The diameter of the Birkhoff polytope
The geometry of the compact convex set of all doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms...
Saved in:
Published in | Special matrices Vol. 12; no. 1; pp. 635 - 655 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
24.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2300-7451 2300-7451 |
DOI | 10.1515/spma-2023-0113 |
Cover
Abstract | The geometry of the compact convex set of all
doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms from
to
and the Schatten
-norms, both for the range
, have only recently been studied in depth. In this article, we continue in this vein by determining the diameter of the Birkhoff polytope with respect to the metrics induced by the aforementioned matrix norms. |
---|---|
AbstractList | The geometry of the compact convex set of all n×nn\times n doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms from ℓnp{\ell }_{n}^{p} to ℓnp{\ell }_{n}^{p} and the Schatten pp-norms, both for the range 1≤p≤∞1\le p\le \infty , have only recently been studied in depth. In this article, we continue in this vein by determining the diameter of the Birkhoff polytope with respect to the metrics induced by the aforementioned matrix norms. The geometry of the compact convex set of all n × n n\times n doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms from ℓ n p {\ell }_{n}^{p} to ℓ n p {\ell }_{n}^{p} and the Schatten p p -norms, both for the range 1 ≤ p ≤ ∞ 1\le p\le \infty , have only recently been studied in depth. In this article, we continue in this vein by determining the diameter of the Birkhoff polytope with respect to the metrics induced by the aforementioned matrix norms. The geometry of the compact convex set of all doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms from to and the Schatten -norms, both for the range , have only recently been studied in depth. In this article, we continue in this vein by determining the diameter of the Birkhoff polytope with respect to the metrics induced by the aforementioned matrix norms. |
Author | Morneau-Guérin, Frédéric Bouthat, Ludovick Mashreghi, Javad |
Author_xml | – sequence: 1 givenname: Ludovick surname: Bouthat fullname: Bouthat, Ludovick email: ludovick.bouthat.1@ulaval.ca organization: Département de mathématiques et de statistique, Université Laval, Québec, GV 0A6, QC, Canada – sequence: 2 givenname: Javad surname: Mashreghi fullname: Mashreghi, Javad email: javad.mashreghi@mat.ulaval.ca organization: Département de mathématiques et de statistique, Université Laval, Québec, GV 0A6, QC, Canada – sequence: 3 givenname: Frédéric surname: Morneau-Guérin fullname: Morneau-Guérin, Frédéric email: frederic.morneau-guerin@teluq.ca organization: Département Éducation, Université TÉLUQ, Québec, GK 9H6, QC, Canada |
BookMark | eNp1kM9PwjAUxxuDiYhcPe_icdjXrTCOSvxBQuIFz81r-wbFsS7diOG_txNNjAmn931NPt-2n2s2qH1NjN0Cn4AEed82e0wFF1nKAbILNhQZ5-kslzD4k6_YuG13nHOQuZBCDNndekuJdbinjkLiy6SL-6MLH1tflknjq2PnG7phlyVWLY1_5oi9Pz-tF6_p6u1luXhYpSabyy4VUzvnSJRrFDnmZC0YkASoJS-kMRnpQk7JzkEKYwtdcitKKswMNE45p2zElqde63GnmuD2GI7Ko1PfBz5sFIbOmYqUFPGu-C8oZjbnQmiuETH2kkCtC4hd-anLBN-2gUplXIed83UX0FUKuOrNqd6c6s2p3lzEJv-w32ecBeYn4BOr6NDSJhyOMaidP4Q62joDgoDsC__chSA |
CitedBy_id | crossref_primary_10_1515_spma_2024_0012 crossref_primary_10_1515_spma_2025_0034 crossref_primary_10_1007_s44146_024_00153_7 crossref_primary_10_1007_s43670_024_00088_8 |
Cites_doi | 10.1145/2582112.2582133 10.1016/j.disc.2007.03.077 10.1046/j.1461-0248.2001.00202.x 10.1590/S0101-82052008000200005 10.1016/j.laa.2015.02.005 10.1086/628302 10.1016/j.laa.2004.04.017 10.1016/0097-3165(77)90051-6 10.1007/978-3-031-21460-8_3 10.1016/j.laa.2008.10.015 10.1007/s10801-008-0155-y 10.1016/j.laa.2010.09.042 10.1007/s44146-024-00152-8 10.1007/s12532-015-0097-z 10.1201/9781420064254 10.4169/amer.math.monthly.121.03.244 10.1016/j.laa.2016.01.035 10.1080/10586458.1999.10504406 10.1086/628246 10.1511/2013.101.92 10.1016/0095-8956(77)90010-7 10.1007/s00454-003-2850-8 10.1006/jmaa.1998.5970 10.1137/0134050 10.1016/0024-3795(76)90013-6 10.1002/(SICI)1099-1506(199811/12)5:6<475::AID-NLA155>3.3.CO;2-X 10.1016/j.laa.2007.09.028 10.1090/pspum/062.2/1492542 10.1137/050639831 10.1515/spma-2022-0173 10.1016/0097-3165(77)90008-5 10.1007/s44146-024-00153-7 10.1007/BF01313442 10.2307/1907805 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1515/spma-2023-0113 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journal Collection |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2300-7451 |
EndPage | 655 |
ExternalDocumentID | oai_doaj_org_article_52d90300187d4022b0baaa52ce2abb81 10_1515_spma_2023_0113 10_1515_spma_2023_0113121 |
GroupedDBID | 5VS AAFWJ ABFKT ADBBV AFBDD AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV EBS GROUPED_DOAJ KQ8 M48 M~E OK1 QD8 SLJYH AAYXX CITATION |
ID | FETCH-LOGICAL-c395t-26d90aee4ba24a4edd1c15e1ab5085cc3eb856ed9152cd8bf0d2fe8c71ba600e3 |
IEDL.DBID | M48 |
ISSN | 2300-7451 |
IngestDate | Wed Aug 27 01:28:59 EDT 2025 Tue Jul 01 03:10:35 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Sat Sep 06 16:58:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-26d90aee4ba24a4edd1c15e1ab5085cc3eb856ed9152cd8bf0d2fe8c71ba600e3 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/spma-2023-0113 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_52d90300187d4022b0baaa52ce2abb81 crossref_citationtrail_10_1515_spma_2023_0113 crossref_primary_10_1515_spma_2023_0113 walterdegruyter_journals_10_1515_spma_2023_0113121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-24 |
PublicationDateYYYYMMDD | 2024-02-24 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | Special matrices |
PublicationYear | 2024 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2024022413112489445_j_spma-2023-0113_ref_017 2024022413112489445_j_spma-2023-0113_ref_018 2024022413112489445_j_spma-2023-0113_ref_019 2024022413112489445_j_spma-2023-0113_ref_031 2024022413112489445_j_spma-2023-0113_ref_010 2024022413112489445_j_spma-2023-0113_ref_032 2024022413112489445_j_spma-2023-0113_ref_011 2024022413112489445_j_spma-2023-0113_ref_033 2024022413112489445_j_spma-2023-0113_ref_012 2024022413112489445_j_spma-2023-0113_ref_034 2024022413112489445_j_spma-2023-0113_ref_013 2024022413112489445_j_spma-2023-0113_ref_035 2024022413112489445_j_spma-2023-0113_ref_014 2024022413112489445_j_spma-2023-0113_ref_036 2024022413112489445_j_spma-2023-0113_ref_015 2024022413112489445_j_spma-2023-0113_ref_037 2024022413112489445_j_spma-2023-0113_ref_016 2024022413112489445_j_spma-2023-0113_ref_038 2024022413112489445_j_spma-2023-0113_ref_006 2024022413112489445_j_spma-2023-0113_ref_028 2024022413112489445_j_spma-2023-0113_ref_007 2024022413112489445_j_spma-2023-0113_ref_029 2024022413112489445_j_spma-2023-0113_ref_008 2024022413112489445_j_spma-2023-0113_ref_009 2024022413112489445_j_spma-2023-0113_ref_020 2024022413112489445_j_spma-2023-0113_ref_021 2024022413112489445_j_spma-2023-0113_ref_022 2024022413112489445_j_spma-2023-0113_ref_001 2024022413112489445_j_spma-2023-0113_ref_023 2024022413112489445_j_spma-2023-0113_ref_002 2024022413112489445_j_spma-2023-0113_ref_024 2024022413112489445_j_spma-2023-0113_ref_003 2024022413112489445_j_spma-2023-0113_ref_025 2024022413112489445_j_spma-2023-0113_ref_004 2024022413112489445_j_spma-2023-0113_ref_026 2024022413112489445_j_spma-2023-0113_ref_005 2024022413112489445_j_spma-2023-0113_ref_027 2024022413112489445_j_spma-2023-0113_ref_030 |
References_xml | – ident: 2024022413112489445_j_spma-2023-0113_ref_011 – ident: 2024022413112489445_j_spma-2023-0113_ref_028 – ident: 2024022413112489445_j_spma-2023-0113_ref_021 doi: 10.1145/2582112.2582133 – ident: 2024022413112489445_j_spma-2023-0113_ref_003 – ident: 2024022413112489445_j_spma-2023-0113_ref_017 doi: 10.1016/j.disc.2007.03.077 – ident: 2024022413112489445_j_spma-2023-0113_ref_023 doi: 10.1046/j.1461-0248.2001.00202.x – ident: 2024022413112489445_j_spma-2023-0113_ref_026 doi: 10.1590/S0101-82052008000200005 – ident: 2024022413112489445_j_spma-2023-0113_ref_022 doi: 10.1016/j.laa.2015.02.005 – ident: 2024022413112489445_j_spma-2023-0113_ref_038 doi: 10.1086/628302 – ident: 2024022413112489445_j_spma-2023-0113_ref_018 doi: 10.1016/j.laa.2004.04.017 – ident: 2024022413112489445_j_spma-2023-0113_ref_008 doi: 10.1016/0097-3165(77)90051-6 – ident: 2024022413112489445_j_spma-2023-0113_ref_004 doi: 10.1007/978-3-031-21460-8_3 – ident: 2024022413112489445_j_spma-2023-0113_ref_015 doi: 10.1016/j.laa.2008.10.015 – ident: 2024022413112489445_j_spma-2023-0113_ref_019 doi: 10.1007/s10801-008-0155-y – ident: 2024022413112489445_j_spma-2023-0113_ref_033 doi: 10.1016/j.laa.2010.09.042 – ident: 2024022413112489445_j_spma-2023-0113_ref_005 doi: 10.1007/s44146-024-00152-8 – ident: 2024022413112489445_j_spma-2023-0113_ref_016 doi: 10.1007/s12532-015-0097-z – ident: 2024022413112489445_j_spma-2023-0113_ref_031 doi: 10.1201/9781420064254 – ident: 2024022413112489445_j_spma-2023-0113_ref_032 doi: 10.4169/amer.math.monthly.121.03.244 – ident: 2024022413112489445_j_spma-2023-0113_ref_029 doi: 10.1016/j.laa.2016.01.035 – ident: 2024022413112489445_j_spma-2023-0113_ref_013 doi: 10.1080/10586458.1999.10504406 – ident: 2024022413112489445_j_spma-2023-0113_ref_037 doi: 10.1086/628246 – ident: 2024022413112489445_j_spma-2023-0113_ref_027 doi: 10.1511/2013.101.92 – ident: 2024022413112489445_j_spma-2023-0113_ref_009 doi: 10.1016/0095-8956(77)90010-7 – ident: 2024022413112489445_j_spma-2023-0113_ref_002 doi: 10.1007/s00454-003-2850-8 – ident: 2024022413112489445_j_spma-2023-0113_ref_030 doi: 10.1006/jmaa.1998.5970 – ident: 2024022413112489445_j_spma-2023-0113_ref_020 – ident: 2024022413112489445_j_spma-2023-0113_ref_024 doi: 10.1137/0134050 – ident: 2024022413112489445_j_spma-2023-0113_ref_007 doi: 10.1016/0024-3795(76)90013-6 – ident: 2024022413112489445_j_spma-2023-0113_ref_025 doi: 10.1002/(SICI)1099-1506(199811/12)5:6<475::AID-NLA155>3.3.CO;2-X – ident: 2024022413112489445_j_spma-2023-0113_ref_014 doi: 10.1016/j.laa.2007.09.028 – ident: 2024022413112489445_j_spma-2023-0113_ref_036 doi: 10.1090/pspum/062.2/1492542 – ident: 2024022413112489445_j_spma-2023-0113_ref_001 doi: 10.1137/050639831 – ident: 2024022413112489445_j_spma-2023-0113_ref_012 doi: 10.1515/spma-2022-0173 – ident: 2024022413112489445_j_spma-2023-0113_ref_010 doi: 10.1016/0097-3165(77)90008-5 – ident: 2024022413112489445_j_spma-2023-0113_ref_006 doi: 10.1007/s44146-024-00153-7 – ident: 2024022413112489445_j_spma-2023-0113_ref_034 doi: 10.1007/BF01313442 – ident: 2024022413112489445_j_spma-2023-0113_ref_035 doi: 10.2307/1907805 |
SSID | ssj0001542522 |
Score | 2.2887015 |
Snippet | The geometry of the compact convex set of all
doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active... The geometry of the compact convex set of all n × n n\times n doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been... The geometry of the compact convex set of all n×nn\times n doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an... |
SourceID | doaj crossref walterdegruyter |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 635 |
SubjectTerms | 15B51 46B20 47B10 52B12 Birkhoff polytope diameter Doubly stochastic matrices norms operator norm Schatten schatten p-norms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journal Collection dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJ3soPrG-yEHxFJrd7LbJ0YpShHqy0Nuyj1kV2ya0KdJ_72ySlioUL16TYTc7M2HmY2e-IeTGMBDKUBf2EiFC7uuoEoPAFcGGix0XJi67XIcv3cGIP4_FeGvUl68Jq-iBK8V1BLMpOqKfHWcR6zAdaaWUYH6QldZl0zWL0mgLTFX9weiLjNUsjRizO4t8qkI_KxzBM41_RKGSrL9JWl_lBbWFt_lyVawvRMs483RAWnWCGNxXH3ZI9mB2RJrDDbvq4pjcom0DtOvUl7IEmQvwXdD_mH--Z84FeTZZFVkOJ2T09Pj6MAjrcQehiVNRhKyLJ1UAXCvGFQdrqaECqNKYRAljYtCJ6IJNMeQam2gXWeYgMT2qFaYtEJ-SxiybwRkJLAZlaxLhIlDcRU5xo6nRDozVAEnUJuH6-NLUXOB-JMVEekyA6pJeXdKrS3p1tcndRj6vWDB2Sva9NjdSnr26fIA2lbVN5V82bRP2yxay_rMWO7aljJ7_x84XZB_X5GXPOr8kjWK-hCvMOgp9XTrYNxmO1U8 priority: 102 providerName: Directory of Open Access Journals |
Title | The diameter of the Birkhoff polytope |
URI | https://www.degruyter.com/doi/10.1515/spma-2023-0113 https://doaj.org/article/52d90300187d4022b0baaa52ce2abb81 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5EL3oQn1gfJQfFUzS72W23BxErFhHqyUJvYR-zKtamphHtv3d2m1Z8gbeQLEnmscx8zOx8hBwaBkIZ6uKmFCLmvo9KGgSuCDZc6rgwaTjl2r1tXPf4TV_0P_ufKgWOf4V2nk-qVwxO3l8m57jhzwJ7DxWn49Gzij0NOOJiT2C7hFGp4YFYt0r1pyeG0TtDUQGT7iRuckGrGY4_X_ElRoVR_itk9S2Ury3cF6-TclYuDVGos0ZWq_Qxupjae50swHCDrHTns1fHm-QILR-h1Z99o0uUuwifRe3H4ukhdy4a5YNJiSJukV7n6u7yOq7IEGKTtkQZs4ZtJQqAa8W44mAtNVQAVRpTLGFMClqKBtgWBmRjpXaJZQ6kaVKtMKmBdJssDvMh7JDIYsi2RgqXgOIucYobTY12YKwGkEmNxDPxM1NNCveEFYPMIwZUV-bVlXl1ZV5dNXI8Xz-azsj4c2Xba3O-ys-2Djfy4j6rtkomGEqaBrZAi-iW6UQrpVAqYEprSWuEfbNFNnObPz5LGd399z_ukWW85uHYOt8ni2XxCgeYeJS6HgB7PfjVBzlj1ik |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTyMxDLagHBYOCNhdUXaBOYD2NOokk5TpERBQHoXDgsQtysMpiLZTtVOt-PfrTIeBXcSFa-JoYjuR7Yz9GWDPcpTaMh8fZFLGIuRRZZYCVwo2fOqFtGlZ5dq7bnfvxMW9vH9TCxPSKh32J7PnYo6Q2nK5nYWHshprgCxwazoe6jh0_qZQmKWth2I4WISlNnn_vAFLh92z3zevLy2SziXnFWLj-9X_WKQSuH8FVv-UP6vrnbyxOadrsFo5i9HhXLvrsICjDVjp1Uir06-wT3qOSMfDkNYS5T6iuejocfL0kHsfjfPBc5GP8RvcnZ7cHnfjqvVBbNOOLGLedp1EIwqjudACnWOWSWTakEMlrU3RZLKNrkPm17rM-MRxj5k9YEaTC4Ppd2iM8hFuQuTIQDubSZ-gFj7xWljDrPFonUHMkibEL-wrW-GCh_YUAxXiAxKXCuJSQVwqiKsJv2r68RwR40PKoyDNmiogWZcD-aSvqouhJCdO07I3oKNYlpvEaK2JK-TamIw1gf-nC1XdsukHn2WcbX1m0S586d72rtTV-fXlD1imKVHWrouf0CgmM9wm76MwO9Xx-gv_5Nhh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61i4TKAdHSqgulzaEVp2hjxw7eIxS22we0EiD1ZvkxpgjYRLtZIf4942wIhYpLr_FYyXxja2ac8TcAHx1HaRwL6Y6SMhWxjko5Slwp2Qh5ENLlzS3Xw6NifCq-_ZZ31YSztqzS49l0flMvGFIHvnTzeFDWcQ2QBx7MqiuTxs7flAqzfFD58ByWimLIVQ-Wdsdfjn_eH7RIWpact4SN_05-4JAa3v4VWL1u_lV3H_KXyxmtwWobKya7C-O-hGc4eQUrhx3R6mwdPpGZEzLxVaxqScqQ0Fiydz69-FOGkFTl5U1dVvgaTkcHJ5_Hadv5IHX5UNYpL_wwM4jCGi6MQO-ZYxKZsRRPSedytEoW6IfkfZ1XNmSeB1Ruh1lDEQzmb6A3KSf4FhJP_tk7JUOGRoQsGOEsczag8xZRZX1I79TXrqUFj90pLnVMDwguHeHSES4d4erDdidfLQgxnpTci2h2UpHIunlQTs90uy-05KRp3rQG9JTKcptZYwxphdxYq1gf-CNb6HaTzZ54LeNs438mfYDlX_sj_ePr0fdNeEEjorm5Lt5Br57OcYtij9q-b1fXLeL-15A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+diameter+of+the+Birkhoff+polytope&rft.jtitle=Special+matrices&rft.au=Bouthat%2C+Ludovick&rft.au=Mashreghi%2C+Javad&rft.au=Morneau-Gu%C3%A9rin%2C+Fr%C3%A9d%C3%A9ric&rft.date=2024-02-24&rft.issn=2300-7451&rft.eissn=2300-7451&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1515%2Fspma-2023-0113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_spma_2023_0113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2300-7451&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2300-7451&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2300-7451&client=summon |