The diameter of the Birkhoff polytope

The geometry of the compact convex set of all doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms...

Full description

Saved in:
Bibliographic Details
Published inSpecial matrices Vol. 12; no. 1; pp. 635 - 655
Main Authors Bouthat, Ludovick, Mashreghi, Javad, Morneau-Guérin, Frédéric
Format Journal Article
LanguageEnglish
Published De Gruyter 24.02.2024
Subjects
Online AccessGet full text
ISSN2300-7451
2300-7451
DOI10.1515/spma-2023-0113

Cover

Abstract The geometry of the compact convex set of all doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms from to and the Schatten -norms, both for the range , have only recently been studied in depth. In this article, we continue in this vein by determining the diameter of the Birkhoff polytope with respect to the metrics induced by the aforementioned matrix norms.
AbstractList The geometry of the compact convex set of all n×nn\times n doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms from ℓnp{\ell }_{n}^{p} to ℓnp{\ell }_{n}^{p} and the Schatten pp-norms, both for the range 1≤p≤∞1\le p\le \infty , have only recently been studied in depth. In this article, we continue in this vein by determining the diameter of the Birkhoff polytope with respect to the metrics induced by the aforementioned matrix norms.
The geometry of the compact convex set of all n × n n\times n doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms from ℓ n p {\ell }_{n}^{p} to ℓ n p {\ell }_{n}^{p} and the Schatten p p -norms, both for the range 1 ≤ p ≤ ∞ 1\le p\le \infty , have only recently been studied in depth. In this article, we continue in this vein by determining the diameter of the Birkhoff polytope with respect to the metrics induced by the aforementioned matrix norms.
The geometry of the compact convex set of all doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms from to and the Schatten -norms, both for the range , have only recently been studied in depth. In this article, we continue in this vein by determining the diameter of the Birkhoff polytope with respect to the metrics induced by the aforementioned matrix norms.
Author Morneau-Guérin, Frédéric
Bouthat, Ludovick
Mashreghi, Javad
Author_xml – sequence: 1
  givenname: Ludovick
  surname: Bouthat
  fullname: Bouthat, Ludovick
  email: ludovick.bouthat.1@ulaval.ca
  organization: Département de mathématiques et de statistique, Université Laval, Québec, GV 0A6, QC, Canada
– sequence: 2
  givenname: Javad
  surname: Mashreghi
  fullname: Mashreghi, Javad
  email: javad.mashreghi@mat.ulaval.ca
  organization: Département de mathématiques et de statistique, Université Laval, Québec, GV 0A6, QC, Canada
– sequence: 3
  givenname: Frédéric
  surname: Morneau-Guérin
  fullname: Morneau-Guérin, Frédéric
  email: frederic.morneau-guerin@teluq.ca
  organization: Département Éducation, Université TÉLUQ, Québec, GK 9H6, QC, Canada
BookMark eNp1kM9PwjAUxxuDiYhcPe_icdjXrTCOSvxBQuIFz81r-wbFsS7diOG_txNNjAmn931NPt-2n2s2qH1NjN0Cn4AEed82e0wFF1nKAbILNhQZ5-kslzD4k6_YuG13nHOQuZBCDNndekuJdbinjkLiy6SL-6MLH1tflknjq2PnG7phlyVWLY1_5oi9Pz-tF6_p6u1luXhYpSabyy4VUzvnSJRrFDnmZC0YkASoJS-kMRnpQk7JzkEKYwtdcitKKswMNE45p2zElqde63GnmuD2GI7Ko1PfBz5sFIbOmYqUFPGu-C8oZjbnQmiuETH2kkCtC4hd-anLBN-2gUplXIed83UX0FUKuOrNqd6c6s2p3lzEJv-w32ecBeYn4BOr6NDSJhyOMaidP4Q62joDgoDsC__chSA
CitedBy_id crossref_primary_10_1515_spma_2024_0012
crossref_primary_10_1515_spma_2025_0034
crossref_primary_10_1007_s44146_024_00153_7
crossref_primary_10_1007_s43670_024_00088_8
Cites_doi 10.1145/2582112.2582133
10.1016/j.disc.2007.03.077
10.1046/j.1461-0248.2001.00202.x
10.1590/S0101-82052008000200005
10.1016/j.laa.2015.02.005
10.1086/628302
10.1016/j.laa.2004.04.017
10.1016/0097-3165(77)90051-6
10.1007/978-3-031-21460-8_3
10.1016/j.laa.2008.10.015
10.1007/s10801-008-0155-y
10.1016/j.laa.2010.09.042
10.1007/s44146-024-00152-8
10.1007/s12532-015-0097-z
10.1201/9781420064254
10.4169/amer.math.monthly.121.03.244
10.1016/j.laa.2016.01.035
10.1080/10586458.1999.10504406
10.1086/628246
10.1511/2013.101.92
10.1016/0095-8956(77)90010-7
10.1007/s00454-003-2850-8
10.1006/jmaa.1998.5970
10.1137/0134050
10.1016/0024-3795(76)90013-6
10.1002/(SICI)1099-1506(199811/12)5:6<475::AID-NLA155>3.3.CO;2-X
10.1016/j.laa.2007.09.028
10.1090/pspum/062.2/1492542
10.1137/050639831
10.1515/spma-2022-0173
10.1016/0097-3165(77)90008-5
10.1007/s44146-024-00153-7
10.1007/BF01313442
10.2307/1907805
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/spma-2023-0113
DatabaseName CrossRef
DOAJ Directory of Open Access Journal Collection
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2300-7451
EndPage 655
ExternalDocumentID oai_doaj_org_article_52d90300187d4022b0baaa52ce2abb81
10_1515_spma_2023_0113
10_1515_spma_2023_0113121
GroupedDBID 5VS
AAFWJ
ABFKT
ADBBV
AFBDD
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
EBS
GROUPED_DOAJ
KQ8
M48
M~E
OK1
QD8
SLJYH
AAYXX
CITATION
ID FETCH-LOGICAL-c395t-26d90aee4ba24a4edd1c15e1ab5085cc3eb856ed9152cd8bf0d2fe8c71ba600e3
IEDL.DBID M48
ISSN 2300-7451
IngestDate Wed Aug 27 01:28:59 EDT 2025
Tue Jul 01 03:10:35 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Sat Sep 06 16:58:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-26d90aee4ba24a4edd1c15e1ab5085cc3eb856ed9152cd8bf0d2fe8c71ba600e3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1515/spma-2023-0113
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_52d90300187d4022b0baaa52ce2abb81
crossref_citationtrail_10_1515_spma_2023_0113
crossref_primary_10_1515_spma_2023_0113
walterdegruyter_journals_10_1515_spma_2023_0113121
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-24
PublicationDateYYYYMMDD 2024-02-24
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-24
  day: 24
PublicationDecade 2020
PublicationTitle Special matrices
PublicationYear 2024
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2024022413112489445_j_spma-2023-0113_ref_017
2024022413112489445_j_spma-2023-0113_ref_018
2024022413112489445_j_spma-2023-0113_ref_019
2024022413112489445_j_spma-2023-0113_ref_031
2024022413112489445_j_spma-2023-0113_ref_010
2024022413112489445_j_spma-2023-0113_ref_032
2024022413112489445_j_spma-2023-0113_ref_011
2024022413112489445_j_spma-2023-0113_ref_033
2024022413112489445_j_spma-2023-0113_ref_012
2024022413112489445_j_spma-2023-0113_ref_034
2024022413112489445_j_spma-2023-0113_ref_013
2024022413112489445_j_spma-2023-0113_ref_035
2024022413112489445_j_spma-2023-0113_ref_014
2024022413112489445_j_spma-2023-0113_ref_036
2024022413112489445_j_spma-2023-0113_ref_015
2024022413112489445_j_spma-2023-0113_ref_037
2024022413112489445_j_spma-2023-0113_ref_016
2024022413112489445_j_spma-2023-0113_ref_038
2024022413112489445_j_spma-2023-0113_ref_006
2024022413112489445_j_spma-2023-0113_ref_028
2024022413112489445_j_spma-2023-0113_ref_007
2024022413112489445_j_spma-2023-0113_ref_029
2024022413112489445_j_spma-2023-0113_ref_008
2024022413112489445_j_spma-2023-0113_ref_009
2024022413112489445_j_spma-2023-0113_ref_020
2024022413112489445_j_spma-2023-0113_ref_021
2024022413112489445_j_spma-2023-0113_ref_022
2024022413112489445_j_spma-2023-0113_ref_001
2024022413112489445_j_spma-2023-0113_ref_023
2024022413112489445_j_spma-2023-0113_ref_002
2024022413112489445_j_spma-2023-0113_ref_024
2024022413112489445_j_spma-2023-0113_ref_003
2024022413112489445_j_spma-2023-0113_ref_025
2024022413112489445_j_spma-2023-0113_ref_004
2024022413112489445_j_spma-2023-0113_ref_026
2024022413112489445_j_spma-2023-0113_ref_005
2024022413112489445_j_spma-2023-0113_ref_027
2024022413112489445_j_spma-2023-0113_ref_030
References_xml – ident: 2024022413112489445_j_spma-2023-0113_ref_011
– ident: 2024022413112489445_j_spma-2023-0113_ref_028
– ident: 2024022413112489445_j_spma-2023-0113_ref_021
  doi: 10.1145/2582112.2582133
– ident: 2024022413112489445_j_spma-2023-0113_ref_003
– ident: 2024022413112489445_j_spma-2023-0113_ref_017
  doi: 10.1016/j.disc.2007.03.077
– ident: 2024022413112489445_j_spma-2023-0113_ref_023
  doi: 10.1046/j.1461-0248.2001.00202.x
– ident: 2024022413112489445_j_spma-2023-0113_ref_026
  doi: 10.1590/S0101-82052008000200005
– ident: 2024022413112489445_j_spma-2023-0113_ref_022
  doi: 10.1016/j.laa.2015.02.005
– ident: 2024022413112489445_j_spma-2023-0113_ref_038
  doi: 10.1086/628302
– ident: 2024022413112489445_j_spma-2023-0113_ref_018
  doi: 10.1016/j.laa.2004.04.017
– ident: 2024022413112489445_j_spma-2023-0113_ref_008
  doi: 10.1016/0097-3165(77)90051-6
– ident: 2024022413112489445_j_spma-2023-0113_ref_004
  doi: 10.1007/978-3-031-21460-8_3
– ident: 2024022413112489445_j_spma-2023-0113_ref_015
  doi: 10.1016/j.laa.2008.10.015
– ident: 2024022413112489445_j_spma-2023-0113_ref_019
  doi: 10.1007/s10801-008-0155-y
– ident: 2024022413112489445_j_spma-2023-0113_ref_033
  doi: 10.1016/j.laa.2010.09.042
– ident: 2024022413112489445_j_spma-2023-0113_ref_005
  doi: 10.1007/s44146-024-00152-8
– ident: 2024022413112489445_j_spma-2023-0113_ref_016
  doi: 10.1007/s12532-015-0097-z
– ident: 2024022413112489445_j_spma-2023-0113_ref_031
  doi: 10.1201/9781420064254
– ident: 2024022413112489445_j_spma-2023-0113_ref_032
  doi: 10.4169/amer.math.monthly.121.03.244
– ident: 2024022413112489445_j_spma-2023-0113_ref_029
  doi: 10.1016/j.laa.2016.01.035
– ident: 2024022413112489445_j_spma-2023-0113_ref_013
  doi: 10.1080/10586458.1999.10504406
– ident: 2024022413112489445_j_spma-2023-0113_ref_037
  doi: 10.1086/628246
– ident: 2024022413112489445_j_spma-2023-0113_ref_027
  doi: 10.1511/2013.101.92
– ident: 2024022413112489445_j_spma-2023-0113_ref_009
  doi: 10.1016/0095-8956(77)90010-7
– ident: 2024022413112489445_j_spma-2023-0113_ref_002
  doi: 10.1007/s00454-003-2850-8
– ident: 2024022413112489445_j_spma-2023-0113_ref_030
  doi: 10.1006/jmaa.1998.5970
– ident: 2024022413112489445_j_spma-2023-0113_ref_020
– ident: 2024022413112489445_j_spma-2023-0113_ref_024
  doi: 10.1137/0134050
– ident: 2024022413112489445_j_spma-2023-0113_ref_007
  doi: 10.1016/0024-3795(76)90013-6
– ident: 2024022413112489445_j_spma-2023-0113_ref_025
  doi: 10.1002/(SICI)1099-1506(199811/12)5:6<475::AID-NLA155>3.3.CO;2-X
– ident: 2024022413112489445_j_spma-2023-0113_ref_014
  doi: 10.1016/j.laa.2007.09.028
– ident: 2024022413112489445_j_spma-2023-0113_ref_036
  doi: 10.1090/pspum/062.2/1492542
– ident: 2024022413112489445_j_spma-2023-0113_ref_001
  doi: 10.1137/050639831
– ident: 2024022413112489445_j_spma-2023-0113_ref_012
  doi: 10.1515/spma-2022-0173
– ident: 2024022413112489445_j_spma-2023-0113_ref_010
  doi: 10.1016/0097-3165(77)90008-5
– ident: 2024022413112489445_j_spma-2023-0113_ref_006
  doi: 10.1007/s44146-024-00153-7
– ident: 2024022413112489445_j_spma-2023-0113_ref_034
  doi: 10.1007/BF01313442
– ident: 2024022413112489445_j_spma-2023-0113_ref_035
  doi: 10.2307/1907805
SSID ssj0001542522
Score 2.2887015
Snippet The geometry of the compact convex set of all doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active...
The geometry of the compact convex set of all n × n n\times n doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been...
The geometry of the compact convex set of all n×nn\times n doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 635
SubjectTerms 15B51
46B20
47B10
52B12
Birkhoff polytope
diameter
Doubly stochastic matrices
norms
operator norm
Schatten
schatten p-norms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journal Collection
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJ3soPrG-yEHxFJrd7LbJ0YpShHqy0Nuyj1kV2ya0KdJ_72ySlioUL16TYTc7M2HmY2e-IeTGMBDKUBf2EiFC7uuoEoPAFcGGix0XJi67XIcv3cGIP4_FeGvUl68Jq-iBK8V1BLMpOqKfHWcR6zAdaaWUYH6QldZl0zWL0mgLTFX9weiLjNUsjRizO4t8qkI_KxzBM41_RKGSrL9JWl_lBbWFt_lyVawvRMs483RAWnWCGNxXH3ZI9mB2RJrDDbvq4pjcom0DtOvUl7IEmQvwXdD_mH--Z84FeTZZFVkOJ2T09Pj6MAjrcQehiVNRhKyLJ1UAXCvGFQdrqaECqNKYRAljYtCJ6IJNMeQam2gXWeYgMT2qFaYtEJ-SxiybwRkJLAZlaxLhIlDcRU5xo6nRDozVAEnUJuH6-NLUXOB-JMVEekyA6pJeXdKrS3p1tcndRj6vWDB2Sva9NjdSnr26fIA2lbVN5V82bRP2yxay_rMWO7aljJ7_x84XZB_X5GXPOr8kjWK-hCvMOgp9XTrYNxmO1U8
  priority: 102
  providerName: Directory of Open Access Journals
Title The diameter of the Birkhoff polytope
URI https://www.degruyter.com/doi/10.1515/spma-2023-0113
https://doaj.org/article/52d90300187d4022b0baaa52ce2abb81
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5EL3oQn1gfJQfFUzS72W23BxErFhHqyUJvYR-zKtamphHtv3d2m1Z8gbeQLEnmscx8zOx8hBwaBkIZ6uKmFCLmvo9KGgSuCDZc6rgwaTjl2r1tXPf4TV_0P_ufKgWOf4V2nk-qVwxO3l8m57jhzwJ7DxWn49Gzij0NOOJiT2C7hFGp4YFYt0r1pyeG0TtDUQGT7iRuckGrGY4_X_ElRoVR_itk9S2Ury3cF6-TclYuDVGos0ZWq_Qxupjae50swHCDrHTns1fHm-QILR-h1Z99o0uUuwifRe3H4ukhdy4a5YNJiSJukV7n6u7yOq7IEGKTtkQZs4ZtJQqAa8W44mAtNVQAVRpTLGFMClqKBtgWBmRjpXaJZQ6kaVKtMKmBdJssDvMh7JDIYsi2RgqXgOIucYobTY12YKwGkEmNxDPxM1NNCveEFYPMIwZUV-bVlXl1ZV5dNXI8Xz-azsj4c2Xba3O-ys-2Djfy4j6rtkomGEqaBrZAi-iW6UQrpVAqYEprSWuEfbNFNnObPz5LGd399z_ukWW85uHYOt8ni2XxCgeYeJS6HgB7PfjVBzlj1ik
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTyMxDLagHBYOCNhdUXaBOYD2NOokk5TpERBQHoXDgsQtysMpiLZTtVOt-PfrTIeBXcSFa-JoYjuR7Yz9GWDPcpTaMh8fZFLGIuRRZZYCVwo2fOqFtGlZ5dq7bnfvxMW9vH9TCxPSKh32J7PnYo6Q2nK5nYWHshprgCxwazoe6jh0_qZQmKWth2I4WISlNnn_vAFLh92z3zevLy2SziXnFWLj-9X_WKQSuH8FVv-UP6vrnbyxOadrsFo5i9HhXLvrsICjDVjp1Uir06-wT3qOSMfDkNYS5T6iuejocfL0kHsfjfPBc5GP8RvcnZ7cHnfjqvVBbNOOLGLedp1EIwqjudACnWOWSWTakEMlrU3RZLKNrkPm17rM-MRxj5k9YEaTC4Ppd2iM8hFuQuTIQDubSZ-gFj7xWljDrPFonUHMkibEL-wrW-GCh_YUAxXiAxKXCuJSQVwqiKsJv2r68RwR40PKoyDNmiogWZcD-aSvqouhJCdO07I3oKNYlpvEaK2JK-TamIw1gf-nC1XdsukHn2WcbX1m0S586d72rtTV-fXlD1imKVHWrouf0CgmM9wm76MwO9Xx-gv_5Nhh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61i4TKAdHSqgulzaEVp2hjxw7eIxS22we0EiD1ZvkxpgjYRLtZIf4942wIhYpLr_FYyXxja2ac8TcAHx1HaRwL6Y6SMhWxjko5Slwp2Qh5ENLlzS3Xw6NifCq-_ZZ31YSztqzS49l0flMvGFIHvnTzeFDWcQ2QBx7MqiuTxs7flAqzfFD58ByWimLIVQ-Wdsdfjn_eH7RIWpact4SN_05-4JAa3v4VWL1u_lV3H_KXyxmtwWobKya7C-O-hGc4eQUrhx3R6mwdPpGZEzLxVaxqScqQ0Fiydz69-FOGkFTl5U1dVvgaTkcHJ5_Hadv5IHX5UNYpL_wwM4jCGi6MQO-ZYxKZsRRPSedytEoW6IfkfZ1XNmSeB1Ruh1lDEQzmb6A3KSf4FhJP_tk7JUOGRoQsGOEsczag8xZRZX1I79TXrqUFj90pLnVMDwguHeHSES4d4erDdidfLQgxnpTci2h2UpHIunlQTs90uy-05KRp3rQG9JTKcptZYwxphdxYq1gf-CNb6HaTzZ54LeNs438mfYDlX_sj_ePr0fdNeEEjorm5Lt5Br57OcYtij9q-b1fXLeL-15A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+diameter+of+the+Birkhoff+polytope&rft.jtitle=Special+matrices&rft.au=Bouthat%2C+Ludovick&rft.au=Mashreghi%2C+Javad&rft.au=Morneau-Gu%C3%A9rin%2C+Fr%C3%A9d%C3%A9ric&rft.date=2024-02-24&rft.issn=2300-7451&rft.eissn=2300-7451&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1515%2Fspma-2023-0113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_spma_2023_0113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2300-7451&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2300-7451&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2300-7451&client=summon