Self-calcifying lipid nanocarrier for bone tissue engineering
A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoem...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1866; no. 2; p. 130047 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed.
We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20.
The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability.
[Display omitted]
•A dual purpose lipid nanoparticles was successfully fabricated with self-calcifying ability and function as a carrier of lipophilic compounds.•Nano emulsion with a specific surface charge can attach Ca2+ and PO43−.•Lipid NPs show self-calcifying ability in simulated body fluid.•Lipid NPs encapsulate vitamin D3 with high encapsulation efficiency (90.70 ± 0.82%) and a slow release profile.•Lipid NPs adhere to and facilitate deposition of calcium phosphate on collagen scaffolds. |
---|---|
AbstractList | A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed.
We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20.
The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability. A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed.We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20.The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability. A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed.BACKGROUNDA nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed.We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20.METHODSWe employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20.The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability.RESULTSThe LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability. A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface, leading to formation of CaP nanoparticles with a lipid core. The lipid core can carry lipophilic compounds based on the function of the nanoemulsion. Therefore, a dual purpose nanoemulsion of lipid nanoparticles (LNPs) exhibiting self-calcifying and carrier abilities can be developed. We employed an emulsification process to formulate LNPs with a specific charged surface. The LNPs were tested for their ability to calcify in simulated body fluid and encapsulate cholecalciferol (a model of active compound). The self-calcifying LNP was successfully fabricated using the emulsification process and stabilized using a mixture of polysorbate 80 and polysorbate 20. The LNPs incubated in simulated body fluid bound to calcium and phosphate, subsequently forming CaP on the particle surface and resulting in approximately 180-nm CaP spheres with a lipid core. The LNPs facilitated calcium phosphate deposition in the collagen scaffolds. In addition, LNPs can be used as carriers of lipophilic compounds without impeding the self-calcifying ability. [Display omitted] •A dual purpose lipid nanoparticles was successfully fabricated with self-calcifying ability and function as a carrier of lipophilic compounds.•Nano emulsion with a specific surface charge can attach Ca2+ and PO43−.•Lipid NPs show self-calcifying ability in simulated body fluid.•Lipid NPs encapsulate vitamin D3 with high encapsulation efficiency (90.70 ± 0.82%) and a slow release profile.•Lipid NPs adhere to and facilitate deposition of calcium phosphate on collagen scaffolds. |
ArticleNumber | 130047 |
Author | Boonrungsiman, Suwimon Rungnim, Chompoonut Yostaworakul, Jakarwan Khemthong, Pongtanawat Chaiin, Poowadon Yata, Teerapong |
Author_xml | – sequence: 1 givenname: Poowadon surname: Chaiin fullname: Chaiin, Poowadon organization: National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand – sequence: 2 givenname: Jakarwan surname: Yostaworakul fullname: Yostaworakul, Jakarwan organization: National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand – sequence: 3 givenname: Chompoonut surname: Rungnim fullname: Rungnim, Chompoonut organization: NSTDA Supercomputer Center (ThaiSC), National Electronics and Computer Technology Center (NECTEC), Pathumthani 12120, Thailand – sequence: 4 givenname: Pongtanawat surname: Khemthong fullname: Khemthong, Pongtanawat organization: National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand – sequence: 5 givenname: Teerapong surname: Yata fullname: Yata, Teerapong organization: Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand – sequence: 6 givenname: Suwimon surname: Boonrungsiman fullname: Boonrungsiman, Suwimon email: suwimon@nanotec.or.th organization: National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34757163$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LxDAQxYMouq7-ByI9euk6-WjaCgoifoHgQT2HJJ0sWbrpmnQF_3u7dPXgQecyh_m9N_DeIdkNXUBCTijMKFB5vpgZo-cYZgwYnVEOIModMqFVyfIKQO6SCXAQuaCyOCCHKS1gmKIu9skBF2VRUskn5PIFW5db3VrvPn2YZ61f-SYLOnRWx-gxZq6LmRl-Z71PaY0ZhrkPiHGgj8ie023C4-2ekre729ebh_zp-f7x5vopt7wu-pxxRAdONNIYV0sNiLLURWmca4yoGAcjC1EPp4qhZMJgDcZUjZUIVGPNp-Rs9F3F7n2NqVdLnyy2rQ7YrZNikktRcsbL_9GilkAZVBv0dIuuzRIbtYp-qeOn-k5nAMQI2NilFNH9IBTUpgS1UGMJalOCGksYZBe_ZNb3uvdd6KP27X_iq1GMQ54fQ_4qWY_BYuMj2l41nf_b4AvH76OZ |
CitedBy_id | crossref_primary_10_1002_adhm_202203033 crossref_primary_10_3390_biomedicines10123158 crossref_primary_10_1007_s00210_024_03033_7 crossref_primary_10_1016_j_omtn_2023_07_024 crossref_primary_10_1515_biol_2022_0503 |
Cites_doi | 10.1186/1741-7015-9-66 10.1016/j.jds.2012.09.001 10.1016/j.jece.2016.09.015 10.1111/j.1525-1594.2008.00557.x 10.1016/0025-5408(74)90169-X 10.1002/jbm.a.10482 10.1039/C5SM02958A 10.1021/acs.jpca.5b09006 10.1038/bonekey.2013.181 10.1016/j.msec.2016.05.104 10.1063/1.4799888 10.1021/acsami.7b04776 10.2741/1576 10.1159/000061652 10.1016/j.jcis.2019.12.097 10.1016/j.abb.2019.04.003 10.1039/C3CS60451A 10.1016/S0166-1280(98)00553-3 10.1016/j.molmed.2009.07.002 10.1007/s11926-003-0071-z 10.1007/s00894-018-3853-y 10.1016/j.ijpharm.2018.10.008 10.1016/j.stem.2018.01.014 10.1016/j.bbagen.2018.10.005 10.1016/j.jsb.2011.03.014 10.1039/c2cc32279j 10.1016/0022-0248(96)00156-X 10.1002/chem.201405428 10.1038/s41467-019-10761-5 10.1038/boneres.2014.17 10.1142/S1793292012300046 10.1016/j.biopha.2017.11.026 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier B.V. |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2021.130047 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 34757163 10_1016_j_bbagen_2021_130047 S0304416521002063 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-23eef0f4d6bbf96a0ee67a57bffdb48230b6549f9682e624be90bb8dc6e01ae93 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 09:45:55 EDT 2025 Fri Jul 11 16:51:45 EDT 2025 Wed Feb 19 02:09:16 EST 2025 Thu Apr 24 22:55:25 EDT 2025 Tue Jul 01 00:22:16 EDT 2025 Fri Feb 23 02:40:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | EE DI Nanoemulsion Calcium phosphate MV FT-IR ACP LNP CaP DFT Ca2 Collagen SBF EDX Density functional theory HA SEM PO43 Self-calcification TEM MCT |
Language | English |
License | Copyright © 2021. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-23eef0f4d6bbf96a0ee67a57bffdb48230b6549f9682e624be90bb8dc6e01ae93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34757163 |
PQID | 2596012087 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636473237 proquest_miscellaneous_2596012087 pubmed_primary_34757163 crossref_primary_10_1016_j_bbagen_2021_130047 crossref_citationtrail_10_1016_j_bbagen_2021_130047 elsevier_sciencedirect_doi_10_1016_j_bbagen_2021_130047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 2022-Feb 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhao, Liu, Sun, Yang (bb0125) 2012; 7 Boskey (bb0005) 2013; 2 Oyane, Kim, Furuya, Kokubo, Miyazaki, Nakamura (bb0075) 2003; 65 Rabiee, Shahabadi, Mokhtare, Rabiei, Alvandifar (bb0090) 2016; 4 Eanes (bb0120) 2001; 18 Anderson, Garimella, Tague (bb0035) 2005; 10 Anderson (bb0025) 2003; 5 Dwivedi, Blech, Presser, Garidel (bb0080) 2018; 552 Bertran, Valle, Revilla-López, Rivas, Chaves, Casas, Casanovas, Turon, Puiggalí, Alemán (bb0140) 2015; 21 Mahamid, Sharir, Gur, Zelzer, Addadi, Weiner (bb0135) 2011; 174 Zhao, Yang, Wang, Shu, Wu, Ran, Liu (bb0100) 2018; 24 Plaut, Strzelecka-Kiliszek, Bozycki, Pikula, Buchet, Mebarek, Chadli, Bolean, Simao, Ciancaglini, Magrini, Rosato, Magne, Girard-Egrot, Farquharson, Esener, Millan, Bottini (bb0030) 2019; 667 Gebauer, Kellermeier, Gale, Bergström, Cölfen (bb0130) 2014; 43 Kulkarni, Shaw (bb0085) 2016 Loebel, Burdick (bb0010) 2018; 22 Shen, Lin, Zhu, Zhang, Lu, Liu, Deng, Que, Zhang (bb0060) 2019; 1863 Ye, Luo, Li, Zhuang, Li, Lu, Ding, Tian, Zhou (bb0045) 2016; 68 Boskey, Posner (bb0145) 1974; 9 Dimitriou, Jones, McGonagle, Giannoudis (bb0015) 2011; 9 Bastakoti, Inuoe, Yusa, Liao, Wu, Nakashima, Yamauchi (bb0055) 2012; 48 Abbona, Baronnet (bb0150) 1996; 165 Colaço, Brouri, Méthivier, Valentin, Oudet, El Kirat, Guibert, Landoulsi (bb0155) 2020; 565 Gupta, Eral, Hatton, Doyle (bb0065) 2016; 12 Tomasi, Mennucci, Cancès (bb0115) 1999; 464 Nathanael, Oyane, Nakamura, Sakamaki, Nishida, Kanemoto, Miyaji (bb0160) 2017; 9 Prasada, Lambea, Brara, Shaha, Ja, Ranjanb, Raoc, Kumarc, Mahantd, Khuranae, Iqbalf, Dhamag, Misrih, Prasadi (bb0070) 2018; 97 Venugopal, Low, Choon, Kumar, Ramakrishna (bb0165) 2008; 32 Wang, Tang, Qing, Hong, Zhang (bb0020) 2012; 07 Deschaseaux, Sensébé, Heymann (bb0170) 2009; 15 Deguillard, Pannacci, Creton, Rousseau (bb0110) 2013; 138 Wang, Zhao, Liu, Weir, Zhou, Xu (bb0040) 2014; 2 Meng, Zhang, Ma, Li, Zhang, Liu, Zhang, Hou, Lu (bb0105) 2014; 4 Wang, Hu, Zhang, Zhu, Wang, Li, Wang, Wang, Zhang, Yuan (bb0050) 2019; 10 Lopez-Berganza, Diao, Pamidighantam, Espinosa-Marzal (bb0095) 2015; 119 Ye (10.1016/j.bbagen.2021.130047_bb0045) 2016; 68 Plaut (10.1016/j.bbagen.2021.130047_bb0030) 2019; 667 Gupta (10.1016/j.bbagen.2021.130047_bb0065) 2016; 12 Deguillard (10.1016/j.bbagen.2021.130047_bb0110) 2013; 138 Loebel (10.1016/j.bbagen.2021.130047_bb0010) 2018; 22 Bastakoti (10.1016/j.bbagen.2021.130047_bb0055) 2012; 48 Abbona (10.1016/j.bbagen.2021.130047_bb0150) 1996; 165 Prasada (10.1016/j.bbagen.2021.130047_bb0070) 2018; 97 Zhao (10.1016/j.bbagen.2021.130047_bb0100) 2018; 24 Boskey (10.1016/j.bbagen.2021.130047_bb0145) 1974; 9 Wang (10.1016/j.bbagen.2021.130047_bb0020) 2012; 07 Dwivedi (10.1016/j.bbagen.2021.130047_bb0080) 2018; 552 Zhao (10.1016/j.bbagen.2021.130047_bb0125) 2012; 7 Venugopal (10.1016/j.bbagen.2021.130047_bb0165) 2008; 32 Deschaseaux (10.1016/j.bbagen.2021.130047_bb0170) 2009; 15 Wang (10.1016/j.bbagen.2021.130047_bb0050) 2019; 10 Lopez-Berganza (10.1016/j.bbagen.2021.130047_bb0095) 2015; 119 Wang (10.1016/j.bbagen.2021.130047_bb0040) 2014; 2 Oyane (10.1016/j.bbagen.2021.130047_bb0075) 2003; 65 Dimitriou (10.1016/j.bbagen.2021.130047_bb0015) 2011; 9 Boskey (10.1016/j.bbagen.2021.130047_bb0005) 2013; 2 Nathanael (10.1016/j.bbagen.2021.130047_bb0160) 2017; 9 Anderson (10.1016/j.bbagen.2021.130047_bb0025) 2003; 5 Anderson (10.1016/j.bbagen.2021.130047_bb0035) 2005; 10 Bertran (10.1016/j.bbagen.2021.130047_bb0140) 2015; 21 Kulkarni (10.1016/j.bbagen.2021.130047_bb0085) 2016 Eanes (10.1016/j.bbagen.2021.130047_bb0120) 2001; 18 Colaço (10.1016/j.bbagen.2021.130047_bb0155) 2020; 565 Rabiee (10.1016/j.bbagen.2021.130047_bb0090) 2016; 4 Gebauer (10.1016/j.bbagen.2021.130047_bb0130) 2014; 43 Tomasi (10.1016/j.bbagen.2021.130047_bb0115) 1999; 464 Shen (10.1016/j.bbagen.2021.130047_bb0060) 2019; 1863 Mahamid (10.1016/j.bbagen.2021.130047_bb0135) 2011; 174 Meng (10.1016/j.bbagen.2021.130047_bb0105) 2014; 4 |
References_xml | – volume: 667 start-page: 14 year: 2019 end-page: 21 ident: bb0030 article-title: Quantitative atomic force microscopy provides new insight into matrix vesicle mineralization publication-title: Arch. Biochem. Biophys. – volume: 15 start-page: 417 year: 2009 end-page: 429 ident: bb0170 article-title: Mechanisms of bone repair and regeneration publication-title: Trends Mol. Med. – volume: 5 start-page: 222 year: 2003 end-page: 226 ident: bb0025 article-title: Matrix vesicles and calcification publication-title: Curr. Rheumat. Rep. – volume: 32 start-page: 388 year: 2008 end-page: 397 ident: bb0165 article-title: Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration publication-title: Artif. Organs – volume: 174 start-page: 527 year: 2011 end-page: 535 ident: bb0135 article-title: Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study publication-title: J. Struct. Biol. – volume: 2 start-page: 14017 year: 2014 ident: bb0040 article-title: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells publication-title: Bone Res. – volume: 22 start-page: 325 year: 2018 end-page: 339 ident: bb0010 article-title: Engineering stem and stromal cell therapies for musculoskeletal tissue repair publication-title: Cell Stem Cell – volume: 119 start-page: 11591 year: 2015 end-page: 11600 ident: bb0095 article-title: Ab initio studies of calcium carbonate hydration publication-title: J. Phys. Chem. A – volume: 65 start-page: 188 year: 2003 end-page: 195 ident: bb0075 article-title: Preparation and assessment of revised simulated body fluids publication-title: J. Biomed. Mater. Res. A – volume: 68 start-page: 43 year: 2016 end-page: 51 ident: bb0045 article-title: Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing publication-title: Mater. Sci. Eng. C – volume: 18 start-page: 130 year: 2001 end-page: 147 ident: bb0120 article-title: Amorphous calcium phosphate publication-title: Monogr. Oral Sci. – volume: 07 start-page: 1230004 year: 2012 ident: bb0020 article-title: Applications of calcium phosphate nanoparticles in porous hard tissue engineering scaffolds publication-title: Nano – volume: 4 start-page: 4050 year: 2016 end-page: 4061 ident: bb0090 article-title: Enhancement in permeation and antifouling properties of PVC ultrafiltration membranes with addition of hydrophilic surfactant additives: Tween-20 and Tween-80 publication-title: J. Environ. Chem. Eng. – volume: 138 year: 2013 ident: bb0110 article-title: Cations interfacial tension in oil-water-surfactant systems: on the role of intra-molecular forces on interfacial tension values using DPD simulations publication-title: J. Chem. Phys. – volume: 2 start-page: 447 year: 2013 ident: bb0005 article-title: Bone composition: relationship to bone fragility and antiosteoporotic drug effects publication-title: BoneKEy Rep. – start-page: 5 year: 2016 end-page: 19 ident: bb0085 article-title: Chapter 2 - Surfactants, lipids, and surface chemistry publication-title: Essential Chemistry for Formulators of Semisolid and Liquid Dosages – volume: 9 start-page: 66 year: 2011 ident: bb0015 article-title: Bone regeneration: current concepts and future directions publication-title: BMC Med. – volume: 24 start-page: 321 year: 2018 ident: bb0100 article-title: Binding of calcium cations with three different types of oxygen-based functional groups of superplasticizers studied by atomistic simulations publication-title: J. Mol. Model. – volume: 12 start-page: 2826 year: 2016 end-page: 2841 ident: bb0065 article-title: Nanoemulsions: formation, properties and applications publication-title: Soft Matter – volume: 552 start-page: 422 year: 2018 end-page: 436 ident: bb0080 article-title: Polysorbate degradation in biotherapeutic formulations: identification and discussion of current root causes publication-title: Int. J. Pharm. – volume: 10 start-page: 822 year: 2005 end-page: 837 ident: bb0035 article-title: The role of matrix vesicles in growth plate development and biomineralization publication-title: Front. Biosci. – volume: 10 start-page: 2829 year: 2019 ident: bb0050 article-title: Bioinspired extracellular vesicles embedded with black phosphorus for molecular recognition-guided biomineralization publication-title: Nat. Commun. – volume: 9 start-page: 22185 year: 2017 end-page: 22194 ident: bb0160 article-title: In vitro and in vivo analysis of mineralized collagen-based sponges prepared by a plasma- and precursor-assisted biomimetic process publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 2348 year: 2014 end-page: 2371 ident: bb0130 article-title: Pre-nucleation clusters as solute precursors in crystallisation publication-title: Chem. Soc. Rev. – volume: 165 start-page: 98 year: 1996 end-page: 105 ident: bb0150 article-title: A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium publication-title: J. Cryst. Growth – volume: 4 year: 2014 ident: bb0105 article-title: Multi-scale simulation studies on interaction between anionic surfactants and cations interfacial tension in oil-water-surfactant systems: on the role of intra-molecular forces on interfacial tension values using DPD simulations publication-title: J. Chem. Physics – volume: 464 start-page: 211 year: 1999 end-page: 226 ident: bb0115 article-title: The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level publication-title: J. Mol. Struct. Theo. Chem. – volume: 21 start-page: 2537 year: 2015 end-page: 2546 ident: bb0140 article-title: Synergistic approach to elucidate the incorporation of magnesium ions into hydroxyapatite publication-title: Chem. Eur. J. – volume: 9 start-page: 907 year: 1974 end-page: 916 ident: bb0145 article-title: Magnesium stabilization of amorphous calcium phosphate: a kinetic study publication-title: Mater. Res. Bull. – volume: 97 start-page: 1521 year: 2018 end-page: 1537 ident: bb0070 article-title: Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world publication-title: Biomed. Pharmacother. – volume: 7 start-page: 316 year: 2012 end-page: 323 ident: bb0125 article-title: First detection, characterization, and application of amorphous calcium phosphate in dentistry publication-title: J. Dent. Sci. – volume: 48 start-page: 6532 year: 2012 end-page: 6534 ident: bb0055 article-title: A block copolymer micelle template for synthesis of hollow calcium phosphate nanospheres with excellent biocompatibility publication-title: Chem. Commun. – volume: 565 start-page: 43 year: 2020 end-page: 54 ident: bb0155 article-title: Calcium phosphate mineralization through homogenous enzymatic catalysis: investigation of the early stages publication-title: J. Colloid Interface Sci. – volume: 1863 start-page: 167 year: 2019 end-page: 181 ident: bb0060 article-title: MV-mimicking micelles loaded with PEG-serine-ACP nanoparticles to achieve biomimetic intra/extra fibrillar mineralization of collagen in vitro publication-title: Biochim. Biophys. Acta Gen. Subj. – volume: 9 start-page: 66 year: 2011 ident: 10.1016/j.bbagen.2021.130047_bb0015 article-title: Bone regeneration: current concepts and future directions publication-title: BMC Med. doi: 10.1186/1741-7015-9-66 – volume: 7 start-page: 316 issue: 4 year: 2012 ident: 10.1016/j.bbagen.2021.130047_bb0125 article-title: First detection, characterization, and application of amorphous calcium phosphate in dentistry publication-title: J. Dent. Sci. doi: 10.1016/j.jds.2012.09.001 – volume: 4 start-page: 4050 issue: 4, Part A year: 2016 ident: 10.1016/j.bbagen.2021.130047_bb0090 article-title: Enhancement in permeation and antifouling properties of PVC ultrafiltration membranes with addition of hydrophilic surfactant additives: Tween-20 and Tween-80 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.09.015 – volume: 32 start-page: 388 issue: 5 year: 2008 ident: 10.1016/j.bbagen.2021.130047_bb0165 article-title: Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration publication-title: Artif. Organs doi: 10.1111/j.1525-1594.2008.00557.x – volume: 9 start-page: 907 issue: 7 year: 1974 ident: 10.1016/j.bbagen.2021.130047_bb0145 article-title: Magnesium stabilization of amorphous calcium phosphate: a kinetic study publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(74)90169-X – volume: 65 start-page: 188 issue: 2 year: 2003 ident: 10.1016/j.bbagen.2021.130047_bb0075 article-title: Preparation and assessment of revised simulated body fluids publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.10482 – volume: 12 start-page: 2826 year: 2016 ident: 10.1016/j.bbagen.2021.130047_bb0065 article-title: Nanoemulsions: formation, properties and applications publication-title: Soft Matter doi: 10.1039/C5SM02958A – volume: 119 start-page: 11591 issue: 47 year: 2015 ident: 10.1016/j.bbagen.2021.130047_bb0095 article-title: Ab initio studies of calcium carbonate hydration publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.5b09006 – volume: 2 start-page: 447 year: 2013 ident: 10.1016/j.bbagen.2021.130047_bb0005 article-title: Bone composition: relationship to bone fragility and antiosteoporotic drug effects publication-title: BoneKEy Rep. doi: 10.1038/bonekey.2013.181 – volume: 68 start-page: 43 year: 2016 ident: 10.1016/j.bbagen.2021.130047_bb0045 article-title: Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.05.104 – volume: 138 year: 2013 ident: 10.1016/j.bbagen.2021.130047_bb0110 article-title: Cations interfacial tension in oil-water-surfactant systems: on the role of intra-molecular forces on interfacial tension values using DPD simulations publication-title: J. Chem. Phys. doi: 10.1063/1.4799888 – volume: 9 start-page: 22185 issue: 27 year: 2017 ident: 10.1016/j.bbagen.2021.130047_bb0160 article-title: In vitro and in vivo analysis of mineralized collagen-based sponges prepared by a plasma- and precursor-assisted biomimetic process publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04776 – volume: 10 start-page: 822 year: 2005 ident: 10.1016/j.bbagen.2021.130047_bb0035 article-title: The role of matrix vesicles in growth plate development and biomineralization publication-title: Front. Biosci. doi: 10.2741/1576 – volume: 18 start-page: 130 year: 2001 ident: 10.1016/j.bbagen.2021.130047_bb0120 article-title: Amorphous calcium phosphate publication-title: Monogr. Oral Sci. doi: 10.1159/000061652 – volume: 565 start-page: 43 year: 2020 ident: 10.1016/j.bbagen.2021.130047_bb0155 article-title: Calcium phosphate mineralization through homogenous enzymatic catalysis: investigation of the early stages publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.12.097 – volume: 667 start-page: 14 year: 2019 ident: 10.1016/j.bbagen.2021.130047_bb0030 article-title: Quantitative atomic force microscopy provides new insight into matrix vesicle mineralization publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2019.04.003 – volume: 43 start-page: 2348 issue: 7 year: 2014 ident: 10.1016/j.bbagen.2021.130047_bb0130 article-title: Pre-nucleation clusters as solute precursors in crystallisation publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60451A – volume: 464 start-page: 211 issue: 1 year: 1999 ident: 10.1016/j.bbagen.2021.130047_bb0115 article-title: The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level publication-title: J. Mol. Struct. Theo. Chem. doi: 10.1016/S0166-1280(98)00553-3 – volume: 4 year: 2014 ident: 10.1016/j.bbagen.2021.130047_bb0105 article-title: Multi-scale simulation studies on interaction between anionic surfactants and cations interfacial tension in oil-water-surfactant systems: on the role of intra-molecular forces on interfacial tension values using DPD simulations publication-title: J. Chem. Physics – volume: 15 start-page: 417 issue: 9 year: 2009 ident: 10.1016/j.bbagen.2021.130047_bb0170 article-title: Mechanisms of bone repair and regeneration publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2009.07.002 – volume: 5 start-page: 222 issue: 3 year: 2003 ident: 10.1016/j.bbagen.2021.130047_bb0025 article-title: Matrix vesicles and calcification publication-title: Curr. Rheumat. Rep. doi: 10.1007/s11926-003-0071-z – volume: 24 start-page: 321 issue: 11 year: 2018 ident: 10.1016/j.bbagen.2021.130047_bb0100 article-title: Binding of calcium cations with three different types of oxygen-based functional groups of superplasticizers studied by atomistic simulations publication-title: J. Mol. Model. doi: 10.1007/s00894-018-3853-y – start-page: 5 year: 2016 ident: 10.1016/j.bbagen.2021.130047_bb0085 article-title: Chapter 2 - Surfactants, lipids, and surface chemistry – volume: 552 start-page: 422 issue: 1 year: 2018 ident: 10.1016/j.bbagen.2021.130047_bb0080 article-title: Polysorbate degradation in biotherapeutic formulations: identification and discussion of current root causes publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.10.008 – volume: 22 start-page: 325 issue: 3 year: 2018 ident: 10.1016/j.bbagen.2021.130047_bb0010 article-title: Engineering stem and stromal cell therapies for musculoskeletal tissue repair publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.01.014 – volume: 1863 start-page: 167 issue: 1 year: 2019 ident: 10.1016/j.bbagen.2021.130047_bb0060 article-title: MV-mimicking micelles loaded with PEG-serine-ACP nanoparticles to achieve biomimetic intra/extra fibrillar mineralization of collagen in vitro publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2018.10.005 – volume: 174 start-page: 527 issue: 3 year: 2011 ident: 10.1016/j.bbagen.2021.130047_bb0135 article-title: Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2011.03.014 – volume: 48 start-page: 6532 issue: 52 year: 2012 ident: 10.1016/j.bbagen.2021.130047_bb0055 article-title: A block copolymer micelle template for synthesis of hollow calcium phosphate nanospheres with excellent biocompatibility publication-title: Chem. Commun. doi: 10.1039/c2cc32279j – volume: 165 start-page: 98 issue: 1 year: 1996 ident: 10.1016/j.bbagen.2021.130047_bb0150 article-title: A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(96)00156-X – volume: 21 start-page: 2537 issue: 6) year: 2015 ident: 10.1016/j.bbagen.2021.130047_bb0140 article-title: Synergistic approach to elucidate the incorporation of magnesium ions into hydroxyapatite publication-title: Chem. Eur. J. doi: 10.1002/chem.201405428 – volume: 10 start-page: 2829 issue: 1 year: 2019 ident: 10.1016/j.bbagen.2021.130047_bb0050 article-title: Bioinspired extracellular vesicles embedded with black phosphorus for molecular recognition-guided biomineralization publication-title: Nat. Commun. doi: 10.1038/s41467-019-10761-5 – volume: 2 start-page: 14017 issue: 1 year: 2014 ident: 10.1016/j.bbagen.2021.130047_bb0040 article-title: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells publication-title: Bone Res. doi: 10.1038/boneres.2014.17 – volume: 07 start-page: 1230004 issue: 04 year: 2012 ident: 10.1016/j.bbagen.2021.130047_bb0020 article-title: Applications of calcium phosphate nanoparticles in porous hard tissue engineering scaffolds publication-title: Nano doi: 10.1142/S1793292012300046 – volume: 97 start-page: 1521 year: 2018 ident: 10.1016/j.bbagen.2021.130047_bb0070 article-title: Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.11.026 |
SSID | ssj0000595 |
Score | 2.4021604 |
Snippet | A nanoemulsion with specific surface properties (such as charge and functional groups) can initiate the deposition of calcium phosphate (CaP) on its surface,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130047 |
SubjectTerms | active ingredients body fluids Bone and Bones - metabolism bones Calcification, Physiologic - drug effects calcium Calcium phosphate calcium phosphates Calcium Phosphates - chemistry cholecalciferol Cholecalciferol - chemistry Collagen Density functional theory Drug Carriers - chemistry emulsifying Emulsions - chemistry Humans lipids Lipids - chemistry lipophilicity nanocarriers Nanoemulsion nanoemulsions Nanoparticles - chemistry polysorbates Self-calcification Tissue Engineering - methods |
Title | Self-calcifying lipid nanocarrier for bone tissue engineering |
URI | https://dx.doi.org/10.1016/j.bbagen.2021.130047 https://www.ncbi.nlm.nih.gov/pubmed/34757163 https://www.proquest.com/docview/2596012087 https://www.proquest.com/docview/2636473237 |
Volume | 1866 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LInoR3--lgte4Na-2Bw_LoqyKe1Fhb6FpJ1BZ6qLrwYu_3Zk-FEFd8NpO2vAlmZkwj4-xE2lyyOLE8xR8wpWLNU9CSLlx3iuDHoDOKKJ7OzLDB3U91uMOG7S1MJRW2ej-WqdX2rp50mvQ7E2LondHQT36mKAuomhpqYJdRbTLT9-_0jzQfdB1JEFxkm7L56ocL-fw0FIXVHFW0SITycrP5uk397MyQ5drbLXxH4N-PcV11oFygy3VjJJvG2x50BK4bbLzO5h4jmuQFVUxUzAppkUelGmJ9uuZmOoC9FgD91RCMKvwD-CrO-EWe7i8uB8MecOWwDOZ6BkXEsCHXuXGOZ-YNAQwUaojBD13iuJpzuBlEF_FAoxQDpLQuTjPDIRnKSRymy2U-MddFkQZ-jleCwMyV3nk0lhJQRQdXkCkldtjsgXJZk0rcWK0mNg2Z-zR1tBagtbW0O4x_jlqWrfSmCMftfjbb1vCorafM_K4XS6LmFMIJC3h6fXF4mXPULlw_JeMoZ76UkiU2anX-nO-UkUab5hy_99zO2ArgiooqsTvQ7Ywe36FI_RrZq5bbdwuW-xf3QxHH7cX9b4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5BEKIXRCm0obQ1EtdVzL5sH3pAESgUyAWQuK289qxkFDkRDQf-PTN-EFVqi8TVmY1X36xnZjWPD-BY2RKLNAsix5AJ7VMjshhzYX0I2lIEYArO6F5P7eRO_7o392sw7nthuKyys_2tTW-sdfdk1KE5WlTV6IaTevxnkqeIkqddhw2eTmUGsHF6cTmZrgyyachXWF7wgr6Drinz8p6-Wx6EKk8aZmTmWfm7h_pXBNp4ovMd2O5CyOi03eVHWMN6FzZbUsnnXdga9xxun-DnDc6CIDUUVdPPFM2qRVVGdV6TC3tksrqIgtbIz2uMlo0KIlwNKNyDu_Oz2_FEdIQJolCZWQqpEEMcdGm9D5nNY0Sb5CYh3EuvOaXmLd0H6adUopXaYxZ7n5aFxfgkx0ztw6CmN36BKCko1AlGWlSlLhOfp1pJZukIEhOj_RBUD5IrumniTGoxc33Z2INroXUMrWuhHYJ4XbVop2m8IZ_0-Ls_ToUjg__GyqNeXY4w5yxIXuP86bej-57ljuH0fzKWx-orqUjmc6vr1_0qOmJ0yVQH797bD9ia3F5fuauL6eVX-CC5oaKpAz-EwfLxCb9RmLP037tj_AIn-fhv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-calcifying+lipid+nanocarrier+for+bone+tissue+engineering&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Chaiin%2C+Poowadon&rft.au=Yostaworakul%2C+Jakarwan&rft.au=Rungnim%2C+Chompoonut&rft.au=Khemthong%2C+Pongtanawat&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1866&rft.issue=2&rft_id=info:doi/10.1016%2Fj.bbagen.2021.130047&rft.externalDocID=S0304416521002063 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |