Self-adaptive radiative cooling based on phase change materials

With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of applications such as passive building cooling, refrigeration, and renewable energy harvesting. However, all existing radiative cooling technologies util...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 26; no. 18; p. A777
Main Authors Ono, Masashi, Chen, Kaifeng, Li, Wei, Fan, Shanhui
Format Journal Article
LanguageEnglish
Published United States 03.09.2018
Online AccessGet full text

Cover

Loading…
Abstract With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of applications such as passive building cooling, refrigeration, and renewable energy harvesting. However, all existing radiative cooling technologies utilize static structures, which lack the ability of self-adaptive tuning based on demand. Here we present the concept of self-adaptive radiative cooling based on phase change materials such as vanadium dioxide. We design a photonic structure that can adaptively turn 'on' and 'off' radiative cooling, depending the ambient temperature, without any extra energy input for switching. Our results here lead to new functionalities of radiative cooling and can potentially be used in a wide range of applications for the thermal managements of buildings, vehicles and textiles.
AbstractList With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of applications such as passive building cooling, refrigeration, and renewable energy harvesting. However, all existing radiative cooling technologies utilize static structures, which lack the ability of self-adaptive tuning based on demand. Here we present the concept of self-adaptive radiative cooling based on phase change materials such as vanadium dioxide. We design a photonic structure that can adaptively turn 'on' and 'off' radiative cooling, depending the ambient temperature, without any extra energy input for switching. Our results here lead to new functionalities of radiative cooling and can potentially be used in a wide range of applications for the thermal managements of buildings, vehicles and textiles.
With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of applications such as passive building cooling, refrigeration, and renewable energy harvesting. However, all existing radiative cooling technologies utilize static structures, which lack the ability of self-adaptive tuning based on demand. Here we present the concept of self-adaptive radiative cooling based on phase change materials such as vanadium dioxide. We design a photonic structure that can adaptively turn 'on' and 'off' radiative cooling, depending the ambient temperature, without any extra energy input for switching. Our results here lead to new functionalities of radiative cooling and can potentially be used in a wide range of applications for the thermal managements of buildings, vehicles and textiles.With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of applications such as passive building cooling, refrigeration, and renewable energy harvesting. However, all existing radiative cooling technologies utilize static structures, which lack the ability of self-adaptive tuning based on demand. Here we present the concept of self-adaptive radiative cooling based on phase change materials such as vanadium dioxide. We design a photonic structure that can adaptively turn 'on' and 'off' radiative cooling, depending the ambient temperature, without any extra energy input for switching. Our results here lead to new functionalities of radiative cooling and can potentially be used in a wide range of applications for the thermal managements of buildings, vehicles and textiles.
Author Li, Wei
Ono, Masashi
Chen, Kaifeng
Fan, Shanhui
Author_xml – sequence: 1
  givenname: Masashi
  surname: Ono
  fullname: Ono, Masashi
– sequence: 2
  givenname: Kaifeng
  orcidid: 0000-0002-0453-5411
  surname: Chen
  fullname: Chen, Kaifeng
– sequence: 3
  givenname: Wei
  orcidid: 0000-0002-2227-9431
  surname: Li
  fullname: Li, Wei
– sequence: 4
  givenname: Shanhui
  surname: Fan
  fullname: Fan, Shanhui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30184837$$D View this record in MEDLINE/PubMed
BookMark eNptkM9LwzAcxYNM3A-9eZYePdiZNGmTnmSM-gMGO6jnkCbfbpG2qUkn-N9b3QYint47fN6D96Zo1LoWELokeE5oxm7XxTzJ5hgvOOcnaEJwzmKGBR_98mM0DeENY8J4zs_QmGIimKB8gu6eoa5iZVTX2w-IvDJW_TjtXG3bTVSqACZybdRtBxfprWo3EDWqB29VHc7RaTUIXBx0hl7vi5flY7xaPzwtF6tY0zztY5JqXIpca0MwUJOWQFMmoOTGEMgrSnOqRMqoAK00VlpokmWMAymrLBHE0Bm63vd23r3vIPSysUFDXasW3C7IhGBMGU5IPqBXB3RXNmBk522j_Kc8jh6AZA9o70LwUElt-2G1a3uvbC0Jlt_PynUhk0zunx1CN39Cx95_8S-hOnh8
CitedBy_id crossref_primary_10_3390_su14031110
crossref_primary_10_1016_j_solener_2020_10_013
crossref_primary_10_29026_oea_2021_200006
crossref_primary_10_1016_j_renene_2022_07_143
crossref_primary_10_1016_j_optlaseng_2024_108328
crossref_primary_10_1016_j_solmat_2022_112125
crossref_primary_10_1039_D2TA07453B
crossref_primary_10_3390_nano13233073
crossref_primary_10_1039_D4DT02032D
crossref_primary_10_1016_j_enconman_2021_114057
crossref_primary_10_1364_JOSAB_533997
crossref_primary_10_1016_j_optcom_2021_127209
crossref_primary_10_1007_s10853_021_05973_4
crossref_primary_10_1038_s41377_023_01119_0
crossref_primary_10_1002_admt_201901007
crossref_primary_10_1038_s41598_020_59729_2
crossref_primary_10_1088_1674_1056_abd697
crossref_primary_10_1016_j_mtphys_2024_101643
crossref_primary_10_1364_OE_538463
crossref_primary_10_1016_j_solener_2023_04_032
crossref_primary_10_1557_s43578_023_00907_z
crossref_primary_10_1016_j_apenergy_2018_12_018
crossref_primary_10_1364_AO_522582
crossref_primary_10_1016_j_apenergy_2024_124436
crossref_primary_10_1002_adma_202414300
crossref_primary_10_1016_j_applthermaleng_2025_125690
crossref_primary_10_3390_nano14161348
crossref_primary_10_3390_atmos12111379
crossref_primary_10_1016_j_solmat_2019_110270
crossref_primary_10_1364_OE_523853
crossref_primary_10_1016_j_enconman_2019_112395
crossref_primary_10_1016_j_energy_2024_133540
crossref_primary_10_1016_j_ijleo_2024_172098
crossref_primary_10_3390_polym15010159
crossref_primary_10_3390_nano11020260
crossref_primary_10_1016_j_seja_2021_100009
crossref_primary_10_1364_JOSAB_394671
crossref_primary_10_1016_j_mtphys_2021_100388
crossref_primary_10_1038_s41578_021_00283_2
crossref_primary_10_3390_en12010089
crossref_primary_10_1021_acsaom_4c00030
crossref_primary_10_1360_nso_20240019
crossref_primary_10_1016_j_apenergy_2023_121598
crossref_primary_10_1002_adom_202201326
crossref_primary_10_1016_j_applthermaleng_2022_119707
crossref_primary_10_1021_acs_jpcc_2c07478
crossref_primary_10_1063_1_5087281
crossref_primary_10_1002_adfm_202410819
crossref_primary_10_1016_j_solmat_2020_110739
crossref_primary_10_1016_j_jqsrt_2024_109325
crossref_primary_10_1016_j_softx_2023_101562
crossref_primary_10_1021_acs_iecr_3c04130
crossref_primary_10_1016_j_applthermaleng_2023_121751
crossref_primary_10_1063_5_0180035
crossref_primary_10_1016_j_applthermaleng_2023_121074
crossref_primary_10_1016_j_apenergy_2023_121928
crossref_primary_10_1016_j_mtener_2019_05_017
crossref_primary_10_1515_nanoph_2024_0193
crossref_primary_10_1038_s43246_020_00098_8
crossref_primary_10_1016_j_solener_2023_112192
crossref_primary_10_1016_j_applthermaleng_2025_125805
crossref_primary_10_1515_nanoph_2023_0627
crossref_primary_10_1039_D2NR07133A
crossref_primary_10_1002_adma_202209897
crossref_primary_10_1002_smtd_202101379
crossref_primary_10_1016_j_mtcomm_2023_106117
crossref_primary_10_1039_C9TC05634C
crossref_primary_10_1063_5_0204694
crossref_primary_10_1016_j_isci_2022_105894
crossref_primary_10_1021_acsnano_2c11916
crossref_primary_10_1186_s43593_023_00053_3
crossref_primary_10_1016_j_apenergy_2020_116055
crossref_primary_10_1016_j_ceramint_2025_02_209
crossref_primary_10_1021_acs_nanolett_9b01358
crossref_primary_10_1364_AO_454375
crossref_primary_10_1557_mrs_2020_223
crossref_primary_10_1016_j_nxener_2024_100121
crossref_primary_10_1364_OE_464266
crossref_primary_10_1515_nanoph_2023_0739
crossref_primary_10_1016_j_pmatsci_2024_101291
crossref_primary_10_7498_aps_69_20191906
crossref_primary_10_1016_j_jallcom_2024_175418
crossref_primary_10_1016_j_nanoen_2021_106865
crossref_primary_10_1039_D4NH00136B
crossref_primary_10_1364_OE_442462
crossref_primary_10_1063_1_5088148
crossref_primary_10_1016_j_isci_2022_105780
crossref_primary_10_1016_j_solmat_2024_113382
crossref_primary_10_1016_j_scs_2021_103224
crossref_primary_10_1016_j_applthermaleng_2023_121305
crossref_primary_10_1021_acsami_1c17914
crossref_primary_10_3390_ma17071641
crossref_primary_10_1016_j_nxener_2023_100072
crossref_primary_10_1039_D2NA00633B
crossref_primary_10_1364_OE_402397
crossref_primary_10_1021_acsphotonics_1c00967
crossref_primary_10_1126_sciadv_adr2062
crossref_primary_10_1002_adpr_202000106
crossref_primary_10_1186_s40580_023_00365_7
crossref_primary_10_3390_nano12132261
crossref_primary_10_1021_acsaelm_3c01023
crossref_primary_10_1016_j_mtener_2024_101647
crossref_primary_10_1021_acsphotonics_4c01696
crossref_primary_10_1364_OME_485012
crossref_primary_10_1016_j_apenergy_2021_118096
crossref_primary_10_1016_j_scs_2023_104912
crossref_primary_10_1002_adma_202000870
crossref_primary_10_1016_j_applthermaleng_2022_118527
crossref_primary_10_1016_j_xcrp_2022_101098
crossref_primary_10_1016_j_nxener_2023_100083
crossref_primary_10_1016_j_optmat_2023_114751
crossref_primary_10_1038_s41598_020_70931_0
crossref_primary_10_1126_sciadv_abn7359
crossref_primary_10_3390_buildings8120168
crossref_primary_10_1103_PhysRevMaterials_6_090201
crossref_primary_10_1063_5_0089353
crossref_primary_10_1002_adom_202300123
crossref_primary_10_1016_j_ceramint_2023_10_002
crossref_primary_10_1038_s41598_023_30959_4
crossref_primary_10_1016_j_scib_2023_08_003
crossref_primary_10_1021_acsnano_4c05929
crossref_primary_10_3390_en16041975
crossref_primary_10_1016_j_nanoen_2022_107435
crossref_primary_10_1364_OE_26_027885
crossref_primary_10_1002_advs_202305067
crossref_primary_10_1126_science_abf7136
crossref_primary_10_1002_eom2_12153
crossref_primary_10_1016_j_optmat_2023_113812
crossref_primary_10_1088_0256_307X_40_7_077801
crossref_primary_10_1016_j_xcrp_2022_101066
crossref_primary_10_1002_smll_202100446
crossref_primary_10_1002_admi_202202308
crossref_primary_10_1021_acs_chemrev_2c00171
crossref_primary_10_1002_aenm_202202932
crossref_primary_10_2139_ssrn_4055938
crossref_primary_10_1021_acsami_1c11552
crossref_primary_10_1002_adom_202202163
crossref_primary_10_1016_j_rser_2022_112304
crossref_primary_10_1002_andp_202000001
crossref_primary_10_1016_j_solmat_2021_111275
crossref_primary_10_1016_j_pmatsci_2023_101144
crossref_primary_10_1080_15599612_2024_2334293
crossref_primary_10_1088_0256_307X_41_4_044202
crossref_primary_10_1016_j_solmat_2024_113291
crossref_primary_10_1016_j_xcrp_2022_101198
crossref_primary_10_1002_smll_202206145
crossref_primary_10_1016_j_rinp_2021_105055
crossref_primary_10_1016_j_nxener_2023_100063
crossref_primary_10_1038_s41467_019_12196_4
crossref_primary_10_1016_j_solmat_2021_111143
crossref_primary_10_1016_j_mtphys_2022_100828
crossref_primary_10_3788_AOS231814
crossref_primary_10_1038_s41598_019_55546_4
crossref_primary_10_1029_2022EF002682
crossref_primary_10_1016_j_solener_2020_06_095
crossref_primary_10_1039_D4TA03558E
crossref_primary_10_1088_2040_8986_abd4bf
crossref_primary_10_1016_j_enbuild_2024_114949
crossref_primary_10_1016_j_applthermaleng_2021_117561
crossref_primary_10_1002_adfm_202414590
crossref_primary_10_1021_acsami_0c05803
crossref_primary_10_1016_j_jechem_2024_09_051
crossref_primary_10_1002_cnma_202100060
crossref_primary_10_1016_j_solener_2024_112734
crossref_primary_10_1016_j_xcrp_2024_102065
crossref_primary_10_1007_s12221_024_00617_1
crossref_primary_10_1016_j_optlastec_2023_110087
crossref_primary_10_1016_j_mtphys_2019_100161
crossref_primary_10_1364_OE_488376
crossref_primary_10_1016_j_nanoen_2024_110443
crossref_primary_10_1364_OE_396171
crossref_primary_10_1126_science_abb0971
crossref_primary_10_1002_adma_202004754
crossref_primary_10_1002_aesr_202100168
crossref_primary_10_1016_j_enconman_2022_116342
crossref_primary_10_1021_acs_nanolett_0c04810
crossref_primary_10_1021_acsphotonics_2c00500
crossref_primary_10_1002_advs_202305664
crossref_primary_10_1016_j_cej_2022_139739
crossref_primary_10_1021_acsanm_2c00088
crossref_primary_10_1002_adom_202202129
crossref_primary_10_1016_j_isci_2024_110948
crossref_primary_10_1007_s11708_020_0694_z
crossref_primary_10_1016_j_solmat_2024_113040
crossref_primary_10_3934_matersci_2019_6_1049
crossref_primary_10_1021_acsami_4c06912
crossref_primary_10_1021_acsphotonics_0c00760
crossref_primary_10_1364_OE_27_021787
crossref_primary_10_1016_j_mtener_2021_100888
crossref_primary_10_1016_j_cap_2023_02_010
crossref_primary_10_1016_j_heliyon_2024_e23986
crossref_primary_10_1038_s41566_021_00921_9
crossref_primary_10_1016_j_mtphys_2025_101694
crossref_primary_10_1016_j_mtsust_2023_100448
crossref_primary_10_1016_j_enbuild_2023_113031
crossref_primary_10_1186_s43074_023_00104_5
crossref_primary_10_1021_acs_nanolett_3c02733
crossref_primary_10_1103_PhysRevApplied_14_064043
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122835
crossref_primary_10_1016_j_mtener_2021_100776
crossref_primary_10_1515_nanoph_2023_0699
crossref_primary_10_1016_j_jqsrt_2024_108937
crossref_primary_10_1016_j_solener_2020_08_077
crossref_primary_10_1016_j_nanoen_2024_110023
crossref_primary_10_1126_science_abg0291
crossref_primary_10_1364_OE_27_031587
crossref_primary_10_3390_su16062346
crossref_primary_10_1364_OE_509800
crossref_primary_10_1021_acs_nanolett_3c03711
crossref_primary_10_1016_j_nanoen_2020_105517
crossref_primary_10_1016_j_renene_2024_121658
crossref_primary_10_1016_j_solmat_2022_111883
crossref_primary_10_1016_j_solmat_2024_112693
crossref_primary_10_1364_OE_416475
crossref_primary_10_1515_nanoph_2023_0695
crossref_primary_10_1063_5_0029279
crossref_primary_10_1016_j_isci_2023_107388
crossref_primary_10_1016_j_isci_2023_106857
crossref_primary_10_1016_j_physrep_2024_05_004
crossref_primary_10_1088_1361_6463_ac9fde
crossref_primary_10_1016_j_enbuild_2023_113131
crossref_primary_10_1021_acsami_1c23401
crossref_primary_10_1364_AO_421977
crossref_primary_10_1039_D1TC00553G
crossref_primary_10_1021_acsaem_2c00421
crossref_primary_10_1002_adpr_202200253
crossref_primary_10_1016_j_enbenv_2022_10_005
crossref_primary_10_1073_pnas_2207353119
crossref_primary_10_1039_D2MA01000C
crossref_primary_10_1016_j_jqsrt_2023_108659
crossref_primary_10_1063_1_5091048
crossref_primary_10_1002_chem_202400826
crossref_primary_10_1109_LPT_2023_3345951
crossref_primary_10_1016_j_ensm_2023_103164
crossref_primary_10_1021_acsanm_3c04872
crossref_primary_10_1016_j_enconman_2021_114621
crossref_primary_10_1016_j_rser_2021_110910
crossref_primary_10_1002_lpor_202301106
crossref_primary_10_1016_j_apenergy_2024_124339
crossref_primary_10_1002_smtd_202301258
crossref_primary_10_1016_j_renene_2020_07_109
crossref_primary_10_1016_j_nanoen_2021_106440
crossref_primary_10_1039_D4TA01158A
crossref_primary_10_1039_D2TC00318J
Cites_doi 10.1364/OPTICA.4.001390
10.1364/AO.53.002431
10.1021/acsphotonics.6b00991
10.1016/0165-1633(86)90047-X
10.1016/S0040-6090(01)01603-0
10.1021/acsphotonics.7b00089
10.1021/nl4004283
10.1021/acsphotonics.5b00140
10.1364/OE.26.015995
10.1364/OL.43.001295
10.1103/PhysRevLett.3.34
10.1021/nl903271d
10.1002/adom.201500119
10.1103/PhysRev.172.788
10.1364/OPTICA.1.000032
10.1038/ncomms13729
10.1364/OE.23.0A1120
10.1002/lpor.201700091
10.1126/science.aai7899
10.1364/OE.23.0A1363
10.1126/science.aab3564
10.1039/C7NR09672K
10.1016/0038-092X(75)90062-6
10.1016/j.optmat.2016.02.032
10.1038/lsa.2016.194
10.1038/nmat4043
10.1002/advs.201500119
10.1002/adom.201300163
10.1038/nature13883
10.1063/1.329270
10.1117/12.665077
10.1364/OPTICA.4.000430
10.1126/science.aaf5471
10.1063/1.4979700
10.1016/0030-4018(95)00761-X
10.1038/ncomms8032
10.1093/nsr/nwy012
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.26.00A777
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 30184837
10_1364_OE_26_00A777
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
7X8
ID FETCH-LOGICAL-c395t-15c0b89ccd10e3d5be3548eb7dd1e9f3393a85438ecac0ac8c16647e1bf6281d3
ISSN 1094-4087
IngestDate Fri Jul 11 07:58:09 EDT 2025
Thu Apr 03 06:59:12 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
Tue Jul 01 04:04:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-15c0b89ccd10e3d5be3548eb7dd1e9f3393a85438ecac0ac8c16647e1bf6281d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2227-9431
0000-0002-0453-5411
OpenAccessLink https://www.osapublishing.org/viewmedia.cfm?URI=oe-26-18-A777
PMID 30184837
PQID 2100340219
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2100340219
pubmed_primary_30184837
crossref_citationtrail_10_1364_OE_26_00A777
crossref_primary_10_1364_OE_26_00A777
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-03
PublicationDateYYYYMMDD 2018-09-03
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2018
References Gentle (oe-26-18-A777-R7) 2015; 2
Rephaeli (oe-26-18-A777-R4) 2013; 13
Jorgenson (oe-26-18-A777-R34) 1986; 14
Jung (oe-26-18-A777-R38) 2014; 53
Morin (oe-26-18-A777-R33) 1959; 3
Du (oe-26-18-A777-R28) 2017; 6
Raman (oe-26-18-A777-R5) 2014; 515
Burkhardt (oe-26-18-A777-R35) 2002; 402
Qu (oe-26-18-A777-R27) 2017; 11
Granqvist (oe-26-18-A777-R2) 1981; 52
Kats (oe-26-18-A777-R24) 2014; 3
Li (oe-26-18-A777-R19) 2018; 26
Liu (oe-26-18-A777-R22) 2013; 1
Wu (oe-26-18-A777-R25) 2017; 4
Shi (oe-26-18-A777-R11) 2015; 349
Li (oe-26-18-A777-R18) 2017; 4
Gentle (oe-26-18-A777-R3) 2010; 10
Tong (oe-26-18-A777-R13) 2015; 2
Inoue (oe-26-18-A777-R20) 2014; 13
Dietrich (oe-26-18-A777-R36) 2017; 110
Zhai (oe-26-18-A777-R12) 2017; 355
Wu (oe-26-18-A777-R17) 2015; 23
Brar (oe-26-18-A777-R21) 2015; 6
Zhu (oe-26-18-A777-R15) 2014; 1
Catalanotti (oe-26-18-A777-R1) 1975; 17
Verleur (oe-26-18-A777-R31) 1968; 172
Fan (oe-26-18-A777-R6) 2018; 5
Chen (oe-26-18-A777-R9) 2016; 7
Hsu (oe-26-18-A777-R14) 2016; 353
Cai (oe-26-18-A777-R30) 2018; 43
Large (oe-26-18-A777-R39) 1996; 128
Safi (oe-26-18-A777-R16) 2015; 23
Du (oe-26-18-A777-R29) 2018; 10
Hossain (oe-26-18-A777-R8) 2015; 3
Liu (oe-26-18-A777-R23) 2017; 4
Berk (oe-26-18-A777-R40) 2006; 6233
Kou (oe-26-18-A777-R10) 2017; 4
Kana Kana (oe-26-18-A777-R32) 2016; 54
References_xml – volume: 4
  start-page: 1390
  year: 2017
  ident: oe-26-18-A777-R25
  publication-title: Optica
  doi: 10.1364/OPTICA.4.001390
– volume: 53
  start-page: 2431
  year: 2014
  ident: oe-26-18-A777-R38
  publication-title: Appl. Opt.
  doi: 10.1364/AO.53.002431
– volume: 4
  start-page: 626
  year: 2017
  ident: oe-26-18-A777-R10
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00991
– volume: 14
  start-page: 205
  year: 1986
  ident: oe-26-18-A777-R34
  publication-title: Sol. Energy Mater.
  doi: 10.1016/0165-1633(86)90047-X
– volume: 402
  start-page: 226
  year: 2002
  ident: oe-26-18-A777-R35
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(01)01603-0
– volume: 4
  start-page: 774
  year: 2017
  ident: oe-26-18-A777-R18
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00089
– volume: 13
  start-page: 1457
  year: 2013
  ident: oe-26-18-A777-R4
  publication-title: Nano Lett.
  doi: 10.1021/nl4004283
– volume: 2
  start-page: 769
  year: 2015
  ident: oe-26-18-A777-R13
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00140
– volume: 26
  start-page: 15995
  year: 2018
  ident: oe-26-18-A777-R19
  publication-title: Opt. Express
  doi: 10.1364/OE.26.015995
– volume: 43
  start-page: 1295
  year: 2018
  ident: oe-26-18-A777-R30
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.001295
– volume: 3
  start-page: 34
  year: 1959
  ident: oe-26-18-A777-R33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.3.34
– volume: 10
  start-page: 373
  year: 2010
  ident: oe-26-18-A777-R3
  publication-title: Nano Lett.
  doi: 10.1021/nl903271d
– volume: 3
  start-page: 1047
  year: 2015
  ident: oe-26-18-A777-R8
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500119
– volume: 172
  start-page: 788
  year: 1968
  ident: oe-26-18-A777-R31
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.172.788
– volume: 1
  start-page: 32
  year: 2014
  ident: oe-26-18-A777-R15
  publication-title: Optica
  doi: 10.1364/OPTICA.1.000032
– volume: 7
  start-page: 13729
  year: 2016
  ident: oe-26-18-A777-R9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13729
– volume: 23
  start-page: A1120
  year: 2015
  ident: oe-26-18-A777-R16
  publication-title: Opt. Express
  doi: 10.1364/OE.23.0A1120
– volume: 11
  start-page: 1700091
  year: 2017
  ident: oe-26-18-A777-R27
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201700091
– volume: 355
  start-page: 1062
  year: 2017
  ident: oe-26-18-A777-R12
  publication-title: Science (80-.).
  doi: 10.1126/science.aai7899
– volume: 23
  start-page: A1363
  year: 2015
  ident: oe-26-18-A777-R17
  publication-title: Opt. Express
  doi: 10.1364/OE.23.0A1363
– volume: 3
  start-page: 041004
  year: 2014
  ident: oe-26-18-A777-R24
  publication-title: Phys. Rev. X
– volume: 349
  start-page: 298
  year: 2015
  ident: oe-26-18-A777-R11
  publication-title: Science (80-.).
  doi: 10.1126/science.aab3564
– volume: 10
  start-page: 4415
  year: 2018
  ident: oe-26-18-A777-R29
  publication-title: Nanoscale
  doi: 10.1039/C7NR09672K
– volume: 17
  start-page: 83
  year: 1975
  ident: oe-26-18-A777-R1
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(75)90062-6
– volume: 54
  start-page: 165
  year: 2016
  ident: oe-26-18-A777-R32
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2016.02.032
– volume: 6
  start-page: e16194
  year: 2017
  ident: oe-26-18-A777-R28
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2016.194
– volume: 13
  start-page: 928
  year: 2014
  ident: oe-26-18-A777-R20
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4043
– volume: 2
  start-page: 1500119
  year: 2015
  ident: oe-26-18-A777-R7
  publication-title: Adv Sci (Weinh)
  doi: 10.1002/advs.201500119
– volume: 1
  start-page: 559
  year: 2013
  ident: oe-26-18-A777-R22
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201300163
– volume: 515
  start-page: 540
  year: 2014
  ident: oe-26-18-A777-R5
  publication-title: Nature
  doi: 10.1038/nature13883
– volume: 52
  start-page: 4205
  year: 1981
  ident: oe-26-18-A777-R2
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.329270
– volume: 6233
  start-page: 62331F
  year: 2006
  ident: oe-26-18-A777-R40
  publication-title: Proc. SPIE
  doi: 10.1117/12.665077
– volume: 4
  start-page: 430
  year: 2017
  ident: oe-26-18-A777-R23
  publication-title: Optica
  doi: 10.1364/OPTICA.4.000430
– volume: 353
  start-page: 1019
  year: 2016
  ident: oe-26-18-A777-R14
  publication-title: Science (80-.).
  doi: 10.1126/science.aaf5471
– volume: 110
  start-page: 141907
  year: 2017
  ident: oe-26-18-A777-R36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4979700
– volume: 128
  start-page: 307
  year: 1996
  ident: oe-26-18-A777-R39
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(95)00761-X
– volume: 6
  start-page: 7032
  year: 2015
  ident: oe-26-18-A777-R21
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8032
– volume: 5
  start-page: 10
  year: 2018
  ident: oe-26-18-A777-R6
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwy012
SSID ssj0014797
Score 2.652021
Snippet With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage A777
Title Self-adaptive radiative cooling based on phase change materials
URI https://www.ncbi.nlm.nih.gov/pubmed/30184837
https://www.proquest.com/docview/2100340219
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB-0IngRv92qZQQ9LalJJplMjkWyFO12D-7i3sJ8hRZKErq7IB76t_veZJKm2EL1EsIwmQzvN7yPeV-EfKpyw23ITcCsBgMFZF4gQTAHKtOpNKJSqSuxMT_lx6vk2zpd973KfXbJVh3q37fmlfwPqjAGuGKW7D8gOywKA_AO-MITEIbnvTD-YS-qQBrZuvifSywz4N5007gscxRRBt0B7ZnEsHSXSTAFHbXb3FgxXbSuXrP91Q4xGXj16hpzT-dygz2XrkMBOl71XZ5X1ks-jOlxgQE_7TBv5i9X4bdnu_Px_ULkgiFCNmKJYACClenFor1lzPPRLvO9Py9ixBWPsq5Vy1_smvEEaLwoDmN0CfXTblbFPl2Us9XJSbks1suH5FEM5gDys_lVMXiLkqxrotPvyic4wOpfxmvfVD3usCecXrF8Rp56g4Aedeg-Jw9s_YI8doG5evMSjKkxxnTAmHqMqcOYNjV1GNMOYzpg_IqsZsXy63Hgm14EmuXpNohSHSqRa22i0DKTKsvAqLQqMyayecVYzqRIEyasljqUWuiI8ySzkap4DMYHe0326qa2bwmNFEgPnqch1xl2mJa6ynQilOBGouo2IdOeHqX2FeGxMclF6dycPCkXRRlj2CNSb0I-D7PbrhLKHfM-9qQtgVWh_0nWttltyjjCakigVOYT8qaj-bASyBmBzQ327_H1O_Lk-qC-J3vby539AKrhVh24K5UDdzr-AKnSYuE
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-adaptive+radiative+cooling+based+on+phase+change+materials&rft.jtitle=Optics+express&rft.au=Ono%2C+Masashi&rft.au=Chen%2C+Kaifeng&rft.au=Li%2C+Wei&rft.au=Fan%2C+Shanhui&rft.date=2018-09-03&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=26&rft.issue=18&rft.spage=A777&rft_id=info:doi/10.1364%2FOE.26.00A777&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon