Efficient activation of PAA by FeS for fast removal of pharmaceuticals: The dual role of sulfur species in regulating the reactive oxidized species

•Satisfactory degradation efficiency of pollutants was achieved by FeS/PAA system.•S(-II) and H2S (aq) played a significant role in Fe(II) regeneration.••OH played a dominant role in pharmaceuticals degradation.•The R-O• generated was supposed to be quickly consumed by sulfur specie.•Degradation pro...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 217; p. 118402
Main Authors Yang, Shu-Run, He, Chuan-Shu, Xie, Zhi-Hui, Li, Ling-Li, Xiong, Zhao-Kun, Zhang, Heng, Zhou, Peng, Jiang, Feng, Mu, Yang, Lai, Bo
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Satisfactory degradation efficiency of pollutants was achieved by FeS/PAA system.•S(-II) and H2S (aq) played a significant role in Fe(II) regeneration.••OH played a dominant role in pharmaceuticals degradation.•The R-O• generated was supposed to be quickly consumed by sulfur specie.•Degradation products of three pharmaceuticals were successfully detoxified. As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe2+/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H2S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH3COO· and sulfur species than ·OH, suggesting the preference of CH3COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes. [Display omitted]
AbstractList As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe2+/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H2S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH3COO· and sulfur species than ·OH, suggesting the preference of CH3COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes.As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe2+/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H2S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH3COO· and sulfur species than ·OH, suggesting the preference of CH3COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes.
•Satisfactory degradation efficiency of pollutants was achieved by FeS/PAA system.•S(-II) and H2S (aq) played a significant role in Fe(II) regeneration.••OH played a dominant role in pharmaceuticals degradation.•The R-O• generated was supposed to be quickly consumed by sulfur specie.•Degradation products of three pharmaceuticals were successfully detoxified. As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe2+/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H2S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH3COO· and sulfur species than ·OH, suggesting the preference of CH3COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes. [Display omitted]
As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe²⁺/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H₂S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH₃COO· and sulfur species than ·OH, suggesting the preference of CH₃COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes.
As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe /PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH COO· and sulfur species than ·OH, suggesting the preference of CH COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes.
ArticleNumber 118402
Author Li, Ling-Li
Jiang, Feng
Yang, Shu-Run
Xie, Zhi-Hui
Mu, Yang
Xiong, Zhao-Kun
He, Chuan-Shu
Zhang, Heng
Zhou, Peng
Lai, Bo
Author_xml – sequence: 1
  givenname: Shu-Run
  surname: Yang
  fullname: Yang, Shu-Run
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
– sequence: 2
  givenname: Chuan-Shu
  surname: He
  fullname: He, Chuan-Shu
  email: hecs@scu.edu.cn
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
– sequence: 3
  givenname: Zhi-Hui
  surname: Xie
  fullname: Xie, Zhi-Hui
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
– sequence: 4
  givenname: Ling-Li
  orcidid: 0000-0003-0228-2550
  surname: Li
  fullname: Li, Ling-Li
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
– sequence: 5
  givenname: Zhao-Kun
  surname: Xiong
  fullname: Xiong, Zhao-Kun
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
– sequence: 6
  givenname: Heng
  surname: Zhang
  fullname: Zhang, Heng
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
– sequence: 7
  givenname: Peng
  surname: Zhou
  fullname: Zhou, Peng
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
– sequence: 8
  givenname: Feng
  surname: Jiang
  fullname: Jiang, Feng
  organization: Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
– sequence: 9
  givenname: Yang
  surname: Mu
  fullname: Mu, Yang
  organization: Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
– sequence: 10
  givenname: Bo
  surname: Lai
  fullname: Lai, Bo
  email: laibo@scu.edu.cn
  organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35417819$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFf4CQl2wy-JWHu0AaVX0gVQKJsrYc57r1KIkH25lS_gZ_GKfpbFgAqyvd-51zpXNO0NHoR0DoLSVrSmj1Ybt-0ClAXDPC2JrSRhD2Aq1oU8uCCdEcoRUhgheUl-IYncS4JSSTXL5Cx3lF64bKFfp1Ya0zDsaEtUlur5PzI_YWf9lscPuIL-Ertj5gq2PCAQa_1_183t3rMGgDU3JG9_EM394D7qZ8DL6HmYhTb6eA4w6yfcRuzPK7qc8PxjucMh3g6WOGf7jO_YTuwL5GL232hDfP8xR9u7y4Pb8ubj5ffTrf3BSGyzIVtARdSVHSlletqetSlB0R1LatraytjbEt05XhDCjnDXBBG61l1YgGRC0l56fo_eK7C_77BDGpwUUDfa9H8FNUrKpI5sR_oSVhJROyyei7Z3RqB-jULrhBh0d1yDwDZwtggo8xgFXGpafcU9CuV5SouWC1VUvBai5YLQVnsfhDfPD_h-zjIoOc595BUHEu3UDnApikOu_-bvAbto7Ccg
CitedBy_id crossref_primary_10_1016_j_cej_2022_141183
crossref_primary_10_1016_j_watres_2022_119176
crossref_primary_10_1016_j_ces_2025_121180
crossref_primary_10_1016_j_jece_2025_115686
crossref_primary_10_1016_j_jwpe_2024_105121
crossref_primary_10_1007_s11356_023_27779_4
crossref_primary_10_1016_j_cej_2023_145824
crossref_primary_10_1016_j_jcis_2022_12_110
crossref_primary_10_1016_j_seppur_2025_131563
crossref_primary_10_1016_j_jhazmat_2024_136442
crossref_primary_10_1016_j_jece_2024_113700
crossref_primary_10_1016_j_jhazmat_2023_132760
crossref_primary_10_1016_j_apcatb_2024_124969
crossref_primary_10_1016_j_jhazmat_2022_129741
crossref_primary_10_1016_j_watres_2022_118887
crossref_primary_10_1016_j_envres_2025_121480
crossref_primary_10_1016_j_watres_2023_120695
crossref_primary_10_1016_j_jenvman_2025_124778
crossref_primary_10_1016_j_cej_2023_141729
crossref_primary_10_1016_j_jhazmat_2023_131286
crossref_primary_10_1016_j_jhazmat_2022_130571
crossref_primary_10_1016_j_cej_2025_160954
crossref_primary_10_1016_j_cej_2025_160552
crossref_primary_10_1016_j_seppur_2024_127963
crossref_primary_10_3390_su16125012
crossref_primary_10_1021_acsestengg_5c00040
crossref_primary_10_1016_j_seppur_2022_122500
crossref_primary_10_1016_j_cej_2024_151802
crossref_primary_10_1016_j_apcatb_2024_124580
crossref_primary_10_1016_j_watres_2024_122244
crossref_primary_10_1016_j_jwpe_2025_107042
crossref_primary_10_1016_j_jcis_2025_01_205
crossref_primary_10_1021_acsestengg_2c00185
crossref_primary_10_1016_j_cej_2022_137667
crossref_primary_10_1016_j_seppur_2024_130048
crossref_primary_10_1021_acs_est_3c05694
crossref_primary_10_1021_acs_est_3c07473
crossref_primary_10_1016_j_cej_2024_158968
crossref_primary_10_1016_j_scitotenv_2022_159465
crossref_primary_10_1016_j_jhazmat_2023_132229
crossref_primary_10_1016_j_seppur_2024_130161
crossref_primary_10_1016_j_seppur_2023_126147
crossref_primary_10_1016_j_jcis_2023_07_079
crossref_primary_10_1007_s11783_023_1713_1
crossref_primary_10_1360_TB_2024_0583
crossref_primary_10_1016_j_apcatb_2023_123183
crossref_primary_10_1016_j_cherd_2023_10_042
crossref_primary_10_1016_j_jtice_2023_104835
crossref_primary_10_1016_j_seppur_2022_123021
crossref_primary_10_1016_j_psep_2023_09_012
crossref_primary_10_1016_j_watres_2024_122917
crossref_primary_10_1016_j_jhazmat_2025_138013
crossref_primary_10_1016_j_envpol_2022_120279
crossref_primary_10_1016_j_jece_2022_108841
crossref_primary_10_1016_j_cej_2024_156810
crossref_primary_10_1016_j_cej_2025_161343
crossref_primary_10_1016_j_jhazmat_2023_132117
crossref_primary_10_1016_j_chemosphere_2024_142277
crossref_primary_10_1016_j_cej_2024_150934
crossref_primary_10_1016_j_jece_2024_114037
crossref_primary_10_1016_j_watres_2022_119013
crossref_primary_10_1016_j_apcatb_2023_123150
crossref_primary_10_1016_j_cej_2024_157179
crossref_primary_10_1016_j_jenvman_2023_118440
crossref_primary_10_1021_acs_est_4c00195
crossref_primary_10_1016_j_seppur_2023_125592
crossref_primary_10_1016_j_jhazmat_2022_130386
crossref_primary_10_1016_j_jhazmat_2024_134982
crossref_primary_10_1016_j_jece_2024_112927
crossref_primary_10_1016_j_jhazmat_2023_131355
crossref_primary_10_1016_j_cej_2023_146032
crossref_primary_10_1073_pnas_2314396121
crossref_primary_10_1016_j_watres_2023_119666
crossref_primary_10_1016_j_jwpe_2024_105611
crossref_primary_10_1016_j_seppur_2024_131225
crossref_primary_10_1016_j_envpol_2022_120777
crossref_primary_10_1016_j_jhazmat_2023_133303
crossref_primary_10_1021_acs_langmuir_4c01969
crossref_primary_10_1016_j_jhazmat_2024_136918
crossref_primary_10_1016_j_cjsc_2025_100543
crossref_primary_10_1016_j_cej_2024_153924
crossref_primary_10_3389_fenvs_2023_1212355
crossref_primary_10_1021_acs_est_3c06370
crossref_primary_10_1039_D2DT03765C
crossref_primary_10_1016_j_cej_2023_142693
crossref_primary_10_1016_j_watres_2023_120584
crossref_primary_10_1016_j_jhazmat_2023_132819
crossref_primary_10_1021_acsestengg_2c00301
crossref_primary_10_1016_j_watres_2024_121595
crossref_primary_10_1016_j_cej_2024_150510
crossref_primary_10_1016_j_dwt_2024_100182
crossref_primary_10_1016_j_jhazmat_2024_135692
crossref_primary_10_1016_j_jhazmat_2025_137752
crossref_primary_10_1016_j_fmre_2023_05_007
crossref_primary_10_1016_j_chemosphere_2024_143383
crossref_primary_10_1016_j_jhazmat_2022_130480
crossref_primary_10_1016_j_cej_2024_152385
crossref_primary_10_1016_j_jhazmat_2023_132662
crossref_primary_10_1016_j_jwpe_2024_105817
crossref_primary_10_1016_j_catcom_2023_106702
crossref_primary_10_1016_j_jece_2025_116074
crossref_primary_10_1016_j_cej_2022_141045
crossref_primary_10_1016_j_seppur_2024_126946
crossref_primary_10_3390_molecules29122868
crossref_primary_10_1016_j_watres_2024_121621
crossref_primary_10_1016_j_seppur_2024_126816
crossref_primary_10_1038_s41545_024_00415_5
crossref_primary_10_1016_j_jenvman_2023_119427
crossref_primary_10_1016_j_cej_2024_158071
crossref_primary_10_1016_j_watres_2022_118930
crossref_primary_10_1016_j_jece_2023_111674
crossref_primary_10_1016_j_heliyon_2024_e27036
crossref_primary_10_1016_j_seppur_2024_129004
crossref_primary_10_1016_j_jhazmat_2024_135207
crossref_primary_10_1016_j_jhazmat_2023_131103
crossref_primary_10_1016_j_jwpe_2023_104715
crossref_primary_10_1016_j_apcatb_2024_124539
crossref_primary_10_1016_j_cej_2023_147051
crossref_primary_10_1016_j_watres_2022_119508
crossref_primary_10_1016_j_jhazmat_2024_134639
Cites_doi 10.1016/j.watres.2015.11.063
10.1016/j.watres.2020.116279
10.1021/jp810292n
10.1016/j.apcatb.2016.09.005
10.1016/j.biortech.2018.05.051
10.1021/acsestwater.0c00029
10.1063/1.3382344
10.1039/C9TA04885E
10.1016/j.seppur.2012.04.034
10.1016/j.watres.2020.116241
10.1021/acs.est.7b04177
10.1021/es1009136
10.1016/j.chemosphere.2018.09.005
10.1007/s00214-007-0310-x
10.1021/es0109242
10.1021/jo001348f
10.1016/j.watres.2020.116479
10.1021/acs.est.0c06091
10.1016/j.cej.2015.07.034
10.1039/C2NJ20852K
10.1021/acs.est.9b07012
10.1021/acs.est.9b02991
10.1016/j.cej.2019.122149
10.1021/acs.est.0c05397
10.1271/bbb.56.1529
10.1016/j.apcatb.2020.119422
10.1021/acs.est.9b03873
10.1016/j.cej.2013.02.018
10.1021/acs.est.0c00356
10.1016/j.watres.2018.10.062
10.1016/j.watres.2015.08.037
10.1016/j.watres.2018.06.002
10.1021/acs.est.0c06676
10.1021/acs.est.9b03975
10.1016/j.cej.2019.123264
10.1016/j.watres.2020.116529
10.1021/acs.est.8b00586
10.1021/es404453v
10.1016/j.watres.2021.117291
10.1016/j.scitotenv.2021.147811
10.1016/j.cej.2015.03.079
10.1139/v64-421
10.1021/acs.est.1c02015
10.1021/acs.est.6b02833
10.1016/S0016-7037(97)00291-3
10.1016/j.apcatb.2012.09.042
10.1016/j.jhazmat.2016.09.062
10.1016/j.seppur.2021.119402
10.1021/acs.est.7b02695
10.1021/acs.est.7b04694
10.1021/cr0503658
10.1016/j.cej.2017.09.175
10.1016/j.cej.2020.124938
10.1002/jcc.21759
10.1039/b508541a
10.1021/ie9018066
10.1016/j.cej.2016.12.075
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2022.118402
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 35417819
10_1016_j_watres_2022_118402
S004313542200358X
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
RIG
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-15ea69451b36bc77545d041fbbf6ff7ccfb2a6c32e1338e3418aa96848e479933
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Fri Jul 11 07:03:12 EDT 2025
Fri Jul 11 01:47:36 EDT 2025
Thu Apr 03 07:06:53 EDT 2025
Tue Jul 01 01:21:12 EDT 2025
Thu Apr 24 22:58:38 EDT 2025
Fri Feb 23 02:35:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Organic radicals
Pharmaceuticals degradation
Sulfur species
Peracetic acid
FeS
Reactive oxidized species
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-15ea69451b36bc77545d041fbbf6ff7ccfb2a6c32e1338e3418aa96848e479933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0228-2550
PMID 35417819
PQID 2650252498
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2660993493
proquest_miscellaneous_2650252498
pubmed_primary_35417819
crossref_citationtrail_10_1016_j_watres_2022_118402
crossref_primary_10_1016_j_watres_2022_118402
elsevier_sciencedirect_doi_10_1016_j_watres_2022_118402
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-15
PublicationDateYYYYMMDD 2022-06-15
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Zhang, Yang, Yang, Li, Bai (bib0008) 2015; 273
Kim, Zhang, Liu, Du, Dobson, Huang (bib0026) 2019; 53
Fang, Dionysiou, Al-Abed, Zhou (bib0016) 2013; 129
Fan, Gu, Wu, Liu (bib0015) 2018; 333
Chen, Zhou, Sun, Zhang, Huang (bib0009) 2019; 53
Wang, Zhuang, Su, Chi, Wang (bib0047) 2021; 788
Weigend, Ahlrichs (bib0048) 2005; 7
Rokhina, Makarova, Lahtinen, Golovina, Van As, Virkutyte (bib0038) 2013; 221
Suleimenov, Seward (bib0041) 1997; 61
Gao, Li, Li, Yao, Zhang (bib0018) 2017; 202
Liu, Li, Han, Chen, Zhu, Campos (bib0030) 2017; 322
Duan, Li, Ao, Kang, Tian, Zhang, Ho, Sun, Wang (bib0013) 2019; 7
Grimme, Antony, Ehrlich, Krieg (bib0021) 2010; 132
Kim, Huang (bib0025) 2020; 1
Ao, Eloranta, Huang, Santoro, Sun, Lu, Li (bib0002) 2021; 188
Chalier, Tordo (bib0006) 2002
Marenich, Cramer, Truhlar (bib0033) 2009; 113
Frisch, T, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Mennucci, Petersson, Nakatsuji, Caricato, Li, Hratchian, Izmaylov, Bloino, Zheng, Sonnenberg, Hada, Ehara, Toyota, Fukuda, Hasegawa, Ishida, Nakajima, Honda, Kitao, Nakai, Vreven, Montgomery, Peralta, Ogliaro, Bearpark, Heyd, Brothers, Kudin, Staroverov, Kobayashi, Normand, Raghavachari, Rendell, Burant, Iyengar, Tomasi, Cossi, Rega, Millam, Klene, Knox, Cross, Bakken, Adamo, Jaramillo, Gomperts, Stratmann, Yazyev, Austin, Cammi, Pomelli, Ochterski, Martin, Morokuma, Zakrzewski, Voth, Salvador, Dannenberg, Dapprich, Daniels, Farkas, Foresman, Ortiz, Cioslowski, Fox (bib0032) 2009
Cheng, Yuan, Liao, Zhang (bib0011) 2016; 50
Sharma, Mukhopadhyay, Murthy (bib0042) 2010; 49
Yang, Ma, Chen, Yao, Sun, Wang, Yi, Hou, Li, Wang (bib0051) 2019; 378
Cheng, Neumann, Yuan, Liao, Qian (bib0010) 2020; 54
Rickard, Luther (bib0036) 2007; 107
Rokhina, Makarova, Golovina, Van As, Virkutyte (bib0037) 2010; 44
Luukkonen, Heyninck, Ramo, Lassi (bib0031) 2015; 85
Kim, Du, Liu, Luo, Zhao, Huang (bib0024) 2020; 54
Zhang, Zhang, Liu, Qu, Li, Chen, Peijnenburg (bib0053) 2020; 185
An, Gao, Li, Kamat, Peller, Joyce (bib0001) 2014; 48
Fan, Lan, Tratnyek, Johnson, Filip, O'Carroll, Nunez Garcia, Agrawal (bib0014) 2017; 51
Wang, Wang, Cheng, Cao, Bai, Yue, Xie, Ma (bib0045) 2021; 201
Rose, Waite (bib0039) 2002; 36
Li, Zhang, Sun, Liang, Pan, Zhang, Guan (bib0028) 2017; 51
Chen, Zhang, Feng, Liu, Wang, Yang, Hu (bib0007) 2017; 313
Cai, Chen, Qiu, Li, Tratnyek, He (bib0005) 2021; 55
Cai, Sun, Zhang, Huang (bib0004) 2017; 51
Wu, Tian, Liu, Chen, Huang, Zhou, Zhang (bib0049) 2020; 394
Dominguez Henao, Turolla, Antonelli (bib0012) 2018; 213
Zhou, Sheng, Zhao, Gross, Wen (bib0058) 2018; 264
He, Miller, Collins, Wang, Waite (bib0023) 2019; 54
Gardner, Howard, Ingold (bib0019) 1964; 42
Li, Manoli, Kim, Feng, Huang, Sharma (bib0029) 2021; 55
Pan, Bu, Li, Wang, Wu, Zhang (bib0035) 2021; 277
Wang, Xiong, Miao, Wang, Xie, Wang, Ma (bib0046) 2021; 280
Yamauchi, Miyake, Kato, Ueno (bib0050) 1992; 56
Zhou, Peng, Li, You, Lai, Liu, Ao, Yao, Lai (bib0057) 2021; 188
Zhou, Lai, Wan, He, Yao, Lai (bib0056) 2020; 384
Babuponnusami, Muthukumar (bib0003) 2012; 98
Murahashi, Komiya, Oda, Kuwabara, Naota (bib0034) 2000; 65
Zhang, Brown, Miles, White, Grant, Stalla, Hu (bib0052) 2019; 149
Gong, Tang, Zhao (bib0020) 2016; 89
Grimme, Ehrlich, Goerigk (bib0022) 2011; 32
Li, Zhao, Qian, Pan (bib0027) 2021; 55
von Gunten (bib0044) 2018; 52
Fang, Zhang, Cui, Dionysiou, Liu, Gao, Wang, Zhou (bib0017) 2020; 54
Zhou, Lu, Yao, Sun, Gong, Li, Pei, Lu, Chen (bib0055) 2015; 281
Zhao, Truhlar (bib0054) 2007; 120
Top, Akgun, Kipcak, Bilgili (bib0043) 2020; 185
Zhou, Wang, Zhu, Dionysiou, Zhao, Fang, Zhou (bib0059) 2018; 142
Rothbart, Ember, van Eldik (bib0040) 2012; 36
Zhang (10.1016/j.watres.2022.118402_bib0052) 2019; 149
Murahashi (10.1016/j.watres.2022.118402_bib0034) 2000; 65
Top (10.1016/j.watres.2022.118402_bib0043) 2020; 185
Zhou (10.1016/j.watres.2022.118402_bib0059) 2018; 142
Wang (10.1016/j.watres.2022.118402_bib0047) 2021; 788
Ao (10.1016/j.watres.2022.118402_bib0002) 2021; 188
Zhou (10.1016/j.watres.2022.118402_bib0056) 2020; 384
An (10.1016/j.watres.2022.118402_bib0001) 2014; 48
Cai (10.1016/j.watres.2022.118402_bib0004) 2017; 51
Yamauchi (10.1016/j.watres.2022.118402_bib0050) 1992; 56
Pan (10.1016/j.watres.2022.118402_bib0035) 2021; 277
Grimme (10.1016/j.watres.2022.118402_bib0022) 2011; 32
Fang (10.1016/j.watres.2022.118402_bib0016) 2013; 129
Li (10.1016/j.watres.2022.118402_bib0028) 2017; 51
Wang (10.1016/j.watres.2022.118402_bib0046) 2021; 280
Sharma (10.1016/j.watres.2022.118402_bib0042) 2010; 49
Chen (10.1016/j.watres.2022.118402_bib0008) 2015; 273
Frisch (10.1016/j.watres.2022.118402_bib0032) 2009
Zhou (10.1016/j.watres.2022.118402_bib0057) 2021; 188
Rokhina (10.1016/j.watres.2022.118402_bib0038) 2013; 221
Fan (10.1016/j.watres.2022.118402_bib0014) 2017; 51
Fang (10.1016/j.watres.2022.118402_bib0017) 2020; 54
Wang (10.1016/j.watres.2022.118402_bib0045) 2021; 201
Cai (10.1016/j.watres.2022.118402_bib0005) 2021; 55
Kim (10.1016/j.watres.2022.118402_bib0025) 2020; 1
Chen (10.1016/j.watres.2022.118402_bib0009) 2019; 53
Li (10.1016/j.watres.2022.118402_bib0027) 2021; 55
von Gunten (10.1016/j.watres.2022.118402_bib0044) 2018; 52
Gao (10.1016/j.watres.2022.118402_bib0018) 2017; 202
Chen (10.1016/j.watres.2022.118402_bib0007) 2017; 313
Rothbart (10.1016/j.watres.2022.118402_bib0040) 2012; 36
Zhou (10.1016/j.watres.2022.118402_bib0055) 2015; 281
Kim (10.1016/j.watres.2022.118402_bib0026) 2019; 53
Cheng (10.1016/j.watres.2022.118402_bib0010) 2020; 54
Wu (10.1016/j.watres.2022.118402_bib0049) 2020; 394
Suleimenov (10.1016/j.watres.2022.118402_bib0041) 1997; 61
Zhou (10.1016/j.watres.2022.118402_bib0058) 2018; 264
Chalier (10.1016/j.watres.2022.118402_bib0006) 2002
Yang (10.1016/j.watres.2022.118402_bib0051) 2019; 378
Zhang (10.1016/j.watres.2022.118402_bib0053) 2020; 185
Weigend (10.1016/j.watres.2022.118402_bib0048) 2005; 7
Rose (10.1016/j.watres.2022.118402_bib0039) 2002; 36
Kim (10.1016/j.watres.2022.118402_bib0024) 2020; 54
Gong (10.1016/j.watres.2022.118402_bib0020) 2016; 89
Marenich (10.1016/j.watres.2022.118402_bib0033) 2009; 113
Liu (10.1016/j.watres.2022.118402_bib0030) 2017; 322
Rokhina (10.1016/j.watres.2022.118402_bib0037) 2010; 44
Luukkonen (10.1016/j.watres.2022.118402_bib0031) 2015; 85
Grimme (10.1016/j.watres.2022.118402_bib0021) 2010; 132
Babuponnusami (10.1016/j.watres.2022.118402_bib0003) 2012; 98
Cheng (10.1016/j.watres.2022.118402_bib0011) 2016; 50
Duan (10.1016/j.watres.2022.118402_bib0013) 2019; 7
Dominguez Henao (10.1016/j.watres.2022.118402_bib0012) 2018; 213
Zhao (10.1016/j.watres.2022.118402_bib0054) 2007; 120
Li (10.1016/j.watres.2022.118402_bib0029) 2021; 55
He (10.1016/j.watres.2022.118402_bib0023) 2019; 54
Fan (10.1016/j.watres.2022.118402_bib0015) 2018; 333
Gardner (10.1016/j.watres.2022.118402_bib0019) 1964; 42
Rickard (10.1016/j.watres.2022.118402_bib0036) 2007; 107
References_xml – volume: 281
  start-page: 953
  year: 2015
  end-page: 960
  ident: bib0055
  article-title: Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: implications for the removal of organic pollutants
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 13533
  year: 2017
  end-page: 13544
  ident: bib0028
  article-title: Advances in sulfidation of zerovalent iron for water decontamination
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 3297
  year: 2005
  end-page: 3305
  ident: bib0048
  article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy
  publication-title: Phys. Chem. Chem. Phys.
– volume: 55
  start-page: 9150
  year: 2021
  end-page: 9160
  ident: bib0029
  article-title: Peracetic Acid-ruthenium(III) oxidation process for the degradation of micropollutants in water
  publication-title: Environ. Sci. Technol.
– volume: 54
  start-page: 5268
  year: 2020
  end-page: 5278
  ident: bib0024
  article-title: Cobalt/Peracetic acid: advanced oxidation of aromatic organic compounds by Acetylperoxyl radicals
  publication-title: Environ. Sci. Technol.
– volume: 188
  year: 2021
  ident: bib0057
  article-title: Metal-free black-red phosphorus as an efficient heterogeneous reductant to boost Fe
  publication-title: Water Res.
– volume: 36
  start-page: 433
  year: 2002
  end-page: 444
  ident: bib0039
  article-title: Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter
  publication-title: Environ. Sci. Technol.
– volume: 85
  start-page: 275
  year: 2015
  end-page: 285
  ident: bib0031
  article-title: Comparison of organic peracids in wastewater treatment: disinfection, oxidation and corrosion
  publication-title: Water Res.
– volume: 333
  start-page: 657
  year: 2018
  end-page: 664
  ident: bib0015
  article-title: Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: surface reaction mechanism and sulfur-mediated cycling of iron species
  publication-title: Chem. Eng. J.
– volume: 264
  start-page: 24
  year: 2018
  end-page: 34
  ident: bib0058
  article-title: Treatment of acidic sulfate-containing wastewater using revolving algae biofilm reactors: Sulfur removal performance and microbial community characterization
  publication-title: Bioresour. Technol.
– volume: 273
  start-page: 481
  year: 2015
  end-page: 489
  ident: bib0008
  article-title: Heterogeneous fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS
  publication-title: Chem. Eng. J.
– volume: 185
  year: 2020
  ident: bib0043
  article-title: Treatment of hospital wastewater by supercritical water oxidation process
  publication-title: Water Res.
– volume: 51
  start-page: 14217
  year: 2017
  end-page: 14224
  ident: bib0004
  article-title: UV/Peracetic acid for degradation of pharmaceuticals and reactive species evaluation
  publication-title: Environ. Sci. Technol.
– volume: 142
  start-page: 208
  year: 2018
  end-page: 216
  ident: bib0059
  article-title: New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation
  publication-title: Water Res.
– volume: 53
  start-page: 13312
  year: 2019
  end-page: 13322
  ident: bib0026
  article-title: Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 11646
  year: 2016
  end-page: 11653
  ident: bib0011
  article-title: Oxidizing impact induced by Mackinawite (FeS) nanoparticles at oxic conditions due to production of hydroxyl radicals
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 6815
  year: 2010
  end-page: 6821
  ident: bib0037
  article-title: Free radical reaction pathway, thermochemistry of peracetic acid homolysis, and its application for phenol degradation: spectroscopic study and quantum chemistry calculations
  publication-title: Environ. Sci. Technol.
– volume: 202
  start-page: 165
  year: 2017
  end-page: 174
  ident: bib0018
  article-title: Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate
  publication-title: Appl. Catal. B
– volume: 120
  start-page: 215
  year: 2007
  end-page: 241
  ident: bib0054
  article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals
  publication-title: Theor. Chem. Acc.
– volume: 394
  year: 2020
  ident: bib0049
  article-title: Degradation of organic compounds by peracetic acid activated with Co
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 15
  year: 2020
  end-page: 33
  ident: bib0025
  article-title: Reactivity of peracetic acid with organic compounds: a critical review
  publication-title: ACS ES&T Water
– volume: 378
  year: 2019
  ident: bib0051
  article-title: Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water
  publication-title: Chem. Eng. J.
– volume: 48
  start-page: 641
  year: 2014
  end-page: 648
  ident: bib0001
  article-title: Kinetics and mechanism of (*)OH mediated degradation of dimethyl phthalate in aqueous solution: experimental and theoretical studies
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 645
  year: 2021
  end-page: 654
  ident: bib0005
  article-title: Sulfidation of zero-Valent iron by direct reaction with elemental sulfur in water: efficiencies, mechanism, and dechlorination of trichloroethylene
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 1529
  year: 1992
  end-page: 1532
  ident: bib0050
  article-title: Peroxyl-radical reaction of retinyl acetate in solution
  publication-title: Biosci., Biotechnol., Biochem
– volume: 36
  start-page: 732
  year: 2012
  end-page: 748
  ident: bib0040
  article-title: Mechanistic studies on the oxidative degradation of orange II by peracetic acid catalyzed by simple manganese(II) salts. Tuning the lifetime of the catalyst
  publication-title: New J. Chem.
– volume: 107
  start-page: 514
  year: 2007
  end-page: 562
  ident: bib0036
  article-title: Chemistry of iron sulfides
  publication-title: Chem. Rev.
– volume: 188
  year: 2021
  ident: bib0002
  article-title: Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: a review
  publication-title: Water Res.
– volume: 55
  start-page: 6397
  year: 2021
  end-page: 6406
  ident: bib0027
  article-title: Are free radicals the primary reactive species in Co(II)-mediated activation of peroxymonosulfate? New evidence for the role of the Co(II)-peroxymonosulfate complex
  publication-title: Environ. Sci. Technol.
– volume: 132
  year: 2010
  ident: bib0021
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
– volume: 51
  start-page: 13070
  year: 2017
  end-page: 13085
  ident: bib0014
  article-title: Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation
  publication-title: Environ. Sci. Technol.
– volume: 322
  start-page: 461
  year: 2017
  end-page: 468
  ident: bib0030
  article-title: Efficient degradation of sulfamethoxazole by the Fe(II)/HSO
  publication-title: J. Hazard. Mater.
– year: 2009
  ident: bib0032
  article-title: Gaussian 09, Revision A.01
– volume: 277
  year: 2021
  ident: bib0035
  article-title: Sulfamethazine removal by peracetic acid activation with sulfide-modified zero-valent iron: efficiency, the role of sulfur species, and mechanisms
  publication-title: Sep. Purif. Technol.
– volume: 788
  year: 2021
  ident: bib0047
  article-title: Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: occurrence, removal and environmental impacts
  publication-title: Sci. Total Environ.
– volume: 149
  start-page: 640
  year: 2019
  end-page: 649
  ident: bib0052
  article-title: Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection
  publication-title: Water Res.
– volume: 313
  start-page: 498
  year: 2017
  end-page: 507
  ident: bib0007
  article-title: Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite)
  publication-title: Chem. Eng. J.
– volume: 42
  start-page: 2847
  year: 1964
  end-page: 2851
  ident: bib0019
  article-title: The inhibition of autoxidation by 2,4,6-tri-tert-butyl substituted phenol, aniline, and thiophenol
  publication-title: Can. J. Chem.
– volume: 54
  start-page: 1167
  year: 2019
  end-page: 1176
  ident: bib0023
  article-title: Production of a surface-localized oxidant during oxygenation of mackinawite (FeS)
  publication-title: Environ. Sci. Technol.
– volume: 129
  start-page: 325
  year: 2013
  end-page: 332
  ident: bib0016
  article-title: Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs
  publication-title: Appl. Catal. B
– volume: 113
  start-page: 6378
  year: 2009
  end-page: 6396
  ident: bib0033
  article-title: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions
  publication-title: J. Phys. Chem. B
– volume: 384
  year: 2020
  ident: bib0056
  article-title: Molybdenum disulfide (MoS
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 15489
  year: 2020
  end-page: 15498
  ident: bib0017
  article-title: Synergy between iron and Selenide on FeSe
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 3094
  year: 2010
  end-page: 3098
  ident: bib0042
  article-title: Degradation of 4-chlorophenol in wastewater by organic oxidants
  publication-title: Ind. Eng. Chem. Res.
– start-page: 2110
  year: 2002
  end-page: 2117
  ident: bib0006
  article-title: 5-Diisopropoxyphosphoryl-5-methyl-1-pyrroline N-oxide, DIPPMPO, a crystalline analog of the nitrone DEPMPO: synthesis and spin trapping properties electronic supplementary information (ESI) available: tables of crystallographic data
  publication-title: J. Chem. Soc. Pak.
– volume: 280
  year: 2021
  ident: bib0046
  article-title: Applying a novel advanced oxidation process of activated peracetic acid by CoFe
  publication-title: Appl. Catal. B
– volume: 213
  start-page: 25
  year: 2018
  end-page: 40
  ident: bib0012
  article-title: Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: a review
  publication-title: Chemosphere
– volume: 89
  start-page: 309
  year: 2016
  end-page: 320
  ident: bib0020
  article-title: Application of iron sulfide particles for groundwater and soil remediation: a review
  publication-title: Water Res.
– volume: 65
  start-page: 9186
  year: 2000
  end-page: 9193
  ident: bib0034
  article-title: Ruthenium-catalyzed oxidation of alkanes with tert-butyl hydroperoxide and peracetic acid
  publication-title: J. Org. Chem.
– volume: 221
  start-page: 476
  year: 2013
  end-page: 486
  ident: bib0038
  article-title: Ultrasound-assisted MnO
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 5062
  year: 2018
  end-page: 5075
  ident: bib0044
  article-title: Oxidation processes in water treatment: are we on track?
  publication-title: Environ. Sci. Technol.
– volume: 54
  start-page: 4091
  year: 2020
  end-page: 4101
  ident: bib0010
  article-title: Oxidative degradation of organic contaminants by FeS in the presence of O
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 23904
  year: 2019
  end-page: 23913
  ident: bib0013
  article-title: Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation
  publication-title: J. Mater. Chem. A
– volume: 61
  start-page: 5187
  year: 1997
  end-page: 5198
  ident: bib0041
  article-title: A spectrophotometric study of hydrogen sulphide ionisation in aqueous solutions to 350°C
  publication-title: Geochim. Cosmochim. Acta
– volume: 32
  start-page: 1456
  year: 2011
  end-page: 1465
  ident: bib0022
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J. Comput. Chem.
– volume: 53
  start-page: 11774
  year: 2019
  end-page: 11782
  ident: bib0009
  article-title: Complexation enhances Cu(II)-activated peroxydisulfate: a novel activation mechanism and Cu(III) contribution
  publication-title: Environ. Sci. Technol.
– volume: 98
  start-page: 130
  year: 2012
  end-page: 135
  ident: bib0003
  article-title: Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron
  publication-title: Sep. Purif. Technol.
– volume: 201
  year: 2021
  ident: bib0045
  article-title: Molybdenum disulfide (MoS
  publication-title: Water Res.
– volume: 185
  year: 2020
  ident: bib0053
  article-title: Simulated sunlight-induced inactivation of tetracycline resistant bacteria and effects of dissolved organic matter
  publication-title: Water Res.
– volume: 89
  start-page: 309
  year: 2016
  ident: 10.1016/j.watres.2022.118402_bib0020
  article-title: Application of iron sulfide particles for groundwater and soil remediation: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.11.063
– year: 2009
  ident: 10.1016/j.watres.2022.118402_bib0032
– volume: 185
  year: 2020
  ident: 10.1016/j.watres.2022.118402_bib0043
  article-title: Treatment of hospital wastewater by supercritical water oxidation process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116279
– volume: 113
  start-page: 6378
  issue: 18
  year: 2009
  ident: 10.1016/j.watres.2022.118402_bib0033
  article-title: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp810292n
– volume: 202
  start-page: 165
  year: 2017
  ident: 10.1016/j.watres.2022.118402_bib0018
  article-title: Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.09.005
– volume: 264
  start-page: 24
  year: 2018
  ident: 10.1016/j.watres.2022.118402_bib0058
  article-title: Treatment of acidic sulfate-containing wastewater using revolving algae biofilm reactors: Sulfur removal performance and microbial community characterization
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.05.051
– volume: 1
  start-page: 15
  issue: 1
  year: 2020
  ident: 10.1016/j.watres.2022.118402_bib0025
  article-title: Reactivity of peracetic acid with organic compounds: a critical review
  publication-title: ACS ES&T Water
  doi: 10.1021/acsestwater.0c00029
– volume: 132
  issue: 15
  year: 2010
  ident: 10.1016/j.watres.2022.118402_bib0021
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 7
  start-page: 23904
  issue: 41
  year: 2019
  ident: 10.1016/j.watres.2022.118402_bib0013
  article-title: Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04885E
– volume: 98
  start-page: 130
  year: 2012
  ident: 10.1016/j.watres.2022.118402_bib0003
  article-title: Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2012.04.034
– volume: 185
  year: 2020
  ident: 10.1016/j.watres.2022.118402_bib0053
  article-title: Simulated sunlight-induced inactivation of tetracycline resistant bacteria and effects of dissolved organic matter
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116241
– volume: 51
  start-page: 13070
  issue: 22
  year: 2017
  ident: 10.1016/j.watres.2022.118402_bib0014
  article-title: Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04177
– volume: 44
  start-page: 6815
  issue: 17
  year: 2010
  ident: 10.1016/j.watres.2022.118402_bib0037
  article-title: Free radical reaction pathway, thermochemistry of peracetic acid homolysis, and its application for phenol degradation: spectroscopic study and quantum chemistry calculations
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1009136
– volume: 213
  start-page: 25
  year: 2018
  ident: 10.1016/j.watres.2022.118402_bib0012
  article-title: Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.09.005
– volume: 120
  start-page: 215
  issue: 1-3
  year: 2007
  ident: 10.1016/j.watres.2022.118402_bib0054
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 36
  start-page: 433
  issue: 3
  year: 2002
  ident: 10.1016/j.watres.2022.118402_bib0039
  article-title: Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0109242
– volume: 65
  start-page: 9186
  issue: 26
  year: 2000
  ident: 10.1016/j.watres.2022.118402_bib0034
  article-title: Ruthenium-catalyzed oxidation of alkanes with tert-butyl hydroperoxide and peracetic acid
  publication-title: J. Org. Chem.
  doi: 10.1021/jo001348f
– volume: 188
  year: 2021
  ident: 10.1016/j.watres.2022.118402_bib0002
  article-title: Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116479
– volume: 54
  start-page: 15489
  issue: 23
  year: 2020
  ident: 10.1016/j.watres.2022.118402_bib0017
  article-title: Synergy between iron and Selenide on FeSe2(111) surface driving peroxymonosulfate activation for efficient degradation of pollutants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c06091
– volume: 281
  start-page: 953
  year: 2015
  ident: 10.1016/j.watres.2022.118402_bib0055
  article-title: Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: implications for the removal of organic pollutants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.07.034
– volume: 36
  start-page: 732
  issue: 3
  year: 2012
  ident: 10.1016/j.watres.2022.118402_bib0040
  article-title: Mechanistic studies on the oxidative degradation of orange II by peracetic acid catalyzed by simple manganese(II) salts. Tuning the lifetime of the catalyst
  publication-title: New J. Chem.
  doi: 10.1039/C2NJ20852K
– volume: 54
  start-page: 4091
  issue: 7
  year: 2020
  ident: 10.1016/j.watres.2022.118402_bib0010
  article-title: Oxidative degradation of organic contaminants by FeS in the presence of O2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b07012
– volume: 53
  start-page: 13312
  issue: 22
  year: 2019
  ident: 10.1016/j.watres.2022.118402_bib0026
  article-title: Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b02991
– volume: 378
  year: 2019
  ident: 10.1016/j.watres.2022.118402_bib0051
  article-title: Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122149
– volume: 55
  start-page: 645
  issue: 1
  year: 2021
  ident: 10.1016/j.watres.2022.118402_bib0005
  article-title: Sulfidation of zero-Valent iron by direct reaction with elemental sulfur in water: efficiencies, mechanism, and dechlorination of trichloroethylene
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c05397
– volume: 56
  start-page: 1529
  issue: 10
  year: 1992
  ident: 10.1016/j.watres.2022.118402_bib0050
  article-title: Peroxyl-radical reaction of retinyl acetate in solution
  publication-title: Biosci., Biotechnol., Biochem
  doi: 10.1271/bbb.56.1529
– volume: 280
  year: 2021
  ident: 10.1016/j.watres.2022.118402_bib0046
  article-title: Applying a novel advanced oxidation process of activated peracetic acid by CoFe2O4 to efficiently degrade sulfamethoxazole
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.119422
– volume: 53
  start-page: 11774
  issue: 20
  year: 2019
  ident: 10.1016/j.watres.2022.118402_bib0009
  article-title: Complexation enhances Cu(II)-activated peroxydisulfate: a novel activation mechanism and Cu(III) contribution
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03873
– volume: 221
  start-page: 476
  year: 2013
  ident: 10.1016/j.watres.2022.118402_bib0038
  article-title: Ultrasound-assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: the assessment of process chemistry and kinetics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.02.018
– volume: 54
  start-page: 5268
  issue: 8
  year: 2020
  ident: 10.1016/j.watres.2022.118402_bib0024
  article-title: Cobalt/Peracetic acid: advanced oxidation of aromatic organic compounds by Acetylperoxyl radicals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c00356
– volume: 149
  start-page: 640
  year: 2019
  ident: 10.1016/j.watres.2022.118402_bib0052
  article-title: Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.062
– volume: 85
  start-page: 275
  year: 2015
  ident: 10.1016/j.watres.2022.118402_bib0031
  article-title: Comparison of organic peracids in wastewater treatment: disinfection, oxidation and corrosion
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.08.037
– volume: 142
  start-page: 208
  year: 2018
  ident: 10.1016/j.watres.2022.118402_bib0059
  article-title: New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.06.002
– volume: 55
  start-page: 9150
  issue: 13
  year: 2021
  ident: 10.1016/j.watres.2022.118402_bib0029
  article-title: Peracetic Acid-ruthenium(III) oxidation process for the degradation of micropollutants in water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c06676
– volume: 54
  start-page: 1167
  issue: 2
  year: 2019
  ident: 10.1016/j.watres.2022.118402_bib0023
  article-title: Production of a surface-localized oxidant during oxygenation of mackinawite (FeS)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03975
– volume: 384
  year: 2020
  ident: 10.1016/j.watres.2022.118402_bib0056
  article-title: Molybdenum disulfide (MoS2): a versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123264
– volume: 188
  year: 2021
  ident: 10.1016/j.watres.2022.118402_bib0057
  article-title: Metal-free black-red phosphorus as an efficient heterogeneous reductant to boost Fe3+/Fe2+ cycle for peroxymonosulfate activation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116529
– volume: 52
  start-page: 5062
  issue: 9
  year: 2018
  ident: 10.1016/j.watres.2022.118402_bib0044
  article-title: Oxidation processes in water treatment: are we on track?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00586
– volume: 48
  start-page: 641
  issue: 1
  year: 2014
  ident: 10.1016/j.watres.2022.118402_bib0001
  article-title: Kinetics and mechanism of (*)OH mediated degradation of dimethyl phthalate in aqueous solution: experimental and theoretical studies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404453v
– start-page: 2110
  issue: 12
  year: 2002
  ident: 10.1016/j.watres.2022.118402_bib0006
  article-title: 5-Diisopropoxyphosphoryl-5-methyl-1-pyrroline N-oxide, DIPPMPO, a crystalline analog of the nitrone DEPMPO: synthesis and spin trapping properties electronic supplementary information (ESI) available: tables of crystallographic data
  publication-title: J. Chem. Soc. Pak.
– volume: 201
  year: 2021
  ident: 10.1016/j.watres.2022.118402_bib0045
  article-title: Molybdenum disulfide (MoS2): a novel activator of peracetic acid for the degradation of sulfonamide antibiotics
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117291
– volume: 788
  year: 2021
  ident: 10.1016/j.watres.2022.118402_bib0047
  article-title: Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: occurrence, removal and environmental impacts
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147811
– volume: 273
  start-page: 481
  year: 2015
  ident: 10.1016/j.watres.2022.118402_bib0008
  article-title: Heterogeneous fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.079
– volume: 42
  start-page: 2847
  year: 1964
  ident: 10.1016/j.watres.2022.118402_bib0019
  article-title: The inhibition of autoxidation by 2,4,6-tri-tert-butyl substituted phenol, aniline, and thiophenol
  publication-title: Can. J. Chem.
  doi: 10.1139/v64-421
– volume: 55
  start-page: 6397
  issue: 9
  year: 2021
  ident: 10.1016/j.watres.2022.118402_bib0027
  article-title: Are free radicals the primary reactive species in Co(II)-mediated activation of peroxymonosulfate? New evidence for the role of the Co(II)-peroxymonosulfate complex
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c02015
– volume: 50
  start-page: 11646
  issue: 21
  year: 2016
  ident: 10.1016/j.watres.2022.118402_bib0011
  article-title: Oxidizing impact induced by Mackinawite (FeS) nanoparticles at oxic conditions due to production of hydroxyl radicals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02833
– volume: 61
  start-page: 5187
  issue: 24
  year: 1997
  ident: 10.1016/j.watres.2022.118402_bib0041
  article-title: A spectrophotometric study of hydrogen sulphide ionisation in aqueous solutions to 350°C
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(97)00291-3
– volume: 129
  start-page: 325
  year: 2013
  ident: 10.1016/j.watres.2022.118402_bib0016
  article-title: Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2012.09.042
– volume: 322
  start-page: 461
  issue: Pt B
  year: 2017
  ident: 10.1016/j.watres.2022.118402_bib0030
  article-title: Efficient degradation of sulfamethoxazole by the Fe(II)/HSO5− process enhanced by hydroxylamine: efficiency and mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.09.062
– volume: 277
  year: 2021
  ident: 10.1016/j.watres.2022.118402_bib0035
  article-title: Sulfamethazine removal by peracetic acid activation with sulfide-modified zero-valent iron: efficiency, the role of sulfur species, and mechanisms
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119402
– volume: 51
  start-page: 13533
  issue: 23
  year: 2017
  ident: 10.1016/j.watres.2022.118402_bib0028
  article-title: Advances in sulfidation of zerovalent iron for water decontamination
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02695
– volume: 51
  start-page: 14217
  issue: 24
  year: 2017
  ident: 10.1016/j.watres.2022.118402_bib0004
  article-title: UV/Peracetic acid for degradation of pharmaceuticals and reactive species evaluation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04694
– volume: 107
  start-page: 514
  issue: 2
  year: 2007
  ident: 10.1016/j.watres.2022.118402_bib0036
  article-title: Chemistry of iron sulfides
  publication-title: Chem. Rev.
  doi: 10.1021/cr0503658
– volume: 333
  start-page: 657
  year: 2018
  ident: 10.1016/j.watres.2022.118402_bib0015
  article-title: Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: surface reaction mechanism and sulfur-mediated cycling of iron species
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.175
– volume: 394
  year: 2020
  ident: 10.1016/j.watres.2022.118402_bib0049
  article-title: Degradation of organic compounds by peracetic acid activated with Co3O4: a novel advanced oxidation process and organic radical contribution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124938
– volume: 32
  start-page: 1456
  issue: 7
  year: 2011
  ident: 10.1016/j.watres.2022.118402_bib0022
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 7
  start-page: 3297
  issue: 18
  year: 2005
  ident: 10.1016/j.watres.2022.118402_bib0048
  article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– volume: 49
  start-page: 3094
  issue: 7
  year: 2010
  ident: 10.1016/j.watres.2022.118402_bib0042
  article-title: Degradation of 4-chlorophenol in wastewater by organic oxidants
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9018066
– volume: 313
  start-page: 498
  year: 2017
  ident: 10.1016/j.watres.2022.118402_bib0007
  article-title: Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.12.075
SSID ssj0002239
Score 2.65967
Snippet •Satisfactory degradation efficiency of pollutants was achieved by FeS/PAA system.•S(-II) and H2S (aq) played a significant role in Fe(II) regeneration.••OH...
As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118402
SubjectTerms carbon
disinfectants
drugs
electron transfer
Escherichia coli
FeS
Gibbs free energy
hospitals
Organic radicals
oxidation
Peracetic acid
Pharmaceuticals degradation
Reactive oxidized species
sulfur
Sulfur species
wastewater
water
Title Efficient activation of PAA by FeS for fast removal of pharmaceuticals: The dual role of sulfur species in regulating the reactive oxidized species
URI https://dx.doi.org/10.1016/j.watres.2022.118402
https://www.ncbi.nlm.nih.gov/pubmed/35417819
https://www.proquest.com/docview/2650252498
https://www.proquest.com/docview/2660993493
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2Ib9cXEbxWTZO0qbdFXFYFEVTYW0naBCvaXfaBj4N_wj_sTNr6OKjgse0MDZ1p5ptk5gshe0Y5k1vLglxnYSBYzgKd8zyQ0iFhFSp5ts-LqHsjznqyN0WOm14YLKus5_5qTvezdX3noP6aB4OiwB5fCH5citCTeqoedrCLGL18__WzzAPCX9LsMqN00z7na7weNTZkQJYYhjB3QK4T_hSefoKfPgx1Fsh8jR9puxriIpmy5RKZ-8IquEzeTjwtBEQTil0L1Zor7Tt62W5T80w79ooCVKVOj8Z0aB_64Gz4eHD7dXl7dETBhSi2alEsQUSJ0eTeTYYUuzMhwaZFCer-KHt4LwUkCZf-jSD8VOTFi80b2RVy0zm5Pu4G9dkLQcYTOQ6YtDpKhGSGRyZDmjyZHwrmjHGRc3GWORPqKOOhxSTXQixUWieREsqKGDAPXyXTZb-064Q6FWuuDXJBGqG00NY6ziwDQSWYUS3Cm0-eZjUxOZ6PcZ82FWh3aWWoFA2VVoZqkeBDa1ARc_whHzfWTL85WAqx4w_N3cb4Kfx7uKGiS9ufgBDA21BCAqt-k4kAhHOR8BZZqzznY7zgjiwGSLbx77Ftklm8wto1JrfI9Hg4sduAksZmx_8GO2SmfXrevXgHdkIUPQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LDtMKx7pu1aDdjV6GRJttxbUDRIX8GAtUBugmRLqIfOCfLAtv6N_eGSfgTdoSvQo20SFkya_GiTnwC-OB1c4T2PCpvHkeQFj2whikipQIRVpFSzfY6T0ZU8najJBhx1szDUVtnG_iam19G6PXPQPs2DWVnSjC8mP6FkXJN66skz2CR2KtWDzcHJ2Wi8DsiYAbPuRzMpdBN0dZvXL0szGVgoxjGGDyx34ocy1EMItM5Ew9fwqoWQbNCscgs2fPUGXt4jFnwLf49rZghMKIwGF5rPrmwa2LfBgLk_bOi_M0SrLNjFks39zyn6G12eXd__wr04ZOhFjKa1GHUhksRidRNWc0YDmlhjs7JC9Xo3e7wvQzCJh_UdUfh3WZS3vuhk38HV8PjyaBS12y9EucjUMuLK2ySTijuRuJyY8lTxVfLgXEhCSPM8uNgmuYg91bke06G2Nku01F6mCHvEe-hV08p_BBZ0aoV1RAfppLbSeh8E9xwFteRO90F0j9zkLTc5bZFxY7omtB-mMZQhQ5nGUH2I1lqzhpvjEfm0s6b5x8cMpo9HND93xjf4-tE_FVv56QqFEOHGCmtY_T-ZBHG4kJnow4fGc9brRXfkKaKy7SevbR-ejy4vzs35yfhsB17QFWpl42oXesv5yn9C0LR0e-1LcQfblRbu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+activation+of+PAA+by+FeS+for+fast+removal+of+pharmaceuticals%3A+The+dual+role+of+sulfur+species+in+regulating+the+reactive+oxidized+species&rft.jtitle=Water+research+%28Oxford%29&rft.au=Yang%2C+Shu-Run&rft.au=He%2C+Chuan-Shu&rft.au=Xie%2C+Zhi-Hui&rft.au=Li%2C+Ling-Li&rft.date=2022-06-15&rft.issn=0043-1354&rft.volume=217&rft.spage=118402&rft_id=info:doi/10.1016%2Fj.watres.2022.118402&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2022_118402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon