The action of Echis carinatus and Naja naja venoms on human neutrophils; an emphasis on NETosis
Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 6; p. 129561 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2020.129561 |
Cover
Loading…
Abstract | Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property.
Formation of NETs, cell viability, ROS, and Ca2+ levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors.
E. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation.
For the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms.
Understanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology.
•E. carinatus venom induces NETosis by activating NOX and PAD4 via PKC/ERK/JNK signaling axis in a ROS dependent manner.•N. naja venom does it by activating PAD4, but independent of ROS and PKC/ERK/JNK signaling axis.•This study is first to demonstrate the distinct types of NETosis induced by E. carinatus and N. naja venoms.•This study is likely to provide new insights for the better management of snakebite pathophysiology.•Differential action of snake venoms may also offer scope for a better understanding of the complex mechanism of NETosis. |
---|---|
AbstractList | Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property.
Formation of NETs, cell viability, ROS, and Ca
levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors.
E. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation.
For the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms.
Understanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology. Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property.BACKGROUNDNeutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property.Formation of NETs, cell viability, ROS, and Ca2+ levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors.METHODSFormation of NETs, cell viability, ROS, and Ca2+ levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors.E. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation.RESULTSE. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation.For the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms.CONCLUSIONFor the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms.Understanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology.SIGNIFICANCEUnderstanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology. Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property.Formation of NETs, cell viability, ROS, and Ca²⁺ levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors.E. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation.For the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms.Understanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology. Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property. Formation of NETs, cell viability, ROS, and Ca2+ levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors. E. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation. For the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms. Understanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology. •E. carinatus venom induces NETosis by activating NOX and PAD4 via PKC/ERK/JNK signaling axis in a ROS dependent manner.•N. naja venom does it by activating PAD4, but independent of ROS and PKC/ERK/JNK signaling axis.•This study is first to demonstrate the distinct types of NETosis induced by E. carinatus and N. naja venoms.•This study is likely to provide new insights for the better management of snakebite pathophysiology.•Differential action of snake venoms may also offer scope for a better understanding of the complex mechanism of NETosis. |
ArticleNumber | 129561 |
Author | Girish, Kesturu S. Swethakumar, Basavarajaiah NaveenKumar, Somanathapura K. Kemparaju, Kempaiah |
Author_xml | – sequence: 1 givenname: Basavarajaiah surname: Swethakumar fullname: Swethakumar, Basavarajaiah organization: DOS in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India – sequence: 2 givenname: Somanathapura K. surname: NaveenKumar fullname: NaveenKumar, Somanathapura K. organization: Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India – sequence: 3 givenname: Kesturu S. surname: Girish fullname: Girish, Kesturu S. email: ksgbaboo@gmail.com organization: Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572 103, India – sequence: 4 givenname: Kempaiah surname: Kemparaju fullname: Kemparaju, Kempaiah email: kemparajuom@gmail.com organization: DOS in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32068016$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQha2qVbst_AOEfOSSxXZiOwEJCVULVKrKZTlbE2dCvErsxU4q8e_xkvbCgc7BtqzvvZHeuybnPngk5A1nW864en_Yti38RL8VTOQv0UjFz8iG11oUNWPqnGxYyaqi4kpekeuUDiyPbOQluSoFU3U22RCzH5CCnV3wNPR0ZweXqIXoPMxLouA7-gAHoP50PKIPU6IZHZYJPPW4zDEcBzemjxmlOB0HSO4v8bDbh_x8RS56GBO-frpvyI8vu_3tt-L--9e728_3hS0bORe8kp1mndKqaTWUvG5EpyS3XcOgA1n2XNfCli1iW4LuNaurPMo2YKGCui1vyLvV9xjDrwXTbCaXLI4jeAxLMqLSWgnBpXoZLaWu8gbGM_r2CV3aCTtzjG6C-Ns855eBDytgY0gpYm-sm-GU5hzBjYYzcyrLHMxaljmVZdaysrj6R_zs_4Ls0yrDnOejw2iSdegtdi6inU0X3P8N_gBbtK3- |
CitedBy_id | crossref_primary_10_1371_journal_pntd_0009247 crossref_primary_10_2147_JIR_S460333 crossref_primary_10_1111_acer_70019 crossref_primary_10_1016_j_fct_2020_111926 crossref_primary_10_1016_j_toxicon_2020_09_006 crossref_primary_10_1111_pim_13001 crossref_primary_10_1371_journal_pntd_0009150 crossref_primary_10_1111_1346_8138_16181 crossref_primary_10_1016_j_jprot_2021_104256 crossref_primary_10_3390_toxins14110802 crossref_primary_10_1590_1678_9199_jvatitd_2020_0179 crossref_primary_10_3390_ijms24119516 |
Cites_doi | 10.3389/fimmu.2016.00484 10.2174/187152811797200605 10.1038/nm.3887 10.1038/nm.1855 10.1023/A:1020651607164 10.1016/j.celrep.2014.06.044 10.1126/science.aaa8064 10.1038/ncomms11361 10.3390/biom5020702 10.1083/jcb.201203170 10.3389/fimmu.2017.00081 10.1038/nchembio.1735 10.1038/cdd.2011.1 10.4049/jimmunol.1000675 10.1073/pnas.1414055112 10.1111/bjh.14591 10.4049/jimmunol.1201719 10.1038/cdd.2009.96 10.1038/srep18302 10.1126/science.1092385 10.1080/14789450.2019.1559735 10.1371/journal.pone.0097088 10.3389/fimmu.2016.00302 10.1083/jcb.201006052 10.1097/MOH.0b013e32835a0025 10.1016/S0140-6736(09)61159-4 10.1371/journal.ppat.1004593 10.1038/s41598-017-17227-y 10.3389/fimmu.2017.00211 10.1038/nchembio.496 10.1002/jcp.1041050215 10.1182/blood-2013-04-457671 10.7554/eLife.24437 10.4049/jimmunol.1202671 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier B.V. |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129561 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 32068016 10_1016_j_bbagen_2020_129561 S0304416520300519 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c395t-145d70d6769b7a31892d651cd90ada53f1782c3beeb3a7f70844446c9aca4a8b3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Tue Aug 05 11:23:38 EDT 2025 Sun Aug 24 04:01:36 EDT 2025 Wed Feb 19 02:31:00 EST 2025 Tue Jul 01 00:22:13 EDT 2025 Thu Apr 24 23:09:07 EDT 2025 Fri Feb 23 02:48:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Reactive oxygen species Suicidal NETosis Echis carinatus Naja naja Vital NETosis Calcium ions |
Language | English |
License | Copyright © 2020. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c395t-145d70d6769b7a31892d651cd90ada53f1782c3beeb3a7f70844446c9aca4a8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32068016 |
PQID | 2357470801 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2477622156 proquest_miscellaneous_2357470801 pubmed_primary_32068016 crossref_citationtrail_10_1016_j_bbagen_2020_129561 crossref_primary_10_1016_j_bbagen_2020_129561 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129561 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 2020-Jun 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tsan (bb0125) 1980; 105 Williams, Gutiérrez, Harrison, Warrell, White, Winkel, Gopalakrishnakone (bb0005) 2010; 375 Kaplan, Radic (bb0085) 2012; 189 Metzler, Goosmann, Lubojemska, Zychlinsky, Papayannopoulos (bb0140) 2014; 8 Hakkim, Fuchs, Martinez, Hess, Prinz, Zychlinsky, Waldmann (bb0150) 2011; 7 Brinkmann, Reichard, Goosmann, Fauler, Uhlemann, Weiss, Weinrauch, Zychlinsky (bb0130) 2004; 303 Slagboom, Kool, Harrison, Casewell (bb0015) 2017; 177 Halverson, Wilton, Poon, Petri, Lewenza (bb0055) 2015; 11 Pietronigro, Della Bianca, Zenaro, Constantin (bb0110) 2017; 8 Delgado-Rizo, Martínez-Guzmán, Iñiguez-Gutierrez, García-Orozco, Alvarado-Navarro, Fafutis-Morris (bb0030) 2017; 8 León, Sánchez, Hernández, Villalta, Herrera, Segura, Estrada, Gutiérrez (bb0020) 2011; 10 Byrd, O’Brien, Johnson, Lavigne, Reichner (bb0170) 2013; 190 Remijsen, Kuijpers, Wirawan, Lippens, Vandenabeele, Vanden Berghe (bb0090) 2011; 18 Khan, Farahvash, Douda, Licht, Grasemann, Sweezey, Palaniyar (bb0155) 2017; 7 Katkar, Sundaram, NaveenKumar, Swethakumar, Sharma, Paul, Vishalakshi, Devaraja, Girish, Kemparaju (bb0025) 2016; 7 Gupta, Giaglis, Hasler, Hahn (bb0070) 2014; 9 Chanda, Kalita, Patra, Senevirathne, Mukherjee (bb0075) 2019; 16 Yousefi, Mihalache, Kozlowski, Schmid, Simon (bb0040) 2009; 16 Pilsczek, Salina, Poon, Fahey, Yipp, Sibley, Robbins, Green, Surette, Sugai, Bowden, Hussain, Zhang, Kubes (bb0045) 2010; 185 Patra, Kalita, Chanda, Mukherjee (bb0080) 2017; 7 Saffarzadeh, Preissner (bb0100) 2013; 20 Girish, Jagadeesha, Rajeev, Kemparaju (bb0010) 2002; 240 Kenny, Herzig, Krüger, Muth, Mondal, Thompson, Brinkmann, von Bernuth, Zychlinsky (bb0050) 2017; 6 Brinkmann, Zychlinsky (bb0095) 2012; 198 Rochael, Guimarães-Costa, Nascimento, DeSouza-Vieira, Oliveira, Garcia e Souza, Oliveira, Saraiva (bb0165) 2015; 5 Yang, Biermann, Brauner, Liu, Zhao, Herrmann (bb0115) 2016; 7 Stoiber, Obermayer, Steinbacher, Krautgartner (bb0065) 2015; 5 Papayannopoulos, Metzler, Hakkim, Zychlinsky (bb0135) 2010; 191 Wong, Demers, Martinod, Gallant, Wang, Goldfine, Kahn, Wagner (bb0105) 2015; 21 Pieterse, Rother, Yanginlar, Hilbrands, van der Vlag (bb0175) 2016; 7 Araźna, Pruchniak, Demkow (bb0060) 2015; 836 Douda, Khan, Grasemann, Palaniyar (bb0160) 2015; 112 Yipp, Kubes (bb0035) 2013; 122 Lewis, Liddle, Coote, Atkinson, Barker, Bax, Bicker, Bingham, Campbell, Chen, Chung, Craggs, Davis, Eberhard, Joberty, Lind, Locke, Maller, Martinod, Patten, Polyakova, Rise, Rüdiger, Sheppard, Slade, Thomas, Thorpe, Yao, Drewes, Wagner, Thompson, Prinjha, Wilson (bb0145) 2015; 11 Yousefi, Gold, Andina, Lee, Kelly, Kozlowski, Schmid, Straumann, Reichenbach, Gleich, Simon (bb0180) 2008; 14 Warnatsch, Ioannou, Wang, Papayannopoulos (bb0120) 2015; 349 Rochael (10.1016/j.bbagen.2020.129561_bb0165) 2015; 5 Lewis (10.1016/j.bbagen.2020.129561_bb0145) 2015; 11 Yipp (10.1016/j.bbagen.2020.129561_bb0035) 2013; 122 Metzler (10.1016/j.bbagen.2020.129561_bb0140) 2014; 8 Wong (10.1016/j.bbagen.2020.129561_bb0105) 2015; 21 Chanda (10.1016/j.bbagen.2020.129561_bb0075) 2019; 16 Patra (10.1016/j.bbagen.2020.129561_bb0080) 2017; 7 Hakkim (10.1016/j.bbagen.2020.129561_bb0150) 2011; 7 Khan (10.1016/j.bbagen.2020.129561_bb0155) 2017; 7 Pieterse (10.1016/j.bbagen.2020.129561_bb0175) 2016; 7 Byrd (10.1016/j.bbagen.2020.129561_bb0170) 2013; 190 Pietronigro (10.1016/j.bbagen.2020.129561_bb0110) 2017; 8 Delgado-Rizo (10.1016/j.bbagen.2020.129561_bb0030) 2017; 8 Kenny (10.1016/j.bbagen.2020.129561_bb0050) 2017; 6 Yousefi (10.1016/j.bbagen.2020.129561_bb0180) 2008; 14 Douda (10.1016/j.bbagen.2020.129561_bb0160) 2015; 112 Brinkmann (10.1016/j.bbagen.2020.129561_bb0130) 2004; 303 Yousefi (10.1016/j.bbagen.2020.129561_bb0040) 2009; 16 Saffarzadeh (10.1016/j.bbagen.2020.129561_bb0100) 2013; 20 Katkar (10.1016/j.bbagen.2020.129561_bb0025) 2016; 7 Brinkmann (10.1016/j.bbagen.2020.129561_bb0095) 2012; 198 Araźna (10.1016/j.bbagen.2020.129561_bb0060) 2015; 836 Remijsen (10.1016/j.bbagen.2020.129561_bb0090) 2011; 18 Kaplan (10.1016/j.bbagen.2020.129561_bb0085) 2012; 189 Halverson (10.1016/j.bbagen.2020.129561_bb0055) 2015; 11 Papayannopoulos (10.1016/j.bbagen.2020.129561_bb0135) 2010; 191 Tsan (10.1016/j.bbagen.2020.129561_bb0125) 1980; 105 Yang (10.1016/j.bbagen.2020.129561_bb0115) 2016; 7 Stoiber (10.1016/j.bbagen.2020.129561_bb0065) 2015; 5 Williams (10.1016/j.bbagen.2020.129561_bb0005) 2010; 375 Warnatsch (10.1016/j.bbagen.2020.129561_bb0120) 2015; 349 Girish (10.1016/j.bbagen.2020.129561_bb0010) 2002; 240 Gupta (10.1016/j.bbagen.2020.129561_bb0070) 2014; 9 León (10.1016/j.bbagen.2020.129561_bb0020) 2011; 10 Slagboom (10.1016/j.bbagen.2020.129561_bb0015) 2017; 177 Pilsczek (10.1016/j.bbagen.2020.129561_bb0045) 2010; 185 |
References_xml | – volume: 240 start-page: 105 year: 2002 end-page: 110 ident: bb0010 article-title: Snake venom hyaluronidase: an evidence for isoforms and extracellular matrix degradation publication-title: Mol. Cell. Biochem. – volume: 7 year: 2017 ident: bb0155 article-title: JNK activation turns on LPS- and gram-negative bacteria-induced NADPH oxidase-dependent suicidal NETosis publication-title: Sci. Rep. – volume: 14 start-page: 949 year: 2008 end-page: 953 ident: bb0180 article-title: Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense publication-title: Nat. Med. – volume: 191 start-page: 677 year: 2010 end-page: 691 ident: bb0135 article-title: Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps publication-title: J. Cell Biol. – volume: 112 start-page: 2817 year: 2015 end-page: 2822 ident: bb0160 article-title: SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 year: 2015 ident: bb0055 article-title: DNA is an antimicrobial component of neutrophil extracellular traps publication-title: PLoS Pathog. – volume: 7 start-page: 17119 year: 2017 ident: bb0080 article-title: Proteomics and antivenomics of Echis carinatus carinatus venom: correlation with pharmacological properties and pathophysiology of envenomation publication-title: Sci. Rep. – volume: 105 start-page: 327 year: 1980 end-page: 334 ident: bb0125 article-title: Phorbol myristate acetate induced neutrophil autotoxicity publication-title: J. Cell. Physiol. – volume: 9 year: 2014 ident: bb0070 article-title: Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A publication-title: PLoS One – volume: 8 year: 2017 ident: bb0110 article-title: NETosis in Alzheimer’s Disease publication-title: Front. Immunol. – volume: 349 start-page: 316 year: 2015 end-page: 320 ident: bb0120 article-title: Neutrophil extracellular traps license macrophages and Th17 cells for cytokine production in atherosclerosis publication-title: Science – volume: 8 start-page: 81 year: 2017 ident: bb0030 article-title: Neutrophil extracellular traps and its implications in inflammation: an overview publication-title: Front. Immunol. – volume: 6 year: 2017 ident: bb0050 article-title: Diverse stimuli engage different neutrophil extracellular trap pathways publication-title: Elife – volume: 21 start-page: 815 year: 2015 end-page: 819 ident: bb0105 article-title: Diabetes primes neutrophils to undergo NETosis which severely impairs wound healing publication-title: Nat. Med. – volume: 7 start-page: 484 year: 2016 ident: bb0175 article-title: Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps publication-title: Front. Immunol. – volume: 177 start-page: 947 year: 2017 end-page: 959 ident: bb0015 article-title: Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise publication-title: Br. J. Haematol. – volume: 11 start-page: 189 year: 2015 end-page: 191 ident: bb0145 article-title: Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation publication-title: Nat. Chem. Biol. – volume: 20 start-page: 3 year: 2013 end-page: 9 ident: bb0100 article-title: Fighting against the dark side of neutrophil extracellular traps in disease: manoeuvres for host protection publication-title: Curr. Opin. Hematol. – volume: 5 start-page: 18302 year: 2015 ident: bb0165 article-title: Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites publication-title: Sci. Rep. – volume: 16 start-page: 1438 year: 2009 end-page: 1444 ident: bb0040 article-title: Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps publication-title: Cell Death Differ. – volume: 18 start-page: 581 year: 2011 end-page: 588 ident: bb0090 article-title: Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality publication-title: Cell Death Differ. – volume: 375 start-page: 89 year: 2010 end-page: 91 ident: bb0005 article-title: Global snake bite initiative working group, international society on toxinology, the global Snake bite initiative: an antidote for snake bite publication-title: Lancet – volume: 185 start-page: 7413 year: 2010 end-page: 7425 ident: bb0045 article-title: A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus publication-title: J. Immunol. – volume: 5 start-page: 702 year: 2015 end-page: 723 ident: bb0065 article-title: The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans publication-title: Biomolecules. – volume: 7 start-page: 75 year: 2011 end-page: 77 ident: bb0150 article-title: Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation publication-title: Nat. Chem. Biol. – volume: 198 start-page: 773 year: 2012 end-page: 783 ident: bb0095 article-title: Neutrophil extracellular traps: is immunity the second function of chromatin? publication-title: J. Cell Biol. – volume: 8 start-page: 883 year: 2014 end-page: 896 ident: bb0140 article-title: A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis publication-title: Cell Rep. – volume: 190 start-page: 4136 year: 2013 end-page: 4148 ident: bb0170 article-title: An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans publication-title: J. Immunol. – volume: 303 start-page: 1532 year: 2004 end-page: 1535 ident: bb0130 article-title: Neutrophil extracellular traps kill bacteria publication-title: Science. – volume: 836 start-page: 1 year: 2015 end-page: 7 ident: bb0060 article-title: Reactive oxygen species, granulocytes, and NETosis publication-title: Adv. Exp. Med. Biol. – volume: 10 start-page: 381 year: 2011 end-page: 398 ident: bb0020 article-title: Immune response towards snake venoms publication-title: Inflamm. Allergy Drug Targets – volume: 189 start-page: 2689 year: 2012 end-page: 2695 ident: bb0085 article-title: Neutrophil extracellular traps: double-edged swords of innate immunity publication-title: J. Immunol. – volume: 16 start-page: 171 year: 2019 end-page: 184 ident: bb0075 article-title: Proteomic analysis and antivenomics study of Western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region publication-title: Exp. Rev. Proteomics. – volume: 7 year: 2016 ident: bb0115 article-title: New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation publication-title: Front. Immunol. – volume: 7 start-page: 11361 year: 2016 ident: bb0025 article-title: NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction publication-title: Nat. Commun. – volume: 122 start-page: 2784 year: 2013 end-page: 2794 ident: bb0035 article-title: NETosis: how vital is it? publication-title: Blood – volume: 7 start-page: 484 year: 2016 ident: 10.1016/j.bbagen.2020.129561_bb0175 article-title: Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00484 – volume: 10 start-page: 381 year: 2011 ident: 10.1016/j.bbagen.2020.129561_bb0020 article-title: Immune response towards snake venoms publication-title: Inflamm. Allergy Drug Targets doi: 10.2174/187152811797200605 – volume: 21 start-page: 815 year: 2015 ident: 10.1016/j.bbagen.2020.129561_bb0105 article-title: Diabetes primes neutrophils to undergo NETosis which severely impairs wound healing publication-title: Nat. Med. doi: 10.1038/nm.3887 – volume: 14 start-page: 949 year: 2008 ident: 10.1016/j.bbagen.2020.129561_bb0180 article-title: Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense publication-title: Nat. Med. doi: 10.1038/nm.1855 – volume: 240 start-page: 105 year: 2002 ident: 10.1016/j.bbagen.2020.129561_bb0010 article-title: Snake venom hyaluronidase: an evidence for isoforms and extracellular matrix degradation publication-title: Mol. Cell. Biochem. doi: 10.1023/A:1020651607164 – volume: 8 start-page: 883 year: 2014 ident: 10.1016/j.bbagen.2020.129561_bb0140 article-title: A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.06.044 – volume: 349 start-page: 316 year: 2015 ident: 10.1016/j.bbagen.2020.129561_bb0120 article-title: Neutrophil extracellular traps license macrophages and Th17 cells for cytokine production in atherosclerosis publication-title: Science doi: 10.1126/science.aaa8064 – volume: 7 start-page: 11361 year: 2016 ident: 10.1016/j.bbagen.2020.129561_bb0025 article-title: NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction publication-title: Nat. Commun. doi: 10.1038/ncomms11361 – volume: 5 start-page: 702 year: 2015 ident: 10.1016/j.bbagen.2020.129561_bb0065 article-title: The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans publication-title: Biomolecules. doi: 10.3390/biom5020702 – volume: 198 start-page: 773 year: 2012 ident: 10.1016/j.bbagen.2020.129561_bb0095 article-title: Neutrophil extracellular traps: is immunity the second function of chromatin? publication-title: J. Cell Biol. doi: 10.1083/jcb.201203170 – volume: 8 start-page: 81 year: 2017 ident: 10.1016/j.bbagen.2020.129561_bb0030 article-title: Neutrophil extracellular traps and its implications in inflammation: an overview publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00081 – volume: 11 start-page: 189 year: 2015 ident: 10.1016/j.bbagen.2020.129561_bb0145 article-title: Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1735 – volume: 18 start-page: 581 year: 2011 ident: 10.1016/j.bbagen.2020.129561_bb0090 article-title: Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality publication-title: Cell Death Differ. doi: 10.1038/cdd.2011.1 – volume: 185 start-page: 7413 year: 2010 ident: 10.1016/j.bbagen.2020.129561_bb0045 article-title: A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus publication-title: J. Immunol. doi: 10.4049/jimmunol.1000675 – volume: 112 start-page: 2817 year: 2015 ident: 10.1016/j.bbagen.2020.129561_bb0160 article-title: SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1414055112 – volume: 177 start-page: 947 year: 2017 ident: 10.1016/j.bbagen.2020.129561_bb0015 article-title: Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise publication-title: Br. J. Haematol. doi: 10.1111/bjh.14591 – volume: 189 start-page: 2689 year: 2012 ident: 10.1016/j.bbagen.2020.129561_bb0085 article-title: Neutrophil extracellular traps: double-edged swords of innate immunity publication-title: J. Immunol. doi: 10.4049/jimmunol.1201719 – volume: 16 start-page: 1438 year: 2009 ident: 10.1016/j.bbagen.2020.129561_bb0040 article-title: Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps publication-title: Cell Death Differ. doi: 10.1038/cdd.2009.96 – volume: 5 start-page: 18302 year: 2015 ident: 10.1016/j.bbagen.2020.129561_bb0165 article-title: Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites publication-title: Sci. Rep. doi: 10.1038/srep18302 – volume: 303 start-page: 1532 year: 2004 ident: 10.1016/j.bbagen.2020.129561_bb0130 article-title: Neutrophil extracellular traps kill bacteria publication-title: Science. doi: 10.1126/science.1092385 – volume: 16 start-page: 171 year: 2019 ident: 10.1016/j.bbagen.2020.129561_bb0075 article-title: Proteomic analysis and antivenomics study of Western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region publication-title: Exp. Rev. Proteomics. doi: 10.1080/14789450.2019.1559735 – volume: 836 start-page: 1 year: 2015 ident: 10.1016/j.bbagen.2020.129561_bb0060 article-title: Reactive oxygen species, granulocytes, and NETosis publication-title: Adv. Exp. Med. Biol. – volume: 9 year: 2014 ident: 10.1016/j.bbagen.2020.129561_bb0070 article-title: Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A publication-title: PLoS One doi: 10.1371/journal.pone.0097088 – volume: 7 year: 2017 ident: 10.1016/j.bbagen.2020.129561_bb0155 article-title: JNK activation turns on LPS- and gram-negative bacteria-induced NADPH oxidase-dependent suicidal NETosis publication-title: Sci. Rep. – volume: 7 year: 2016 ident: 10.1016/j.bbagen.2020.129561_bb0115 article-title: New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00302 – volume: 191 start-page: 677 year: 2010 ident: 10.1016/j.bbagen.2020.129561_bb0135 article-title: Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps publication-title: J. Cell Biol. doi: 10.1083/jcb.201006052 – volume: 20 start-page: 3 year: 2013 ident: 10.1016/j.bbagen.2020.129561_bb0100 article-title: Fighting against the dark side of neutrophil extracellular traps in disease: manoeuvres for host protection publication-title: Curr. Opin. Hematol. doi: 10.1097/MOH.0b013e32835a0025 – volume: 375 start-page: 89 year: 2010 ident: 10.1016/j.bbagen.2020.129561_bb0005 article-title: Global snake bite initiative working group, international society on toxinology, the global Snake bite initiative: an antidote for snake bite publication-title: Lancet doi: 10.1016/S0140-6736(09)61159-4 – volume: 11 year: 2015 ident: 10.1016/j.bbagen.2020.129561_bb0055 article-title: DNA is an antimicrobial component of neutrophil extracellular traps publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004593 – volume: 7 start-page: 17119 year: 2017 ident: 10.1016/j.bbagen.2020.129561_bb0080 article-title: Proteomics and antivenomics of Echis carinatus carinatus venom: correlation with pharmacological properties and pathophysiology of envenomation publication-title: Sci. Rep. doi: 10.1038/s41598-017-17227-y – volume: 8 year: 2017 ident: 10.1016/j.bbagen.2020.129561_bb0110 article-title: NETosis in Alzheimer’s Disease publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00211 – volume: 7 start-page: 75 year: 2011 ident: 10.1016/j.bbagen.2020.129561_bb0150 article-title: Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.496 – volume: 105 start-page: 327 year: 1980 ident: 10.1016/j.bbagen.2020.129561_bb0125 article-title: Phorbol myristate acetate induced neutrophil autotoxicity publication-title: J. Cell. Physiol. doi: 10.1002/jcp.1041050215 – volume: 122 start-page: 2784 year: 2013 ident: 10.1016/j.bbagen.2020.129561_bb0035 article-title: NETosis: how vital is it? publication-title: Blood doi: 10.1182/blood-2013-04-457671 – volume: 6 year: 2017 ident: 10.1016/j.bbagen.2020.129561_bb0050 article-title: Diverse stimuli engage different neutrophil extracellular trap pathways publication-title: Elife doi: 10.7554/eLife.24437 – volume: 190 start-page: 4136 year: 2013 ident: 10.1016/j.bbagen.2020.129561_bb0170 article-title: An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans publication-title: J. Immunol. doi: 10.4049/jimmunol.1202671 |
SSID | ssj0000595 |
Score | 2.3812397 |
Snippet | Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129561 |
SubjectTerms | calcium Calcium ions cell communication cell viability chromatin cobra venoms deoxyribonucleases Echis carinatus humans innate immunity mitochondrial DNA mitogen-activated protein kinase Naja naja neutrophils nuclear genome pathophysiology pharmacodynamics protein kinase C Reactive oxygen species snake bites snakes Suicidal NETosis toxicity Vital NETosis |
Title | The action of Echis carinatus and Naja naja venoms on human neutrophils; an emphasis on NETosis |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129561 https://www.ncbi.nlm.nih.gov/pubmed/32068016 https://www.proquest.com/docview/2357470801 https://www.proquest.com/docview/2477622156 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9CoGlcJlY2VmCVkbhmTWonTsQJVUXdpvUCSNws23FEUEkq0h648LfzXpyAdmBIy8FKomfJee_5-ef4fQCcRpbSdDsRSKF5IDg2lDUtQPRgwsQVuIOg_x1_Fsn8Wvy6iW-2YNrHwpBbZWf7vU1vrXX3Ztxxc7wqy_ElHeohnIgnIW-BCEWwC0lufT-eXt08ED7E_iRBBETdh8-1Pl7G4KSlLKgTSrNAMZ5vLU9vwc92GbrYg08dfmTnfoifYctVA_jgK0o-DuDjtC_gtg8KVYD5uAVWF2xmb8uGWdwbUzLPhukqZwt9p1lFDdq8-r5hSNpW7WOV26wf6tVtuWzOkJQ5lLpuypZiMbuq8fYLXF_MrqbzoKunEFiexesgEnEuw5ycWo3UOJmzSZ7Ekc2zUOc65kWEcMFy43CDrWUhw1TgldhMWy10avhX2K7qyn0DlrrQFVFoRJLHCMh4prM8pXIxMnVOmGgIvGejsl2ycap5sVS9V9md8sxXxHzlmT-E4KXXyifbeIde9hJSfymNwvXgnZ4nvUAVSoUOSXTl6k2jKP2PwE8P_0UjJK4hCJaSIRx4bXgZL59QNZMoOfzvsR3BLj15f7Rj2F4_bNx3RD5rM2pVewQ75z9_zxfPzc_-zg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIkQvVXlvS8FIXKNN1s5LPaHVoqVALiwSN8t2HBEEyYrsHvrvOxMnoB4AqTlYUTKWnLE9_hzPfANwFhii6bbCi4XinuBYEGuah-hB-5EtcAdB_ztusmh2J37fh_drMOljYcitsrP9zqa31rp7Muq0OVqU5eiWDvUQToRjn7dAZB02iJ1KDGDj_PJqlr0Z5LBNvkLyHlXoI-haNy-tcd4SEeqYmBYozPO9Feo9BNquRBff4GsHIdm5a-U2rNlqBzZdUsk_O7A16XO47YLEUcBc6AKrCzY1D2XDDG6Pic-zYarKWaYeFauoQLNXPzcMRdvEfayyq-VLvXgon5pfKMosdrxqylYim85rvN2Du4vpfDLzupQKnuFpuPQCEeaxn5Nfq44Vzud0nEdhYPLUV7kKeREgYjBcW9xjq7iI_UTgFZlUGSVUovk-DKq6sofAEuvbIvC1iPIQMRlPVZonlDEmTqwVOhgC79UoTcc3TmkvnmTvWPYonfIlKV865Q_Be621cHwbn8jHfQ_Jf8aNxCXhk5qnfYdK7BU6J1GVrVeNJAYggZ_ufyQjYlxGEC9FQzhwo-G1vXxMCU2C6Pt_t-0Etmbzm2t5fZld_YAv9Ma5px3BYPmysj8RCC31cTfQ_wKK9QGO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+action+of+Echis+carinatus+and+Naja+naja+venoms+on+human+neutrophils%3B+an+emphasis+on+NETosis&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Swethakumar%2C+Basavarajaiah&rft.au=NaveenKumar%2C+Somanathapura+K&rft.au=Girish%2C+Kesturu+S&rft.au=Kemparaju%2C+Kempaiah&rft.date=2020-06-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1864&rft.issue=6&rft.spage=129561&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129561&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |