_06_003
elsevier_sciencedirect_doi_10_1016_j_bbagen_2014_06_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Waiskopf, Shweky, Lieberman, Banin, Soreq (bb0160) 2011; 2
Shugar (bb0345) 1952; 8
Cabral, Sgobbi, Kataoka, Machado (bb0285) 2013; 111
The Huy, Seo, Zhang, Lee (bb0050) 2014; 57
Bayer, Ben-Hur, Wilchek (bb0375) 1990; 184
Huang, Li, Chen (bb0120) 2007; 22
Liu, Lu, Li, Yao, Li (bb0110) 2007; 22
Ipe, Niemeyer (bb0255) 2006; 45
Hofmann, Titus, Montibeller, Finn (bb0335) 1982; 21
Shi, Pan, Zhang, Zhang, Li, Yi, Yang (bb0040) 2014; 56
Bahari, Gilad, Borovok, Kahel-Raifer, Dassa, Nataf, Shoham, Lamed, Bayer (bb0290) 2011; 38
Pardo-Yissar, Katz, Wasserman, Willner (bb0330) 2003; 125
Pulkkinen, Pikkarainen, Wirth, Tarvainen, Haapa-aho, Korhonen, Seppälä, Järvinen (bb0210) 2008; 70
Yuan, Gaponik, Eychmuller (bb0215) 2012; 84
Duconge, Pons, Pestourie, Herin, Theze, Gombert, Mahler, Hinnen, Kuhnast, Dolle, Dubertret, Tavitian (bb0075) 2008; 19
Kim, Chaudhary, Ozkan (bb0140) 2007; 18
Mu, Zhang, Xu, Sun, Xu, Li, Chen (bb0060) 2014; 20
Bucking, Massadeh, Merkulov, Xu, Nann (bb0365) 2010; 396
Liu, Li, Voznyy, Hu, Fu, Zhou, Xia, Sargent, Tang (bb0045) 2014; 26
Blanco-Canosa, Wu, Susumu, Petryayeva, Jennings, Dawson, Algar, Medintz (bb0185) 2014; 263–264
Medintz, Uyeda, Goldman, Mattoussi (bb0100) 2005; 4
Tang, Kemp, Hoogland, Jeong, Liu, Levina, Furukawa, Wang, Debnath, Cha, Chou, Fischer, Amassian, Asbury, Sargent (bb0015) 2011; 10
Cao, Ye, Tong, Tang (bb0105) 2008; 14
Tada, Higuchi, Wanatabe, Ohuchi (bb0070) 2007; 67
Yu, Kuo, Liang, Chien, Wu, Chang, Jan, Lin (bb0220) 2012; 23
Esposito, Kumar, Lindenberg, Van den Broeck (bb0030) 2012; 85
Shirasaki, Supran, Bawendi, Bulović (bb0055) 2013; 7
Davies, Neuberger, Wilson (bb0305) 1969; 178
Soreq, Seidman (bb0325) 2001; 2
Resch-Genger, Grabolle, Cavaliere-Jaricot, Nitschke, Nann (bb0005) 2008; 5
Bardhan, Chen, Bartels, Perez-Torres, Botero, McAninch, Contreras, Schiff, Pautler, Halas, Joshi (bb0200) 2010; 10
Freeman, Li, Tel-Vered, Sharon, Elbaz, Willner (bb0145) 2009; 134
Khalid, Gobel, Huhn, Montenegro, Rivera-Gil, Lisdat, Parak (bb0320) 2011; 9
Nehilla, Vu, Desai (bb0370) 2005; 109
Sarkar, Narayanan, Pålsson, Dias, Monkman, Pal (bb0165) 2007; 111
Gole, Dash, Ramakrishnan, Sainkar, Mandale, Rao, Sastry (bb0265) 2001; 17
Pathak, Davidson, Silva (bb0355) 2007; 7
Algar, Prasuhn, Stewart, Jennings, Blanco-Canosa, Dawson, Medintz (bb0170) 2011; 22
Rudra, Dave, Haynie (bb0300) 2006; 17
Vannoy, Xu, Leblanc (bb0310) 2010; 114
Goldman, Clapp, Anderson, Uyeda, Mauro, Medintz, Mattoussi (bb0135) 2004; 76
Aubin-Tam, Hamad-Schifferli (bb0175) 2008; 3
Sahoo, Goswami, Nag, Maiti (bb0360) 2007; 445
Yu, Lin, Lin (bb0235) 2008
Ohyanagi, Nagahori, Shimawaki, Hinou, Yamashita, Sasaki, Jin, Iwanaga, Kinjo, Nishimura (bb0080) 2011; 133
Gole, Murphy (bb0240) 2008; 24
Claussen, Hildebrandt, Susumu, Ancona, Medintz (bb0020) 2014; 6
Sapsford, Algar, Berti, Gemmill, Casey, Oh, Stewart, Medintz (bb0180) 2013; 113
Wang, Nie, Lu, Liu, Wang, Fu, Liu, Xia (bb0190) 2014; 30
Akshath, Shubha, Bhatt, Thakur (bb0125) 2014; 57
Ning, Zhitomirsky, Adinolfi, Sutherland, Xu, Voznyy, Maraghechi, Lan, Hoogland, Ren, Sargent (bb0010) 2013; 25
Venturelli, Fazio, Giovannetti (bb0035) 2013; 110
Torchynska (bb0090) 2013; 137
Claussen, Algar, Hildebrandt, Susumu, Ancona, Medintz (bb0025) 2013; 5
Wang, Kantrowitz (bb0315) 2006; 15
Narayanan, Sarkar, Pal (bb0245) 2007; 111
Lee, Park, Min, Cha, Choi, Yoo (bb0295) 2010; 25
Yuan, Guo, Wang (bb0130) 2008; 80
Gole, Dash, Soman, Sainkar, Rao, Sastry (bb0270) 2001; 12
Kwon (bb0095) 2013; 46
Brennan, Hatzakis, Tshikhudo, Dirvianskyte, Razumas, Patkar, Vind, Svendsen, Nolte, Rowan, Brust (bb0250) 2006; 17
Wu, He, Wang, Yan (bb0115) 2010; 82
Bagalkot, Zhang, Levy-Nissenbaum, Jon, Kantoff, Langery, Farokhzad (bb0155) 2007; 7
Crumbliss, Perine, Stonehuerner, Tubergen, Zhao, Henkens, O'Daly (bb0275) 1992; 40
Tekle, Van Deurs, Sandvig, Iversen (bb0205) 2008; 8
Li, Wong, Mann (bb0195) 1999; 11
Lin, Tseng (bb0280) 2013; 41
Michalet, Pinaud, Bentolila, Tsay, Doose, Li, Sundaresan, Wu, Gambhir, Weiss (bb0065) 2005; 307
Verma, Giri, Thanh, Tung, Mondal, Pal, Pal (bb0230) 2010; 20
Aubin, Morales, Hamad-Schifferli (bb0260) 2005; 5
Weber, Ohlendorf, Wendoloski, Salemme (bb0350) 1989; 243
Song, Luo, Ye, Huang, Zhong, Huang, Hou, Wang (bb0225) 2012; 14
Alivisatos, Gu, Larabell (bb0085) 2005; 7
Finn, Titus, Hofmann (bb0340) 1984; 23
Freeman, Finder, Gill, Willner (bb0150) 2010; 10
Venturelli (10.1016/j.bbagen.2014.06.003_bb0035) 2013; 110
Verma (10.1016/j.bbagen.2014.06.003_bb0230) 2010; 20
The Huy (10.1016/j.bbagen.2014.06.003_bb0050) 2014; 57
Akshath (10.1016/j.bbagen.2014.06.003_bb0125) 2014; 57
Sapsford (10.1016/j.bbagen.2014.06.003_bb0180) 2013; 113
Pulkkinen (10.1016/j.bbagen.2014.06.003_bb0210) 2008; 70
Shirasaki (10.1016/j.bbagen.2014.06.003_bb0055) 2013; 7
Michalet (10.1016/j.bbagen.2014.06.003_bb0065) 2005; 307
Wang (10.1016/j.bbagen.2014.06.003_bb0190) 2014; 30
Yuan (10.1016/j.bbagen.2014.06.003_bb0130) 2008; 80
Davies (10.1016/j.bbagen.2014.06.003_bb0305) 1969; 178
Weber (10.1016/j.bbagen.2014.06.003_bb0350) 1989; 243
Aubin-Tam (10.1016/j.bbagen.2014.06.003_bb0175) 2008; 3
Khalid (10.1016/j.bbagen.2014.06.003_bb0320) 2011; 9
Waiskopf (10.1016/j.bbagen.2014.06.003_bb0160) 2011; 2
Claussen (10.1016/j.bbagen.2014.06.003_bb0025) 2013; 5
Pardo-Yissar (10.1016/j.bbagen.2014.06.003_bb0330) 2003; 125
Li (10.1016/j.bbagen.2014.06.003_bb0195) 1999; 11
Torchynska (10.1016/j.bbagen.2014.06.003_bb0090) 2013; 137
Crumbliss (10.1016/j.bbagen.2014.06.003_bb0275) 1992; 40
Bahari (10.1016/j.bbagen.2014.06.003_bb0290) 2011; 38
Brennan (10.1016/j.bbagen.2014.06.003_bb0250) 2006; 17
Blanco-Canosa (10.1016/j.bbagen.2014.06.003_bb0185) 2014; 263–264
Tekle (10.1016/j.bbagen.2014.06.003_bb0205) 2008; 8
Shugar (10.1016/j.bbagen.2014.06.003_bb0345) 1952; 8
Ning (10.1016/j.bbagen.2014.06.003_bb0010) 2013; 25
Wu (10.1016/j.bbagen.2014.06.003_bb0115) 2010; 82
Kim (10.1016/j.bbagen.2014.06.003_bb0140) 2007; 18
Lee (10.1016/j.bbagen.2014.06.003_bb0295) 2010; 25
Algar (10.1016/j.bbagen.2014.06.003_bb0170) 2011; 22
Esposito (10.1016/j.bbagen.2014.06.003_bb0030) 2012; 85
Bucking (10.1016/j.bbagen.2014.06.003_bb0365) 2010; 396
Cabral (10.1016/j.bbagen.2014.06.003_bb0285) 2013; 111
Freeman (10.1016/j.bbagen.2014.06.003_bb0150) 2010; 10
Liu (10.1016/j.bbagen.2014.06.003_bb0110) 2007; 22
Gole (10.1016/j.bbagen.2014.06.003_bb0270) 2001; 12
Tada (10.1016/j.bbagen.2014.06.003_bb0070) 2007; 67
Bardhan (10.1016/j.bbagen.2014.06.003_bb0200) 2010; 10
Goldman (10.1016/j.bbagen.2014.06.003_bb0135) 2004; 76
Freeman (10.1016/j.bbagen.2014.06.003_bb0145) 2009; 134
Huang (10.1016/j.bbagen.2014.06.003_bb0120) 2007; 22
Yuan (10.1016/j.bbagen.2014.06.003_bb0215) 2012; 84
Bayer (10.1016/j.bbagen.2014.06.003_bb0375) 1990; 184
Tang (10.1016/j.bbagen.2014.06.003_bb0015) 2011; 10
Finn (10.1016/j.bbagen.2014.06.003_bb0340) 1984; 23
Ohyanagi (10.1016/j.bbagen.2014.06.003_bb0080) 2011; 133
Gole (10.1016/j.bbagen.2014.06.003_bb0265) 2001; 17
Nehilla (10.1016/j.bbagen.2014.06.003_bb0370) 2005; 109
Ipe (10.1016/j.bbagen.2014.06.003_bb0255) 2006; 45
Pathak (10.1016/j.bbagen.2014.06.003_bb0355) 2007; 7
Soreq (10.1016/j.bbagen.2014.06.003_bb0325) 2001; 2
Rudra (10.1016/j.bbagen.2014.06.003_bb0300) 2006; 17
Bagalkot (10.1016/j.bbagen.2014.06.003_bb0155) 2007; 7
Yu (10.1016/j.bbagen.2014.06.003_bb0220) 2012; 23
Liu (10.1016/j.bbagen.2014.06.003_bb0045) 2014; 26
Yu (10.1016/j.bbagen.2014.06.003_bb0235) 2008
Duconge (10.1016/j.bbagen.2014.06.003_bb0075) 2008; 19
Sarkar (10.1016/j.bbagen.2014.06.003_bb0165) 2007; 111
Wang (10.1016/j.bbagen.2014.06.003_bb0315) 2006; 15
Aubin (10.1016/j.bbagen.2014.06.003_bb0260) 2005; 5
Medintz (10.1016/j.bbagen.2014.06.003_bb0100) 2005; 4
Gole (10.1016/j.bbagen.2014.06.003_bb0240) 2008; 24
Kwon (10.1016/j.bbagen.2014.06.003_bb0095) 2013; 46
Narayanan (10.1016/j.bbagen.2014.06.003_bb0245) 2007; 111
Vannoy (10.1016/j.bbagen.2014.06.003_bb0310) 2010; 114
Lin (10.1016/j.bbagen.2014.06.003_bb0280) 2013; 41
Hofmann (10.1016/j.bbagen.2014.06.003_bb0335) 1982; 21
Sahoo (10.1016/j.bbagen.2014.06.003_bb0360) 2007; 445
Song (10.1016/j.bbagen.2014.06.003_bb0225) 2012; 14
Cao (10.1016/j.bbagen.2014.06.003_bb0105) 2008; 14
Claussen (10.1016/j.bbagen.2014.06.003_bb0020) 2014; 6
Shi (10.1016/j.bbagen.2014.06.003_bb0040) 2014; 56
Mu (10.1016/j.bbagen.2014.06.003_bb0060) 2014; 20
Resch-Genger (10.1016/j.bbagen.2014.06.003_bb0005) 2008; 5
Alivisatos (10.1016/j.bbagen.2014.06.003_bb0085) 2005; 7
References_xml – volume: 5
  start-page: 763
  year: 2008
  end-page: 775
  ident: bb0005
  article-title: Quantum dots versus organic dyes as fluorescent labels
  publication-title: Nat. Methods
– volume: 22
  start-page: 825
  year: 2011
  end-page: 858
  ident: bb0170
  article-title: The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry
  publication-title: Bioconjug. Chem.
– volume: 21
  start-page: 978
  year: 1982
  end-page: 984
  ident: bb0335
  article-title: Avidin binding of carboxyl-substituted biotin and analogs
  publication-title: Biochemistry
– volume: 137
  start-page: 157
  year: 2013
  end-page: 161
  ident: bb0090
  article-title: Emission of double core infrared (CdSeTe)/ZnS quantum dots conjugated to antibodies
  publication-title: J. Lumin.
– volume: 24
  start-page: 266
  year: 2008
  end-page: 272
  ident: bb0240
  article-title: Azide-derivatized gold nanorods: functional materials for “click” chemistry
  publication-title: Langmuir
– volume: 14
  start-page: 16258
  year: 2012
  end-page: 16266
  ident: bb0225
  article-title: Spectroscopic studies on the interaction between EcoRI and CdS QDs and conformation of EcoRI in EcoRI–CdS QDs bioconjugates
  publication-title: Phys. Chem. Chem. Phys.
– volume: 56
  start-page: 39
  year: 2014
  end-page: 45
  ident: bb0040
  article-title: A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma
  publication-title: Biosens. Bioelectron.
– volume: 111
  start-page: 12294
  year: 2007
  end-page: 12298
  ident: bb0165
  article-title: Direct conjugation of semiconductor nanocrystals to a globular protein to study protein-folding intermediates
  publication-title: J. Phys. Chem. B
– volume: 445
  start-page: 217
  year: 2007
  end-page: 220
  ident: bb0360
  article-title: Spontaneous formation of a protein corona prevents the loss of quantum dot fluorescence in physiological buffers
  publication-title: Chem. Phys. Lett.
– volume: 10
  start-page: 4920
  year: 2010
  end-page: 4928
  ident: bb0200
  article-title: Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo
  publication-title: Nano Lett.
– volume: 85
  start-page: 031117
  year: 2012
  ident: bb0030
  article-title: Stochastically driven single-level quantum dot: a nanoscale finite-time thermodynamic machine and its various operational modes
  publication-title: Phys. Rev. E.
– volume: 17
  start-page: 1373
  year: 2006
  end-page: 1375
  ident: bb0250
  article-title: Bionanoconjugation via click chemistry: the creation of functional hybrids of lipases and gold nanoparticles
  publication-title: Bioconjug. Chem.
– volume: 263–264
  start-page: 101
  year: 2014
  end-page: 137
  ident: bb0185
  article-title: Recent progress in the bioconjugation of quantum dots
  publication-title: Coord. Chem. Rev.
– volume: 113
  start-page: 1904
  year: 2013
  end-page: 2074
  ident: bb0180
  article-title: Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology
  publication-title: Chem. Rev.
– volume: 15
  start-page: 2395
  year: 2006
  end-page: 2401
  ident: bb0315
  article-title: Trapping the tetrahedral intermediate in the alkaline phosphatase reaction by substitution of the active site serine with threonine
  publication-title: Protein Sci.
– volume: 41
  start-page: 379
  year: 2013
  end-page: 385
  ident: bb0280
  article-title: A method for fluorescence sensing of adenosine and alkaline phosphatase based on the inhibition of S-adenosylhomocysteine hydrolase activity
  publication-title: Biosens. Bioelectron.
– volume: 46
  start-page: 65
  year: 2013
  end-page: 72
  ident: bb0095
  article-title: Single-molecule fluorescence in situ hybridization: quantitative imaging of single RNA molecules
  publication-title: BMB Rep.
– volume: 10
  start-page: 765
  year: 2011
  end-page: 771
  ident: bb0015
  article-title: Colloidal-quantum-dot photovoltaics using atomic-ligand passivation
  publication-title: Nat. Mater.
– volume: 4
  start-page: 435
  year: 2005
  end-page: 446
  ident: bb0100
  article-title: Quantum dot bioconjugates for imaging, labelling and sensing
  publication-title: Nat. Mater.
– volume: 23
  start-page: 2554
  year: 1984
  end-page: 2558
  ident: bb0340
  article-title: Ligands for insulin receptor isolation
  publication-title: Biochemistry
– volume: 5
  start-page: 12156
  year: 2013
  end-page: 12170
  ident: bb0025
  article-title: Biophotonic logic devices based on quantum dots and temporally-staggered Forster energy transfer relays
  publication-title: Nanoscale
– volume: 8
  start-page: 1858
  year: 2008
  end-page: 1865
  ident: bb0205
  article-title: Cellular trafficking of quantum dot-ligand bioconjugates and their induction of changes in normal routing of unconjugated ligands
  publication-title: Nano Lett.
– volume: 12
  start-page: 684
  year: 2001
  end-page: 690
  ident: bb0270
  article-title: On the preparation, characterization, and enzymatic activity of fungal protease–gold colloid bioconjugates
  publication-title: Bioconjug. Chem.
– volume: 114
  start-page: 766
  year: 2010
  end-page: 773
  ident: bb0310
  article-title: Bioimaging and self-assembly of lysozyme fibrils utilizing CdSe/ZnS quantum dots
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 55
  year: 2005
  end-page: 76
  ident: bb0085
  article-title: Quantum dots as cellular probes
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 19
  start-page: 1921
  year: 2008
  end-page: 1926
  ident: bb0075
  article-title: Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales
  publication-title: Bioconjug. Chem.
– volume: 11
  start-page: 23
  year: 1999
  end-page: 26
  ident: bb0195
  article-title: Organization of inorganic nanoparticles using biotin–streptavidin connectors
  publication-title: Chem. Mater.
– volume: 109
  start-page: 20724
  year: 2005
  end-page: 20730
  ident: bb0370
  article-title: Stoichiometry-dependent formation of quantum dot-antibody bioconjugates: a complementary atomic force microscopy and agarose gel electrophoresis study
  publication-title: J. Phys. Chem. B
– volume: 3
  start-page: 034001
  year: 2008
  ident: bb0175
  article-title: Structure and function of nanoparticle–protein conjugates
  publication-title: Biomed. Mater.
– volume: 84
  start-page: 5047
  year: 2012
  end-page: 5052
  ident: bb0215
  article-title: Application of polymer quantum dot-enzyme hybrids in the biosensor development and test paper fabrication
  publication-title: Anal. Chem.
– volume: 111
  start-page: 11539
  year: 2007
  end-page: 11543
  ident: bb0245
  article-title: Structural and functional characterization of enzyme–quantum dot conjugates: covalent attachment of CdS nanocrystal to alpha-chymotrypsin
  publication-title: J. Phys. Chem. C
– volume: 70
  start-page: 66
  year: 2008
  end-page: 74
  ident: bb0210
  article-title: Three-step tumor targeting of paclitaxel using biotinylated PLA–PEG nanoparticles and avidin–biotin technology: formulation development and in vitro anticancer activity
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 45
  start-page: 504
  year: 2006
  end-page: 507
  ident: bb0255
  article-title: Nanohybrids composed of quantum dots and cytochrome P450 as photocatalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 20
  start-page: 8200106
  year: 2014
  ident: bb0060
  article-title: Direct-current and alternating-current driving Si quantum dots-based light emitting device
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 111
  start-page: 30
  year: 2013
  end-page: 35
  ident: bb0285
  article-title: On the behavior of acetylcholinesterase immobilized on carbon nanotubes in the presence of inhibitors
  publication-title: Colloids Surf. B
– volume: 80
  start-page: 1141
  year: 2008
  end-page: 1145
  ident: bb0130
  article-title: Utilizing a CdTe quantum dots–enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide
  publication-title: Anal. Chem.
– volume: 110
  start-page: 256801
  year: 2013
  ident: bb0035
  article-title: Minimal self-contained quantum refrigeration machine based on four quantum dots
  publication-title: Phys. Rev. Lett.
– volume: 76
  start-page: 684
  year: 2004
  end-page: 688
  ident: bb0135
  article-title: Multiplexed toxin analysis using four colors of quantum dot fluororeagents
  publication-title: Anal. Chem.
– volume: 18
  start-page: 195105
  year: 2007
  ident: bb0140
  article-title: Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection
  publication-title: Nanotechnology
– volume: 125
  start-page: 622
  year: 2003
  end-page: 623
  ident: bb0330
  article-title: Acetylcholine esterase-labeled CdS nanoparticles on electrodes: photoelectrochemical sensing of the enzyme inhibitors
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 2718
  year: 2014
  end-page: 2724
  ident: bb0045
  article-title: Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids
  publication-title: Adv. Mater.
– volume: 243
  start-page: 85
  year: 1989
  end-page: 88
  ident: bb0350
  article-title: Structural origins of high-affinity biotin binding to streptavidin
  publication-title: Science
– volume: 25
  start-page: 1566
  year: 2010
  end-page: 1570
  ident: bb0295
  article-title: A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents
  publication-title: Biosens. Bioelectron.
– volume: 2
  start-page: 294
  year: 2001
  end-page: 302
  ident: bb0325
  article-title: Acetylcholinesterase—new roles for an old actor
  publication-title: Nat. Rev. Neurosci.
– volume: 10
  start-page: 2192
  year: 2010
  end-page: 2196
  ident: bb0150
  article-title: Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS quantum dots
  publication-title: Nano Lett.
– volume: 134
  start-page: 653
  year: 2009
  end-page: 656
  ident: bb0145
  article-title: Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing
  publication-title: Analyst
– volume: 133
  start-page: 12507
  year: 2011
  end-page: 12517
  ident: bb0080
  article-title: Importance of sialic acid residues illuminated by live animal imaging using phosphorylcholine self-assembled monolayer-coated quantum dots
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 714
  year: 2012
  end-page: 724
  ident: bb0220
  article-title: Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis
  publication-title: Bioconjug. Chem.
– volume: 184
  start-page: 80
  year: 1990
  end-page: 89
  ident: bb0375
  article-title: Isolation and properties of streptavidin
  publication-title: Methods Enzymol.
– volume: 307
  start-page: 538
  year: 2005
  end-page: 544
  ident: bb0065
  article-title: Quantum dots for live cells, in vivo imaging, and diagnostics
  publication-title: Science
– volume: 22
  start-page: 3203
  year: 2007
  end-page: 3209
  ident: bb0110
  article-title: Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes
  publication-title: Biosens. Bioelectron.
– volume: 22
  start-page: 1835
  year: 2007
  end-page: 1838
  ident: bb0120
  article-title: A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots
  publication-title: Biosens. Bioelectron.
– volume: 5
  start-page: 519
  year: 2005
  end-page: 522
  ident: bb0260
  article-title: Labeling ribonuclease S with a 3
  publication-title: Nano Lett.
– volume: 20
  start-page: 3722
  year: 2010
  end-page: 3728
  ident: bb0230
  article-title: Superparamagnetic fluorescent nickel–enzyme nanobioconjugates: synthesis and characterization of a novel multifunctional biological probe
  publication-title: J. Mater. Chem.
– volume: 396
  start-page: 1087
  year: 2010
  end-page: 1094
  ident: bb0365
  article-title: Electrophoretic properties of BSA-coated quantum dots
  publication-title: Anal. Bioanal. Chem.
– volume: 9
  start-page: 46
  year: 2011
  ident: bb0320
  article-title: Light triggered detection of aminophenyl phosphate with a quantum dot based enzyme electrode
  publication-title: J. Nanobiotechnol.
– volume: 2
  start-page: 141
  year: 2011
  end-page: 150
  ident: bb0160
  article-title: Quantum dot labeling of butyrylcholinesterase maintains substrate and inhibitor interactions and cell adherence features
  publication-title: ACS Chem. Neurosci.
– volume: 57
  start-page: 310
  year: 2014
  end-page: 316
  ident: bb0050
  article-title: Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots
  publication-title: Biosens. Bioelectron.
– volume: 7
  start-page: 1839
  year: 2007
  end-page: 1845
  ident: bb0355
  article-title: Characterization of the functional binding properties of antibody conjugated quantum dots
  publication-title: Nano Lett.
– volume: 67
  start-page: 1138
  year: 2007
  end-page: 1144
  ident: bb0070
  article-title: In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice
  publication-title: Cancer Res.
– volume: 8
  start-page: 302
  year: 1952
  end-page: 309
  ident: bb0345
  article-title: The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme
  publication-title: Biochim. Biophys. Acta
– volume: 38
  start-page: 825
  year: 2011
  end-page: 832
  ident: bb0290
  article-title: Glycoside hydrolases as components of putative carbohydrate biosensor proteins in
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 17
  start-page: 1301
  year: 2006
  end-page: 1315
  ident: bb0300
  article-title: Antimicrobial polypeptide multilayer nanocoatings
  publication-title: J. Biomater. Sci. Polym. Ed.
– volume: 25
  start-page: 1719
  year: 2013
  end-page: 1723
  ident: bb0010
  article-title: Graded doping for enhanced colloidal quantum dot photovoltaics
  publication-title: Adv. Mater.
– volume: 17
  start-page: 1674
  year: 2001
  end-page: 1679
  ident: bb0265
  article-title: Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity
  publication-title: Langmuir
– volume: 7
  start-page: 13
  year: 2013
  end-page: 23
  ident: bb0055
  article-title: Emergence of colloidal quantum-dot light-emitting technologies
  publication-title: Nat. Photonics
– start-page: 1308
  year: 2008
  end-page: 1310
  ident: bb0235
  article-title: Site-specific immobilization of CMP-sialic acid synthetase on magnetic nanoparticles and its use in the synthesis of CMP-sialic acid
  publication-title: Chem. Commun.
– volume: 178
  start-page: 294
  year: 1969
  end-page: 305
  ident: bb0305
  article-title: The dependence of lysozyme activity on pH and ionic strength
  publication-title: Biochim. Biophys. Acta
– volume: 82
  start-page: 1427
  year: 2010
  end-page: 1433
  ident: bb0115
  article-title: Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids
  publication-title: Anal. Chem.
– volume: 14
  start-page: 9633
  year: 2008
  end-page: 9640
  ident: bb0105
  article-title: A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 3065
  year: 2007
  end-page: 3070
  ident: bb0155
  article-title: Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer
  publication-title: Nano Lett.
– volume: 57
  start-page: 317
  year: 2014
  end-page: 323
  ident: bb0125
  article-title: Quantum dots as optical labels for ultrasensitive detection of polyphenols
  publication-title: Biosens. Bioelectron.
– volume: 40
  start-page: 483
  year: 1992
  end-page: 490
  ident: bb0275
  article-title: Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition
  publication-title: Biotechnol. Bioeng.
– volume: 30
  start-page: 2161
  year: 2014
  end-page: 2169
  ident: bb0190
  article-title: Assembly of multivalent protein ligands and quantum dots: a multifaceted investigation
  publication-title: Langmuir
– volume: 6
  start-page: 3771
  year: 2014
  end-page: 3778
  ident: bb0020
  article-title: Complex logic functions implemented with quantum dot bionanophotonic circuits
  publication-title: ACS Appl. Mater. Interfaces
– volume: 243
  start-page: 85
  year: 1989
  ident: 10.1016/j.bbagen.2014.06.003_bb0350
  article-title: Structural origins of high-affinity biotin binding to streptavidin
  publication-title: Science
  doi: 10.1126/science.2911722
– volume: 7
  start-page: 55
  year: 2005
  ident: 10.1016/j.bbagen.2014.06.003_bb0085
  article-title: Quantum dots as cellular probes
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.7.060804.100432
– volume: 110
  start-page: 256801
  year: 2013
  ident: 10.1016/j.bbagen.2014.06.003_bb0035
  article-title: Minimal self-contained quantum refrigeration machine based on four quantum dots
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.256801
– volume: 445
  start-page: 217
  year: 2007
  ident: 10.1016/j.bbagen.2014.06.003_bb0360
  article-title: Spontaneous formation of a protein corona prevents the loss of quantum dot fluorescence in physiological buffers
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.07.075
– volume: 8
  start-page: 302
  year: 1952
  ident: 10.1016/j.bbagen.2014.06.003_bb0345
  article-title: The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0006-3002(52)90045-0
– volume: 178
  start-page: 294
  year: 1969
  ident: 10.1016/j.bbagen.2014.06.003_bb0305
  article-title: The dependence of lysozyme activity on pH and ionic strength
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2744(69)90397-0
– volume: 111
  start-page: 11539
  year: 2007
  ident: 10.1016/j.bbagen.2014.06.003_bb0245
  article-title: Structural and functional characterization of enzyme–quantum dot conjugates: covalent attachment of CdS nanocrystal to alpha-chymotrypsin
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp072636j
– volume: 137
  start-page: 157
  year: 2013
  ident: 10.1016/j.bbagen.2014.06.003_bb0090
  article-title: Emission of double core infrared (CdSeTe)/ZnS quantum dots conjugated to antibodies
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2012.12.048
– volume: 80
  start-page: 1141
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.003_bb0130
  article-title: Utilizing a CdTe quantum dots–enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide
  publication-title: Anal. Chem.
  doi: 10.1021/ac0713048
– volume: 19
  start-page: 1921
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.003_bb0075
  article-title: Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc800179j
– volume: 84
  start-page: 5047
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.003_bb0215
  article-title: Application of polymer quantum dot-enzyme hybrids in the biosensor development and test paper fabrication
  publication-title: Anal. Chem.
  doi: 10.1021/ac300714j
– volume: 7
  start-page: 1839
  year: 2007
  ident: 10.1016/j.bbagen.2014.06.003_bb0355
  article-title: Characterization of the functional binding properties of antibody conjugated quantum dots
  publication-title: Nano Lett.
  doi: 10.1021/nl062706i
– volume: 9
  start-page: 46
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.003_bb0320
  article-title: Light triggered detection of aminophenyl phosphate with a quantum dot based enzyme electrode
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-9-46
– volume: 114
  start-page: 766
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.003_bb0310
  article-title: Bioimaging and self-assembly of lysozyme fibrils utilizing CdSe/ZnS quantum dots
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp907839j
– volume: 134
  start-page: 653
  year: 2009
  ident: 10.1016/j.bbagen.2014.06.003_bb0145
  article-title: Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing
  publication-title: Analyst
  doi: 10.1039/b822836c
– volume: 11
  start-page: 23
  year: 1999
  ident: 10.1016/j.bbagen.2014.06.003_bb0195
  article-title: Organization of inorganic nanoparticles using biotin–streptavidin connectors
  publication-title: Chem. Mater.
  doi: 10.1021/cm980610m
– volume: 2
  start-page: 141
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.003_bb0160
  article-title: Quantum dot labeling of butyrylcholinesterase maintains substrate and inhibitor interactions and cell adherence features
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/cn1000827
– volume: 41
  start-page: 379
  year: 2013
  ident: 10.1016/j.bbagen.2014.06.003_bb0280
  article-title: A method for fluorescence sensing of adenosine and alkaline phosphatase based on the inhibition of S-adenosylhomocysteine hydrolase activity
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.08.059
– volume: 46
  start-page: 65
  year: 2013
  ident: 10.1016/j.bbagen.2014.06.003_bb0095
  article-title: Single-molecule fluorescence in situ hybridization: quantitative imaging of single RNA molecules
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2013.46.2.016
– volume: 22
  start-page: 3203
  year: 2007
  ident: 10.1016/j.bbagen.2014.06.003_bb0110
  article-title: Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2007.02.013
– volume: 20
  start-page: 3722
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.003_bb0230
  article-title: Superparamagnetic fluorescent nickel–enzyme nanobioconjugates: synthesis and characterization of a novel multifunctional biological probe
  publication-title: J. Mater. Chem.
  doi: 10.1039/b925477c
– volume: 10
  start-page: 765
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.003_bb0015
  article-title: Colloidal-quantum-dot photovoltaics using atomic-ligand passivation
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3118
– volume: 26
  start-page: 2718
  year: 2014
  ident: 10.1016/j.bbagen.2014.06.003_bb0045
  article-title: Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304366
– volume: 70
  start-page: 66
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.003_bb0210
  article-title: Three-step tumor targeting of paclitaxel using biotinylated PLA–PEG nanoparticles and avidin–biotin technology: formulation development and in vitro anticancer activity
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2008.04.018
– volume: 76
  start-page: 684
  year: 2004
  ident: 10.1016/j.bbagen.2014.06.003_bb0135
  article-title: Multiplexed toxin analysis using four colors of quantum dot fluororeagents
  publication-title: Anal. Chem.
  doi: 10.1021/ac035083r
– volume: 3
  start-page: 034001
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.003_bb0175
  article-title: Structure and function of nanoparticle–protein conjugates
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/3/3/034001
– volume: 5
  start-page: 12156
  year: 2013
  ident: 10.1016/j.bbagen.2014.06.003_bb0025
  article-title: Biophotonic logic devices based on quantum dots and temporally-staggered Forster energy transfer relays
  publication-title: Nanoscale
  doi: 10.1039/c3nr03655c
– volume: 4
  start-page: 435
  year: 2005
  ident: 10.1016/j.bbagen.2014.06.003_bb0100
  article-title: Quantum dot bioconjugates for imaging, labelling and sensing
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1390
– volume: 25
  start-page: 1566
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.003_bb0295
  article-title: A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2009.10.013
– volume: 113
  start-page: 1904
  year: 2013
  ident: 10.1016/j.bbagen.2014.06.003_bb0180
  article-title: Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology
  publication-title: Chem. Rev.
  doi: 10.1021/cr300143v
– volume: 10
  start-page: 4920
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.003_bb0200
  article-title: Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo
  publication-title: Nano Lett.
  doi: 10.1021/nl102889y
– volume: 38
  start-page: 825
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.003_bb0290
  article-title: Glycoside hydrolases as components of putative carbohydrate biosensor proteins in Clostridium thermocellum
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-010-0848-9
– volume: 18
  start-page: 195105
  year: 2007
  ident: 10.1016/j.bbagen.2014.06.003_bb0140
  article-title: Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/19/195105
– volume: 8
  start-page: 1858
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.003_bb0205
  article-title: Cellular trafficking of quantum dot-ligand bioconjugates and their induction of changes in normal routing of unconjugated ligands
  publication-title: Nano Lett.
  doi: 10.1021/nl0803848
– volume: 184
  start-page: 80
  year: 1990
  ident: 10.1016/j.bbagen.2014.06.003_bb0375
  article-title: Isolation and properties of streptavidin
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(90)84262-F
– volume: 263–264
  start-page: 101
  year: 2014
  ident: 10.1016/j.bbagen.2014.06.003_bb0185
  article-title: Recent progress in the bioconjugation of quantum dots
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2013.08.030
– volume: 396
  start-page: 1087
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.003_bb0365
  article-title: Electrophoretic properties of BSA-coated quantum dots
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-009-3107-z
– volume: 22
  start-page: 1835
  year: 2007
  ident: 10.1016/j.bbagen.2014.06.003_bb0120
  article-title: A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2006.09.003
– volume: 20
  start-page: 8200106
  year: 2014
  ident: 10.1016/j.bbagen.2014.06.003_bb0060
  article-title: Direct-current and alternating-current driving Si quantum dots-based light emitting device
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 125
  start-page: 622
  year: 2003
  ident: 10.1016/j.bbagen.2014.06.003_bb0330
  article-title: Acetylcholine esterase-labeled CdS nanoparticles on electrodes: photoelectrochemical sensing of the enzyme inhibitors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028922k
– volume: 2
  start-page: 294
  year: 2001
  ident: 10.1016/j.bbagen.2014.06.003_bb0325
  article-title: Acetylcholinesterase—new roles for an old actor
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/35067589
– volume: 45
  start-page: 504
  year: 2006
  ident: 10.1016/j.bbagen.2014.06.003_bb0255
  article-title: Nanohybrids composed of quantum dots and cytochrome P450 as photocatalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200503084
– volume: 12
  start-page: 684
  year: 2001
  ident: 10.1016/j.bbagen.2014.06.003_bb0270
  article-title: On the preparation, characterization, and enzymatic activity of fungal protease–gold colloid bioconjugates
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc0001241
– volume: 23
  start-page: 2554
  year: 1984
  ident: 10.1016/j.bbagen.2014.06.003_bb0340
  article-title: Ligands for insulin receptor isolation
  publication-title: Biochemistry
  doi: 10.1021/bi00307a003
– volume: 17
  start-page: 1373
  year: 2006
  ident: 10.1016/j.bbagen.2014.06.003_bb0250
  article-title: Bionanoconjugation via click chemistry: the creation of functional hybrids of lipases and gold nanoparticles
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc0601018
– volume: 6
  start-page: 3771
  year: 2014
  ident: 10.1016/j.bbagen.2014.06.003_bb0020
  article-title: Complex logic functions implemented with quantum dot bionanophotonic circuits
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am404659f
– volume: 111
  start-page: 12294
  year: 2007
  ident: 10.1016/j.bbagen.2014.06.003_bb0165
  article-title: Direct conjugation of semiconductor nanocrystals to a globular protein to study protein-folding intermediates
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp075239h
– volume: 133
  start-page: 12507
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.003_bb0080
  article-title: Importance of sialic acid residues illuminated by live animal imaging using phosphorylcholine self-assembled monolayer-coated quantum dots
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja111201c
– volume: 40
  start-page: 483
  year: 1992
  ident: 10.1016/j.bbagen.2014.06.003_bb0275
  article-title: Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260400406
– volume: 23
  start-page: 714
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.003_bb0220
  article-title: Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc200396r
– volume: 7
  start-page: 3065
  year: 2007
  ident: 10.1016/j.bbagen.2014.06.003_bb0155
  article-title: Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer
  publication-title: Nano Lett.
  doi: 10.1021/nl071546n
– volume: 25
  start-page: 1719
  year: 2013
  ident: 10.1016/j.bbagen.2014.06.003_bb0010
  article-title: Graded doping for enhanced colloidal quantum dot photovoltaics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204502
– volume: 56
  start-page: 39
  year: 2014
  ident: 10.1016/j.bbagen.2014.06.003_bb0040
  article-title: A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.12.038
– volume: 109
  start-page: 20724
  year: 2005
  ident: 10.1016/j.bbagen.2014.06.003_bb0370
  article-title: Stoichiometry-dependent formation of quantum dot-antibody bioconjugates: a complementary atomic force microscopy and agarose gel electrophoresis study
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp052613+
– volume: 5
  start-page: 763
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.003_bb0005
  article-title: Quantum dots versus organic dyes as fluorescent labels
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1248
– volume: 82
  start-page: 1427
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.003_bb0115
  article-title: Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids
  publication-title: Anal. Chem.
  doi: 10.1021/ac902531g
– volume: 30
  start-page: 2161
  year: 2014
  ident: 10.1016/j.bbagen.2014.06.003_bb0190
  article-title: Assembly of multivalent protein ligands and quantum dots: a multifaceted investigation
  publication-title: Langmuir
  doi: 10.1021/la403156h
– volume: 15
  start-page: 2395
  year: 2006
  ident: 10.1016/j.bbagen.2014.06.003_bb0315
  article-title: Trapping the tetrahedral intermediate in the alkaline phosphatase reaction by substitution of the active site serine with threonine
  publication-title: Protein Sci.
  doi: 10.1110/ps.062351506
– volume: 10
  start-page: 2192
  year: 2010
  ident: 10.1016/j.bbagen.2014.06.003_bb0150
  article-title: Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS quantum dots
  publication-title: Nano Lett.
  doi: 10.1021/nl101052f
– start-page: 1308
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.003_bb0235
  article-title: Site-specific immobilization of CMP-sialic acid synthetase on magnetic nanoparticles and its use in the synthesis of CMP-sialic acid
  publication-title: Chem. Commun.
  doi: 10.1039/b716330d
– volume: 57
  start-page: 317
  year: 2014
  ident: 10.1016/j.bbagen.2014.06.003_bb0125
  article-title: Quantum dots as optical labels for ultrasensitive detection of polyphenols
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.01.038
– volume: 7
  start-page: 13
  year: 2013
  ident: 10.1016/j.bbagen.2014.06.003_bb0055
  article-title: Emergence of colloidal quantum-dot light-emitting technologies
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.328
– volume: 14
  start-page: 16258
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.003_bb0225
  article-title: Spectroscopic studies on the interaction between EcoRI and CdS QDs and conformation of EcoRI in EcoRI–CdS QDs bioconjugates
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp42562a
– volume: 21
  start-page: 978
  year: 1982
  ident: 10.1016/j.bbagen.2014.06.003_bb0335
  article-title: Avidin binding of carboxyl-substituted biotin and analogs
  publication-title: Biochemistry
  doi: 10.1021/bi00534a024
– volume: 14
  start-page: 9633
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.003_bb0105
  article-title: A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200800681
– volume: 111
  start-page: 30
  year: 2013
  ident: 10.1016/j.bbagen.2014.06.003_bb0285
  article-title: On the behavior of acetylcholinesterase immobilized on carbon nanotubes in the presence of inhibitors
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2013.05.017
– volume: 22
  start-page: 825
  year: 2011
  ident: 10.1016/j.bbagen.2014.06.003_bb0170
  article-title: The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc200065z
– volume: 307
  start-page: 538
  year: 2005
  ident: 10.1016/j.bbagen.2014.06.003_bb0065
  article-title: Quantum dots for live cells, in vivo imaging, and diagnostics
  publication-title: Science
  doi: 10.1126/science.1104274
– volume: 85
  start-page: 031117
  year: 2012
  ident: 10.1016/j.bbagen.2014.06.003_bb0030
  article-title: Stochastically driven single-level quantum dot: a nanoscale finite-time thermodynamic machine and its various operational modes
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.85.031117
– volume: 17
  start-page: 1301
  year: 2006
  ident: 10.1016/j.bbagen.2014.06.003_bb0300
  article-title: Antimicrobial polypeptide multilayer nanocoatings
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1163/156856206778667433
– volume: 67
  start-page: 1138
  year: 2007
  ident: 10.1016/j.bbagen.2014.06.003_bb0070
  article-title: In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-1185
– volume: 17
  start-page: 1674
  year: 2001
  ident: 10.1016/j.bbagen.2014.06.003_bb0265
  article-title: Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity
  publication-title: Langmuir
  doi: 10.1021/la001164w
– volume: 5
  start-page: 519
  year: 2005
  ident: 10.1016/j.bbagen.2014.06.003_bb0260
  article-title: Labeling ribonuclease S with a 3nm Au nanoparticle by two-step assembly
  publication-title: Nano Lett.
  doi: 10.1021/nl0479031
– volume: 57
  start-page: 310
  year: 2014
  ident: 10.1016/j.bbagen.2014.06.003_bb0050
  article-title: Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.02.041
– volume: 24
  start-page: 266
  year: 2008
  ident: 10.1016/j.bbagen.2014.06.003_bb0240
  article-title: Azide-derivatized gold nanorods: functional materials for “click” chemistry
  publication-title: Langmuir
  doi: 10.1021/la7026303
SSID ssj0000595
ssj0025309
Score 2.1994722
Snippet Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot–enzyme bioconjugates (QDEnzBio) that...
Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot-enzyme bioconjugates (QDEnzBio) that...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2935
SubjectTerms Acetylcholinesterase
Acetylcholinesterase - chemistry
active sites
Alkaline phosphatase
Alkaline Phosphatase - chemistry
Animals
biotin
Biotin - chemistry
Biotinylation
Catalysis
catalytic activity
chemical elements
Chickens
egg albumen
Enzyme catalytic activity
Enzyme Stability
glucose
Hen egg white lysozyme
hens
ionic strength
Luminescence
lysine
lysozyme
Muramidase - chemistry
polypeptides
quantum dots
Quantum Dots - chemistry
Semiconductor nanocrystals
streptavidin
Streptavidin - chemistry
value added
Title Hydrolytic enzymes conjugated to quantum dots mostly retain whole catalytic activity
URI https://dx.doi.org/10.1016/j.bbagen.2014.06.003
https://www.ncbi.nlm.nih.gov/pubmed/24937605
https://www.proquest.com/docview/1552369391
https://www.proquest.com/docview/2000214821
Volume 1840
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF9EKfpS1PpZK1vo63qX7G728iiHcnrUh6rUtyX7BSd3ifUSJH3o396ZfCiliOBTSJgNy-zszG9254OQb8JHPMlkxnzsHRNRSJnhI8usTRMVfKqygI7i96tkcisu7-TdChn3uTAYVtnp_lanN9q6-zLouDl4mM0G13ipB3ACLD4aIo56WAiFUn7y5yXMA-CDbG8SBEPqPn2uifEyBjYtVkGNRFPFs2-d9b95eg1-NmbofJN87PAjPW2nuEVWfL5NPrQdJettsj7uG7h9IjeT2j0W8xooqc9_1wu_pOD93ld4cuZoWdBfFfC1WlDwTJd0USzLeU0x_nCW0yfsm0ubw53mB5j_gG0mdsjt-dnNeMK6JgrM8lSWLHYZ-FzSSTU0kruhDHxohFUuCggPrAopbHJpnQky5RkAjJApLIkTh5FJzIjvktW8yP0-obDZlQO4NnSJEjYBZAPuEuexdGDiMm8PCO95p21XYRwbXcx1H0p2r1uOa-S4biLq-AFhz6Me2gobb9Crfln0P5KiwQi8MfJrv4oalgJvRrLcF9VSYx06nqQ8jV6nwZymGKumAs1eKwLP8wUfFoOL5OG75_aZbOBbG712RFbLx8p_AbhTmuNGno_J2unFdHKFz-mPn9O__3j_vw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7ChpJeSps-kj5V6FXs2rKs9TEsDU6T7KUbyE1YL9iwa6dZm-L--s74kVJKCPRqj4wYSTPfWDPzAXxJfCTSQhbcx97xJAoZN2JuubVZqoLPVBEoULxcpvlV8u1aXu_BYqyFobTKwfb3Nr2z1sOT6aDN6e16Pf1Ol3oIJ9DjkyMSaIf3qTuVnMD-ydl5vvxjkGVHvkLynAaMFXRdmpcxeG6pEWqUdI08R_asfz3UQwi080Snz-HZACHZST_LF7Dny0N40pNKtodwsBg53F7CKm_dXbVpUZL58le79TuGAfBNQz_PHKsr9qNB1TZbhsHpjm2rXb1pGaUgrkv2k6hzWfd_p_sAlUAQ08QruDr9ulrkfOBR4FZksuaxKzDskk6qmZHCzWQQM5NY5aJACMGqkOE5l9aZIDNRIMYIhaKuOHGYm9TMxWuYlFXpj4DheVcOEdvMpSqxKYIbjJiEiKVDL1d4ewxi1J22Q5Nx4rrY6DGb7Eb3Gtekcd0l1Ylj4PejbvsmG4_Iq3FZ9F-bRaMfeGTk53EVNS4FXY4Upa-anaZWdCLNRBY9LENlTTE1TkWZN_0WuJ8vhrGUXyTf_vfcPsFBvrq80Bdny_N38JTe9Mls72FS3zX-A6Kf2nwcdvdvvX4A3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrolytic+enzymes+conjugated+to+quantum+dots+mostly+retain+whole+catalytic+activity&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Iyer%2C+Aditya&rft.au=Chandra%2C+Anil&rft.au=Swaminathan%2C+Rajaram&rft.date=2014-09-01&rft.issn=0006-3002&rft.volume=1840&rft.issue=9&rft.spage=2935&rft_id=info:doi/10.1016%2Fj.bbagen.2014.06.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon