Self-adaptive radiative cooling based on phase change materials
With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of applications such as passive building cooling, refrigeration, and renewable energy harvesting. However, all existing radiative cooling technologies util...
Saved in:
Published in | Optics express Vol. 26; no. 18; p. A777 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
03.09.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of applications such as passive building cooling, refrigeration, and renewable energy harvesting. However, all existing radiative cooling technologies utilize static structures, which lack the ability of self-adaptive tuning based on demand. Here we present the concept of self-adaptive radiative cooling based on phase change materials such as vanadium dioxide. We design a photonic structure that can adaptively turn 'on' and 'off' radiative cooling, depending the ambient temperature, without any extra energy input for switching. Our results here lead to new functionalities of radiative cooling and can potentially be used in a wide range of applications for the thermal managements of buildings, vehicles and textiles. |
---|---|
AbstractList | With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of applications such as passive building cooling, refrigeration, and renewable energy harvesting. However, all existing radiative cooling technologies utilize static structures, which lack the ability of self-adaptive tuning based on demand. Here we present the concept of self-adaptive radiative cooling based on phase change materials such as vanadium dioxide. We design a photonic structure that can adaptively turn 'on' and 'off' radiative cooling, depending the ambient temperature, without any extra energy input for switching. Our results here lead to new functionalities of radiative cooling and can potentially be used in a wide range of applications for the thermal managements of buildings, vehicles and textiles. With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of applications such as passive building cooling, refrigeration, and renewable energy harvesting. However, all existing radiative cooling technologies utilize static structures, which lack the ability of self-adaptive tuning based on demand. Here we present the concept of self-adaptive radiative cooling based on phase change materials such as vanadium dioxide. We design a photonic structure that can adaptively turn 'on' and 'off' radiative cooling, depending the ambient temperature, without any extra energy input for switching. Our results here lead to new functionalities of radiative cooling and can potentially be used in a wide range of applications for the thermal managements of buildings, vehicles and textiles.With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of applications such as passive building cooling, refrigeration, and renewable energy harvesting. However, all existing radiative cooling technologies utilize static structures, which lack the ability of self-adaptive tuning based on demand. Here we present the concept of self-adaptive radiative cooling based on phase change materials such as vanadium dioxide. We design a photonic structure that can adaptively turn 'on' and 'off' radiative cooling, depending the ambient temperature, without any extra energy input for switching. Our results here lead to new functionalities of radiative cooling and can potentially be used in a wide range of applications for the thermal managements of buildings, vehicles and textiles. |
Author | Li, Wei Ono, Masashi Chen, Kaifeng Fan, Shanhui |
Author_xml | – sequence: 1 givenname: Masashi surname: Ono fullname: Ono, Masashi – sequence: 2 givenname: Kaifeng orcidid: 0000-0002-0453-5411 surname: Chen fullname: Chen, Kaifeng – sequence: 3 givenname: Wei orcidid: 0000-0002-2227-9431 surname: Li fullname: Li, Wei – sequence: 4 givenname: Shanhui surname: Fan fullname: Fan, Shanhui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30184837$$D View this record in MEDLINE/PubMed |
BookMark | eNptkM9LwzAcxYNM3A-9eZYePdiZNGmTnmSM-gMGO6jnkCbfbpG2qUkn-N9b3QYint47fN6D96Zo1LoWELokeE5oxm7XxTzJ5hgvOOcnaEJwzmKGBR_98mM0DeENY8J4zs_QmGIimKB8gu6eoa5iZVTX2w-IvDJW_TjtXG3bTVSqACZybdRtBxfprWo3EDWqB29VHc7RaTUIXBx0hl7vi5flY7xaPzwtF6tY0zztY5JqXIpca0MwUJOWQFMmoOTGEMgrSnOqRMqoAK00VlpokmWMAymrLBHE0Bm63vd23r3vIPSysUFDXasW3C7IhGBMGU5IPqBXB3RXNmBk522j_Kc8jh6AZA9o70LwUElt-2G1a3uvbC0Jlt_PynUhk0zunx1CN39Cx95_8S-hOnh8 |
CitedBy_id | crossref_primary_10_3390_su14031110 crossref_primary_10_1016_j_solener_2020_10_013 crossref_primary_10_29026_oea_2021_200006 crossref_primary_10_1016_j_renene_2022_07_143 crossref_primary_10_1016_j_optlaseng_2024_108328 crossref_primary_10_1016_j_solmat_2022_112125 crossref_primary_10_1039_D2TA07453B crossref_primary_10_3390_nano13233073 crossref_primary_10_1039_D4DT02032D crossref_primary_10_1016_j_enconman_2021_114057 crossref_primary_10_1364_JOSAB_533997 crossref_primary_10_1016_j_optcom_2021_127209 crossref_primary_10_1007_s10853_021_05973_4 crossref_primary_10_1038_s41377_023_01119_0 crossref_primary_10_1002_admt_201901007 crossref_primary_10_1038_s41598_020_59729_2 crossref_primary_10_1088_1674_1056_abd697 crossref_primary_10_1016_j_mtphys_2024_101643 crossref_primary_10_1364_OE_538463 crossref_primary_10_1016_j_solener_2023_04_032 crossref_primary_10_1557_s43578_023_00907_z crossref_primary_10_1016_j_apenergy_2018_12_018 crossref_primary_10_1364_AO_522582 crossref_primary_10_1016_j_apenergy_2024_124436 crossref_primary_10_1002_adma_202414300 crossref_primary_10_1016_j_applthermaleng_2025_125690 crossref_primary_10_3390_nano14161348 crossref_primary_10_3390_atmos12111379 crossref_primary_10_1016_j_solmat_2019_110270 crossref_primary_10_1364_OE_523853 crossref_primary_10_1016_j_enconman_2019_112395 crossref_primary_10_1016_j_energy_2024_133540 crossref_primary_10_1016_j_ijleo_2024_172098 crossref_primary_10_3390_polym15010159 crossref_primary_10_3390_nano11020260 crossref_primary_10_1016_j_seja_2021_100009 crossref_primary_10_1364_JOSAB_394671 crossref_primary_10_1016_j_mtphys_2021_100388 crossref_primary_10_1038_s41578_021_00283_2 crossref_primary_10_3390_en12010089 crossref_primary_10_1021_acsaom_4c00030 crossref_primary_10_1360_nso_20240019 crossref_primary_10_1016_j_apenergy_2023_121598 crossref_primary_10_1002_adom_202201326 crossref_primary_10_1016_j_applthermaleng_2022_119707 crossref_primary_10_1021_acs_jpcc_2c07478 crossref_primary_10_1063_1_5087281 crossref_primary_10_1002_adfm_202410819 crossref_primary_10_1016_j_solmat_2020_110739 crossref_primary_10_1016_j_jqsrt_2024_109325 crossref_primary_10_1016_j_softx_2023_101562 crossref_primary_10_1021_acs_iecr_3c04130 crossref_primary_10_1016_j_applthermaleng_2023_121751 crossref_primary_10_1063_5_0180035 crossref_primary_10_1016_j_applthermaleng_2023_121074 crossref_primary_10_1016_j_apenergy_2023_121928 crossref_primary_10_1016_j_mtener_2019_05_017 crossref_primary_10_1515_nanoph_2024_0193 crossref_primary_10_1038_s43246_020_00098_8 crossref_primary_10_1016_j_solener_2023_112192 crossref_primary_10_1016_j_applthermaleng_2025_125805 crossref_primary_10_1515_nanoph_2023_0627 crossref_primary_10_1039_D2NR07133A crossref_primary_10_1002_adma_202209897 crossref_primary_10_1002_smtd_202101379 crossref_primary_10_1016_j_mtcomm_2023_106117 crossref_primary_10_1039_C9TC05634C crossref_primary_10_1063_5_0204694 crossref_primary_10_1016_j_isci_2022_105894 crossref_primary_10_1021_acsnano_2c11916 crossref_primary_10_1186_s43593_023_00053_3 crossref_primary_10_1016_j_apenergy_2020_116055 crossref_primary_10_1016_j_ceramint_2025_02_209 crossref_primary_10_1021_acs_nanolett_9b01358 crossref_primary_10_1364_AO_454375 crossref_primary_10_1557_mrs_2020_223 crossref_primary_10_1016_j_nxener_2024_100121 crossref_primary_10_1364_OE_464266 crossref_primary_10_1515_nanoph_2023_0739 crossref_primary_10_1016_j_pmatsci_2024_101291 crossref_primary_10_7498_aps_69_20191906 crossref_primary_10_1016_j_jallcom_2024_175418 crossref_primary_10_1016_j_nanoen_2021_106865 crossref_primary_10_1039_D4NH00136B crossref_primary_10_1364_OE_442462 crossref_primary_10_1063_1_5088148 crossref_primary_10_1016_j_isci_2022_105780 crossref_primary_10_1016_j_solmat_2024_113382 crossref_primary_10_1016_j_scs_2021_103224 crossref_primary_10_1016_j_applthermaleng_2023_121305 crossref_primary_10_1021_acsami_1c17914 crossref_primary_10_3390_ma17071641 crossref_primary_10_1016_j_nxener_2023_100072 crossref_primary_10_1039_D2NA00633B crossref_primary_10_1364_OE_402397 crossref_primary_10_1021_acsphotonics_1c00967 crossref_primary_10_1126_sciadv_adr2062 crossref_primary_10_1002_adpr_202000106 crossref_primary_10_1186_s40580_023_00365_7 crossref_primary_10_3390_nano12132261 crossref_primary_10_1021_acsaelm_3c01023 crossref_primary_10_1016_j_mtener_2024_101647 crossref_primary_10_1021_acsphotonics_4c01696 crossref_primary_10_1364_OME_485012 crossref_primary_10_1016_j_apenergy_2021_118096 crossref_primary_10_1016_j_scs_2023_104912 crossref_primary_10_1002_adma_202000870 crossref_primary_10_1016_j_applthermaleng_2022_118527 crossref_primary_10_1016_j_xcrp_2022_101098 crossref_primary_10_1016_j_nxener_2023_100083 crossref_primary_10_1016_j_optmat_2023_114751 crossref_primary_10_1038_s41598_020_70931_0 crossref_primary_10_1126_sciadv_abn7359 crossref_primary_10_3390_buildings8120168 crossref_primary_10_1103_PhysRevMaterials_6_090201 crossref_primary_10_1063_5_0089353 crossref_primary_10_1002_adom_202300123 crossref_primary_10_1016_j_ceramint_2023_10_002 crossref_primary_10_1038_s41598_023_30959_4 crossref_primary_10_1016_j_scib_2023_08_003 crossref_primary_10_1021_acsnano_4c05929 crossref_primary_10_3390_en16041975 crossref_primary_10_1016_j_nanoen_2022_107435 crossref_primary_10_1364_OE_26_027885 crossref_primary_10_1002_advs_202305067 crossref_primary_10_1126_science_abf7136 crossref_primary_10_1002_eom2_12153 crossref_primary_10_1016_j_optmat_2023_113812 crossref_primary_10_1088_0256_307X_40_7_077801 crossref_primary_10_1016_j_xcrp_2022_101066 crossref_primary_10_1002_smll_202100446 crossref_primary_10_1002_admi_202202308 crossref_primary_10_1021_acs_chemrev_2c00171 crossref_primary_10_1002_aenm_202202932 crossref_primary_10_2139_ssrn_4055938 crossref_primary_10_1021_acsami_1c11552 crossref_primary_10_1002_adom_202202163 crossref_primary_10_1016_j_rser_2022_112304 crossref_primary_10_1002_andp_202000001 crossref_primary_10_1016_j_solmat_2021_111275 crossref_primary_10_1016_j_pmatsci_2023_101144 crossref_primary_10_1080_15599612_2024_2334293 crossref_primary_10_1088_0256_307X_41_4_044202 crossref_primary_10_1016_j_solmat_2024_113291 crossref_primary_10_1016_j_xcrp_2022_101198 crossref_primary_10_1002_smll_202206145 crossref_primary_10_1016_j_rinp_2021_105055 crossref_primary_10_1016_j_nxener_2023_100063 crossref_primary_10_1038_s41467_019_12196_4 crossref_primary_10_1016_j_solmat_2021_111143 crossref_primary_10_1016_j_mtphys_2022_100828 crossref_primary_10_3788_AOS231814 crossref_primary_10_1038_s41598_019_55546_4 crossref_primary_10_1029_2022EF002682 crossref_primary_10_1016_j_solener_2020_06_095 crossref_primary_10_1039_D4TA03558E crossref_primary_10_1088_2040_8986_abd4bf crossref_primary_10_1016_j_enbuild_2024_114949 crossref_primary_10_1016_j_applthermaleng_2021_117561 crossref_primary_10_1002_adfm_202414590 crossref_primary_10_1021_acsami_0c05803 crossref_primary_10_1016_j_jechem_2024_09_051 crossref_primary_10_1002_cnma_202100060 crossref_primary_10_1016_j_solener_2024_112734 crossref_primary_10_1016_j_xcrp_2024_102065 crossref_primary_10_1007_s12221_024_00617_1 crossref_primary_10_1016_j_optlastec_2023_110087 crossref_primary_10_1016_j_mtphys_2019_100161 crossref_primary_10_1364_OE_488376 crossref_primary_10_1016_j_nanoen_2024_110443 crossref_primary_10_1364_OE_396171 crossref_primary_10_1126_science_abb0971 crossref_primary_10_1002_adma_202004754 crossref_primary_10_1002_aesr_202100168 crossref_primary_10_1016_j_enconman_2022_116342 crossref_primary_10_1021_acs_nanolett_0c04810 crossref_primary_10_1021_acsphotonics_2c00500 crossref_primary_10_1002_advs_202305664 crossref_primary_10_1016_j_cej_2022_139739 crossref_primary_10_1021_acsanm_2c00088 crossref_primary_10_1002_adom_202202129 crossref_primary_10_1016_j_isci_2024_110948 crossref_primary_10_1007_s11708_020_0694_z crossref_primary_10_1016_j_solmat_2024_113040 crossref_primary_10_3934_matersci_2019_6_1049 crossref_primary_10_1021_acsami_4c06912 crossref_primary_10_1021_acsphotonics_0c00760 crossref_primary_10_1364_OE_27_021787 crossref_primary_10_1016_j_mtener_2021_100888 crossref_primary_10_1016_j_cap_2023_02_010 crossref_primary_10_1016_j_heliyon_2024_e23986 crossref_primary_10_1038_s41566_021_00921_9 crossref_primary_10_1016_j_mtphys_2025_101694 crossref_primary_10_1016_j_mtsust_2023_100448 crossref_primary_10_1016_j_enbuild_2023_113031 crossref_primary_10_1186_s43074_023_00104_5 crossref_primary_10_1021_acs_nanolett_3c02733 crossref_primary_10_1103_PhysRevApplied_14_064043 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122835 crossref_primary_10_1016_j_mtener_2021_100776 crossref_primary_10_1515_nanoph_2023_0699 crossref_primary_10_1016_j_jqsrt_2024_108937 crossref_primary_10_1016_j_solener_2020_08_077 crossref_primary_10_1016_j_nanoen_2024_110023 crossref_primary_10_1126_science_abg0291 crossref_primary_10_1364_OE_27_031587 crossref_primary_10_3390_su16062346 crossref_primary_10_1364_OE_509800 crossref_primary_10_1021_acs_nanolett_3c03711 crossref_primary_10_1016_j_nanoen_2020_105517 crossref_primary_10_1016_j_renene_2024_121658 crossref_primary_10_1016_j_solmat_2022_111883 crossref_primary_10_1016_j_solmat_2024_112693 crossref_primary_10_1364_OE_416475 crossref_primary_10_1515_nanoph_2023_0695 crossref_primary_10_1063_5_0029279 crossref_primary_10_1016_j_isci_2023_107388 crossref_primary_10_1016_j_isci_2023_106857 crossref_primary_10_1016_j_physrep_2024_05_004 crossref_primary_10_1088_1361_6463_ac9fde crossref_primary_10_1016_j_enbuild_2023_113131 crossref_primary_10_1021_acsami_1c23401 crossref_primary_10_1364_AO_421977 crossref_primary_10_1039_D1TC00553G crossref_primary_10_1021_acsaem_2c00421 crossref_primary_10_1002_adpr_202200253 crossref_primary_10_1016_j_enbenv_2022_10_005 crossref_primary_10_1073_pnas_2207353119 crossref_primary_10_1039_D2MA01000C crossref_primary_10_1016_j_jqsrt_2023_108659 crossref_primary_10_1063_1_5091048 crossref_primary_10_1002_chem_202400826 crossref_primary_10_1109_LPT_2023_3345951 crossref_primary_10_1016_j_ensm_2023_103164 crossref_primary_10_1021_acsanm_3c04872 crossref_primary_10_1016_j_enconman_2021_114621 crossref_primary_10_1016_j_rser_2021_110910 crossref_primary_10_1002_lpor_202301106 crossref_primary_10_1016_j_apenergy_2024_124339 crossref_primary_10_1002_smtd_202301258 crossref_primary_10_1016_j_renene_2020_07_109 crossref_primary_10_1016_j_nanoen_2021_106440 crossref_primary_10_1039_D4TA01158A crossref_primary_10_1039_D2TC00318J |
Cites_doi | 10.1364/OPTICA.4.001390 10.1364/AO.53.002431 10.1021/acsphotonics.6b00991 10.1016/0165-1633(86)90047-X 10.1016/S0040-6090(01)01603-0 10.1021/acsphotonics.7b00089 10.1021/nl4004283 10.1021/acsphotonics.5b00140 10.1364/OE.26.015995 10.1364/OL.43.001295 10.1103/PhysRevLett.3.34 10.1021/nl903271d 10.1002/adom.201500119 10.1103/PhysRev.172.788 10.1364/OPTICA.1.000032 10.1038/ncomms13729 10.1364/OE.23.0A1120 10.1002/lpor.201700091 10.1126/science.aai7899 10.1364/OE.23.0A1363 10.1126/science.aab3564 10.1039/C7NR09672K 10.1016/0038-092X(75)90062-6 10.1016/j.optmat.2016.02.032 10.1038/lsa.2016.194 10.1038/nmat4043 10.1002/advs.201500119 10.1002/adom.201300163 10.1038/nature13883 10.1063/1.329270 10.1117/12.665077 10.1364/OPTICA.4.000430 10.1126/science.aaf5471 10.1063/1.4979700 10.1016/0030-4018(95)00761-X 10.1038/ncomms8032 10.1093/nsr/nwy012 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1364/OE.26.00A777 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 30184837 10_1364_OE_26_00A777 |
Genre | Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM 7X8 |
ID | FETCH-LOGICAL-c395t-15c0b89ccd10e3d5be3548eb7dd1e9f3393a85438ecac0ac8c16647e1bf6281d3 |
ISSN | 1094-4087 |
IngestDate | Fri Jul 11 07:58:09 EDT 2025 Thu Apr 03 06:59:12 EDT 2025 Thu Apr 24 22:56:57 EDT 2025 Tue Jul 01 04:04:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c395t-15c0b89ccd10e3d5be3548eb7dd1e9f3393a85438ecac0ac8c16647e1bf6281d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2227-9431 0000-0002-0453-5411 |
OpenAccessLink | https://www.osapublishing.org/viewmedia.cfm?URI=oe-26-18-A777 |
PMID | 30184837 |
PQID | 2100340219 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2100340219 pubmed_primary_30184837 crossref_citationtrail_10_1364_OE_26_00A777 crossref_primary_10_1364_OE_26_00A777 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-03 |
PublicationDateYYYYMMDD | 2018-09-03 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2018 |
References | Gentle (oe-26-18-A777-R7) 2015; 2 Rephaeli (oe-26-18-A777-R4) 2013; 13 Jorgenson (oe-26-18-A777-R34) 1986; 14 Jung (oe-26-18-A777-R38) 2014; 53 Morin (oe-26-18-A777-R33) 1959; 3 Du (oe-26-18-A777-R28) 2017; 6 Raman (oe-26-18-A777-R5) 2014; 515 Burkhardt (oe-26-18-A777-R35) 2002; 402 Qu (oe-26-18-A777-R27) 2017; 11 Granqvist (oe-26-18-A777-R2) 1981; 52 Kats (oe-26-18-A777-R24) 2014; 3 Li (oe-26-18-A777-R19) 2018; 26 Liu (oe-26-18-A777-R22) 2013; 1 Wu (oe-26-18-A777-R25) 2017; 4 Shi (oe-26-18-A777-R11) 2015; 349 Li (oe-26-18-A777-R18) 2017; 4 Gentle (oe-26-18-A777-R3) 2010; 10 Tong (oe-26-18-A777-R13) 2015; 2 Inoue (oe-26-18-A777-R20) 2014; 13 Dietrich (oe-26-18-A777-R36) 2017; 110 Zhai (oe-26-18-A777-R12) 2017; 355 Wu (oe-26-18-A777-R17) 2015; 23 Brar (oe-26-18-A777-R21) 2015; 6 Zhu (oe-26-18-A777-R15) 2014; 1 Catalanotti (oe-26-18-A777-R1) 1975; 17 Verleur (oe-26-18-A777-R31) 1968; 172 Fan (oe-26-18-A777-R6) 2018; 5 Chen (oe-26-18-A777-R9) 2016; 7 Hsu (oe-26-18-A777-R14) 2016; 353 Cai (oe-26-18-A777-R30) 2018; 43 Large (oe-26-18-A777-R39) 1996; 128 Safi (oe-26-18-A777-R16) 2015; 23 Du (oe-26-18-A777-R29) 2018; 10 Hossain (oe-26-18-A777-R8) 2015; 3 Liu (oe-26-18-A777-R23) 2017; 4 Berk (oe-26-18-A777-R40) 2006; 6233 Kou (oe-26-18-A777-R10) 2017; 4 Kana Kana (oe-26-18-A777-R32) 2016; 54 |
References_xml | – volume: 4 start-page: 1390 year: 2017 ident: oe-26-18-A777-R25 publication-title: Optica doi: 10.1364/OPTICA.4.001390 – volume: 53 start-page: 2431 year: 2014 ident: oe-26-18-A777-R38 publication-title: Appl. Opt. doi: 10.1364/AO.53.002431 – volume: 4 start-page: 626 year: 2017 ident: oe-26-18-A777-R10 publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00991 – volume: 14 start-page: 205 year: 1986 ident: oe-26-18-A777-R34 publication-title: Sol. Energy Mater. doi: 10.1016/0165-1633(86)90047-X – volume: 402 start-page: 226 year: 2002 ident: oe-26-18-A777-R35 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(01)01603-0 – volume: 4 start-page: 774 year: 2017 ident: oe-26-18-A777-R18 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00089 – volume: 13 start-page: 1457 year: 2013 ident: oe-26-18-A777-R4 publication-title: Nano Lett. doi: 10.1021/nl4004283 – volume: 2 start-page: 769 year: 2015 ident: oe-26-18-A777-R13 publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00140 – volume: 26 start-page: 15995 year: 2018 ident: oe-26-18-A777-R19 publication-title: Opt. Express doi: 10.1364/OE.26.015995 – volume: 43 start-page: 1295 year: 2018 ident: oe-26-18-A777-R30 publication-title: Opt. Lett. doi: 10.1364/OL.43.001295 – volume: 3 start-page: 34 year: 1959 ident: oe-26-18-A777-R33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.3.34 – volume: 10 start-page: 373 year: 2010 ident: oe-26-18-A777-R3 publication-title: Nano Lett. doi: 10.1021/nl903271d – volume: 3 start-page: 1047 year: 2015 ident: oe-26-18-A777-R8 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500119 – volume: 172 start-page: 788 year: 1968 ident: oe-26-18-A777-R31 publication-title: Phys. Rev. doi: 10.1103/PhysRev.172.788 – volume: 1 start-page: 32 year: 2014 ident: oe-26-18-A777-R15 publication-title: Optica doi: 10.1364/OPTICA.1.000032 – volume: 7 start-page: 13729 year: 2016 ident: oe-26-18-A777-R9 publication-title: Nat. Commun. doi: 10.1038/ncomms13729 – volume: 23 start-page: A1120 year: 2015 ident: oe-26-18-A777-R16 publication-title: Opt. Express doi: 10.1364/OE.23.0A1120 – volume: 11 start-page: 1700091 year: 2017 ident: oe-26-18-A777-R27 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201700091 – volume: 355 start-page: 1062 year: 2017 ident: oe-26-18-A777-R12 publication-title: Science (80-.). doi: 10.1126/science.aai7899 – volume: 23 start-page: A1363 year: 2015 ident: oe-26-18-A777-R17 publication-title: Opt. Express doi: 10.1364/OE.23.0A1363 – volume: 3 start-page: 041004 year: 2014 ident: oe-26-18-A777-R24 publication-title: Phys. Rev. X – volume: 349 start-page: 298 year: 2015 ident: oe-26-18-A777-R11 publication-title: Science (80-.). doi: 10.1126/science.aab3564 – volume: 10 start-page: 4415 year: 2018 ident: oe-26-18-A777-R29 publication-title: Nanoscale doi: 10.1039/C7NR09672K – volume: 17 start-page: 83 year: 1975 ident: oe-26-18-A777-R1 publication-title: Sol. Energy doi: 10.1016/0038-092X(75)90062-6 – volume: 54 start-page: 165 year: 2016 ident: oe-26-18-A777-R32 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2016.02.032 – volume: 6 start-page: e16194 year: 2017 ident: oe-26-18-A777-R28 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2016.194 – volume: 13 start-page: 928 year: 2014 ident: oe-26-18-A777-R20 publication-title: Nat. Mater. doi: 10.1038/nmat4043 – volume: 2 start-page: 1500119 year: 2015 ident: oe-26-18-A777-R7 publication-title: Adv Sci (Weinh) doi: 10.1002/advs.201500119 – volume: 1 start-page: 559 year: 2013 ident: oe-26-18-A777-R22 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300163 – volume: 515 start-page: 540 year: 2014 ident: oe-26-18-A777-R5 publication-title: Nature doi: 10.1038/nature13883 – volume: 52 start-page: 4205 year: 1981 ident: oe-26-18-A777-R2 publication-title: J. Appl. Phys. doi: 10.1063/1.329270 – volume: 6233 start-page: 62331F year: 2006 ident: oe-26-18-A777-R40 publication-title: Proc. SPIE doi: 10.1117/12.665077 – volume: 4 start-page: 430 year: 2017 ident: oe-26-18-A777-R23 publication-title: Optica doi: 10.1364/OPTICA.4.000430 – volume: 353 start-page: 1019 year: 2016 ident: oe-26-18-A777-R14 publication-title: Science (80-.). doi: 10.1126/science.aaf5471 – volume: 110 start-page: 141907 year: 2017 ident: oe-26-18-A777-R36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4979700 – volume: 128 start-page: 307 year: 1996 ident: oe-26-18-A777-R39 publication-title: Opt. Commun. doi: 10.1016/0030-4018(95)00761-X – volume: 6 start-page: 7032 year: 2015 ident: oe-26-18-A777-R21 publication-title: Nat. Commun. doi: 10.1038/ncomms8032 – volume: 5 start-page: 10 year: 2018 ident: oe-26-18-A777-R6 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwy012 |
SSID | ssj0014797 |
Score | 2.652021 |
Snippet | With the ability of harvesting the coldness of universe as a thermodynamic resource, radiative cooling technology is important for a broad range of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | A777 |
Title | Self-adaptive radiative cooling based on phase change materials |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30184837 https://www.proquest.com/docview/2100340219 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB-0IngRv92qZQQ9LalJJplMjkWyFO12D-7i3sJ8hRZKErq7IB76t_veZJKm2EL1EsIwmQzvN7yPeV-EfKpyw23ITcCsBgMFZF4gQTAHKtOpNKJSqSuxMT_lx6vk2zpd973KfXbJVh3q37fmlfwPqjAGuGKW7D8gOywKA_AO-MITEIbnvTD-YS-qQBrZuvifSywz4N5007gscxRRBt0B7ZnEsHSXSTAFHbXb3FgxXbSuXrP91Q4xGXj16hpzT-dygz2XrkMBOl71XZ5X1ks-jOlxgQE_7TBv5i9X4bdnu_Px_ULkgiFCNmKJYACClenFor1lzPPRLvO9Py9ixBWPsq5Vy1_smvEEaLwoDmN0CfXTblbFPl2Us9XJSbks1suH5FEM5gDys_lVMXiLkqxrotPvyic4wOpfxmvfVD3usCecXrF8Rp56g4Aedeg-Jw9s_YI8doG5evMSjKkxxnTAmHqMqcOYNjV1GNMOYzpg_IqsZsXy63Hgm14EmuXpNohSHSqRa22i0DKTKsvAqLQqMyayecVYzqRIEyasljqUWuiI8ySzkap4DMYHe0326qa2bwmNFEgPnqch1xl2mJa6ynQilOBGouo2IdOeHqX2FeGxMclF6dycPCkXRRlj2CNSb0I-D7PbrhLKHfM-9qQtgVWh_0nWttltyjjCakigVOYT8qaj-bASyBmBzQ327_H1O_Lk-qC-J3vby539AKrhVh24K5UDdzr-AKnSYuE |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-adaptive+radiative+cooling+based+on+phase+change+materials&rft.jtitle=Optics+express&rft.au=Ono%2C+Masashi&rft.au=Chen%2C+Kaifeng&rft.au=Li%2C+Wei&rft.au=Fan%2C+Shanhui&rft.date=2018-09-03&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=26&rft.issue=18&rft.spage=A777&rft_id=info:doi/10.1364%2FOE.26.00A777&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |