Deep Reinforcement Learning for Physics-Based Musculoskeletal Simulations of Healthy Subjects and Transfemoral Prostheses' Users During Normal Walking
This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses' users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimizatio...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 607 - 618 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses' users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimization approach in combination with imitation learning to guarantee a natural walking gait while reducing the computational time of the training. Firstly, the optimization algorithm is implemented for the OpenSim model of a healthy subject and validated with experimental data from a public data-set. Afterwards, the optimization algorithm is implemented for the OpenSim model of a generic transfemoral prosthesis' user, which has been obtained by reducing the number of muscles around the knee and ankle joints and, specifically, by keeping only the uniarticular ones. The model of the transfemoral prosthesis' user shows a stable gait, with a forward dynamic comparable to the healthy subject's, yet using higher muscles' forces. Even though the computed muscles' forces could not be directly used as control inputs for muscle-like linear actuators due to their pattern, this study paves the way for using deep reinforcement learning for the design of the control architecture of transfemoral prostheses. |
---|---|
AbstractList | This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses' users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimization approach in combination with imitation learning to guarantee a natural walking gait while reducing the computational time of the training. Firstly, the optimization algorithm is implemented for the OpenSim model of a healthy subject and validated with experimental data from a public data-set. Afterwards, the optimization algorithm is implemented for the OpenSim model of a generic transfemoral prosthesis' user, which has been obtained by reducing the number of muscles around the knee and ankle joints and, specifically, by keeping only the uniarticular ones. The model of the transfemoral prosthesis' user shows a stable gait, with a forward dynamic comparable to the healthy subject's, yet using higher muscles' forces. Even though the computed muscles' forces could not be directly used as control inputs for muscle-like linear actuators due to their pattern, this study paves the way for using deep reinforcement learning for the design of the control architecture of transfemoral prostheses.This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses' users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimization approach in combination with imitation learning to guarantee a natural walking gait while reducing the computational time of the training. Firstly, the optimization algorithm is implemented for the OpenSim model of a healthy subject and validated with experimental data from a public data-set. Afterwards, the optimization algorithm is implemented for the OpenSim model of a generic transfemoral prosthesis' user, which has been obtained by reducing the number of muscles around the knee and ankle joints and, specifically, by keeping only the uniarticular ones. The model of the transfemoral prosthesis' user shows a stable gait, with a forward dynamic comparable to the healthy subject's, yet using higher muscles' forces. Even though the computed muscles' forces could not be directly used as control inputs for muscle-like linear actuators due to their pattern, this study paves the way for using deep reinforcement learning for the design of the control architecture of transfemoral prostheses. This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral prostheses' users during normal level-ground walking. The deep reinforcement learning algorithm is based on the proximal policy optimization approach in combination with imitation learning to guarantee a natural walking gait while reducing the computational time of the training. Firstly, the optimization algorithm is implemented for the OpenSim model of a healthy subject and validated with experimental data from a public data-set. Afterwards, the optimization algorithm is implemented for the OpenSim model of a generic transfemoral prosthesis' user, which has been obtained by reducing the number of muscles around the knee and ankle joints and, specifically, by keeping only the uniarticular ones. The model of the transfemoral prosthesis' user shows a stable gait, with a forward dynamic comparable to the healthy subject's, yet using higher muscles' forces. Even though the computed muscles' forces could not be directly used as control inputs for muscle-like linear actuators due to their pattern, this study paves the way for using deep reinforcement learning for the design of the control architecture of transfemoral prostheses. |
Author | De Vree, Leanne Carloni, Raffaella |
Author_xml | – sequence: 1 givenname: Leanne surname: De Vree fullname: De Vree, Leanne email: l.de.vree@student.rug.nl organization: Faculty of Science and Engineering, Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, AG, The Netherlands – sequence: 2 givenname: Raffaella orcidid: 0000-0002-6051-4332 surname: Carloni fullname: Carloni, Raffaella email: r.carloni@rug.nl organization: Faculty of Science and Engineering, Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, AG, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33646954$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhS1URH_gBUBClrqgmwn-GXtmltCWFimUqknF0nI812TSGTu1PYu8CM-L06QsumBl-_o7916dc4wOnHeA0HtKJpSS5vP8ZnZ3OWGE0QknkhMqXqEjKkRd5BI52N55WZSckUN0HOOKEFpJUb1Bh5zLUjaiPEJ_LgDW-A46Z30wMIBLeAo6uM79xrmEb5eb2JlYfNURWvxjjGbsfXyAHpLu8awbxl6nzruIvcXXoPu03ODZuFiBSRFr1-J50C5aGHzIgtvgY1pChPgJ30cIEV-MYTvrxoch___S_UN-vkWvre4jvNufJ-j-2-X8_LqY_rz6fv5lWhjeiFTQpqLCUmbNopaybSWDpmS2AtFa3uqaWFNKoATqpq2hqeraQl2Jkme3Gq4tP0Fnu77r4B9HiEkNXTTQ99qBH6NiZXaJNETIjJ6-QFd-DC5vp5gglDMpyypTH_fUuBigVevQDTps1LPjGah3gMlOxABWmS49OZiC7npFidqGq57CVdtw1T7cLGUvpM_d_yv6sBN1APBP0HApBWf8L6FAsY8 |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_3389_frobt_2023_1032748 crossref_primary_10_1016_j_humov_2022_103042 crossref_primary_10_1016_j_procs_2023_10_639 crossref_primary_10_1109_TCYB_2022_3224895 crossref_primary_10_1371_journal_pone_0288864 crossref_primary_10_1016_j_cmpb_2022_106994 crossref_primary_10_1002_cav_2092 crossref_primary_10_1002_cnm_3876 crossref_primary_10_1109_TNSRE_2022_3196468 crossref_primary_10_1016_j_medengphy_2023_104091 crossref_primary_10_1109_TNSRE_2023_3336713 crossref_primary_10_3390_s22218479 crossref_primary_10_1103_PhysRevE_104_064128 |
Cites_doi | 10.1109/TEVC.2008.919004 10.4018/978-1-4666-3942-3.ch007 10.1080/10255842.2017.1340461 10.1109/ICORR.2017.8009453 10.1038/35088155 10.1145/3054912 10.1109/TBME.2007.901024 10.1007/978-3-319-94042-7_6 10.1016/j.gaitpost.2012.01.017 10.1587/transinf.E92.D.1354 10.1109/ICARSC.2019.8733636 10.1115/DSCC2015-9794 10.1371/journal.pcbi.1006993 10.1109/ACC.2014.6858812 10.1016/j.jbiomech.2008.03.015 10.1115/1.1531112 10.1016/j.medengphy.2019.11.006 10.1007/3-540-32494-1_4 10.1098/rspb.1938.0050 10.1109/BioRob49111.2020.9224422 10.1016/j.aei.2005.01.004 10.1145/2508363.2508399 10.1016/j.gaitpost.2011.02.022 10.1016/j.jbiomech.2010.04.003 10.23919/ACC.2017.7963060 10.1002/cnm.2936 10.1109/DDCLS.2018.8515918 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2021.3063015 |
DatabaseName | IEEE Xplore (IEEE) Open Access资源_IEL Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation Physics |
EISSN | 1558-0210 |
EndPage | 618 |
ExternalDocumentID | 33646954 10_1109_TNSRE_2021_3063015 9366532 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: European Commission’s Horizon 2020 Program funderid: 10.13039/501100000780 – fundername: Project MyLeg grantid: 780871 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c395t-19715f12fcb866dd62e942f7e5df3da80fc46e10e89d8e9788fe8754363093af3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 07:59:44 EDT 2025 Fri Jul 25 06:25:31 EDT 2025 Thu Apr 03 07:04:03 EDT 2025 Tue Jul 01 00:43:22 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-19715f12fcb866dd62e942f7e5df3da80fc46e10e89d8e9788fe8754363093af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6051-4332 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9366532 |
PMID | 33646954 |
PQID | 2501326647 |
PQPubID | 85423 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2495409056 crossref_citationtrail_10_1109_TNSRE_2021_3063015 crossref_primary_10_1109_TNSRE_2021_3063015 proquest_journals_2501326647 pubmed_primary_33646954 ieee_primary_9366532 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref15 ref14 ref33 ref11 ref2 katyal (ref28) 2016; 1 ref1 ref17 ref16 ref19 ref18 ammu (ref23) 2013; 2 ref24 ref26 ref25 ref20 mudigonda (ref30) 2018 ref22 ref21 sutton (ref31) 2018 ref27 ref29 schulman (ref5) 2017 ref7 willson (ref10) 2017 kidzi?ski (ref8) 2019; 69 ref9 ref4 hill (ref32) 1938; 126 ref3 ref6 galloy (ref12) 2018 |
References_xml | – ident: ref19 doi: 10.1109/TEVC.2008.919004 – year: 2018 ident: ref31 publication-title: Reinforcement Learning An Introduction – ident: ref21 doi: 10.4018/978-1-4666-3942-3.ch007 – ident: ref3 doi: 10.1080/10255842.2017.1340461 – year: 2017 ident: ref10 article-title: A quasi-passive biarticular prosthesis and novel musculoskeletal model for transtibial amputees – ident: ref29 doi: 10.1109/ICORR.2017.8009453 – ident: ref16 doi: 10.1038/35088155 – volume: 2 start-page: 154 year: 2013 ident: ref23 article-title: Biogeography-based optimization-a survey publication-title: Int J Electron Comput Sci Eng – ident: ref6 doi: 10.1145/3054912 – ident: ref7 doi: 10.1109/TBME.2007.901024 – ident: ref33 doi: 10.1007/978-3-319-94042-7_6 – ident: ref13 doi: 10.1016/j.gaitpost.2012.01.017 – volume: 1 start-page: 1 year: 2016 ident: ref28 article-title: In-hand robotic manipulation via deep reinforcement learning publication-title: Proc Conf Neural Inf Process Syst – ident: ref27 doi: 10.1587/transinf.E92.D.1354 – start-page: 1 year: 2017 ident: ref5 article-title: Proximal policy optimization algorithms publication-title: Proc OpenAI – ident: ref25 doi: 10.1109/ICARSC.2019.8733636 – ident: ref26 doi: 10.1115/DSCC2015-9794 – ident: ref2 doi: 10.1371/journal.pcbi.1006993 – ident: ref20 doi: 10.1109/ACC.2014.6858812 – ident: ref9 doi: 10.1016/j.jbiomech.2008.03.015 – ident: ref34 doi: 10.1115/1.1531112 – year: 2018 ident: ref12 article-title: Planning an OpenSim simulation publication-title: ASB Pipeline Shared by Dordt College UW Madison – ident: ref4 doi: 10.1016/j.medengphy.2019.11.006 – ident: ref17 doi: 10.1007/3-540-32494-1_4 – volume: 69 start-page: 1 year: 2019 ident: ref8 article-title: Artificial intelligence for prosthetics: Challenge solutions publication-title: The NeurIPS'18 Competition From Machine Learning to Intelligent Conversations – volume: 126 start-page: 136 year: 1938 ident: ref32 article-title: The heat of shortening and the dynamic constants of muscle publication-title: Proc Roy Soc London B Biol Sci doi: 10.1098/rspb.1938.0050 – ident: ref11 doi: 10.1109/BioRob49111.2020.9224422 – ident: ref24 doi: 10.1016/j.aei.2005.01.004 – start-page: 1 year: 2018 ident: ref30 article-title: Investigating deep reinforcement learning for grasping objects with an anthropomorphic hand publication-title: Proc Int Conf Learn Represent – ident: ref1 doi: 10.1145/2508363.2508399 – ident: ref35 doi: 10.1016/j.gaitpost.2011.02.022 – ident: ref14 doi: 10.1016/j.jbiomech.2010.04.003 – ident: ref22 doi: 10.23919/ACC.2017.7963060 – ident: ref15 doi: 10.1002/cnm.2936 – ident: ref18 doi: 10.1109/DDCLS.2018.8515918 |
SSID | ssj0017657 |
Score | 2.4191003 |
Snippet | This paper proposes to use deep reinforcement learning for the simulation of physics-based musculoskeletal models of both healthy subjects and transfemoral... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 607 |
SubjectTerms | Actuators Algorithms Ankle Computational modeling Computer applications computer simulation Computing time Deep learning Deep Reinforcement Learning (DRL) Gait Legged locomotion Machine learning Muscles Observational learning Optimization Optimization algorithms Physics Prostheses Prosthetics Reinforcement Reinforcement learning Walking |
Title | Deep Reinforcement Learning for Physics-Based Musculoskeletal Simulations of Healthy Subjects and Transfemoral Prostheses' Users During Normal Walking |
URI | https://ieeexplore.ieee.org/document/9366532 https://www.ncbi.nlm.nih.gov/pubmed/33646954 https://www.proquest.com/docview/2501326647 https://www.proquest.com/docview/2495409056 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1ygUB6BUg0SjwNkG8ePJEegrSqkXaF2V_QWJc4YULdJRTYH-CH8XsbOQxQB4hYlTuLEY8_3jefB2LMYCQQkloeCBCaUytCUKq0Kq8ih55Irgy44eb7QJyv5_lydb7HXUywMInrnM5y5Q7-XXzWmc6ayg0xorQQtuDeIuPWxWtOOQaJ9Vk-awDKUIo7GAJkoO1guzk6PiArGfCZciinuytUIoYkZKnlNH_kCK3_Hml7nHN9m87G3vavJxazblDPz_bdEjv_7OTvs1gA-4U0vLXfYFtZ32fNfEw3Dss8yAC_g9FoO71324xDxis76VKvGWxVhyM76CegUeGdS04ZvSTFWMO-ci2vTXpBeI4APZ18uh0phLTQW-vCnb0ALl7MEtVDUFXjFaZ3vL93wwcWjfMYW25ewcjGhcOhDKmHhYPYaPhZrZ-a_x1bHR8t3J-FQ1SE0IlObkGcJV5bH1pSp1lWlY8xkbBNUlRVVkUbWSI08wjSrUiSSm1okUiWFdpu2hRX32Xbd1PiQQapQ6tgQaaNHqKJI0cbSpFla0n8lIhkwPo5tbobf5SpvrHNPfaIs96KRO9HIB9EI2Kvpnqs-4cc_W--6cZ1aDkMasL1RhPJhTWhzAptE_bWWScCeTpdpNrstmqLGpqM2xFeJcRMqDdiDXvSmZ48S--jP73zMbrqe9eahPba9-drhEwJMm3LfGxr2_Xz5CW5DElU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtNAFL0qZQGb8igPQ4FBorBATu15xV6wANIqpU2E2kR0Z-zxnYIakgonQuVDWPEr_Bt3xo5FEbCrxC5yxmNrfGbmnLkvgCcciQR0bRwKAkwolaEpVVgVlpFjz0WsDLrg5MFQ98fyzZE6WoHvbSwMInrnM-y4n96WX87Mwh2VbaVCayV440K5h2dfSKBVL3Z79DU3Od_ZHr3uh00NgdCIVM3DOO3GysbcmiLRuiw1x1Ry20VVWlHmSWSN1BhHmKRlgiSpEotE4aXQzkSYW0H9XoLLxDMUr6PDWhtFV_s8orRkyFAKHi1DcqJ0azQ8PNgm8cnjjnBJrWJXIEcITVpUyXM7oC_p8nd263e5nWvwYzk-tXPLSWcxLzrm62-pI__XAbwOaw29Zi_r-XADVnB6EzZ_TaXMRnUeBfaUHZzLUr4O33qIp3TVJ5M1_tyUNflnjxldYt5d1lThK9r6SzZYOCfeWXVCOzdJGHb48VNTC61iM8vqAK8zRkuzO-uqWD4tmacG1nk30w1vXcTNB6ywesbGLuqV9XzQKBs6ITFh7_KJM2TcgvGFDNltWJ3OpngXWKJQam5IllIXKs8TtFyaJE0K-o4klQOIl1jKTDNcrrbIJPPiLkozD8XMQTFroBjA8_ae0zqlyT9brzsctS0bCAWwsYRs1qx6VUZ0OiY5oGU3gMft37ReOSNUPsXZgtqQIpdRSrw7gDs11Nu-lzPk3p-f-Qiu9EeD_Wx_d7h3H666t6wPwzZgdf55gQ-IHs6Lh36WMnh_0aj-CaZjbp0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+for+Physics-Based+Musculoskeletal+Simulations+of+Healthy+Subjects+and+Transfemoral+Prostheses%27+Users+During+Normal+Walking&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=De+Vree%2C+Leanne&rft.au=Carloni%2C+Raffaella&rft.date=2021&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=29&rft.spage=607&rft.epage=618&rft_id=info:doi/10.1109%2FTNSRE.2021.3063015&rft_id=info%3Apmid%2F33646954&rft.externalDocID=9366532 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |