Self-calcifying lipid nanocarrier for bone tissue engineering

A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoem...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1866; no. 2; p. 130047
Main Authors Chaiin, Poowadon, Yostaworakul, Jakarwan, Rungnim, Chompoonut, Khemthong, Pongtanawat, Yata, Teerapong, Boonrungsiman, Suwimon
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed. We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20. The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability. [Display omitted] •A dual purpose lipid nanoparticles was successfully fabricated with self-calcifying ability and function as a carrier of lipophilic compounds.•Nano emulsion with a specific surface charge can attach Ca2+ and PO43−.•Lipid NPs show self-calcifying ability in simulated body fluid.•Lipid NPs encapsulate vitamin D3 with high encapsulation efficiency (90.70 ± 0.82%) and a slow release profile.•Lipid NPs adhere to and facilitate deposition of calcium phosphate on collagen scaffolds.
AbstractList A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed. We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20. The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability.
A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed.We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20.The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability.
A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed.BACKGROUNDA nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed.We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20.METHODSWe employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20.The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability.RESULTSThe LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability.
A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed. We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20. The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability. [Display omitted] •A dual purpose lipid nanoparticles was successfully fabricated with self-calcifying ability and function as a carrier of lipophilic compounds.•Nano emulsion with a specific surface charge can attach Ca2+ and PO43−.•Lipid NPs show self-calcifying ability in simulated body fluid.•Lipid NPs encapsulate vitamin D3 with high encapsulation efficiency (90.70 ± 0.82%) and a slow release profile.•Lipid NPs adhere to and facilitate deposition of calcium phosphate on collagen scaffolds.
ArticleNumber 130047
Author Boonrungsiman, Suwimon
Rungnim, Chompoonut
Yostaworakul, Jakarwan
Khemthong, Pongtanawat
Chaiin, Poowadon
Yata, Teerapong
Author_xml – sequence: 1
  givenname: Poowadon
  surname: Chaiin
  fullname: Chaiin, Poowadon
  organization: National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
– sequence: 2
  givenname: Jakarwan
  surname: Yostaworakul
  fullname: Yostaworakul, Jakarwan
  organization: National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
– sequence: 3
  givenname: Chompoonut
  surname: Rungnim
  fullname: Rungnim, Chompoonut
  organization: NSTDA Supercomputer Center (ThaiSC), National Electronics and Computer Technology Center (NECTEC), Pathumthani 12120, Thailand
– sequence: 4
  givenname: Pongtanawat
  surname: Khemthong
  fullname: Khemthong, Pongtanawat
  organization: National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
– sequence: 5
  givenname: Teerapong
  surname: Yata
  fullname: Yata, Teerapong
  organization: Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
– sequence: 6
  givenname: Suwimon
  surname: Boonrungsiman
  fullname: Boonrungsiman, Suwimon
  email: suwimon@nanotec.or.th
  organization: National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34757163$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LxDAQxYMouq7-ByI9euk6-WjaCgoifoHgQT2HJJ0sWbrpmnQF_3u7dPXgQecyh_m9N_DeIdkNXUBCTijMKFB5vpgZo-cYZgwYnVEOIModMqFVyfIKQO6SCXAQuaCyOCCHKS1gmKIu9skBF2VRUskn5PIFW5db3VrvPn2YZ61f-SYLOnRWx-gxZq6LmRl-Z71PaY0ZhrkPiHGgj8ie023C4-2ekre729ebh_zp-f7x5vopt7wu-pxxRAdONNIYV0sNiLLURWmca4yoGAcjC1EPp4qhZMJgDcZUjZUIVGPNp-Rs9F3F7n2NqVdLnyy2rQ7YrZNikktRcsbL_9GilkAZVBv0dIuuzRIbtYp-qeOn-k5nAMQI2NilFNH9IBTUpgS1UGMJalOCGksYZBe_ZNb3uvdd6KP27X_iq1GMQ54fQ_4qWY_BYuMj2l41nf_b4AvH76OZ
CitedBy_id crossref_primary_10_1002_adhm_202203033
crossref_primary_10_3390_biomedicines10123158
crossref_primary_10_1007_s00210_024_03033_7
crossref_primary_10_1016_j_omtn_2023_07_024
crossref_primary_10_1515_biol_2022_0503
Cites_doi 10.1186/1741-7015-9-66
10.1016/j.jds.2012.09.001
10.1016/j.jece.2016.09.015
10.1111/j.1525-1594.2008.00557.x
10.1016/0025-5408(74)90169-X
10.1002/jbm.a.10482
10.1039/C5SM02958A
10.1021/acs.jpca.5b09006
10.1038/bonekey.2013.181
10.1016/j.msec.2016.05.104
10.1063/1.4799888
10.1021/acsami.7b04776
10.2741/1576
10.1159/000061652
10.1016/j.jcis.2019.12.097
10.1016/j.abb.2019.04.003
10.1039/C3CS60451A
10.1016/S0166-1280(98)00553-3
10.1016/j.molmed.2009.07.002
10.1007/s11926-003-0071-z
10.1007/s00894-018-3853-y
10.1016/j.ijpharm.2018.10.008
10.1016/j.stem.2018.01.014
10.1016/j.bbagen.2018.10.005
10.1016/j.jsb.2011.03.014
10.1039/c2cc32279j
10.1016/0022-0248(96)00156-X
10.1002/chem.201405428
10.1038/s41467-019-10761-5
10.1038/boneres.2014.17
10.1142/S1793292012300046
10.1016/j.biopha.2017.11.026
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier B.V.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2021.130047
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 34757163
10_1016_j_bbagen_2021_130047
S0304416521002063
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-23eef0f4d6bbf96a0ee67a57bffdb48230b6549f9682e624be90bb8dc6e01ae93
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri Jul 11 09:45:55 EDT 2025
Fri Jul 11 16:51:45 EDT 2025
Wed Feb 19 02:09:16 EST 2025
Thu Apr 24 22:55:25 EDT 2025
Tue Jul 01 00:22:16 EDT 2025
Fri Feb 23 02:40:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords EE
DI
Nanoemulsion
Calcium phosphate
MV
FT-IR
ACP
LNP
CaP
DFT
Ca2
Collagen
SBF
EDX
Density functional theory
HA
SEM
PO43
Self-calcification
TEM
MCT
Language English
License Copyright © 2021. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-23eef0f4d6bbf96a0ee67a57bffdb48230b6549f9682e624be90bb8dc6e01ae93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34757163
PQID 2596012087
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636473237
proquest_miscellaneous_2596012087
pubmed_primary_34757163
crossref_primary_10_1016_j_bbagen_2021_130047
crossref_citationtrail_10_1016_j_bbagen_2021_130047
elsevier_sciencedirect_doi_10_1016_j_bbagen_2021_130047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-Feb
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Liu, Sun, Yang (bb0125) 2012; 7
Boskey (bb0005) 2013; 2
Oyane, Kim, Furuya, Kokubo, Miyazaki, Nakamura (bb0075) 2003; 65
Rabiee, Shahabadi, Mokhtare, Rabiei, Alvandifar (bb0090) 2016; 4
Eanes (bb0120) 2001; 18
Anderson, Garimella, Tague (bb0035) 2005; 10
Anderson (bb0025) 2003; 5
Dwivedi, Blech, Presser, Garidel (bb0080) 2018; 552
Bertran, Valle, Revilla-López, Rivas, Chaves, Casas, Casanovas, Turon, Puiggalí, Alemán (bb0140) 2015; 21
Mahamid, Sharir, Gur, Zelzer, Addadi, Weiner (bb0135) 2011; 174
Zhao, Yang, Wang, Shu, Wu, Ran, Liu (bb0100) 2018; 24
Plaut, Strzelecka-Kiliszek, Bozycki, Pikula, Buchet, Mebarek, Chadli, Bolean, Simao, Ciancaglini, Magrini, Rosato, Magne, Girard-Egrot, Farquharson, Esener, Millan, Bottini (bb0030) 2019; 667
Gebauer, Kellermeier, Gale, Bergström, Cölfen (bb0130) 2014; 43
Kulkarni, Shaw (bb0085) 2016
Loebel, Burdick (bb0010) 2018; 22
Shen, Lin, Zhu, Zhang, Lu, Liu, Deng, Que, Zhang (bb0060) 2019; 1863
Ye, Luo, Li, Zhuang, Li, Lu, Ding, Tian, Zhou (bb0045) 2016; 68
Boskey, Posner (bb0145) 1974; 9
Dimitriou, Jones, McGonagle, Giannoudis (bb0015) 2011; 9
Bastakoti, Inuoe, Yusa, Liao, Wu, Nakashima, Yamauchi (bb0055) 2012; 48
Abbona, Baronnet (bb0150) 1996; 165
Colaço, Brouri, Méthivier, Valentin, Oudet, El Kirat, Guibert, Landoulsi (bb0155) 2020; 565
Gupta, Eral, Hatton, Doyle (bb0065) 2016; 12
Tomasi, Mennucci, Cancès (bb0115) 1999; 464
Nathanael, Oyane, Nakamura, Sakamaki, Nishida, Kanemoto, Miyaji (bb0160) 2017; 9
Prasada, Lambea, Brara, Shaha, Ja, Ranjanb, Raoc, Kumarc, Mahantd, Khuranae, Iqbalf, Dhamag, Misrih, Prasadi (bb0070) 2018; 97
Venugopal, Low, Choon, Kumar, Ramakrishna (bb0165) 2008; 32
Wang, Tang, Qing, Hong, Zhang (bb0020) 2012; 07
Deschaseaux, Sensébé, Heymann (bb0170) 2009; 15
Deguillard, Pannacci, Creton, Rousseau (bb0110) 2013; 138
Wang, Zhao, Liu, Weir, Zhou, Xu (bb0040) 2014; 2
Meng, Zhang, Ma, Li, Zhang, Liu, Zhang, Hou, Lu (bb0105) 2014; 4
Wang, Hu, Zhang, Zhu, Wang, Li, Wang, Wang, Zhang, Yuan (bb0050) 2019; 10
Lopez-Berganza, Diao, Pamidighantam, Espinosa-Marzal (bb0095) 2015; 119
Ye (10.1016/j.bbagen.2021.130047_bb0045) 2016; 68
Plaut (10.1016/j.bbagen.2021.130047_bb0030) 2019; 667
Gupta (10.1016/j.bbagen.2021.130047_bb0065) 2016; 12
Deguillard (10.1016/j.bbagen.2021.130047_bb0110) 2013; 138
Loebel (10.1016/j.bbagen.2021.130047_bb0010) 2018; 22
Bastakoti (10.1016/j.bbagen.2021.130047_bb0055) 2012; 48
Abbona (10.1016/j.bbagen.2021.130047_bb0150) 1996; 165
Prasada (10.1016/j.bbagen.2021.130047_bb0070) 2018; 97
Zhao (10.1016/j.bbagen.2021.130047_bb0100) 2018; 24
Boskey (10.1016/j.bbagen.2021.130047_bb0145) 1974; 9
Wang (10.1016/j.bbagen.2021.130047_bb0020) 2012; 07
Dwivedi (10.1016/j.bbagen.2021.130047_bb0080) 2018; 552
Zhao (10.1016/j.bbagen.2021.130047_bb0125) 2012; 7
Venugopal (10.1016/j.bbagen.2021.130047_bb0165) 2008; 32
Deschaseaux (10.1016/j.bbagen.2021.130047_bb0170) 2009; 15
Wang (10.1016/j.bbagen.2021.130047_bb0050) 2019; 10
Lopez-Berganza (10.1016/j.bbagen.2021.130047_bb0095) 2015; 119
Wang (10.1016/j.bbagen.2021.130047_bb0040) 2014; 2
Oyane (10.1016/j.bbagen.2021.130047_bb0075) 2003; 65
Dimitriou (10.1016/j.bbagen.2021.130047_bb0015) 2011; 9
Boskey (10.1016/j.bbagen.2021.130047_bb0005) 2013; 2
Nathanael (10.1016/j.bbagen.2021.130047_bb0160) 2017; 9
Anderson (10.1016/j.bbagen.2021.130047_bb0025) 2003; 5
Anderson (10.1016/j.bbagen.2021.130047_bb0035) 2005; 10
Bertran (10.1016/j.bbagen.2021.130047_bb0140) 2015; 21
Kulkarni (10.1016/j.bbagen.2021.130047_bb0085) 2016
Eanes (10.1016/j.bbagen.2021.130047_bb0120) 2001; 18
Colaço (10.1016/j.bbagen.2021.130047_bb0155) 2020; 565
Rabiee (10.1016/j.bbagen.2021.130047_bb0090) 2016; 4
Gebauer (10.1016/j.bbagen.2021.130047_bb0130) 2014; 43
Tomasi (10.1016/j.bbagen.2021.130047_bb0115) 1999; 464
Shen (10.1016/j.bbagen.2021.130047_bb0060) 2019; 1863
Mahamid (10.1016/j.bbagen.2021.130047_bb0135) 2011; 174
Meng (10.1016/j.bbagen.2021.130047_bb0105) 2014; 4
References_xml – volume: 667
  start-page: 14
  year: 2019
  end-page: 21
  ident: bb0030
  article-title: Quantitative atomic force microscopy provides new insight into matrix vesicle mineralization
  publication-title: Arch. Biochem. Biophys.
– volume: 15
  start-page: 417
  year: 2009
  end-page: 429
  ident: bb0170
  article-title: Mechanisms of bone repair and regeneration
  publication-title: Trends Mol. Med.
– volume: 5
  start-page: 222
  year: 2003
  end-page: 226
  ident: bb0025
  article-title: Matrix vesicles and calcification
  publication-title: Curr. Rheumat. Rep.
– volume: 32
  start-page: 388
  year: 2008
  end-page: 397
  ident: bb0165
  article-title: Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration
  publication-title: Artif. Organs
– volume: 174
  start-page: 527
  year: 2011
  end-page: 535
  ident: bb0135
  article-title: Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study
  publication-title: J. Struct. Biol.
– volume: 2
  start-page: 14017
  year: 2014
  ident: bb0040
  article-title: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells
  publication-title: Bone Res.
– volume: 22
  start-page: 325
  year: 2018
  end-page: 339
  ident: bb0010
  article-title: Engineering stem and stromal cell therapies for musculoskeletal tissue repair
  publication-title: Cell Stem Cell
– volume: 119
  start-page: 11591
  year: 2015
  end-page: 11600
  ident: bb0095
  article-title: Ab initio studies of calcium carbonate hydration
  publication-title: J. Phys. Chem. A
– volume: 65
  start-page: 188
  year: 2003
  end-page: 195
  ident: bb0075
  article-title: Preparation and assessment of revised simulated body fluids
  publication-title: J. Biomed. Mater. Res. A
– volume: 68
  start-page: 43
  year: 2016
  end-page: 51
  ident: bb0045
  article-title: Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing
  publication-title: Mater. Sci. Eng. C
– volume: 18
  start-page: 130
  year: 2001
  end-page: 147
  ident: bb0120
  article-title: Amorphous calcium phosphate
  publication-title: Monogr. Oral Sci.
– volume: 07
  start-page: 1230004
  year: 2012
  ident: bb0020
  article-title: Applications of calcium phosphate nanoparticles in porous hard tissue engineering scaffolds
  publication-title: Nano
– volume: 4
  start-page: 4050
  year: 2016
  end-page: 4061
  ident: bb0090
  article-title: Enhancement in permeation and antifouling properties of PVC ultrafiltration membranes with addition of hydrophilic surfactant additives: Tween-20 and Tween-80
  publication-title: J. Environ. Chem. Eng.
– volume: 138
  year: 2013
  ident: bb0110
  article-title: Cations interfacial tension in oil-water-surfactant systems: on the role of intra-molecular forces on interfacial tension values using DPD simulations
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 447
  year: 2013
  ident: bb0005
  article-title: Bone composition: relationship to bone fragility and antiosteoporotic drug effects
  publication-title: BoneKEy Rep.
– start-page: 5
  year: 2016
  end-page: 19
  ident: bb0085
  article-title: Chapter 2 - Surfactants, lipids, and surface chemistry
  publication-title: Essential Chemistry for Formulators of Semisolid and Liquid Dosages
– volume: 9
  start-page: 66
  year: 2011
  ident: bb0015
  article-title: Bone regeneration: current concepts and future directions
  publication-title: BMC Med.
– volume: 24
  start-page: 321
  year: 2018
  ident: bb0100
  article-title: Binding of calcium cations with three different types of oxygen-based functional groups of superplasticizers studied by atomistic simulations
  publication-title: J. Mol. Model.
– volume: 12
  start-page: 2826
  year: 2016
  end-page: 2841
  ident: bb0065
  article-title: Nanoemulsions: formation, properties and applications
  publication-title: Soft Matter
– volume: 552
  start-page: 422
  year: 2018
  end-page: 436
  ident: bb0080
  article-title: Polysorbate degradation in biotherapeutic formulations: identification and discussion of current root causes
  publication-title: Int. J. Pharm.
– volume: 10
  start-page: 822
  year: 2005
  end-page: 837
  ident: bb0035
  article-title: The role of matrix vesicles in growth plate development and biomineralization
  publication-title: Front. Biosci.
– volume: 10
  start-page: 2829
  year: 2019
  ident: bb0050
  article-title: Bioinspired extracellular vesicles embedded with black phosphorus for molecular recognition-guided biomineralization
  publication-title: Nat. Commun.
– volume: 9
  start-page: 22185
  year: 2017
  end-page: 22194
  ident: bb0160
  article-title: In vitro and in vivo analysis of mineralized collagen-based sponges prepared by a plasma- and precursor-assisted biomimetic process
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 2348
  year: 2014
  end-page: 2371
  ident: bb0130
  article-title: Pre-nucleation clusters as solute precursors in crystallisation
  publication-title: Chem. Soc. Rev.
– volume: 165
  start-page: 98
  year: 1996
  end-page: 105
  ident: bb0150
  article-title: A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium
  publication-title: J. Cryst. Growth
– volume: 4
  year: 2014
  ident: bb0105
  article-title: Multi-scale simulation studies on interaction between anionic surfactants and cations interfacial tension in oil-water-surfactant systems: on the role of intra-molecular forces on interfacial tension values using DPD simulations
  publication-title: J. Chem. Physics
– volume: 464
  start-page: 211
  year: 1999
  end-page: 226
  ident: bb0115
  article-title: The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level
  publication-title: J. Mol. Struct. Theo. Chem.
– volume: 21
  start-page: 2537
  year: 2015
  end-page: 2546
  ident: bb0140
  article-title: Synergistic approach to elucidate the incorporation of magnesium ions into hydroxyapatite
  publication-title: Chem. Eur. J.
– volume: 9
  start-page: 907
  year: 1974
  end-page: 916
  ident: bb0145
  article-title: Magnesium stabilization of amorphous calcium phosphate: a kinetic study
  publication-title: Mater. Res. Bull.
– volume: 97
  start-page: 1521
  year: 2018
  end-page: 1537
  ident: bb0070
  article-title: Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world
  publication-title: Biomed. Pharmacother.
– volume: 7
  start-page: 316
  year: 2012
  end-page: 323
  ident: bb0125
  article-title: First detection, characterization, and application of amorphous calcium phosphate in dentistry
  publication-title: J. Dent. Sci.
– volume: 48
  start-page: 6532
  year: 2012
  end-page: 6534
  ident: bb0055
  article-title: A block copolymer micelle template for synthesis of hollow calcium phosphate nanospheres with excellent biocompatibility
  publication-title: Chem. Commun.
– volume: 565
  start-page: 43
  year: 2020
  end-page: 54
  ident: bb0155
  article-title: Calcium phosphate mineralization through homogenous enzymatic catalysis: investigation of the early stages
  publication-title: J. Colloid Interface Sci.
– volume: 1863
  start-page: 167
  year: 2019
  end-page: 181
  ident: bb0060
  article-title: MV-mimicking micelles loaded with PEG-serine-ACP nanoparticles to achieve biomimetic intra/extra fibrillar mineralization of collagen in vitro
  publication-title: Biochim. Biophys. Acta Gen. Subj.
– volume: 9
  start-page: 66
  year: 2011
  ident: 10.1016/j.bbagen.2021.130047_bb0015
  article-title: Bone regeneration: current concepts and future directions
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-9-66
– volume: 7
  start-page: 316
  issue: 4
  year: 2012
  ident: 10.1016/j.bbagen.2021.130047_bb0125
  article-title: First detection, characterization, and application of amorphous calcium phosphate in dentistry
  publication-title: J. Dent. Sci.
  doi: 10.1016/j.jds.2012.09.001
– volume: 4
  start-page: 4050
  issue: 4, Part A
  year: 2016
  ident: 10.1016/j.bbagen.2021.130047_bb0090
  article-title: Enhancement in permeation and antifouling properties of PVC ultrafiltration membranes with addition of hydrophilic surfactant additives: Tween-20 and Tween-80
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2016.09.015
– volume: 32
  start-page: 388
  issue: 5
  year: 2008
  ident: 10.1016/j.bbagen.2021.130047_bb0165
  article-title: Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration
  publication-title: Artif. Organs
  doi: 10.1111/j.1525-1594.2008.00557.x
– volume: 9
  start-page: 907
  issue: 7
  year: 1974
  ident: 10.1016/j.bbagen.2021.130047_bb0145
  article-title: Magnesium stabilization of amorphous calcium phosphate: a kinetic study
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(74)90169-X
– volume: 65
  start-page: 188
  issue: 2
  year: 2003
  ident: 10.1016/j.bbagen.2021.130047_bb0075
  article-title: Preparation and assessment of revised simulated body fluids
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.10482
– volume: 12
  start-page: 2826
  year: 2016
  ident: 10.1016/j.bbagen.2021.130047_bb0065
  article-title: Nanoemulsions: formation, properties and applications
  publication-title: Soft Matter
  doi: 10.1039/C5SM02958A
– volume: 119
  start-page: 11591
  issue: 47
  year: 2015
  ident: 10.1016/j.bbagen.2021.130047_bb0095
  article-title: Ab initio studies of calcium carbonate hydration
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.5b09006
– volume: 2
  start-page: 447
  year: 2013
  ident: 10.1016/j.bbagen.2021.130047_bb0005
  article-title: Bone composition: relationship to bone fragility and antiosteoporotic drug effects
  publication-title: BoneKEy Rep.
  doi: 10.1038/bonekey.2013.181
– volume: 68
  start-page: 43
  year: 2016
  ident: 10.1016/j.bbagen.2021.130047_bb0045
  article-title: Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.05.104
– volume: 138
  year: 2013
  ident: 10.1016/j.bbagen.2021.130047_bb0110
  article-title: Cations interfacial tension in oil-water-surfactant systems: on the role of intra-molecular forces on interfacial tension values using DPD simulations
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4799888
– volume: 9
  start-page: 22185
  issue: 27
  year: 2017
  ident: 10.1016/j.bbagen.2021.130047_bb0160
  article-title: In vitro and in vivo analysis of mineralized collagen-based sponges prepared by a plasma- and precursor-assisted biomimetic process
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04776
– volume: 10
  start-page: 822
  year: 2005
  ident: 10.1016/j.bbagen.2021.130047_bb0035
  article-title: The role of matrix vesicles in growth plate development and biomineralization
  publication-title: Front. Biosci.
  doi: 10.2741/1576
– volume: 18
  start-page: 130
  year: 2001
  ident: 10.1016/j.bbagen.2021.130047_bb0120
  article-title: Amorphous calcium phosphate
  publication-title: Monogr. Oral Sci.
  doi: 10.1159/000061652
– volume: 565
  start-page: 43
  year: 2020
  ident: 10.1016/j.bbagen.2021.130047_bb0155
  article-title: Calcium phosphate mineralization through homogenous enzymatic catalysis: investigation of the early stages
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.12.097
– volume: 667
  start-page: 14
  year: 2019
  ident: 10.1016/j.bbagen.2021.130047_bb0030
  article-title: Quantitative atomic force microscopy provides new insight into matrix vesicle mineralization
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2019.04.003
– volume: 43
  start-page: 2348
  issue: 7
  year: 2014
  ident: 10.1016/j.bbagen.2021.130047_bb0130
  article-title: Pre-nucleation clusters as solute precursors in crystallisation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60451A
– volume: 464
  start-page: 211
  issue: 1
  year: 1999
  ident: 10.1016/j.bbagen.2021.130047_bb0115
  article-title: The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level
  publication-title: J. Mol. Struct. Theo. Chem.
  doi: 10.1016/S0166-1280(98)00553-3
– volume: 4
  year: 2014
  ident: 10.1016/j.bbagen.2021.130047_bb0105
  article-title: Multi-scale simulation studies on interaction between anionic surfactants and cations interfacial tension in oil-water-surfactant systems: on the role of intra-molecular forces on interfacial tension values using DPD simulations
  publication-title: J. Chem. Physics
– volume: 15
  start-page: 417
  issue: 9
  year: 2009
  ident: 10.1016/j.bbagen.2021.130047_bb0170
  article-title: Mechanisms of bone repair and regeneration
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2009.07.002
– volume: 5
  start-page: 222
  issue: 3
  year: 2003
  ident: 10.1016/j.bbagen.2021.130047_bb0025
  article-title: Matrix vesicles and calcification
  publication-title: Curr. Rheumat. Rep.
  doi: 10.1007/s11926-003-0071-z
– volume: 24
  start-page: 321
  issue: 11
  year: 2018
  ident: 10.1016/j.bbagen.2021.130047_bb0100
  article-title: Binding of calcium cations with three different types of oxygen-based functional groups of superplasticizers studied by atomistic simulations
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-018-3853-y
– start-page: 5
  year: 2016
  ident: 10.1016/j.bbagen.2021.130047_bb0085
  article-title: Chapter 2 - Surfactants, lipids, and surface chemistry
– volume: 552
  start-page: 422
  issue: 1
  year: 2018
  ident: 10.1016/j.bbagen.2021.130047_bb0080
  article-title: Polysorbate degradation in biotherapeutic formulations: identification and discussion of current root causes
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.10.008
– volume: 22
  start-page: 325
  issue: 3
  year: 2018
  ident: 10.1016/j.bbagen.2021.130047_bb0010
  article-title: Engineering stem and stromal cell therapies for musculoskeletal tissue repair
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.01.014
– volume: 1863
  start-page: 167
  issue: 1
  year: 2019
  ident: 10.1016/j.bbagen.2021.130047_bb0060
  article-title: MV-mimicking micelles loaded with PEG-serine-ACP nanoparticles to achieve biomimetic intra/extra fibrillar mineralization of collagen in vitro
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2018.10.005
– volume: 174
  start-page: 527
  issue: 3
  year: 2011
  ident: 10.1016/j.bbagen.2021.130047_bb0135
  article-title: Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2011.03.014
– volume: 48
  start-page: 6532
  issue: 52
  year: 2012
  ident: 10.1016/j.bbagen.2021.130047_bb0055
  article-title: A block copolymer micelle template for synthesis of hollow calcium phosphate nanospheres with excellent biocompatibility
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc32279j
– volume: 165
  start-page: 98
  issue: 1
  year: 1996
  ident: 10.1016/j.bbagen.2021.130047_bb0150
  article-title: A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(96)00156-X
– volume: 21
  start-page: 2537
  issue: 6)
  year: 2015
  ident: 10.1016/j.bbagen.2021.130047_bb0140
  article-title: Synergistic approach to elucidate the incorporation of magnesium ions into hydroxyapatite
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201405428
– volume: 10
  start-page: 2829
  issue: 1
  year: 2019
  ident: 10.1016/j.bbagen.2021.130047_bb0050
  article-title: Bioinspired extracellular vesicles embedded with black phosphorus for molecular recognition-guided biomineralization
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10761-5
– volume: 2
  start-page: 14017
  issue: 1
  year: 2014
  ident: 10.1016/j.bbagen.2021.130047_bb0040
  article-title: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells
  publication-title: Bone Res.
  doi: 10.1038/boneres.2014.17
– volume: 07
  start-page: 1230004
  issue: 04
  year: 2012
  ident: 10.1016/j.bbagen.2021.130047_bb0020
  article-title: Applications of calcium phosphate nanoparticles in porous hard tissue engineering scaffolds
  publication-title: Nano
  doi: 10.1142/S1793292012300046
– volume: 97
  start-page: 1521
  year: 2018
  ident: 10.1016/j.bbagen.2021.130047_bb0070
  article-title: Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.11.026
SSID ssj0000595
Score 2.4021604
Snippet A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130047
SubjectTerms active ingredients
body fluids
Bone and Bones - metabolism
bones
Calcification, Physiologic - drug effects
calcium
Calcium phosphate
calcium phosphates
Calcium Phosphates - chemistry
cholecalciferol
Cholecalciferol - chemistry
Collagen
Density functional theory
Drug Carriers - chemistry
emulsifying
Emulsions - chemistry
Humans
lipids
Lipids - chemistry
lipophilicity
nanocarriers
Nanoemulsion
nanoemulsions
Nanoparticles - chemistry
polysorbates
Self-calcification
Tissue Engineering - methods
Title Self-calcifying lipid nanocarrier for bone tissue engineering
URI https://dx.doi.org/10.1016/j.bbagen.2021.130047
https://www.ncbi.nlm.nih.gov/pubmed/34757163
https://www.proquest.com/docview/2596012087
https://www.proquest.com/docview/2636473237
Volume 1866
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LInoR3--lgte4Na-2Bw_LoqyKe1Fhb6FpJ1BZ6qLrwYu_3Zk-FEFd8NpO2vAlmZkwj4-xE2lyyOLE8xR8wpWLNU9CSLlx3iuDHoDOKKJ7OzLDB3U91uMOG7S1MJRW2ej-WqdX2rp50mvQ7E2LondHQT36mKAuomhpqYJdRbTLT9-_0jzQfdB1JEFxkm7L56ocL-fw0FIXVHFW0SITycrP5uk397MyQ5drbLXxH4N-PcV11oFygy3VjJJvG2x50BK4bbLzO5h4jmuQFVUxUzAppkUelGmJ9uuZmOoC9FgD91RCMKvwD-CrO-EWe7i8uB8MecOWwDOZ6BkXEsCHXuXGOZ-YNAQwUaojBD13iuJpzuBlEF_FAoxQDpLQuTjPDIRnKSRymy2U-MddFkQZ-jleCwMyV3nk0lhJQRQdXkCkldtjsgXJZk0rcWK0mNg2Z-zR1tBagtbW0O4x_jlqWrfSmCMftfjbb1vCorafM_K4XS6LmFMIJC3h6fXF4mXPULlw_JeMoZ76UkiU2anX-nO-UkUab5hy_99zO2ArgiooqsTvQ7Ywe36FI_RrZq5bbdwuW-xf3QxHH7cX9b4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5BEKIXRCm0obQ1EtdVzL5sH3pAESgUyAWQuK289qxkFDkRDQf-PTN-EFVqi8TVmY1X36xnZjWPD-BY2RKLNAsix5AJ7VMjshhzYX0I2lIEYArO6F5P7eRO_7o392sw7nthuKyys_2tTW-sdfdk1KE5WlTV6IaTevxnkqeIkqddhw2eTmUGsHF6cTmZrgyyachXWF7wgr6Drinz8p6-Wx6EKk8aZmTmWfm7h_pXBNp4ovMd2O5CyOi03eVHWMN6FzZbUsnnXdga9xxun-DnDc6CIDUUVdPPFM2qRVVGdV6TC3tksrqIgtbIz2uMlo0KIlwNKNyDu_Oz2_FEdIQJolCZWQqpEEMcdGm9D5nNY0Sb5CYh3EuvOaXmLd0H6adUopXaYxZ7n5aFxfgkx0ztw6CmN36BKCko1AlGWlSlLhOfp1pJZukIEhOj_RBUD5IrumniTGoxc33Z2INroXUMrWuhHYJ4XbVop2m8IZ_0-Ls_ToUjg__GyqNeXY4w5yxIXuP86bej-57ljuH0fzKWx-orqUjmc6vr1_0qOmJ0yVQH797bD9ia3F5fuauL6eVX-CC5oaKpAz-EwfLxCb9RmLP037tj_AIn-fhv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-calcifying+lipid+nanocarrier+for+bone+tissue+engineering&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Chaiin%2C+Poowadon&rft.au=Yostaworakul%2C+Jakarwan&rft.au=Rungnim%2C+Chompoonut&rft.au=Khemthong%2C+Pongtanawat&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1866&rft.issue=2&rft_id=info:doi/10.1016%2Fj.bbagen.2021.130047&rft.externalDocID=S0304416521002063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon