The action of Echis carinatus and Naja naja venoms on human neutrophils; an emphasis on NETosis

Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 6; p. 129561
Main Authors Swethakumar, Basavarajaiah, NaveenKumar, Somanathapura K., Girish, Kesturu S., Kemparaju, Kempaiah
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2020.129561

Cover

Loading…
Abstract Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property. Formation of NETs, cell viability, ROS, and Ca2+ levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors. E. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation. For the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms. Understanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology. •E. carinatus venom induces NETosis by activating NOX and PAD4 via PKC/ERK/JNK signaling axis in a ROS dependent manner.•N. naja venom does it by activating PAD4, but independent of ROS and PKC/ERK/JNK signaling axis.•This study is first to demonstrate the distinct types of NETosis induced by E. carinatus and N. naja venoms.•This study is likely to provide new insights for the better management of snakebite pathophysiology.•Differential action of snake venoms may also offer scope for a better understanding of the complex mechanism of NETosis.
AbstractList Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property. Formation of NETs, cell viability, ROS, and Ca levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors. E. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation. For the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms. Understanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology.
Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property.BACKGROUNDNeutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property.Formation of NETs, cell viability, ROS, and Ca2+ levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors.METHODSFormation of NETs, cell viability, ROS, and Ca2+ levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors.E. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation.RESULTSE. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation.For the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms.CONCLUSIONFor the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms.Understanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology.SIGNIFICANCEUnderstanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology.
Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property.Formation of NETs, cell viability, ROS, and Ca²⁺ levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors.E. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation.For the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms.Understanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology.
Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs (Neutrophil Extracellular Traps), by a process called NETosis. Two types of NETosis have been currently described: the suicidal/delayed/classical-type, which is ROS dependent that results in the ejection of nuclear DNA, and the vital/rapid/early-type, which may or may not require ROS but, eject nuclear/mitochondrial DNA or both. Thus, Echis carinatus and Naja naja venoms are comparatively studied for their NET inducing property. Formation of NETs, cell viability, ROS, and Ca2+ levels are estimated. An in vivo toxicity study and possible cellular signaling have been addressed using immunoblots and pharmacological inhibitors. E. carinatus and N. naja venoms respectively induce suicidal and vital NETosis. E. carinatus venom induces NETosis by activating NOX and PAD-4 enzymes in a ROS dependent manner via PKC/ERK/JNK signaling axis, while N. naja venom does it by activating PAD-4 enzyme, but independent of ROS requirement and as well as PKC/ERK/JNK activation. For the first time our study demonstrates the distinct action of E. carinatus and N. naja venoms on the process of NETosis. NETosis being a newly explored area in snake venom pharmacodynamics, it is important to study its impact on the various pathophysiological properties induced by snake venoms. Understanding the varied actions of snake venoms on neutrophils/blood cells and the role of DNase are likely to provide insights for better management of snakebite pathophysiology. •E. carinatus venom induces NETosis by activating NOX and PAD4 via PKC/ERK/JNK signaling axis in a ROS dependent manner.•N. naja venom does it by activating PAD4, but independent of ROS and PKC/ERK/JNK signaling axis.•This study is first to demonstrate the distinct types of NETosis induced by E. carinatus and N. naja venoms.•This study is likely to provide new insights for the better management of snakebite pathophysiology.•Differential action of snake venoms may also offer scope for a better understanding of the complex mechanism of NETosis.
ArticleNumber 129561
Author Girish, Kesturu S.
Swethakumar, Basavarajaiah
NaveenKumar, Somanathapura K.
Kemparaju, Kempaiah
Author_xml – sequence: 1
  givenname: Basavarajaiah
  surname: Swethakumar
  fullname: Swethakumar, Basavarajaiah
  organization: DOS in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
– sequence: 2
  givenname: Somanathapura K.
  surname: NaveenKumar
  fullname: NaveenKumar, Somanathapura K.
  organization: Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
– sequence: 3
  givenname: Kesturu S.
  surname: Girish
  fullname: Girish, Kesturu S.
  email: ksgbaboo@gmail.com
  organization: Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572 103, India
– sequence: 4
  givenname: Kempaiah
  surname: Kemparaju
  fullname: Kemparaju, Kempaiah
  email: kemparajuom@gmail.com
  organization: DOS in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32068016$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQha2qVbst_AOEfOSSxXZiOwEJCVULVKrKZTlbE2dCvErsxU4q8e_xkvbCgc7BtqzvvZHeuybnPngk5A1nW864en_Yti38RL8VTOQv0UjFz8iG11oUNWPqnGxYyaqi4kpekeuUDiyPbOQluSoFU3U22RCzH5CCnV3wNPR0ZweXqIXoPMxLouA7-gAHoP50PKIPU6IZHZYJPPW4zDEcBzemjxmlOB0HSO4v8bDbh_x8RS56GBO-frpvyI8vu_3tt-L--9e728_3hS0bORe8kp1mndKqaTWUvG5EpyS3XcOgA1n2XNfCli1iW4LuNaurPMo2YKGCui1vyLvV9xjDrwXTbCaXLI4jeAxLMqLSWgnBpXoZLaWu8gbGM_r2CV3aCTtzjG6C-Ns855eBDytgY0gpYm-sm-GU5hzBjYYzcyrLHMxaljmVZdaysrj6R_zs_4Ls0yrDnOejw2iSdegtdi6inU0X3P8N_gBbtK3-
CitedBy_id crossref_primary_10_1371_journal_pntd_0009247
crossref_primary_10_2147_JIR_S460333
crossref_primary_10_1111_acer_70019
crossref_primary_10_1016_j_fct_2020_111926
crossref_primary_10_1016_j_toxicon_2020_09_006
crossref_primary_10_1111_pim_13001
crossref_primary_10_1371_journal_pntd_0009150
crossref_primary_10_1111_1346_8138_16181
crossref_primary_10_1016_j_jprot_2021_104256
crossref_primary_10_3390_toxins14110802
crossref_primary_10_1590_1678_9199_jvatitd_2020_0179
crossref_primary_10_3390_ijms24119516
Cites_doi 10.3389/fimmu.2016.00484
10.2174/187152811797200605
10.1038/nm.3887
10.1038/nm.1855
10.1023/A:1020651607164
10.1016/j.celrep.2014.06.044
10.1126/science.aaa8064
10.1038/ncomms11361
10.3390/biom5020702
10.1083/jcb.201203170
10.3389/fimmu.2017.00081
10.1038/nchembio.1735
10.1038/cdd.2011.1
10.4049/jimmunol.1000675
10.1073/pnas.1414055112
10.1111/bjh.14591
10.4049/jimmunol.1201719
10.1038/cdd.2009.96
10.1038/srep18302
10.1126/science.1092385
10.1080/14789450.2019.1559735
10.1371/journal.pone.0097088
10.3389/fimmu.2016.00302
10.1083/jcb.201006052
10.1097/MOH.0b013e32835a0025
10.1016/S0140-6736(09)61159-4
10.1371/journal.ppat.1004593
10.1038/s41598-017-17227-y
10.3389/fimmu.2017.00211
10.1038/nchembio.496
10.1002/jcp.1041050215
10.1182/blood-2013-04-457671
10.7554/eLife.24437
10.4049/jimmunol.1202671
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier B.V.
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2020.129561
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 32068016
10_1016_j_bbagen_2020_129561
S0304416520300519
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c395t-145d70d6769b7a31892d651cd90ada53f1782c3beeb3a7f70844446c9aca4a8b3
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Tue Aug 05 11:23:38 EDT 2025
Sun Aug 24 04:01:36 EDT 2025
Wed Feb 19 02:31:00 EST 2025
Tue Jul 01 00:22:13 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
Fri Feb 23 02:48:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Reactive oxygen species
Suicidal NETosis
Echis carinatus
Naja naja
Vital NETosis
Calcium ions
Language English
License Copyright © 2020. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-145d70d6769b7a31892d651cd90ada53f1782c3beeb3a7f70844446c9aca4a8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32068016
PQID 2357470801
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2477622156
proquest_miscellaneous_2357470801
pubmed_primary_32068016
crossref_citationtrail_10_1016_j_bbagen_2020_129561
crossref_primary_10_1016_j_bbagen_2020_129561
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129561
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
2020-Jun
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tsan (bb0125) 1980; 105
Williams, Gutiérrez, Harrison, Warrell, White, Winkel, Gopalakrishnakone (bb0005) 2010; 375
Kaplan, Radic (bb0085) 2012; 189
Metzler, Goosmann, Lubojemska, Zychlinsky, Papayannopoulos (bb0140) 2014; 8
Hakkim, Fuchs, Martinez, Hess, Prinz, Zychlinsky, Waldmann (bb0150) 2011; 7
Brinkmann, Reichard, Goosmann, Fauler, Uhlemann, Weiss, Weinrauch, Zychlinsky (bb0130) 2004; 303
Slagboom, Kool, Harrison, Casewell (bb0015) 2017; 177
Halverson, Wilton, Poon, Petri, Lewenza (bb0055) 2015; 11
Pietronigro, Della Bianca, Zenaro, Constantin (bb0110) 2017; 8
Delgado-Rizo, Martínez-Guzmán, Iñiguez-Gutierrez, García-Orozco, Alvarado-Navarro, Fafutis-Morris (bb0030) 2017; 8
León, Sánchez, Hernández, Villalta, Herrera, Segura, Estrada, Gutiérrez (bb0020) 2011; 10
Byrd, O’Brien, Johnson, Lavigne, Reichner (bb0170) 2013; 190
Remijsen, Kuijpers, Wirawan, Lippens, Vandenabeele, Vanden Berghe (bb0090) 2011; 18
Khan, Farahvash, Douda, Licht, Grasemann, Sweezey, Palaniyar (bb0155) 2017; 7
Katkar, Sundaram, NaveenKumar, Swethakumar, Sharma, Paul, Vishalakshi, Devaraja, Girish, Kemparaju (bb0025) 2016; 7
Gupta, Giaglis, Hasler, Hahn (bb0070) 2014; 9
Chanda, Kalita, Patra, Senevirathne, Mukherjee (bb0075) 2019; 16
Yousefi, Mihalache, Kozlowski, Schmid, Simon (bb0040) 2009; 16
Pilsczek, Salina, Poon, Fahey, Yipp, Sibley, Robbins, Green, Surette, Sugai, Bowden, Hussain, Zhang, Kubes (bb0045) 2010; 185
Patra, Kalita, Chanda, Mukherjee (bb0080) 2017; 7
Saffarzadeh, Preissner (bb0100) 2013; 20
Girish, Jagadeesha, Rajeev, Kemparaju (bb0010) 2002; 240
Kenny, Herzig, Krüger, Muth, Mondal, Thompson, Brinkmann, von Bernuth, Zychlinsky (bb0050) 2017; 6
Brinkmann, Zychlinsky (bb0095) 2012; 198
Rochael, Guimarães-Costa, Nascimento, DeSouza-Vieira, Oliveira, Garcia e Souza, Oliveira, Saraiva (bb0165) 2015; 5
Yang, Biermann, Brauner, Liu, Zhao, Herrmann (bb0115) 2016; 7
Stoiber, Obermayer, Steinbacher, Krautgartner (bb0065) 2015; 5
Papayannopoulos, Metzler, Hakkim, Zychlinsky (bb0135) 2010; 191
Wong, Demers, Martinod, Gallant, Wang, Goldfine, Kahn, Wagner (bb0105) 2015; 21
Pieterse, Rother, Yanginlar, Hilbrands, van der Vlag (bb0175) 2016; 7
Araźna, Pruchniak, Demkow (bb0060) 2015; 836
Douda, Khan, Grasemann, Palaniyar (bb0160) 2015; 112
Yipp, Kubes (bb0035) 2013; 122
Lewis, Liddle, Coote, Atkinson, Barker, Bax, Bicker, Bingham, Campbell, Chen, Chung, Craggs, Davis, Eberhard, Joberty, Lind, Locke, Maller, Martinod, Patten, Polyakova, Rise, Rüdiger, Sheppard, Slade, Thomas, Thorpe, Yao, Drewes, Wagner, Thompson, Prinjha, Wilson (bb0145) 2015; 11
Yousefi, Gold, Andina, Lee, Kelly, Kozlowski, Schmid, Straumann, Reichenbach, Gleich, Simon (bb0180) 2008; 14
Warnatsch, Ioannou, Wang, Papayannopoulos (bb0120) 2015; 349
Rochael (10.1016/j.bbagen.2020.129561_bb0165) 2015; 5
Lewis (10.1016/j.bbagen.2020.129561_bb0145) 2015; 11
Yipp (10.1016/j.bbagen.2020.129561_bb0035) 2013; 122
Metzler (10.1016/j.bbagen.2020.129561_bb0140) 2014; 8
Wong (10.1016/j.bbagen.2020.129561_bb0105) 2015; 21
Chanda (10.1016/j.bbagen.2020.129561_bb0075) 2019; 16
Patra (10.1016/j.bbagen.2020.129561_bb0080) 2017; 7
Hakkim (10.1016/j.bbagen.2020.129561_bb0150) 2011; 7
Khan (10.1016/j.bbagen.2020.129561_bb0155) 2017; 7
Pieterse (10.1016/j.bbagen.2020.129561_bb0175) 2016; 7
Byrd (10.1016/j.bbagen.2020.129561_bb0170) 2013; 190
Pietronigro (10.1016/j.bbagen.2020.129561_bb0110) 2017; 8
Delgado-Rizo (10.1016/j.bbagen.2020.129561_bb0030) 2017; 8
Kenny (10.1016/j.bbagen.2020.129561_bb0050) 2017; 6
Yousefi (10.1016/j.bbagen.2020.129561_bb0180) 2008; 14
Douda (10.1016/j.bbagen.2020.129561_bb0160) 2015; 112
Brinkmann (10.1016/j.bbagen.2020.129561_bb0130) 2004; 303
Yousefi (10.1016/j.bbagen.2020.129561_bb0040) 2009; 16
Saffarzadeh (10.1016/j.bbagen.2020.129561_bb0100) 2013; 20
Katkar (10.1016/j.bbagen.2020.129561_bb0025) 2016; 7
Brinkmann (10.1016/j.bbagen.2020.129561_bb0095) 2012; 198
Araźna (10.1016/j.bbagen.2020.129561_bb0060) 2015; 836
Remijsen (10.1016/j.bbagen.2020.129561_bb0090) 2011; 18
Kaplan (10.1016/j.bbagen.2020.129561_bb0085) 2012; 189
Halverson (10.1016/j.bbagen.2020.129561_bb0055) 2015; 11
Papayannopoulos (10.1016/j.bbagen.2020.129561_bb0135) 2010; 191
Tsan (10.1016/j.bbagen.2020.129561_bb0125) 1980; 105
Yang (10.1016/j.bbagen.2020.129561_bb0115) 2016; 7
Stoiber (10.1016/j.bbagen.2020.129561_bb0065) 2015; 5
Williams (10.1016/j.bbagen.2020.129561_bb0005) 2010; 375
Warnatsch (10.1016/j.bbagen.2020.129561_bb0120) 2015; 349
Girish (10.1016/j.bbagen.2020.129561_bb0010) 2002; 240
Gupta (10.1016/j.bbagen.2020.129561_bb0070) 2014; 9
León (10.1016/j.bbagen.2020.129561_bb0020) 2011; 10
Slagboom (10.1016/j.bbagen.2020.129561_bb0015) 2017; 177
Pilsczek (10.1016/j.bbagen.2020.129561_bb0045) 2010; 185
References_xml – volume: 240
  start-page: 105
  year: 2002
  end-page: 110
  ident: bb0010
  article-title: Snake venom hyaluronidase: an evidence for isoforms and extracellular matrix degradation
  publication-title: Mol. Cell. Biochem.
– volume: 7
  year: 2017
  ident: bb0155
  article-title: JNK activation turns on LPS- and gram-negative bacteria-induced NADPH oxidase-dependent suicidal NETosis
  publication-title: Sci. Rep.
– volume: 14
  start-page: 949
  year: 2008
  end-page: 953
  ident: bb0180
  article-title: Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense
  publication-title: Nat. Med.
– volume: 191
  start-page: 677
  year: 2010
  end-page: 691
  ident: bb0135
  article-title: Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps
  publication-title: J. Cell Biol.
– volume: 112
  start-page: 2817
  year: 2015
  end-page: 2822
  ident: bb0160
  article-title: SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  year: 2015
  ident: bb0055
  article-title: DNA is an antimicrobial component of neutrophil extracellular traps
  publication-title: PLoS Pathog.
– volume: 7
  start-page: 17119
  year: 2017
  ident: bb0080
  article-title: Proteomics and antivenomics of Echis carinatus carinatus venom: correlation with pharmacological properties and pathophysiology of envenomation
  publication-title: Sci. Rep.
– volume: 105
  start-page: 327
  year: 1980
  end-page: 334
  ident: bb0125
  article-title: Phorbol myristate acetate induced neutrophil autotoxicity
  publication-title: J. Cell. Physiol.
– volume: 9
  year: 2014
  ident: bb0070
  article-title: Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A
  publication-title: PLoS One
– volume: 8
  year: 2017
  ident: bb0110
  article-title: NETosis in Alzheimer’s Disease
  publication-title: Front. Immunol.
– volume: 349
  start-page: 316
  year: 2015
  end-page: 320
  ident: bb0120
  article-title: Neutrophil extracellular traps license macrophages and Th17 cells for cytokine production in atherosclerosis
  publication-title: Science
– volume: 8
  start-page: 81
  year: 2017
  ident: bb0030
  article-title: Neutrophil extracellular traps and its implications in inflammation: an overview
  publication-title: Front. Immunol.
– volume: 6
  year: 2017
  ident: bb0050
  article-title: Diverse stimuli engage different neutrophil extracellular trap pathways
  publication-title: Elife
– volume: 21
  start-page: 815
  year: 2015
  end-page: 819
  ident: bb0105
  article-title: Diabetes primes neutrophils to undergo NETosis which severely impairs wound healing
  publication-title: Nat. Med.
– volume: 7
  start-page: 484
  year: 2016
  ident: bb0175
  article-title: Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps
  publication-title: Front. Immunol.
– volume: 177
  start-page: 947
  year: 2017
  end-page: 959
  ident: bb0015
  article-title: Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise
  publication-title: Br. J. Haematol.
– volume: 11
  start-page: 189
  year: 2015
  end-page: 191
  ident: bb0145
  article-title: Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation
  publication-title: Nat. Chem. Biol.
– volume: 20
  start-page: 3
  year: 2013
  end-page: 9
  ident: bb0100
  article-title: Fighting against the dark side of neutrophil extracellular traps in disease: manoeuvres for host protection
  publication-title: Curr. Opin. Hematol.
– volume: 5
  start-page: 18302
  year: 2015
  ident: bb0165
  article-title: Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites
  publication-title: Sci. Rep.
– volume: 16
  start-page: 1438
  year: 2009
  end-page: 1444
  ident: bb0040
  article-title: Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps
  publication-title: Cell Death Differ.
– volume: 18
  start-page: 581
  year: 2011
  end-page: 588
  ident: bb0090
  article-title: Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality
  publication-title: Cell Death Differ.
– volume: 375
  start-page: 89
  year: 2010
  end-page: 91
  ident: bb0005
  article-title: Global snake bite initiative working group, international society on toxinology, the global Snake bite initiative: an antidote for snake bite
  publication-title: Lancet
– volume: 185
  start-page: 7413
  year: 2010
  end-page: 7425
  ident: bb0045
  article-title: A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus
  publication-title: J. Immunol.
– volume: 5
  start-page: 702
  year: 2015
  end-page: 723
  ident: bb0065
  article-title: The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans
  publication-title: Biomolecules.
– volume: 7
  start-page: 75
  year: 2011
  end-page: 77
  ident: bb0150
  article-title: Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation
  publication-title: Nat. Chem. Biol.
– volume: 198
  start-page: 773
  year: 2012
  end-page: 783
  ident: bb0095
  article-title: Neutrophil extracellular traps: is immunity the second function of chromatin?
  publication-title: J. Cell Biol.
– volume: 8
  start-page: 883
  year: 2014
  end-page: 896
  ident: bb0140
  article-title: A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis
  publication-title: Cell Rep.
– volume: 190
  start-page: 4136
  year: 2013
  end-page: 4148
  ident: bb0170
  article-title: An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans
  publication-title: J. Immunol.
– volume: 303
  start-page: 1532
  year: 2004
  end-page: 1535
  ident: bb0130
  article-title: Neutrophil extracellular traps kill bacteria
  publication-title: Science.
– volume: 836
  start-page: 1
  year: 2015
  end-page: 7
  ident: bb0060
  article-title: Reactive oxygen species, granulocytes, and NETosis
  publication-title: Adv. Exp. Med. Biol.
– volume: 10
  start-page: 381
  year: 2011
  end-page: 398
  ident: bb0020
  article-title: Immune response towards snake venoms
  publication-title: Inflamm. Allergy Drug Targets
– volume: 189
  start-page: 2689
  year: 2012
  end-page: 2695
  ident: bb0085
  article-title: Neutrophil extracellular traps: double-edged swords of innate immunity
  publication-title: J. Immunol.
– volume: 16
  start-page: 171
  year: 2019
  end-page: 184
  ident: bb0075
  article-title: Proteomic analysis and antivenomics study of Western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region
  publication-title: Exp. Rev. Proteomics.
– volume: 7
  year: 2016
  ident: bb0115
  article-title: New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation
  publication-title: Front. Immunol.
– volume: 7
  start-page: 11361
  year: 2016
  ident: bb0025
  article-title: NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction
  publication-title: Nat. Commun.
– volume: 122
  start-page: 2784
  year: 2013
  end-page: 2794
  ident: bb0035
  article-title: NETosis: how vital is it?
  publication-title: Blood
– volume: 7
  start-page: 484
  year: 2016
  ident: 10.1016/j.bbagen.2020.129561_bb0175
  article-title: Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00484
– volume: 10
  start-page: 381
  year: 2011
  ident: 10.1016/j.bbagen.2020.129561_bb0020
  article-title: Immune response towards snake venoms
  publication-title: Inflamm. Allergy Drug Targets
  doi: 10.2174/187152811797200605
– volume: 21
  start-page: 815
  year: 2015
  ident: 10.1016/j.bbagen.2020.129561_bb0105
  article-title: Diabetes primes neutrophils to undergo NETosis which severely impairs wound healing
  publication-title: Nat. Med.
  doi: 10.1038/nm.3887
– volume: 14
  start-page: 949
  year: 2008
  ident: 10.1016/j.bbagen.2020.129561_bb0180
  article-title: Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense
  publication-title: Nat. Med.
  doi: 10.1038/nm.1855
– volume: 240
  start-page: 105
  year: 2002
  ident: 10.1016/j.bbagen.2020.129561_bb0010
  article-title: Snake venom hyaluronidase: an evidence for isoforms and extracellular matrix degradation
  publication-title: Mol. Cell. Biochem.
  doi: 10.1023/A:1020651607164
– volume: 8
  start-page: 883
  year: 2014
  ident: 10.1016/j.bbagen.2020.129561_bb0140
  article-title: A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.06.044
– volume: 349
  start-page: 316
  year: 2015
  ident: 10.1016/j.bbagen.2020.129561_bb0120
  article-title: Neutrophil extracellular traps license macrophages and Th17 cells for cytokine production in atherosclerosis
  publication-title: Science
  doi: 10.1126/science.aaa8064
– volume: 7
  start-page: 11361
  year: 2016
  ident: 10.1016/j.bbagen.2020.129561_bb0025
  article-title: NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11361
– volume: 5
  start-page: 702
  year: 2015
  ident: 10.1016/j.bbagen.2020.129561_bb0065
  article-title: The role of reactive oxygen species (ROS) in the formation of extracellular traps (ETs) in humans
  publication-title: Biomolecules.
  doi: 10.3390/biom5020702
– volume: 198
  start-page: 773
  year: 2012
  ident: 10.1016/j.bbagen.2020.129561_bb0095
  article-title: Neutrophil extracellular traps: is immunity the second function of chromatin?
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201203170
– volume: 8
  start-page: 81
  year: 2017
  ident: 10.1016/j.bbagen.2020.129561_bb0030
  article-title: Neutrophil extracellular traps and its implications in inflammation: an overview
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00081
– volume: 11
  start-page: 189
  year: 2015
  ident: 10.1016/j.bbagen.2020.129561_bb0145
  article-title: Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1735
– volume: 18
  start-page: 581
  year: 2011
  ident: 10.1016/j.bbagen.2020.129561_bb0090
  article-title: Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2011.1
– volume: 185
  start-page: 7413
  year: 2010
  ident: 10.1016/j.bbagen.2020.129561_bb0045
  article-title: A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1000675
– volume: 112
  start-page: 2817
  year: 2015
  ident: 10.1016/j.bbagen.2020.129561_bb0160
  article-title: SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1414055112
– volume: 177
  start-page: 947
  year: 2017
  ident: 10.1016/j.bbagen.2020.129561_bb0015
  article-title: Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise
  publication-title: Br. J. Haematol.
  doi: 10.1111/bjh.14591
– volume: 189
  start-page: 2689
  year: 2012
  ident: 10.1016/j.bbagen.2020.129561_bb0085
  article-title: Neutrophil extracellular traps: double-edged swords of innate immunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1201719
– volume: 16
  start-page: 1438
  year: 2009
  ident: 10.1016/j.bbagen.2020.129561_bb0040
  article-title: Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2009.96
– volume: 5
  start-page: 18302
  year: 2015
  ident: 10.1016/j.bbagen.2020.129561_bb0165
  article-title: Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites
  publication-title: Sci. Rep.
  doi: 10.1038/srep18302
– volume: 303
  start-page: 1532
  year: 2004
  ident: 10.1016/j.bbagen.2020.129561_bb0130
  article-title: Neutrophil extracellular traps kill bacteria
  publication-title: Science.
  doi: 10.1126/science.1092385
– volume: 16
  start-page: 171
  year: 2019
  ident: 10.1016/j.bbagen.2020.129561_bb0075
  article-title: Proteomic analysis and antivenomics study of Western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region
  publication-title: Exp. Rev. Proteomics.
  doi: 10.1080/14789450.2019.1559735
– volume: 836
  start-page: 1
  year: 2015
  ident: 10.1016/j.bbagen.2020.129561_bb0060
  article-title: Reactive oxygen species, granulocytes, and NETosis
  publication-title: Adv. Exp. Med. Biol.
– volume: 9
  year: 2014
  ident: 10.1016/j.bbagen.2020.129561_bb0070
  article-title: Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097088
– volume: 7
  year: 2017
  ident: 10.1016/j.bbagen.2020.129561_bb0155
  article-title: JNK activation turns on LPS- and gram-negative bacteria-induced NADPH oxidase-dependent suicidal NETosis
  publication-title: Sci. Rep.
– volume: 7
  year: 2016
  ident: 10.1016/j.bbagen.2020.129561_bb0115
  article-title: New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00302
– volume: 191
  start-page: 677
  year: 2010
  ident: 10.1016/j.bbagen.2020.129561_bb0135
  article-title: Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201006052
– volume: 20
  start-page: 3
  year: 2013
  ident: 10.1016/j.bbagen.2020.129561_bb0100
  article-title: Fighting against the dark side of neutrophil extracellular traps in disease: manoeuvres for host protection
  publication-title: Curr. Opin. Hematol.
  doi: 10.1097/MOH.0b013e32835a0025
– volume: 375
  start-page: 89
  year: 2010
  ident: 10.1016/j.bbagen.2020.129561_bb0005
  article-title: Global snake bite initiative working group, international society on toxinology, the global Snake bite initiative: an antidote for snake bite
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)61159-4
– volume: 11
  year: 2015
  ident: 10.1016/j.bbagen.2020.129561_bb0055
  article-title: DNA is an antimicrobial component of neutrophil extracellular traps
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004593
– volume: 7
  start-page: 17119
  year: 2017
  ident: 10.1016/j.bbagen.2020.129561_bb0080
  article-title: Proteomics and antivenomics of Echis carinatus carinatus venom: correlation with pharmacological properties and pathophysiology of envenomation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17227-y
– volume: 8
  year: 2017
  ident: 10.1016/j.bbagen.2020.129561_bb0110
  article-title: NETosis in Alzheimer’s Disease
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00211
– volume: 7
  start-page: 75
  year: 2011
  ident: 10.1016/j.bbagen.2020.129561_bb0150
  article-title: Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.496
– volume: 105
  start-page: 327
  year: 1980
  ident: 10.1016/j.bbagen.2020.129561_bb0125
  article-title: Phorbol myristate acetate induced neutrophil autotoxicity
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1041050215
– volume: 122
  start-page: 2784
  year: 2013
  ident: 10.1016/j.bbagen.2020.129561_bb0035
  article-title: NETosis: how vital is it?
  publication-title: Blood
  doi: 10.1182/blood-2013-04-457671
– volume: 6
  year: 2017
  ident: 10.1016/j.bbagen.2020.129561_bb0050
  article-title: Diverse stimuli engage different neutrophil extracellular trap pathways
  publication-title: Elife
  doi: 10.7554/eLife.24437
– volume: 190
  start-page: 4136
  year: 2013
  ident: 10.1016/j.bbagen.2020.129561_bb0170
  article-title: An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1202671
SSID ssj0000595
Score 2.3812397
Snippet Neutrophils are the first line defense cells of the innate immunity. As a final defense, they discharge their de-condensed chromatin/DNA fibers, the NETs...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129561
SubjectTerms calcium
Calcium ions
cell communication
cell viability
chromatin
cobra venoms
deoxyribonucleases
Echis carinatus
humans
innate immunity
mitochondrial DNA
mitogen-activated protein kinase
Naja naja
neutrophils
nuclear genome
pathophysiology
pharmacodynamics
protein kinase C
Reactive oxygen species
snake bites
snakes
Suicidal NETosis
toxicity
Vital NETosis
Title The action of Echis carinatus and Naja naja venoms on human neutrophils; an emphasis on NETosis
URI https://dx.doi.org/10.1016/j.bbagen.2020.129561
https://www.ncbi.nlm.nih.gov/pubmed/32068016
https://www.proquest.com/docview/2357470801
https://www.proquest.com/docview/2477622156
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9CoGlcJlY2VmCVkbhmTWonTsQJVUXdpvUCSNws23FEUEkq0h648LfzXpyAdmBIy8FKomfJee_5-ef4fQCcRpbSdDsRSKF5IDg2lDUtQPRgwsQVuIOg_x1_Fsn8Wvy6iW-2YNrHwpBbZWf7vU1vrXX3Ztxxc7wqy_ElHeohnIgnIW-BCEWwC0lufT-eXt08ED7E_iRBBETdh8-1Pl7G4KSlLKgTSrNAMZ5vLU9vwc92GbrYg08dfmTnfoifYctVA_jgK0o-DuDjtC_gtg8KVYD5uAVWF2xmb8uGWdwbUzLPhukqZwt9p1lFDdq8-r5hSNpW7WOV26wf6tVtuWzOkJQ5lLpuypZiMbuq8fYLXF_MrqbzoKunEFiexesgEnEuw5ycWo3UOJmzSZ7Ekc2zUOc65kWEcMFy43CDrWUhw1TgldhMWy10avhX2K7qyn0DlrrQFVFoRJLHCMh4prM8pXIxMnVOmGgIvGejsl2ycap5sVS9V9md8sxXxHzlmT-E4KXXyifbeIde9hJSfymNwvXgnZ4nvUAVSoUOSXTl6k2jKP2PwE8P_0UjJK4hCJaSIRx4bXgZL59QNZMoOfzvsR3BLj15f7Rj2F4_bNx3RD5rM2pVewQ75z9_zxfPzc_-zg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIkQvVXlvS8FIXKNN1s5LPaHVoqVALiwSN8t2HBEEyYrsHvrvOxMnoB4AqTlYUTKWnLE9_hzPfANwFhii6bbCi4XinuBYEGuah-hB-5EtcAdB_ztusmh2J37fh_drMOljYcitsrP9zqa31rp7Muq0OVqU5eiWDvUQToRjn7dAZB02iJ1KDGDj_PJqlr0Z5LBNvkLyHlXoI-haNy-tcd4SEeqYmBYozPO9Feo9BNquRBff4GsHIdm5a-U2rNlqBzZdUsk_O7A16XO47YLEUcBc6AKrCzY1D2XDDG6Pic-zYarKWaYeFauoQLNXPzcMRdvEfayyq-VLvXgon5pfKMosdrxqylYim85rvN2Du4vpfDLzupQKnuFpuPQCEeaxn5Nfq44Vzud0nEdhYPLUV7kKeREgYjBcW9xjq7iI_UTgFZlUGSVUovk-DKq6sofAEuvbIvC1iPIQMRlPVZonlDEmTqwVOhgC79UoTcc3TmkvnmTvWPYonfIlKV865Q_Be621cHwbn8jHfQ_Jf8aNxCXhk5qnfYdK7BU6J1GVrVeNJAYggZ_ufyQjYlxGEC9FQzhwo-G1vXxMCU2C6Pt_t-0Etmbzm2t5fZld_YAv9Ma5px3BYPmysj8RCC31cTfQ_wKK9QGO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+action+of+Echis+carinatus+and+Naja+naja+venoms+on+human+neutrophils%3B+an+emphasis+on+NETosis&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Swethakumar%2C+Basavarajaiah&rft.au=NaveenKumar%2C+Somanathapura+K&rft.au=Girish%2C+Kesturu+S&rft.au=Kemparaju%2C+Kempaiah&rft.date=2020-06-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1864&rft.issue=6&rft.spage=129561&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129561&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon