Efficient activation of PAA by FeS for fast removal of pharmaceuticals: The dual role of sulfur species in regulating the reactive oxidized species
•Satisfactory degradation efficiency of pollutants was achieved by FeS/PAA system.•S(-II) and H2S (aq) played a significant role in Fe(II) regeneration.••OH played a dominant role in pharmaceuticals degradation.•The R-O• generated was supposed to be quickly consumed by sulfur specie.•Degradation pro...
Saved in:
Published in | Water research (Oxford) Vol. 217; p. 118402 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Satisfactory degradation efficiency of pollutants was achieved by FeS/PAA system.•S(-II) and H2S (aq) played a significant role in Fe(II) regeneration.••OH played a dominant role in pharmaceuticals degradation.•The R-O• generated was supposed to be quickly consumed by sulfur specie.•Degradation products of three pharmaceuticals were successfully detoxified.
As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe2+/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H2S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH3COO· and sulfur species than ·OH, suggesting the preference of CH3COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes.
[Display omitted] |
---|---|
AbstractList | As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe2+/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H2S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH3COO· and sulfur species than ·OH, suggesting the preference of CH3COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes.As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe2+/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H2S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH3COO· and sulfur species than ·OH, suggesting the preference of CH3COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes. •Satisfactory degradation efficiency of pollutants was achieved by FeS/PAA system.•S(-II) and H2S (aq) played a significant role in Fe(II) regeneration.••OH played a dominant role in pharmaceuticals degradation.•The R-O• generated was supposed to be quickly consumed by sulfur specie.•Degradation products of three pharmaceuticals were successfully detoxified. As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe2+/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H2S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH3COO· and sulfur species than ·OH, suggesting the preference of CH3COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes. [Display omitted] As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe²⁺/PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H₂S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH₃COO· and sulfur species than ·OH, suggesting the preference of CH₃COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes. As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly catalysts over a wide pH range is potentially useful for simultaneous sterilization and pharmaceutical degradation in wastewater, such as hospital wastewater. In this study, peracetic acid (PAA) was successfully activated by low-cost and environmental-friendly FeS (25 mg/L) for efficient oxidative removal of three pharmaceuticals over a wide pH range (3.0∼9.0) as indicated by 80∼100% removal rate within 5 min. As expected, Fe(II) rather than sulfur species was the primary reactive site for PAA activation, while unlike the homogeneous Fe /PAA system with organic radicals (R-O·) and ·OH as the dominant reactive oxidized species (ROS), ·OH is the key reactive species in the FeS/PAA system. Interestingly and surprisingly, in-depth investigation revealed the dual role of sulfur species in regulating the reactive oxidized species: (1) S(-II) and its conversion product H S (aq) played a significant role in Fe(II) regeneration with a result of accelerated PAA activation; (2) however, the R-O· generated in the initial seconds of the FeS/PAA process was supposed to be quickly consumed by sulfur species, resulting in ·OH as the dominant ROS over the whole process. The selective reaction of sulfur species with R-O· instead of ·OH was supported by the obviously lower Gibbs free energy of CH COO· and sulfur species than ·OH, suggesting the preference of CH COO· to react with sulfur species with electron transfer. After treatment with the FeS/PAA system, the products obtained from the three pharmaceuticals were detoxified and even facilitated the growth of E. coli probably due to the supply of numerous carbon sources by activated PAA. This study significantly advances the understanding of the reaction between PAA and sulfur-containing catalysts and suggests the practical application potential of the FeS/PAA process combined with biotreatment processes. |
ArticleNumber | 118402 |
Author | Li, Ling-Li Jiang, Feng Yang, Shu-Run Xie, Zhi-Hui Mu, Yang Xiong, Zhao-Kun He, Chuan-Shu Zhang, Heng Zhou, Peng Lai, Bo |
Author_xml | – sequence: 1 givenname: Shu-Run surname: Yang fullname: Yang, Shu-Run organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China – sequence: 2 givenname: Chuan-Shu surname: He fullname: He, Chuan-Shu email: hecs@scu.edu.cn organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China – sequence: 3 givenname: Zhi-Hui surname: Xie fullname: Xie, Zhi-Hui organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China – sequence: 4 givenname: Ling-Li orcidid: 0000-0003-0228-2550 surname: Li fullname: Li, Ling-Li organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China – sequence: 5 givenname: Zhao-Kun surname: Xiong fullname: Xiong, Zhao-Kun organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China – sequence: 6 givenname: Heng surname: Zhang fullname: Zhang, Heng organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China – sequence: 7 givenname: Peng surname: Zhou fullname: Zhou, Peng organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China – sequence: 8 givenname: Feng surname: Jiang fullname: Jiang, Feng organization: Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China – sequence: 9 givenname: Yang surname: Mu fullname: Mu, Yang organization: Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China – sequence: 10 givenname: Bo surname: Lai fullname: Lai, Bo email: laibo@scu.edu.cn organization: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35417819$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URKeFf4CQl2wy-JWHu0AaVX0gVQKJsrYc57r1KIkH25lS_gZ_GKfpbFgAqyvd-51zpXNO0NHoR0DoLSVrSmj1Ybt-0ClAXDPC2JrSRhD2Aq1oU8uCCdEcoRUhgheUl-IYncS4JSSTXL5Cx3lF64bKFfp1Ya0zDsaEtUlur5PzI_YWf9lscPuIL-Ertj5gq2PCAQa_1_183t3rMGgDU3JG9_EM394D7qZ8DL6HmYhTb6eA4w6yfcRuzPK7qc8PxjucMh3g6WOGf7jO_YTuwL5GL232hDfP8xR9u7y4Pb8ubj5ffTrf3BSGyzIVtARdSVHSlletqetSlB0R1LatraytjbEt05XhDCjnDXBBG61l1YgGRC0l56fo_eK7C_77BDGpwUUDfa9H8FNUrKpI5sR_oSVhJROyyei7Z3RqB-jULrhBh0d1yDwDZwtggo8xgFXGpafcU9CuV5SouWC1VUvBai5YLQVnsfhDfPD_h-zjIoOc595BUHEu3UDnApikOu_-bvAbto7Ccg |
CitedBy_id | crossref_primary_10_1016_j_cej_2022_141183 crossref_primary_10_1016_j_watres_2022_119176 crossref_primary_10_1016_j_ces_2025_121180 crossref_primary_10_1016_j_jece_2025_115686 crossref_primary_10_1016_j_jwpe_2024_105121 crossref_primary_10_1007_s11356_023_27779_4 crossref_primary_10_1016_j_cej_2023_145824 crossref_primary_10_1016_j_jcis_2022_12_110 crossref_primary_10_1016_j_seppur_2025_131563 crossref_primary_10_1016_j_jhazmat_2024_136442 crossref_primary_10_1016_j_jece_2024_113700 crossref_primary_10_1016_j_jhazmat_2023_132760 crossref_primary_10_1016_j_apcatb_2024_124969 crossref_primary_10_1016_j_jhazmat_2022_129741 crossref_primary_10_1016_j_watres_2022_118887 crossref_primary_10_1016_j_envres_2025_121480 crossref_primary_10_1016_j_watres_2023_120695 crossref_primary_10_1016_j_jenvman_2025_124778 crossref_primary_10_1016_j_cej_2023_141729 crossref_primary_10_1016_j_jhazmat_2023_131286 crossref_primary_10_1016_j_jhazmat_2022_130571 crossref_primary_10_1016_j_cej_2025_160954 crossref_primary_10_1016_j_cej_2025_160552 crossref_primary_10_1016_j_seppur_2024_127963 crossref_primary_10_3390_su16125012 crossref_primary_10_1021_acsestengg_5c00040 crossref_primary_10_1016_j_seppur_2022_122500 crossref_primary_10_1016_j_cej_2024_151802 crossref_primary_10_1016_j_apcatb_2024_124580 crossref_primary_10_1016_j_watres_2024_122244 crossref_primary_10_1016_j_jwpe_2025_107042 crossref_primary_10_1016_j_jcis_2025_01_205 crossref_primary_10_1021_acsestengg_2c00185 crossref_primary_10_1016_j_cej_2022_137667 crossref_primary_10_1016_j_seppur_2024_130048 crossref_primary_10_1021_acs_est_3c05694 crossref_primary_10_1021_acs_est_3c07473 crossref_primary_10_1016_j_cej_2024_158968 crossref_primary_10_1016_j_scitotenv_2022_159465 crossref_primary_10_1016_j_jhazmat_2023_132229 crossref_primary_10_1016_j_seppur_2024_130161 crossref_primary_10_1016_j_seppur_2023_126147 crossref_primary_10_1016_j_jcis_2023_07_079 crossref_primary_10_1007_s11783_023_1713_1 crossref_primary_10_1360_TB_2024_0583 crossref_primary_10_1016_j_apcatb_2023_123183 crossref_primary_10_1016_j_cherd_2023_10_042 crossref_primary_10_1016_j_jtice_2023_104835 crossref_primary_10_1016_j_seppur_2022_123021 crossref_primary_10_1016_j_psep_2023_09_012 crossref_primary_10_1016_j_watres_2024_122917 crossref_primary_10_1016_j_jhazmat_2025_138013 crossref_primary_10_1016_j_envpol_2022_120279 crossref_primary_10_1016_j_jece_2022_108841 crossref_primary_10_1016_j_cej_2024_156810 crossref_primary_10_1016_j_cej_2025_161343 crossref_primary_10_1016_j_jhazmat_2023_132117 crossref_primary_10_1016_j_chemosphere_2024_142277 crossref_primary_10_1016_j_cej_2024_150934 crossref_primary_10_1016_j_jece_2024_114037 crossref_primary_10_1016_j_watres_2022_119013 crossref_primary_10_1016_j_apcatb_2023_123150 crossref_primary_10_1016_j_cej_2024_157179 crossref_primary_10_1016_j_jenvman_2023_118440 crossref_primary_10_1021_acs_est_4c00195 crossref_primary_10_1016_j_seppur_2023_125592 crossref_primary_10_1016_j_jhazmat_2022_130386 crossref_primary_10_1016_j_jhazmat_2024_134982 crossref_primary_10_1016_j_jece_2024_112927 crossref_primary_10_1016_j_jhazmat_2023_131355 crossref_primary_10_1016_j_cej_2023_146032 crossref_primary_10_1073_pnas_2314396121 crossref_primary_10_1016_j_watres_2023_119666 crossref_primary_10_1016_j_jwpe_2024_105611 crossref_primary_10_1016_j_seppur_2024_131225 crossref_primary_10_1016_j_envpol_2022_120777 crossref_primary_10_1016_j_jhazmat_2023_133303 crossref_primary_10_1021_acs_langmuir_4c01969 crossref_primary_10_1016_j_jhazmat_2024_136918 crossref_primary_10_1016_j_cjsc_2025_100543 crossref_primary_10_1016_j_cej_2024_153924 crossref_primary_10_3389_fenvs_2023_1212355 crossref_primary_10_1021_acs_est_3c06370 crossref_primary_10_1039_D2DT03765C crossref_primary_10_1016_j_cej_2023_142693 crossref_primary_10_1016_j_watres_2023_120584 crossref_primary_10_1016_j_jhazmat_2023_132819 crossref_primary_10_1021_acsestengg_2c00301 crossref_primary_10_1016_j_watres_2024_121595 crossref_primary_10_1016_j_cej_2024_150510 crossref_primary_10_1016_j_dwt_2024_100182 crossref_primary_10_1016_j_jhazmat_2024_135692 crossref_primary_10_1016_j_jhazmat_2025_137752 crossref_primary_10_1016_j_fmre_2023_05_007 crossref_primary_10_1016_j_chemosphere_2024_143383 crossref_primary_10_1016_j_jhazmat_2022_130480 crossref_primary_10_1016_j_cej_2024_152385 crossref_primary_10_1016_j_jhazmat_2023_132662 crossref_primary_10_1016_j_jwpe_2024_105817 crossref_primary_10_1016_j_catcom_2023_106702 crossref_primary_10_1016_j_jece_2025_116074 crossref_primary_10_1016_j_cej_2022_141045 crossref_primary_10_1016_j_seppur_2024_126946 crossref_primary_10_3390_molecules29122868 crossref_primary_10_1016_j_watres_2024_121621 crossref_primary_10_1016_j_seppur_2024_126816 crossref_primary_10_1038_s41545_024_00415_5 crossref_primary_10_1016_j_jenvman_2023_119427 crossref_primary_10_1016_j_cej_2024_158071 crossref_primary_10_1016_j_watres_2022_118930 crossref_primary_10_1016_j_jece_2023_111674 crossref_primary_10_1016_j_heliyon_2024_e27036 crossref_primary_10_1016_j_seppur_2024_129004 crossref_primary_10_1016_j_jhazmat_2024_135207 crossref_primary_10_1016_j_jhazmat_2023_131103 crossref_primary_10_1016_j_jwpe_2023_104715 crossref_primary_10_1016_j_apcatb_2024_124539 crossref_primary_10_1016_j_cej_2023_147051 crossref_primary_10_1016_j_watres_2022_119508 crossref_primary_10_1016_j_jhazmat_2024_134639 |
Cites_doi | 10.1016/j.watres.2015.11.063 10.1016/j.watres.2020.116279 10.1021/jp810292n 10.1016/j.apcatb.2016.09.005 10.1016/j.biortech.2018.05.051 10.1021/acsestwater.0c00029 10.1063/1.3382344 10.1039/C9TA04885E 10.1016/j.seppur.2012.04.034 10.1016/j.watres.2020.116241 10.1021/acs.est.7b04177 10.1021/es1009136 10.1016/j.chemosphere.2018.09.005 10.1007/s00214-007-0310-x 10.1021/es0109242 10.1021/jo001348f 10.1016/j.watres.2020.116479 10.1021/acs.est.0c06091 10.1016/j.cej.2015.07.034 10.1039/C2NJ20852K 10.1021/acs.est.9b07012 10.1021/acs.est.9b02991 10.1016/j.cej.2019.122149 10.1021/acs.est.0c05397 10.1271/bbb.56.1529 10.1016/j.apcatb.2020.119422 10.1021/acs.est.9b03873 10.1016/j.cej.2013.02.018 10.1021/acs.est.0c00356 10.1016/j.watres.2018.10.062 10.1016/j.watres.2015.08.037 10.1016/j.watres.2018.06.002 10.1021/acs.est.0c06676 10.1021/acs.est.9b03975 10.1016/j.cej.2019.123264 10.1016/j.watres.2020.116529 10.1021/acs.est.8b00586 10.1021/es404453v 10.1016/j.watres.2021.117291 10.1016/j.scitotenv.2021.147811 10.1016/j.cej.2015.03.079 10.1139/v64-421 10.1021/acs.est.1c02015 10.1021/acs.est.6b02833 10.1016/S0016-7037(97)00291-3 10.1016/j.apcatb.2012.09.042 10.1016/j.jhazmat.2016.09.062 10.1016/j.seppur.2021.119402 10.1021/acs.est.7b02695 10.1021/acs.est.7b04694 10.1021/cr0503658 10.1016/j.cej.2017.09.175 10.1016/j.cej.2020.124938 10.1002/jcc.21759 10.1039/b508541a 10.1021/ie9018066 10.1016/j.cej.2016.12.075 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2022.118402 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
ExternalDocumentID | 35417819 10_1016_j_watres_2022_118402 S004313542200358X |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- RIG SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-15ea69451b36bc77545d041fbbf6ff7ccfb2a6c32e1338e3418aa96848e479933 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Fri Jul 11 07:03:12 EDT 2025 Fri Jul 11 01:47:36 EDT 2025 Thu Apr 03 07:06:53 EDT 2025 Tue Jul 01 01:21:12 EDT 2025 Thu Apr 24 22:58:38 EDT 2025 Fri Feb 23 02:35:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Organic radicals Pharmaceuticals degradation Sulfur species Peracetic acid FeS Reactive oxidized species |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-15ea69451b36bc77545d041fbbf6ff7ccfb2a6c32e1338e3418aa96848e479933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0228-2550 |
PMID | 35417819 |
PQID | 2650252498 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2660993493 proquest_miscellaneous_2650252498 pubmed_primary_35417819 crossref_citationtrail_10_1016_j_watres_2022_118402 crossref_primary_10_1016_j_watres_2022_118402 elsevier_sciencedirect_doi_10_1016_j_watres_2022_118402 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-15 |
PublicationDateYYYYMMDD | 2022-06-15 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Zhang, Yang, Yang, Li, Bai (bib0008) 2015; 273 Kim, Zhang, Liu, Du, Dobson, Huang (bib0026) 2019; 53 Fang, Dionysiou, Al-Abed, Zhou (bib0016) 2013; 129 Fan, Gu, Wu, Liu (bib0015) 2018; 333 Chen, Zhou, Sun, Zhang, Huang (bib0009) 2019; 53 Wang, Zhuang, Su, Chi, Wang (bib0047) 2021; 788 Weigend, Ahlrichs (bib0048) 2005; 7 Rokhina, Makarova, Lahtinen, Golovina, Van As, Virkutyte (bib0038) 2013; 221 Suleimenov, Seward (bib0041) 1997; 61 Gao, Li, Li, Yao, Zhang (bib0018) 2017; 202 Liu, Li, Han, Chen, Zhu, Campos (bib0030) 2017; 322 Duan, Li, Ao, Kang, Tian, Zhang, Ho, Sun, Wang (bib0013) 2019; 7 Grimme, Antony, Ehrlich, Krieg (bib0021) 2010; 132 Kim, Huang (bib0025) 2020; 1 Ao, Eloranta, Huang, Santoro, Sun, Lu, Li (bib0002) 2021; 188 Chalier, Tordo (bib0006) 2002 Marenich, Cramer, Truhlar (bib0033) 2009; 113 Frisch, T, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Mennucci, Petersson, Nakatsuji, Caricato, Li, Hratchian, Izmaylov, Bloino, Zheng, Sonnenberg, Hada, Ehara, Toyota, Fukuda, Hasegawa, Ishida, Nakajima, Honda, Kitao, Nakai, Vreven, Montgomery, Peralta, Ogliaro, Bearpark, Heyd, Brothers, Kudin, Staroverov, Kobayashi, Normand, Raghavachari, Rendell, Burant, Iyengar, Tomasi, Cossi, Rega, Millam, Klene, Knox, Cross, Bakken, Adamo, Jaramillo, Gomperts, Stratmann, Yazyev, Austin, Cammi, Pomelli, Ochterski, Martin, Morokuma, Zakrzewski, Voth, Salvador, Dannenberg, Dapprich, Daniels, Farkas, Foresman, Ortiz, Cioslowski, Fox (bib0032) 2009 Cheng, Yuan, Liao, Zhang (bib0011) 2016; 50 Sharma, Mukhopadhyay, Murthy (bib0042) 2010; 49 Yang, Ma, Chen, Yao, Sun, Wang, Yi, Hou, Li, Wang (bib0051) 2019; 378 Cheng, Neumann, Yuan, Liao, Qian (bib0010) 2020; 54 Rickard, Luther (bib0036) 2007; 107 Rokhina, Makarova, Golovina, Van As, Virkutyte (bib0037) 2010; 44 Luukkonen, Heyninck, Ramo, Lassi (bib0031) 2015; 85 Kim, Du, Liu, Luo, Zhao, Huang (bib0024) 2020; 54 Zhang, Zhang, Liu, Qu, Li, Chen, Peijnenburg (bib0053) 2020; 185 An, Gao, Li, Kamat, Peller, Joyce (bib0001) 2014; 48 Fan, Lan, Tratnyek, Johnson, Filip, O'Carroll, Nunez Garcia, Agrawal (bib0014) 2017; 51 Wang, Wang, Cheng, Cao, Bai, Yue, Xie, Ma (bib0045) 2021; 201 Rose, Waite (bib0039) 2002; 36 Li, Zhang, Sun, Liang, Pan, Zhang, Guan (bib0028) 2017; 51 Chen, Zhang, Feng, Liu, Wang, Yang, Hu (bib0007) 2017; 313 Cai, Chen, Qiu, Li, Tratnyek, He (bib0005) 2021; 55 Cai, Sun, Zhang, Huang (bib0004) 2017; 51 Wu, Tian, Liu, Chen, Huang, Zhou, Zhang (bib0049) 2020; 394 Dominguez Henao, Turolla, Antonelli (bib0012) 2018; 213 Zhou, Sheng, Zhao, Gross, Wen (bib0058) 2018; 264 He, Miller, Collins, Wang, Waite (bib0023) 2019; 54 Gardner, Howard, Ingold (bib0019) 1964; 42 Li, Manoli, Kim, Feng, Huang, Sharma (bib0029) 2021; 55 Pan, Bu, Li, Wang, Wu, Zhang (bib0035) 2021; 277 Wang, Xiong, Miao, Wang, Xie, Wang, Ma (bib0046) 2021; 280 Yamauchi, Miyake, Kato, Ueno (bib0050) 1992; 56 Zhou, Peng, Li, You, Lai, Liu, Ao, Yao, Lai (bib0057) 2021; 188 Zhou, Lai, Wan, He, Yao, Lai (bib0056) 2020; 384 Babuponnusami, Muthukumar (bib0003) 2012; 98 Murahashi, Komiya, Oda, Kuwabara, Naota (bib0034) 2000; 65 Zhang, Brown, Miles, White, Grant, Stalla, Hu (bib0052) 2019; 149 Gong, Tang, Zhao (bib0020) 2016; 89 Grimme, Ehrlich, Goerigk (bib0022) 2011; 32 Li, Zhao, Qian, Pan (bib0027) 2021; 55 von Gunten (bib0044) 2018; 52 Fang, Zhang, Cui, Dionysiou, Liu, Gao, Wang, Zhou (bib0017) 2020; 54 Zhou, Lu, Yao, Sun, Gong, Li, Pei, Lu, Chen (bib0055) 2015; 281 Zhao, Truhlar (bib0054) 2007; 120 Top, Akgun, Kipcak, Bilgili (bib0043) 2020; 185 Zhou, Wang, Zhu, Dionysiou, Zhao, Fang, Zhou (bib0059) 2018; 142 Rothbart, Ember, van Eldik (bib0040) 2012; 36 Zhang (10.1016/j.watres.2022.118402_bib0052) 2019; 149 Murahashi (10.1016/j.watres.2022.118402_bib0034) 2000; 65 Top (10.1016/j.watres.2022.118402_bib0043) 2020; 185 Zhou (10.1016/j.watres.2022.118402_bib0059) 2018; 142 Wang (10.1016/j.watres.2022.118402_bib0047) 2021; 788 Ao (10.1016/j.watres.2022.118402_bib0002) 2021; 188 Zhou (10.1016/j.watres.2022.118402_bib0056) 2020; 384 An (10.1016/j.watres.2022.118402_bib0001) 2014; 48 Cai (10.1016/j.watres.2022.118402_bib0004) 2017; 51 Yamauchi (10.1016/j.watres.2022.118402_bib0050) 1992; 56 Pan (10.1016/j.watres.2022.118402_bib0035) 2021; 277 Grimme (10.1016/j.watres.2022.118402_bib0022) 2011; 32 Fang (10.1016/j.watres.2022.118402_bib0016) 2013; 129 Li (10.1016/j.watres.2022.118402_bib0028) 2017; 51 Wang (10.1016/j.watres.2022.118402_bib0046) 2021; 280 Sharma (10.1016/j.watres.2022.118402_bib0042) 2010; 49 Chen (10.1016/j.watres.2022.118402_bib0008) 2015; 273 Frisch (10.1016/j.watres.2022.118402_bib0032) 2009 Zhou (10.1016/j.watres.2022.118402_bib0057) 2021; 188 Rokhina (10.1016/j.watres.2022.118402_bib0038) 2013; 221 Fan (10.1016/j.watres.2022.118402_bib0014) 2017; 51 Fang (10.1016/j.watres.2022.118402_bib0017) 2020; 54 Wang (10.1016/j.watres.2022.118402_bib0045) 2021; 201 Cai (10.1016/j.watres.2022.118402_bib0005) 2021; 55 Kim (10.1016/j.watres.2022.118402_bib0025) 2020; 1 Chen (10.1016/j.watres.2022.118402_bib0009) 2019; 53 Li (10.1016/j.watres.2022.118402_bib0027) 2021; 55 von Gunten (10.1016/j.watres.2022.118402_bib0044) 2018; 52 Gao (10.1016/j.watres.2022.118402_bib0018) 2017; 202 Chen (10.1016/j.watres.2022.118402_bib0007) 2017; 313 Rothbart (10.1016/j.watres.2022.118402_bib0040) 2012; 36 Zhou (10.1016/j.watres.2022.118402_bib0055) 2015; 281 Kim (10.1016/j.watres.2022.118402_bib0026) 2019; 53 Cheng (10.1016/j.watres.2022.118402_bib0010) 2020; 54 Wu (10.1016/j.watres.2022.118402_bib0049) 2020; 394 Suleimenov (10.1016/j.watres.2022.118402_bib0041) 1997; 61 Zhou (10.1016/j.watres.2022.118402_bib0058) 2018; 264 Chalier (10.1016/j.watres.2022.118402_bib0006) 2002 Yang (10.1016/j.watres.2022.118402_bib0051) 2019; 378 Zhang (10.1016/j.watres.2022.118402_bib0053) 2020; 185 Weigend (10.1016/j.watres.2022.118402_bib0048) 2005; 7 Rose (10.1016/j.watres.2022.118402_bib0039) 2002; 36 Kim (10.1016/j.watres.2022.118402_bib0024) 2020; 54 Gong (10.1016/j.watres.2022.118402_bib0020) 2016; 89 Marenich (10.1016/j.watres.2022.118402_bib0033) 2009; 113 Liu (10.1016/j.watres.2022.118402_bib0030) 2017; 322 Rokhina (10.1016/j.watres.2022.118402_bib0037) 2010; 44 Luukkonen (10.1016/j.watres.2022.118402_bib0031) 2015; 85 Grimme (10.1016/j.watres.2022.118402_bib0021) 2010; 132 Babuponnusami (10.1016/j.watres.2022.118402_bib0003) 2012; 98 Cheng (10.1016/j.watres.2022.118402_bib0011) 2016; 50 Duan (10.1016/j.watres.2022.118402_bib0013) 2019; 7 Dominguez Henao (10.1016/j.watres.2022.118402_bib0012) 2018; 213 Zhao (10.1016/j.watres.2022.118402_bib0054) 2007; 120 Li (10.1016/j.watres.2022.118402_bib0029) 2021; 55 He (10.1016/j.watres.2022.118402_bib0023) 2019; 54 Fan (10.1016/j.watres.2022.118402_bib0015) 2018; 333 Gardner (10.1016/j.watres.2022.118402_bib0019) 1964; 42 Rickard (10.1016/j.watres.2022.118402_bib0036) 2007; 107 |
References_xml | – volume: 281 start-page: 953 year: 2015 end-page: 960 ident: bib0055 article-title: Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: implications for the removal of organic pollutants publication-title: Chem. Eng. J. – volume: 51 start-page: 13533 year: 2017 end-page: 13544 ident: bib0028 article-title: Advances in sulfidation of zerovalent iron for water decontamination publication-title: Environ. Sci. Technol. – volume: 7 start-page: 3297 year: 2005 end-page: 3305 ident: bib0048 article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy publication-title: Phys. Chem. Chem. Phys. – volume: 55 start-page: 9150 year: 2021 end-page: 9160 ident: bib0029 article-title: Peracetic Acid-ruthenium(III) oxidation process for the degradation of micropollutants in water publication-title: Environ. Sci. Technol. – volume: 54 start-page: 5268 year: 2020 end-page: 5278 ident: bib0024 article-title: Cobalt/Peracetic acid: advanced oxidation of aromatic organic compounds by Acetylperoxyl radicals publication-title: Environ. Sci. Technol. – volume: 188 year: 2021 ident: bib0057 article-title: Metal-free black-red phosphorus as an efficient heterogeneous reductant to boost Fe publication-title: Water Res. – volume: 36 start-page: 433 year: 2002 end-page: 444 ident: bib0039 article-title: Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter publication-title: Environ. Sci. Technol. – volume: 85 start-page: 275 year: 2015 end-page: 285 ident: bib0031 article-title: Comparison of organic peracids in wastewater treatment: disinfection, oxidation and corrosion publication-title: Water Res. – volume: 333 start-page: 657 year: 2018 end-page: 664 ident: bib0015 article-title: Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: surface reaction mechanism and sulfur-mediated cycling of iron species publication-title: Chem. Eng. J. – volume: 264 start-page: 24 year: 2018 end-page: 34 ident: bib0058 article-title: Treatment of acidic sulfate-containing wastewater using revolving algae biofilm reactors: Sulfur removal performance and microbial community characterization publication-title: Bioresour. Technol. – volume: 273 start-page: 481 year: 2015 end-page: 489 ident: bib0008 article-title: Heterogeneous fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS publication-title: Chem. Eng. J. – volume: 185 year: 2020 ident: bib0043 article-title: Treatment of hospital wastewater by supercritical water oxidation process publication-title: Water Res. – volume: 51 start-page: 14217 year: 2017 end-page: 14224 ident: bib0004 article-title: UV/Peracetic acid for degradation of pharmaceuticals and reactive species evaluation publication-title: Environ. Sci. Technol. – volume: 142 start-page: 208 year: 2018 end-page: 216 ident: bib0059 article-title: New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation publication-title: Water Res. – volume: 53 start-page: 13312 year: 2019 end-page: 13322 ident: bib0026 article-title: Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation publication-title: Environ. Sci. Technol. – volume: 50 start-page: 11646 year: 2016 end-page: 11653 ident: bib0011 article-title: Oxidizing impact induced by Mackinawite (FeS) nanoparticles at oxic conditions due to production of hydroxyl radicals publication-title: Environ. Sci. Technol. – volume: 44 start-page: 6815 year: 2010 end-page: 6821 ident: bib0037 article-title: Free radical reaction pathway, thermochemistry of peracetic acid homolysis, and its application for phenol degradation: spectroscopic study and quantum chemistry calculations publication-title: Environ. Sci. Technol. – volume: 202 start-page: 165 year: 2017 end-page: 174 ident: bib0018 article-title: Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate publication-title: Appl. Catal. B – volume: 120 start-page: 215 year: 2007 end-page: 241 ident: bib0054 article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals publication-title: Theor. Chem. Acc. – volume: 394 year: 2020 ident: bib0049 article-title: Degradation of organic compounds by peracetic acid activated with Co publication-title: Chem. Eng. J. – volume: 1 start-page: 15 year: 2020 end-page: 33 ident: bib0025 article-title: Reactivity of peracetic acid with organic compounds: a critical review publication-title: ACS ES&T Water – volume: 378 year: 2019 ident: bib0051 article-title: Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water publication-title: Chem. Eng. J. – volume: 48 start-page: 641 year: 2014 end-page: 648 ident: bib0001 article-title: Kinetics and mechanism of (*)OH mediated degradation of dimethyl phthalate in aqueous solution: experimental and theoretical studies publication-title: Environ. Sci. Technol. – volume: 55 start-page: 645 year: 2021 end-page: 654 ident: bib0005 article-title: Sulfidation of zero-Valent iron by direct reaction with elemental sulfur in water: efficiencies, mechanism, and dechlorination of trichloroethylene publication-title: Environ. Sci. Technol. – volume: 56 start-page: 1529 year: 1992 end-page: 1532 ident: bib0050 article-title: Peroxyl-radical reaction of retinyl acetate in solution publication-title: Biosci., Biotechnol., Biochem – volume: 36 start-page: 732 year: 2012 end-page: 748 ident: bib0040 article-title: Mechanistic studies on the oxidative degradation of orange II by peracetic acid catalyzed by simple manganese(II) salts. Tuning the lifetime of the catalyst publication-title: New J. Chem. – volume: 107 start-page: 514 year: 2007 end-page: 562 ident: bib0036 article-title: Chemistry of iron sulfides publication-title: Chem. Rev. – volume: 188 year: 2021 ident: bib0002 article-title: Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: a review publication-title: Water Res. – volume: 55 start-page: 6397 year: 2021 end-page: 6406 ident: bib0027 article-title: Are free radicals the primary reactive species in Co(II)-mediated activation of peroxymonosulfate? New evidence for the role of the Co(II)-peroxymonosulfate complex publication-title: Environ. Sci. Technol. – volume: 132 year: 2010 ident: bib0021 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. – volume: 51 start-page: 13070 year: 2017 end-page: 13085 ident: bib0014 article-title: Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation publication-title: Environ. Sci. Technol. – volume: 322 start-page: 461 year: 2017 end-page: 468 ident: bib0030 article-title: Efficient degradation of sulfamethoxazole by the Fe(II)/HSO publication-title: J. Hazard. Mater. – year: 2009 ident: bib0032 article-title: Gaussian 09, Revision A.01 – volume: 277 year: 2021 ident: bib0035 article-title: Sulfamethazine removal by peracetic acid activation with sulfide-modified zero-valent iron: efficiency, the role of sulfur species, and mechanisms publication-title: Sep. Purif. Technol. – volume: 788 year: 2021 ident: bib0047 article-title: Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: occurrence, removal and environmental impacts publication-title: Sci. Total Environ. – volume: 149 start-page: 640 year: 2019 end-page: 649 ident: bib0052 article-title: Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection publication-title: Water Res. – volume: 313 start-page: 498 year: 2017 end-page: 507 ident: bib0007 article-title: Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite) publication-title: Chem. Eng. J. – volume: 42 start-page: 2847 year: 1964 end-page: 2851 ident: bib0019 article-title: The inhibition of autoxidation by 2,4,6-tri-tert-butyl substituted phenol, aniline, and thiophenol publication-title: Can. J. Chem. – volume: 54 start-page: 1167 year: 2019 end-page: 1176 ident: bib0023 article-title: Production of a surface-localized oxidant during oxygenation of mackinawite (FeS) publication-title: Environ. Sci. Technol. – volume: 129 start-page: 325 year: 2013 end-page: 332 ident: bib0016 article-title: Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs publication-title: Appl. Catal. B – volume: 113 start-page: 6378 year: 2009 end-page: 6396 ident: bib0033 article-title: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions publication-title: J. Phys. Chem. B – volume: 384 year: 2020 ident: bib0056 article-title: Molybdenum disulfide (MoS publication-title: Chem. Eng. J. – volume: 54 start-page: 15489 year: 2020 end-page: 15498 ident: bib0017 article-title: Synergy between iron and Selenide on FeSe publication-title: Environ. Sci. Technol. – volume: 49 start-page: 3094 year: 2010 end-page: 3098 ident: bib0042 article-title: Degradation of 4-chlorophenol in wastewater by organic oxidants publication-title: Ind. Eng. Chem. Res. – start-page: 2110 year: 2002 end-page: 2117 ident: bib0006 article-title: 5-Diisopropoxyphosphoryl-5-methyl-1-pyrroline N-oxide, DIPPMPO, a crystalline analog of the nitrone DEPMPO: synthesis and spin trapping properties electronic supplementary information (ESI) available: tables of crystallographic data publication-title: J. Chem. Soc. Pak. – volume: 280 year: 2021 ident: bib0046 article-title: Applying a novel advanced oxidation process of activated peracetic acid by CoFe publication-title: Appl. Catal. B – volume: 213 start-page: 25 year: 2018 end-page: 40 ident: bib0012 article-title: Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: a review publication-title: Chemosphere – volume: 89 start-page: 309 year: 2016 end-page: 320 ident: bib0020 article-title: Application of iron sulfide particles for groundwater and soil remediation: a review publication-title: Water Res. – volume: 65 start-page: 9186 year: 2000 end-page: 9193 ident: bib0034 article-title: Ruthenium-catalyzed oxidation of alkanes with tert-butyl hydroperoxide and peracetic acid publication-title: J. Org. Chem. – volume: 221 start-page: 476 year: 2013 end-page: 486 ident: bib0038 article-title: Ultrasound-assisted MnO publication-title: Chem. Eng. J. – volume: 52 start-page: 5062 year: 2018 end-page: 5075 ident: bib0044 article-title: Oxidation processes in water treatment: are we on track? publication-title: Environ. Sci. Technol. – volume: 54 start-page: 4091 year: 2020 end-page: 4101 ident: bib0010 article-title: Oxidative degradation of organic contaminants by FeS in the presence of O publication-title: Environ. Sci. Technol. – volume: 7 start-page: 23904 year: 2019 end-page: 23913 ident: bib0013 article-title: Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation publication-title: J. Mater. Chem. A – volume: 61 start-page: 5187 year: 1997 end-page: 5198 ident: bib0041 article-title: A spectrophotometric study of hydrogen sulphide ionisation in aqueous solutions to 350°C publication-title: Geochim. Cosmochim. Acta – volume: 32 start-page: 1456 year: 2011 end-page: 1465 ident: bib0022 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comput. Chem. – volume: 53 start-page: 11774 year: 2019 end-page: 11782 ident: bib0009 article-title: Complexation enhances Cu(II)-activated peroxydisulfate: a novel activation mechanism and Cu(III) contribution publication-title: Environ. Sci. Technol. – volume: 98 start-page: 130 year: 2012 end-page: 135 ident: bib0003 article-title: Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron publication-title: Sep. Purif. Technol. – volume: 201 year: 2021 ident: bib0045 article-title: Molybdenum disulfide (MoS publication-title: Water Res. – volume: 185 year: 2020 ident: bib0053 article-title: Simulated sunlight-induced inactivation of tetracycline resistant bacteria and effects of dissolved organic matter publication-title: Water Res. – volume: 89 start-page: 309 year: 2016 ident: 10.1016/j.watres.2022.118402_bib0020 article-title: Application of iron sulfide particles for groundwater and soil remediation: a review publication-title: Water Res. doi: 10.1016/j.watres.2015.11.063 – year: 2009 ident: 10.1016/j.watres.2022.118402_bib0032 – volume: 185 year: 2020 ident: 10.1016/j.watres.2022.118402_bib0043 article-title: Treatment of hospital wastewater by supercritical water oxidation process publication-title: Water Res. doi: 10.1016/j.watres.2020.116279 – volume: 113 start-page: 6378 issue: 18 year: 2009 ident: 10.1016/j.watres.2022.118402_bib0033 article-title: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions publication-title: J. Phys. Chem. B doi: 10.1021/jp810292n – volume: 202 start-page: 165 year: 2017 ident: 10.1016/j.watres.2022.118402_bib0018 article-title: Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.09.005 – volume: 264 start-page: 24 year: 2018 ident: 10.1016/j.watres.2022.118402_bib0058 article-title: Treatment of acidic sulfate-containing wastewater using revolving algae biofilm reactors: Sulfur removal performance and microbial community characterization publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.05.051 – volume: 1 start-page: 15 issue: 1 year: 2020 ident: 10.1016/j.watres.2022.118402_bib0025 article-title: Reactivity of peracetic acid with organic compounds: a critical review publication-title: ACS ES&T Water doi: 10.1021/acsestwater.0c00029 – volume: 132 issue: 15 year: 2010 ident: 10.1016/j.watres.2022.118402_bib0021 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 7 start-page: 23904 issue: 41 year: 2019 ident: 10.1016/j.watres.2022.118402_bib0013 article-title: Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04885E – volume: 98 start-page: 130 year: 2012 ident: 10.1016/j.watres.2022.118402_bib0003 article-title: Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2012.04.034 – volume: 185 year: 2020 ident: 10.1016/j.watres.2022.118402_bib0053 article-title: Simulated sunlight-induced inactivation of tetracycline resistant bacteria and effects of dissolved organic matter publication-title: Water Res. doi: 10.1016/j.watres.2020.116241 – volume: 51 start-page: 13070 issue: 22 year: 2017 ident: 10.1016/j.watres.2022.118402_bib0014 article-title: Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04177 – volume: 44 start-page: 6815 issue: 17 year: 2010 ident: 10.1016/j.watres.2022.118402_bib0037 article-title: Free radical reaction pathway, thermochemistry of peracetic acid homolysis, and its application for phenol degradation: spectroscopic study and quantum chemistry calculations publication-title: Environ. Sci. Technol. doi: 10.1021/es1009136 – volume: 213 start-page: 25 year: 2018 ident: 10.1016/j.watres.2022.118402_bib0012 article-title: Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.09.005 – volume: 120 start-page: 215 issue: 1-3 year: 2007 ident: 10.1016/j.watres.2022.118402_bib0054 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 36 start-page: 433 issue: 3 year: 2002 ident: 10.1016/j.watres.2022.118402_bib0039 article-title: Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es0109242 – volume: 65 start-page: 9186 issue: 26 year: 2000 ident: 10.1016/j.watres.2022.118402_bib0034 article-title: Ruthenium-catalyzed oxidation of alkanes with tert-butyl hydroperoxide and peracetic acid publication-title: J. Org. Chem. doi: 10.1021/jo001348f – volume: 188 year: 2021 ident: 10.1016/j.watres.2022.118402_bib0002 article-title: Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: a review publication-title: Water Res. doi: 10.1016/j.watres.2020.116479 – volume: 54 start-page: 15489 issue: 23 year: 2020 ident: 10.1016/j.watres.2022.118402_bib0017 article-title: Synergy between iron and Selenide on FeSe2(111) surface driving peroxymonosulfate activation for efficient degradation of pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c06091 – volume: 281 start-page: 953 year: 2015 ident: 10.1016/j.watres.2022.118402_bib0055 article-title: Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: implications for the removal of organic pollutants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.07.034 – volume: 36 start-page: 732 issue: 3 year: 2012 ident: 10.1016/j.watres.2022.118402_bib0040 article-title: Mechanistic studies on the oxidative degradation of orange II by peracetic acid catalyzed by simple manganese(II) salts. Tuning the lifetime of the catalyst publication-title: New J. Chem. doi: 10.1039/C2NJ20852K – volume: 54 start-page: 4091 issue: 7 year: 2020 ident: 10.1016/j.watres.2022.118402_bib0010 article-title: Oxidative degradation of organic contaminants by FeS in the presence of O2 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b07012 – volume: 53 start-page: 13312 issue: 22 year: 2019 ident: 10.1016/j.watres.2022.118402_bib0026 article-title: Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b02991 – volume: 378 year: 2019 ident: 10.1016/j.watres.2022.118402_bib0051 article-title: Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122149 – volume: 55 start-page: 645 issue: 1 year: 2021 ident: 10.1016/j.watres.2022.118402_bib0005 article-title: Sulfidation of zero-Valent iron by direct reaction with elemental sulfur in water: efficiencies, mechanism, and dechlorination of trichloroethylene publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c05397 – volume: 56 start-page: 1529 issue: 10 year: 1992 ident: 10.1016/j.watres.2022.118402_bib0050 article-title: Peroxyl-radical reaction of retinyl acetate in solution publication-title: Biosci., Biotechnol., Biochem doi: 10.1271/bbb.56.1529 – volume: 280 year: 2021 ident: 10.1016/j.watres.2022.118402_bib0046 article-title: Applying a novel advanced oxidation process of activated peracetic acid by CoFe2O4 to efficiently degrade sulfamethoxazole publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.119422 – volume: 53 start-page: 11774 issue: 20 year: 2019 ident: 10.1016/j.watres.2022.118402_bib0009 article-title: Complexation enhances Cu(II)-activated peroxydisulfate: a novel activation mechanism and Cu(III) contribution publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03873 – volume: 221 start-page: 476 year: 2013 ident: 10.1016/j.watres.2022.118402_bib0038 article-title: Ultrasound-assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: the assessment of process chemistry and kinetics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.02.018 – volume: 54 start-page: 5268 issue: 8 year: 2020 ident: 10.1016/j.watres.2022.118402_bib0024 article-title: Cobalt/Peracetic acid: advanced oxidation of aromatic organic compounds by Acetylperoxyl radicals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c00356 – volume: 149 start-page: 640 year: 2019 ident: 10.1016/j.watres.2022.118402_bib0052 article-title: Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection publication-title: Water Res. doi: 10.1016/j.watres.2018.10.062 – volume: 85 start-page: 275 year: 2015 ident: 10.1016/j.watres.2022.118402_bib0031 article-title: Comparison of organic peracids in wastewater treatment: disinfection, oxidation and corrosion publication-title: Water Res. doi: 10.1016/j.watres.2015.08.037 – volume: 142 start-page: 208 year: 2018 ident: 10.1016/j.watres.2022.118402_bib0059 article-title: New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation publication-title: Water Res. doi: 10.1016/j.watres.2018.06.002 – volume: 55 start-page: 9150 issue: 13 year: 2021 ident: 10.1016/j.watres.2022.118402_bib0029 article-title: Peracetic Acid-ruthenium(III) oxidation process for the degradation of micropollutants in water publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c06676 – volume: 54 start-page: 1167 issue: 2 year: 2019 ident: 10.1016/j.watres.2022.118402_bib0023 article-title: Production of a surface-localized oxidant during oxygenation of mackinawite (FeS) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03975 – volume: 384 year: 2020 ident: 10.1016/j.watres.2022.118402_bib0056 article-title: Molybdenum disulfide (MoS2): a versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123264 – volume: 188 year: 2021 ident: 10.1016/j.watres.2022.118402_bib0057 article-title: Metal-free black-red phosphorus as an efficient heterogeneous reductant to boost Fe3+/Fe2+ cycle for peroxymonosulfate activation publication-title: Water Res. doi: 10.1016/j.watres.2020.116529 – volume: 52 start-page: 5062 issue: 9 year: 2018 ident: 10.1016/j.watres.2022.118402_bib0044 article-title: Oxidation processes in water treatment: are we on track? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00586 – volume: 48 start-page: 641 issue: 1 year: 2014 ident: 10.1016/j.watres.2022.118402_bib0001 article-title: Kinetics and mechanism of (*)OH mediated degradation of dimethyl phthalate in aqueous solution: experimental and theoretical studies publication-title: Environ. Sci. Technol. doi: 10.1021/es404453v – start-page: 2110 issue: 12 year: 2002 ident: 10.1016/j.watres.2022.118402_bib0006 article-title: 5-Diisopropoxyphosphoryl-5-methyl-1-pyrroline N-oxide, DIPPMPO, a crystalline analog of the nitrone DEPMPO: synthesis and spin trapping properties electronic supplementary information (ESI) available: tables of crystallographic data publication-title: J. Chem. Soc. Pak. – volume: 201 year: 2021 ident: 10.1016/j.watres.2022.118402_bib0045 article-title: Molybdenum disulfide (MoS2): a novel activator of peracetic acid for the degradation of sulfonamide antibiotics publication-title: Water Res. doi: 10.1016/j.watres.2021.117291 – volume: 788 year: 2021 ident: 10.1016/j.watres.2022.118402_bib0047 article-title: Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: occurrence, removal and environmental impacts publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147811 – volume: 273 start-page: 481 year: 2015 ident: 10.1016/j.watres.2022.118402_bib0008 article-title: Heterogeneous fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.079 – volume: 42 start-page: 2847 year: 1964 ident: 10.1016/j.watres.2022.118402_bib0019 article-title: The inhibition of autoxidation by 2,4,6-tri-tert-butyl substituted phenol, aniline, and thiophenol publication-title: Can. J. Chem. doi: 10.1139/v64-421 – volume: 55 start-page: 6397 issue: 9 year: 2021 ident: 10.1016/j.watres.2022.118402_bib0027 article-title: Are free radicals the primary reactive species in Co(II)-mediated activation of peroxymonosulfate? New evidence for the role of the Co(II)-peroxymonosulfate complex publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c02015 – volume: 50 start-page: 11646 issue: 21 year: 2016 ident: 10.1016/j.watres.2022.118402_bib0011 article-title: Oxidizing impact induced by Mackinawite (FeS) nanoparticles at oxic conditions due to production of hydroxyl radicals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02833 – volume: 61 start-page: 5187 issue: 24 year: 1997 ident: 10.1016/j.watres.2022.118402_bib0041 article-title: A spectrophotometric study of hydrogen sulphide ionisation in aqueous solutions to 350°C publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00291-3 – volume: 129 start-page: 325 year: 2013 ident: 10.1016/j.watres.2022.118402_bib0016 article-title: Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2012.09.042 – volume: 322 start-page: 461 issue: Pt B year: 2017 ident: 10.1016/j.watres.2022.118402_bib0030 article-title: Efficient degradation of sulfamethoxazole by the Fe(II)/HSO5− process enhanced by hydroxylamine: efficiency and mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.09.062 – volume: 277 year: 2021 ident: 10.1016/j.watres.2022.118402_bib0035 article-title: Sulfamethazine removal by peracetic acid activation with sulfide-modified zero-valent iron: efficiency, the role of sulfur species, and mechanisms publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119402 – volume: 51 start-page: 13533 issue: 23 year: 2017 ident: 10.1016/j.watres.2022.118402_bib0028 article-title: Advances in sulfidation of zerovalent iron for water decontamination publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02695 – volume: 51 start-page: 14217 issue: 24 year: 2017 ident: 10.1016/j.watres.2022.118402_bib0004 article-title: UV/Peracetic acid for degradation of pharmaceuticals and reactive species evaluation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04694 – volume: 107 start-page: 514 issue: 2 year: 2007 ident: 10.1016/j.watres.2022.118402_bib0036 article-title: Chemistry of iron sulfides publication-title: Chem. Rev. doi: 10.1021/cr0503658 – volume: 333 start-page: 657 year: 2018 ident: 10.1016/j.watres.2022.118402_bib0015 article-title: Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: surface reaction mechanism and sulfur-mediated cycling of iron species publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.175 – volume: 394 year: 2020 ident: 10.1016/j.watres.2022.118402_bib0049 article-title: Degradation of organic compounds by peracetic acid activated with Co3O4: a novel advanced oxidation process and organic radical contribution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124938 – volume: 32 start-page: 1456 issue: 7 year: 2011 ident: 10.1016/j.watres.2022.118402_bib0022 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 7 start-page: 3297 issue: 18 year: 2005 ident: 10.1016/j.watres.2022.118402_bib0048 article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 49 start-page: 3094 issue: 7 year: 2010 ident: 10.1016/j.watres.2022.118402_bib0042 article-title: Degradation of 4-chlorophenol in wastewater by organic oxidants publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9018066 – volume: 313 start-page: 498 year: 2017 ident: 10.1016/j.watres.2022.118402_bib0007 article-title: Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.075 |
SSID | ssj0002239 |
Score | 2.65967 |
Snippet | •Satisfactory degradation efficiency of pollutants was achieved by FeS/PAA system.•S(-II) and H2S (aq) played a significant role in Fe(II) regeneration.••OH... As peracetic acid (PAA) is being increasingly used as an alternative disinfectant, efficient activation of PAA by low-cost and environmentally friendly... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118402 |
SubjectTerms | carbon disinfectants drugs electron transfer Escherichia coli FeS Gibbs free energy hospitals Organic radicals oxidation Peracetic acid Pharmaceuticals degradation Reactive oxidized species sulfur Sulfur species wastewater water |
Title | Efficient activation of PAA by FeS for fast removal of pharmaceuticals: The dual role of sulfur species in regulating the reactive oxidized species |
URI | https://dx.doi.org/10.1016/j.watres.2022.118402 https://www.ncbi.nlm.nih.gov/pubmed/35417819 https://www.proquest.com/docview/2650252498 https://www.proquest.com/docview/2660993493 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2Ib9cXEbxWTZO0qbdFXFYFEVTYW0naBCvaXfaBj4N_wj_sTNr6OKjgse0MDZ1p5ptk5gshe0Y5k1vLglxnYSBYzgKd8zyQ0iFhFSp5ts-LqHsjznqyN0WOm14YLKus5_5qTvezdX3noP6aB4OiwB5fCH5citCTeqoedrCLGL18__WzzAPCX9LsMqN00z7na7weNTZkQJYYhjB3QK4T_hSefoKfPgx1Fsh8jR9puxriIpmy5RKZ-8IquEzeTjwtBEQTil0L1Zor7Tt62W5T80w79ooCVKVOj8Z0aB_64Gz4eHD7dXl7dETBhSi2alEsQUSJ0eTeTYYUuzMhwaZFCer-KHt4LwUkCZf-jSD8VOTFi80b2RVy0zm5Pu4G9dkLQcYTOQ6YtDpKhGSGRyZDmjyZHwrmjHGRc3GWORPqKOOhxSTXQixUWieREsqKGDAPXyXTZb-064Q6FWuuDXJBGqG00NY6ziwDQSWYUS3Cm0-eZjUxOZ6PcZ82FWh3aWWoFA2VVoZqkeBDa1ARc_whHzfWTL85WAqx4w_N3cb4Kfx7uKGiS9ufgBDA21BCAqt-k4kAhHOR8BZZqzznY7zgjiwGSLbx77Ftklm8wto1JrfI9Hg4sduAksZmx_8GO2SmfXrevXgHdkIUPQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LDtMKx7pu1aDdjV6GRJttxbUDRIX8GAtUBugmRLqIfOCfLAtv6N_eGSfgTdoSvQo20SFkya_GiTnwC-OB1c4T2PCpvHkeQFj2whikipQIRVpFSzfY6T0ZU8najJBhx1szDUVtnG_iam19G6PXPQPs2DWVnSjC8mP6FkXJN66skz2CR2KtWDzcHJ2Wi8DsiYAbPuRzMpdBN0dZvXL0szGVgoxjGGDyx34ocy1EMItM5Ew9fwqoWQbNCscgs2fPUGXt4jFnwLf49rZghMKIwGF5rPrmwa2LfBgLk_bOi_M0SrLNjFks39zyn6G12eXd__wr04ZOhFjKa1GHUhksRidRNWc0YDmlhjs7JC9Xo3e7wvQzCJh_UdUfh3WZS3vuhk38HV8PjyaBS12y9EucjUMuLK2ySTijuRuJyY8lTxVfLgXEhCSPM8uNgmuYg91bke06G2Nku01F6mCHvEe-hV08p_BBZ0aoV1RAfppLbSeh8E9xwFteRO90F0j9zkLTc5bZFxY7omtB-mMZQhQ5nGUH2I1lqzhpvjEfm0s6b5x8cMpo9HND93xjf4-tE_FVv56QqFEOHGCmtY_T-ZBHG4kJnow4fGc9brRXfkKaKy7SevbR-ejy4vzs35yfhsB17QFWpl42oXesv5yn9C0LR0e-1LcQfblRbu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+activation+of+PAA+by+FeS+for+fast+removal+of+pharmaceuticals%3A+The+dual+role+of+sulfur+species+in+regulating+the+reactive+oxidized+species&rft.jtitle=Water+research+%28Oxford%29&rft.au=Yang%2C+Shu-Run&rft.au=He%2C+Chuan-Shu&rft.au=Xie%2C+Zhi-Hui&rft.au=Li%2C+Ling-Li&rft.date=2022-06-15&rft.issn=0043-1354&rft.volume=217&rft.spage=118402&rft_id=info:doi/10.1016%2Fj.watres.2022.118402&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2022_118402 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |