Deep Reinforcement Learning for Physics-Based Musculoskeletal Simulations of Healthy Subjects and Transfemoral Prostheses' Users During Normal Walking

This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses' users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimizatio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 607 - 618
Main Authors De Vree, Leanne, Carloni, Raffaella
Format Journal Article
LanguageEnglish
Published United States IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses' users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimization approach in combination with imitation learning to guarantee a natural walking gait while reducing the computational time of the training. Firstly, the optimization algorithm is implemented for the OpenSim model of a healthy subject and validated with experimental data from a public data-set. Afterwards, the optimization algorithm is implemented for the OpenSim model of a generic transfemoral prosthesis' user, which has been obtained by reducing the number of muscles around the knee and ankle joints and, specifically, by keeping only the uniarticular ones. The model of the transfemoral prosthesis' user shows a stable gait, with a forward dynamic comparable to the healthy subject's, yet using higher muscles' forces. Even though the computed muscles' forces could not be directly used as control inputs for muscle-like linear actuators due to their pattern, this study paves the way for using deep reinforcement learning for the design of the control architecture of transfemoral prostheses.
AbstractList This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses' users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimization approach in combination with imitation learning to guarantee a natural walking gait while reducing the computational time of the training. Firstly, the optimization algorithm is implemented for the OpenSim model of a healthy subject and validated with experimental data from a public data-set. Afterwards, the optimization algorithm is implemented for the OpenSim model of a generic transfemoral prosthesis' user, which has been obtained by reducing the number of muscles around the knee and ankle joints and, specifically, by keeping only the uniarticular ones. The model of the transfemoral prosthesis' user shows a stable gait, with a forward dynamic comparable to the healthy subject's, yet using higher muscles' forces. Even though the computed muscles' forces could not be directly used as control inputs for muscle-like linear actuators due to their pattern, this study paves the way for using deep reinforcement learning for the design of the control architecture of transfemoral prostheses.This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses' users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimization approach in combination with imitation learning to guarantee a natural walking gait while reducing the computational time of the training. Firstly, the optimization algorithm is implemented for the OpenSim model of a healthy subject and validated with experimental data from a public data-set. Afterwards, the optimization algorithm is implemented for the OpenSim model of a generic transfemoral prosthesis' user, which has been obtained by reducing the number of muscles around the knee and ankle joints and, specifically, by keeping only the uniarticular ones. The model of the transfemoral prosthesis' user shows a stable gait, with a forward dynamic comparable to the healthy subject's, yet using higher muscles' forces. Even though the computed muscles' forces could not be directly used as control inputs for muscle-like linear actuators due to their pattern, this study paves the way for using deep reinforcement learning for the design of the control architecture of transfemoral prostheses.
This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses' users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimization approach in combination with imitation learning to guarantee a natural walking gait while reducing the computational time of the training. Firstly, the optimization algorithm is implemented for the OpenSim model of a healthy subject and validated with experimental data from a public data-set. Afterwards, the optimization algorithm is implemented for the OpenSim model of a generic transfemoral prosthesis' user, which has been obtained by reducing the number of muscles around the knee and ankle joints and, specifically, by keeping only the uniarticular ones. The model of the transfemoral prosthesis' user shows a stable gait, with a forward dynamic comparable to the healthy subject's, yet using higher muscles' forces. Even though the computed muscles' forces could not be directly used as control inputs for muscle-like linear actuators due to their pattern, this study paves the way for using deep reinforcement learning for the design of the control architecture of transfemoral prostheses.
Author De Vree, Leanne
Carloni, Raffaella
Author_xml – sequence: 1
  givenname: Leanne
  surname: De Vree
  fullname: De Vree, Leanne
  email: l.de.vree@student.rug.nl
  organization: Faculty of Science and Engineering, Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, AG, The Netherlands
– sequence: 2
  givenname: Raffaella
  orcidid: 0000-0002-6051-4332
  surname: Carloni
  fullname: Carloni, Raffaella
  email: r.carloni@rug.nl
  organization: Faculty of Science and Engineering, Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, AG, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33646954$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URH_gBUBClrqgmwn-GXtmltCWFimUqknF0nI812TSGTu1PYu8CM-L06QsumBl-_o7916dc4wOnHeA0HtKJpSS5vP8ZnZ3OWGE0QknkhMqXqEjKkRd5BI52N55WZSckUN0HOOKEFpJUb1Bh5zLUjaiPEJ_LgDW-A46Z30wMIBLeAo6uM79xrmEb5eb2JlYfNURWvxjjGbsfXyAHpLu8awbxl6nzruIvcXXoPu03ODZuFiBSRFr1-J50C5aGHzIgtvgY1pChPgJ30cIEV-MYTvrxoch___S_UN-vkWvre4jvNufJ-j-2-X8_LqY_rz6fv5lWhjeiFTQpqLCUmbNopaybSWDpmS2AtFa3uqaWFNKoATqpq2hqeraQl2Jkme3Gq4tP0Fnu77r4B9HiEkNXTTQ99qBH6NiZXaJNETIjJ6-QFd-DC5vp5gglDMpyypTH_fUuBigVevQDTps1LPjGah3gMlOxABWmS49OZiC7npFidqGq57CVdtw1T7cLGUvpM_d_yv6sBN1APBP0HApBWf8L6FAsY8
CODEN ITNSB3
CitedBy_id crossref_primary_10_3389_frobt_2023_1032748
crossref_primary_10_1016_j_humov_2022_103042
crossref_primary_10_1016_j_procs_2023_10_639
crossref_primary_10_1109_TCYB_2022_3224895
crossref_primary_10_1371_journal_pone_0288864
crossref_primary_10_1016_j_cmpb_2022_106994
crossref_primary_10_1002_cav_2092
crossref_primary_10_1002_cnm_3876
crossref_primary_10_1109_TNSRE_2022_3196468
crossref_primary_10_1016_j_medengphy_2023_104091
crossref_primary_10_1109_TNSRE_2023_3336713
crossref_primary_10_3390_s22218479
crossref_primary_10_1103_PhysRevE_104_064128
Cites_doi 10.1109/TEVC.2008.919004
10.4018/978-1-4666-3942-3.ch007
10.1080/10255842.2017.1340461
10.1109/ICORR.2017.8009453
10.1038/35088155
10.1145/3054912
10.1109/TBME.2007.901024
10.1007/978-3-319-94042-7_6
10.1016/j.gaitpost.2012.01.017
10.1587/transinf.E92.D.1354
10.1109/ICARSC.2019.8733636
10.1115/DSCC2015-9794
10.1371/journal.pcbi.1006993
10.1109/ACC.2014.6858812
10.1016/j.jbiomech.2008.03.015
10.1115/1.1531112
10.1016/j.medengphy.2019.11.006
10.1007/3-540-32494-1_4
10.1098/rspb.1938.0050
10.1109/BioRob49111.2020.9224422
10.1016/j.aei.2005.01.004
10.1145/2508363.2508399
10.1016/j.gaitpost.2011.02.022
10.1016/j.jbiomech.2010.04.003
10.23919/ACC.2017.7963060
10.1002/cnm.2936
10.1109/DDCLS.2018.8515918
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2021.3063015
DatabaseName IEEE Xplore (IEEE)
Open Access资源_IEL Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
Physics
EISSN 1558-0210
EndPage 618
ExternalDocumentID 33646954
10_1109_TNSRE_2021_3063015
9366532
Genre orig-research
Journal Article
GrantInformation_xml – fundername: European Commission’s Horizon 2020 Program
  funderid: 10.13039/501100000780
– fundername: Project MyLeg
  grantid: 780871
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c395t-19715f12fcb866dd62e942f7e5df3da80fc46e10e89d8e9788fe8754363093af3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 07:59:44 EDT 2025
Fri Jul 25 06:25:31 EDT 2025
Thu Apr 03 07:04:03 EDT 2025
Tue Jul 01 00:43:22 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-19715f12fcb866dd62e942f7e5df3da80fc46e10e89d8e9788fe8754363093af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6051-4332
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9366532
PMID 33646954
PQID 2501326647
PQPubID 85423
PageCount 12
ParticipantIDs proquest_miscellaneous_2495409056
crossref_citationtrail_10_1109_TNSRE_2021_3063015
crossref_primary_10_1109_TNSRE_2021_3063015
proquest_journals_2501326647
pubmed_primary_33646954
ieee_primary_9366532
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref15
ref14
ref33
ref11
ref2
katyal (ref28) 2016; 1
ref1
ref17
ref16
ref19
ref18
ammu (ref23) 2013; 2
ref24
ref26
ref25
ref20
mudigonda (ref30) 2018
ref22
ref21
sutton (ref31) 2018
ref27
ref29
schulman (ref5) 2017
ref7
willson (ref10) 2017
kidzi?ski (ref8) 2019; 69
ref9
ref4
hill (ref32) 1938; 126
ref3
ref6
galloy (ref12) 2018
References_xml – ident: ref19
  doi: 10.1109/TEVC.2008.919004
– year: 2018
  ident: ref31
  publication-title: Reinforcement Learning An Introduction
– ident: ref21
  doi: 10.4018/978-1-4666-3942-3.ch007
– ident: ref3
  doi: 10.1080/10255842.2017.1340461
– year: 2017
  ident: ref10
  article-title: A quasi-passive biarticular prosthesis and novel musculoskeletal model for transtibial amputees
– ident: ref29
  doi: 10.1109/ICORR.2017.8009453
– ident: ref16
  doi: 10.1038/35088155
– volume: 2
  start-page: 154
  year: 2013
  ident: ref23
  article-title: Biogeography-based optimization-a survey
  publication-title: Int J Electron Comput Sci Eng
– ident: ref6
  doi: 10.1145/3054912
– ident: ref7
  doi: 10.1109/TBME.2007.901024
– ident: ref33
  doi: 10.1007/978-3-319-94042-7_6
– ident: ref13
  doi: 10.1016/j.gaitpost.2012.01.017
– volume: 1
  start-page: 1
  year: 2016
  ident: ref28
  article-title: In-hand robotic manipulation via deep reinforcement learning
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref27
  doi: 10.1587/transinf.E92.D.1354
– start-page: 1
  year: 2017
  ident: ref5
  article-title: Proximal policy optimization algorithms
  publication-title: Proc OpenAI
– ident: ref25
  doi: 10.1109/ICARSC.2019.8733636
– ident: ref26
  doi: 10.1115/DSCC2015-9794
– ident: ref2
  doi: 10.1371/journal.pcbi.1006993
– ident: ref20
  doi: 10.1109/ACC.2014.6858812
– ident: ref9
  doi: 10.1016/j.jbiomech.2008.03.015
– ident: ref34
  doi: 10.1115/1.1531112
– year: 2018
  ident: ref12
  article-title: Planning an OpenSim simulation
  publication-title: ASB Pipeline Shared by Dordt College UW Madison
– ident: ref4
  doi: 10.1016/j.medengphy.2019.11.006
– ident: ref17
  doi: 10.1007/3-540-32494-1_4
– volume: 69
  start-page: 1
  year: 2019
  ident: ref8
  article-title: Artificial intelligence for prosthetics: Challenge solutions
  publication-title: The NeurIPS'18 Competition From Machine Learning to Intelligent Conversations
– volume: 126
  start-page: 136
  year: 1938
  ident: ref32
  article-title: The heat of shortening and the dynamic constants of muscle
  publication-title: Proc Roy Soc London B Biol Sci
  doi: 10.1098/rspb.1938.0050
– ident: ref11
  doi: 10.1109/BioRob49111.2020.9224422
– ident: ref24
  doi: 10.1016/j.aei.2005.01.004
– start-page: 1
  year: 2018
  ident: ref30
  article-title: Investigating deep reinforcement learning for grasping objects with an anthropomorphic hand
  publication-title: Proc Int Conf Learn Represent
– ident: ref1
  doi: 10.1145/2508363.2508399
– ident: ref35
  doi: 10.1016/j.gaitpost.2011.02.022
– ident: ref14
  doi: 10.1016/j.jbiomech.2010.04.003
– ident: ref22
  doi: 10.23919/ACC.2017.7963060
– ident: ref15
  doi: 10.1002/cnm.2936
– ident: ref18
  doi: 10.1109/DDCLS.2018.8515918
SSID ssj0017657
Score 2.4191003
Snippet This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 607
SubjectTerms Actuators
Algorithms
Ankle
Computational modeling
Computer applications
computer simulation
Computing time
Deep learning
Deep Reinforcement Learning (DRL)
Gait
Legged locomotion
Machine learning
Muscles
Observational learning
Optimization
Optimization algorithms
Physics
Prostheses
Prosthetics
Reinforcement
Reinforcement learning
Walking
Title Deep Reinforcement Learning for Physics-Based Musculoskeletal Simulations of Healthy Subjects and Transfemoral Prostheses' Users During Normal Walking
URI https://ieeexplore.ieee.org/document/9366532
https://www.ncbi.nlm.nih.gov/pubmed/33646954
https://www.proquest.com/docview/2501326647
https://www.proquest.com/docview/2495409056
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1ygUB6BUg0SjwNkG8ePJEegrSqkXaF2V_QWJc4YULdJRTYH-CH8XsbOQxQB4hYlTuLEY8_3jefB2LMYCQQkloeCBCaUytCUKq0Kq8ih55Irgy44eb7QJyv5_lydb7HXUywMInrnM5y5Q7-XXzWmc6ayg0xorQQtuDeIuPWxWtOOQaJ9Vk-awDKUIo7GAJkoO1guzk6PiArGfCZciinuytUIoYkZKnlNH_kCK3_Hml7nHN9m87G3vavJxazblDPz_bdEjv_7OTvs1gA-4U0vLXfYFtZ32fNfEw3Dss8yAC_g9FoO71324xDxis76VKvGWxVhyM76CegUeGdS04ZvSTFWMO-ci2vTXpBeI4APZ18uh0phLTQW-vCnb0ALl7MEtVDUFXjFaZ3vL93wwcWjfMYW25ewcjGhcOhDKmHhYPYaPhZrZ-a_x1bHR8t3J-FQ1SE0IlObkGcJV5bH1pSp1lWlY8xkbBNUlRVVkUbWSI08wjSrUiSSm1okUiWFdpu2hRX32Xbd1PiQQapQ6tgQaaNHqKJI0cbSpFla0n8lIhkwPo5tbobf5SpvrHNPfaIs96KRO9HIB9EI2Kvpnqs-4cc_W--6cZ1aDkMasL1RhPJhTWhzAptE_bWWScCeTpdpNrstmqLGpqM2xFeJcRMqDdiDXvSmZ48S--jP73zMbrqe9eahPba9-drhEwJMm3LfGxr2_Xz5CW5DElU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtNAFL0qZQGb8igPQ4FBorBATu15xV6wANIqpU2E2kR0Z-zxnYIakgonQuVDWPEr_Bt3xo5FEbCrxC5yxmNrfGbmnLkvgCcciQR0bRwKAkwolaEpVVgVlpFjz0WsDLrg5MFQ98fyzZE6WoHvbSwMInrnM-y4n96WX87Mwh2VbaVCayV440K5h2dfSKBVL3Z79DU3Od_ZHr3uh00NgdCIVM3DOO3GysbcmiLRuiw1x1Ry20VVWlHmSWSN1BhHmKRlgiSpEotE4aXQzkSYW0H9XoLLxDMUr6PDWhtFV_s8orRkyFAKHi1DcqJ0azQ8PNgm8cnjjnBJrWJXIEcITVpUyXM7oC_p8nd263e5nWvwYzk-tXPLSWcxLzrm62-pI__XAbwOaw29Zi_r-XADVnB6EzZ_TaXMRnUeBfaUHZzLUr4O33qIp3TVJ5M1_tyUNflnjxldYt5d1lThK9r6SzZYOCfeWXVCOzdJGHb48VNTC61iM8vqAK8zRkuzO-uqWD4tmacG1nk30w1vXcTNB6ywesbGLuqV9XzQKBs6ITFh7_KJM2TcgvGFDNltWJ3OpngXWKJQam5IllIXKs8TtFyaJE0K-o4klQOIl1jKTDNcrrbIJPPiLkozD8XMQTFroBjA8_ae0zqlyT9brzsctS0bCAWwsYRs1qx6VUZ0OiY5oGU3gMft37ReOSNUPsXZgtqQIpdRSrw7gDs11Nu-lzPk3p-f-Qiu9EeD_Wx_d7h3H666t6wPwzZgdf55gQ-IHs6Lh36WMnh_0aj-CaZjbp0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+for+Physics-Based+Musculoskeletal+Simulations+of+Healthy+Subjects+and+Transfemoral+Prostheses%27+Users+During+Normal+Walking&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=De+Vree%2C+Leanne&rft.au=Carloni%2C+Raffaella&rft.date=2021&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=29&rft.spage=607&rft.epage=618&rft_id=info:doi/10.1109%2FTNSRE.2021.3063015&rft_id=info%3Apmid%2F33646954&rft.externalDocID=9366532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon