Challenges and best practices for digital unstructured data enrichment in health research: A systematic narrative review

Digital data play an increasingly important role in advancing health research and care. However, most digital data in healthcare are in an unstructured and often not readily accessible format for research. Unstructured data are often found in a format that lacks standardization and needs significant...

Full description

Saved in:
Bibliographic Details
Published inPLOS digital health Vol. 2; no. 10; p. e0000347
Main Authors Sedlakova, Jana, Daniore, Paola, Horn Wintsch, Andrea, Wolf, Markus, Stanikic, Mina, Haag, Christina, Sieber, Chloé, Schneider, Gerold, Staub, Kaspar, Alois Ettlin, Dominik, Grübner, Oliver, Rinaldi, Fabio, von Wyl, Viktor
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 01.10.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN2767-3170
2767-3170
DOI10.1371/journal.pdig.0000347

Cover

Abstract Digital data play an increasingly important role in advancing health research and care. However, most digital data in healthcare are in an unstructured and often not readily accessible format for research. Unstructured data are often found in a format that lacks standardization and needs significant preprocessing and feature extraction efforts. This poses challenges when combining such data with other data sources to enhance the existing knowledge base, which we refer to as digital unstructured data enrichment. Overcoming these methodological challenges requires significant resources and may limit the ability to fully leverage their potential for advancing health research and, ultimately, prevention, and patient care delivery. While prevalent challenges associated with unstructured data use in health research are widely reported across literature, a comprehensive interdisciplinary summary of such challenges and possible solutions to facilitate their use in combination with structured data sources is missing. In this study, we report findings from a systematic narrative review on the seven most prevalent challenge areas connected with the digital unstructured data enrichment in the fields of cardiology, neurology and mental health, along with possible solutions to address these challenges. Based on these findings, we developed a checklist that follows the standard data flow in health research studies. This checklist aims to provide initial systematic guidance to inform early planning and feasibility assessments for health research studies aiming combining unstructured data with existing data sources. Overall, the generality of reported unstructured data enrichment methods in the studies included in this review call for more systematic reporting of such methods to achieve greater reproducibility in future studies.
AbstractList Digital data play an increasingly important role in advancing health research and care. However, most digital data in healthcare are in an unstructured and often not readily accessible format for research. Unstructured data are often found in a format that lacks standardization and needs significant preprocessing and feature extraction efforts. This poses challenges when combining such data with other data sources to enhance the existing knowledge base, which we refer to as digital unstructured data enrichment. Overcoming these methodological challenges requires significant resources and may limit the ability to fully leverage their potential for advancing health research and, ultimately, prevention, and patient care delivery. While prevalent challenges associated with unstructured data use in health research are widely reported across literature, a comprehensive interdisciplinary summary of such challenges and possible solutions to facilitate their use in combination with structured data sources is missing. In this study, we report findings from a systematic narrative review on the seven most prevalent challenge areas connected with the digital unstructured data enrichment in the fields of cardiology, neurology and mental health, along with possible solutions to address these challenges. Based on these findings, we developed a checklist that follows the standard data flow in health research studies. This checklist aims to provide initial systematic guidance to inform early planning and feasibility assessments for health research studies aiming combining unstructured data with existing data sources. Overall, the generality of reported unstructured data enrichment methods in the studies included in this review call for more systematic reporting of such methods to achieve greater reproducibility in future studies.
Digital data play an increasingly important role in advancing health research and care. However, most digital data in healthcare are in an unstructured and often not readily accessible format for research. Unstructured data are often found in a format that lacks standardization and needs significant preprocessing and feature extraction efforts. This poses challenges when combining such data with other data sources to enhance the existing knowledge base, which we refer to as digital unstructured data enrichment. Overcoming these methodological challenges requires significant resources and may limit the ability to fully leverage their potential for advancing health research and, ultimately, prevention, and patient care delivery. While prevalent challenges associated with unstructured data use in health research are widely reported across literature, a comprehensive interdisciplinary summary of such challenges and possible solutions to facilitate their use in combination with structured data sources is missing. In this study, we report findings from a systematic narrative review on the seven most prevalent challenge areas connected with the digital unstructured data enrichment in the fields of cardiology, neurology and mental health, along with possible solutions to address these challenges. Based on these findings, we developed a checklist that follows the standard data flow in health research studies. This checklist aims to provide initial systematic guidance to inform early planning and feasibility assessments for health research studies aiming combining unstructured data with existing data sources. Overall, the generality of reported unstructured data enrichment methods in the studies included in this review call for more systematic reporting of such methods to achieve greater reproducibility in future studies.Digital data play an increasingly important role in advancing health research and care. However, most digital data in healthcare are in an unstructured and often not readily accessible format for research. Unstructured data are often found in a format that lacks standardization and needs significant preprocessing and feature extraction efforts. This poses challenges when combining such data with other data sources to enhance the existing knowledge base, which we refer to as digital unstructured data enrichment. Overcoming these methodological challenges requires significant resources and may limit the ability to fully leverage their potential for advancing health research and, ultimately, prevention, and patient care delivery. While prevalent challenges associated with unstructured data use in health research are widely reported across literature, a comprehensive interdisciplinary summary of such challenges and possible solutions to facilitate their use in combination with structured data sources is missing. In this study, we report findings from a systematic narrative review on the seven most prevalent challenge areas connected with the digital unstructured data enrichment in the fields of cardiology, neurology and mental health, along with possible solutions to address these challenges. Based on these findings, we developed a checklist that follows the standard data flow in health research studies. This checklist aims to provide initial systematic guidance to inform early planning and feasibility assessments for health research studies aiming combining unstructured data with existing data sources. Overall, the generality of reported unstructured data enrichment methods in the studies included in this review call for more systematic reporting of such methods to achieve greater reproducibility in future studies.
Digital data play an increasingly important role in advancing health research and care. However, most digital data in healthcare are in an unstructured and often not readily accessible format for research. Unstructured data are often found in a format that lacks standardization and needs significant preprocessing and feature extraction efforts. This poses challenges when combining such data with other data sources to enhance the existing knowledge base, which we refer to as digital unstructured data enrichment. Overcoming these methodological challenges requires significant resources and may limit the ability to fully leverage their potential for advancing health research and, ultimately, prevention, and patient care delivery. While prevalent challenges associated with unstructured data use in health research are widely reported across literature, a comprehensive interdisciplinary summary of such challenges and possible solutions to facilitate their use in combination with structured data sources is missing. In this study, we report findings from a systematic narrative review on the seven most prevalent challenge areas connected with the digital unstructured data enrichment in the fields of cardiology, neurology and mental health, along with possible solutions to address these challenges. Based on these findings, we developed a checklist that follows the standard data flow in health research studies. This checklist aims to provide initial systematic guidance to inform early planning and feasibility assessments for health research studies aiming combining unstructured data with existing data sources. Overall, the generality of reported unstructured data enrichment methods in the studies included in this review call for more systematic reporting of such methods to achieve greater reproducibility in future studies. The digital revolution has led to an exponential growth of novel sources of data, such as data from social media or wearables. These data are mainly unstructured, which means they are not available in a pre-defined format that is easy to analyze. Digital unstructured data present an unprecedented opportunity for health researchers to enrich the existing knowledge base for studies and contribute to personalized and evidence-based medicine. We reviewed literature to summarize challenges that researchers commonly encounter and their possible solutions for combining digital unstructured data with other data sources in health research. The novelty and large availability of digital unstructured data are connected with two overarching barriers and challenges. First, digital unstructured data require novel forms of processing and standardization. Second, there is a lack of standardized guidelines, tools or techniques analyzing and incorporating them in research. Our review provides guidance for initial research planning aimed at researchers who wish to apply digital unstructured data enrichment in their studies, and best practices to overcome such challenges through a feasibility assessment.
Author von Wyl, Viktor
Wolf, Markus
Grübner, Oliver
Staub, Kaspar
Daniore, Paola
Sieber, Chloé
Alois Ettlin, Dominik
Haag, Christina
Horn Wintsch, Andrea
Schneider, Gerold
Sedlakova, Jana
Stanikic, Mina
Rinaldi, Fabio
AuthorAffiliation 2 Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
13 Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
4 Center for Gerontology, University of Zurich, Zurich, Switzerland
8 Department of Computational Linguistics, University of Zurich, Zurich, Switzerland
15 Swiss Institute of Bioinformatics, Switzerland
14 Fondazione Bruno Kessler, Trento, Italy
1 Digital Society Initiative, University of Zurich, Zurich, Switzerland
University of the Philippines Manila, PHILIPPINES
11 Department of Geography, University of Zurich, Zurich, Switzerland
10 Center of Dental Medicine, University of Zurich, Zurich, Switzerland
9 Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
3 Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland
6 Department of Psychology, University of Zurich, Zurich, Switzerland
7 Epidemiology, Biostatistics and Prevention Institute, University of Z
AuthorAffiliation_xml – name: 10 Center of Dental Medicine, University of Zurich, Zurich, Switzerland
– name: 2 Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
– name: 15 Swiss Institute of Bioinformatics, Switzerland
– name: 5 CoupleSense: Health and Interpersonal Emotion Regulation Group, University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
– name: 14 Fondazione Bruno Kessler, Trento, Italy
– name: 3 Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland
– name: 7 Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
– name: 11 Department of Geography, University of Zurich, Zurich, Switzerland
– name: 1 Digital Society Initiative, University of Zurich, Zurich, Switzerland
– name: University of the Philippines Manila, PHILIPPINES
– name: 13 Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
– name: 12 Dalle Molle Institute for Artificial Intelligence (IDSIA), Switzerland
– name: 9 Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
– name: 6 Department of Psychology, University of Zurich, Zurich, Switzerland
– name: 4 Center for Gerontology, University of Zurich, Zurich, Switzerland
– name: 8 Department of Computational Linguistics, University of Zurich, Zurich, Switzerland
Author_xml – sequence: 1
  givenname: Jana
  orcidid: 0000-0002-6887-5941
  surname: Sedlakova
  fullname: Sedlakova, Jana
– sequence: 2
  givenname: Paola
  surname: Daniore
  fullname: Daniore, Paola
– sequence: 3
  givenname: Andrea
  surname: Horn Wintsch
  fullname: Horn Wintsch, Andrea
– sequence: 4
  givenname: Markus
  surname: Wolf
  fullname: Wolf, Markus
– sequence: 5
  givenname: Mina
  orcidid: 0000-0002-6477-7164
  surname: Stanikic
  fullname: Stanikic, Mina
– sequence: 6
  givenname: Christina
  surname: Haag
  fullname: Haag, Christina
– sequence: 7
  givenname: Chloé
  orcidid: 0000-0002-6642-5082
  surname: Sieber
  fullname: Sieber, Chloé
– sequence: 8
  givenname: Gerold
  surname: Schneider
  fullname: Schneider, Gerold
– sequence: 9
  givenname: Kaspar
  surname: Staub
  fullname: Staub, Kaspar
– sequence: 10
  givenname: Dominik
  surname: Alois Ettlin
  fullname: Alois Ettlin, Dominik
– sequence: 11
  givenname: Oliver
  surname: Grübner
  fullname: Grübner, Oliver
– sequence: 12
  givenname: Fabio
  surname: Rinaldi
  fullname: Rinaldi, Fabio
– sequence: 13
  givenname: Viktor
  orcidid: 0000-0002-8754-9797
  surname: von Wyl
  fullname: von Wyl, Viktor
BookMark eNp9kk1vEzEQhleoiJbSf8DBEhcuCf7Y7Kx7QVXER6VKXOBsjT8268ixg71b6L_HIQHRHvDFo_E7j1975mVzFlN0TfOa0SUTwN5t05wjhuXe-s2S1iVaeNZccOhgIRjQs3_i8-aqlG3V8J5RkOxFcy6gZ1IyetH8XI8YgosbVwhGS7QrE9lnNJM3NTWkTOoVfsJA5limPJtpzs4SixMSF7M3487FifhIRodhGkl2xWE24zW5IeWhTG6HlUUi5lyDe1cF9979eNU8HzAUd3XaL5tvHz98XX9e3H35dLu-uVsYIVewsMyhthYNygG57jWjK-BWQjf0fcsBpOQamOR0kB1dWYBOa8cpAAwDNVxcNrdHrk24Vfvsd5gfVEKvfidS3ijM1WBwyhprqTO97LloKWoUHbYGweqBgW5lZb0_svaz3jlr6sMzhkfQxyfRj2qT7lU13XUg2kp4eyLk9H2uf612vhgXAkaX5qJ4D10nVnLFqvTNE-mp6UUJ2lce73qoqvaoMjmVkt3w1w2j6jAqf6rUYVTUaVRq2fWTMlN7PPl08O3D_4t_AXHIzIY
CitedBy_id crossref_primary_10_1089_omi_2023_0197
crossref_primary_10_1016_j_arthro_2024_12_010
crossref_primary_10_2196_64226
crossref_primary_10_1001_jamanetworkopen_2024_51700
crossref_primary_10_1093_ppar_prae023
crossref_primary_10_1016_j_jhydrol_2024_131783
crossref_primary_10_2196_56369
crossref_primary_10_3390_life15010094
crossref_primary_10_1093_inthealth_ihaf015
crossref_primary_10_1001_jamanetworkopen_2025_0128
crossref_primary_10_1093_jamiaopen_ooae104
crossref_primary_10_1007_s43621_024_00212_7
crossref_primary_10_3389_fpubh_2024_1392180
crossref_primary_10_1200_CCI_24_00032
crossref_primary_10_3389_fped_2024_1483940
Cites_doi 10.1038/s41746-019-0166-1
10.1212/WNL.0b013e318258f812
10.15420/aer.2020.26
10.1177/1473871611415994
10.2196/16814
10.2196/jmir.4738
10.1007/978-981-32-9949-8_22
10.1038/s41598-020-78418-8
10.1056/NEJMra1806949
10.1007/s13311-020-00846-1
10.1016/j.yebeh.2019.106457
10.1536/ihj.18-113
10.3233/JPD-191712
10.1016/j.pedhc.2015.08.001
10.1136/jech.2003.008466
10.1159/000502951
10.1146/annurev-neuro-101220-014053
10.1038/d41573-020-00080-6
10.1093/eurheartj/ehx487
10.1111/1467-8551.12332
10.1093/milmed/usx146
10.1192/pb.bp.116.055053
10.1136/bmj.b605
10.3389/fmed.2019.00036
10.2196/16760
10.1002/wics.1549
10.1017/cts.2020.24
10.2196/12239
10.1080/02841850701772706
10.1007/978-1-4020-5614-7_2081
10.2196/14473
10.2196/24473
10.1093/ije/dyx177
10.1093/ajcn/82.3.657
10.1186/s12874-019-0774-0
10.4258/hir.2019.25.1.1
10.2196/24465
10.3390/info10040137
10.1016/j.gpb.2018.10.007
10.1186/s12911-021-01392-2
10.1016/j.mayocp.2021.02.010
10.1186/s40708-020-00113-1
10.1161/CIRCOUTCOMES.118.004741
10.2196/15901
10.1159/000512500
10.1038/nrcardio.2016.42
10.3390/jpm11040280
10.18865/ed.27.2.95
10.2196/16875
10.1007/s10916-019-1346-x
10.1093/jamia/ocz049
10.1136/bmjopen-2015-008721
10.1007/s00127-016-1294-4
10.1016/j.future.2020.07.047
ContentType Journal Article
Copyright 2023 Sedlakova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2023 Sedlakova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2023 Sedlakova et al 2023 Sedlakova et al
Copyright_xml – notice: 2023 Sedlakova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2023 Sedlakova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2023 Sedlakova et al 2023 Sedlakova et al
CorporateAuthor for the University of Zurich Digital Society Initiative (UZH-DSI) Health Community
CorporateAuthor_xml – name: for the University of Zurich Digital Society Initiative (UZH-DSI) Health Community
DBID AAYXX
CITATION
3V.
7X7
7XB
8C1
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1371/journal.pdig.0000347
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest One Sustainability
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Challenges and best practices for digital unstructured data enrichment in health research
EISSN 2767-3170
ExternalDocumentID oai_doaj_org_article_dcdd0ec8982340aba36a4ca7dbf17b49
PMC10566734
10_1371_journal_pdig_0000347
GrantInformation_xml – fundername: ;
GroupedDBID 53G
7X7
8C1
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABUWG
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EIHBH
FPL
FYUFA
GROUPED_DOAJ
HMCUK
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c3957-d1eabddaca9fa2b8b10572d976f884277992b71920f9605d776bbe20777ff0c23
IEDL.DBID DOA
ISSN 2767-3170
IngestDate Wed Aug 27 01:27:22 EDT 2025
Thu Aug 21 18:35:40 EDT 2025
Thu Sep 04 18:39:55 EDT 2025
Sat Jul 26 02:53:35 EDT 2025
Tue Jul 01 04:13:29 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3957-d1eabddaca9fa2b8b10572d976f884277992b71920f9605d776bbe20777ff0c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-8754-9797
0000-0002-6477-7164
0000-0002-6887-5941
0000-0002-6642-5082
OpenAccessLink https://doaj.org/article/dcdd0ec8982340aba36a4ca7dbf17b49
PMID 37819910
PQID 3085662687
PQPubID 6980581
ParticipantIDs doaj_primary_oai_doaj_org_article_dcdd0ec8982340aba36a4ca7dbf17b49
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10566734
proquest_miscellaneous_2876635951
proquest_journals_3085662687
crossref_primary_10_1371_journal_pdig_0000347
crossref_citationtrail_10_1371_journal_pdig_0000347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLOS digital health
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pdig.0000347.ref056
DG Altman (pdig.0000347.ref060) 2009; 338
KH Jones (pdig.0000347.ref068) 2020; 22
KL Harron (pdig.0000347.ref020) 2017; 46
G Perera (pdig.0000347.ref013) 2016; 6
pdig.0000347.ref055
Y Wang (pdig.0000347.ref028) 2019; 30
K Adnan (pdig.0000347.ref006) 2020
A Termine (pdig.0000347.ref009) 2021; 11
SN Payrovnaziri (pdig.0000347.ref044) 2019; 264
AU Andy (pdig.0000347.ref012) 2021; 5
JJ Deferio (pdig.0000347.ref036) 2019; 26
pdig.0000347.ref052
pdig.0000347.ref051
G. Trajković (pdig.0000347.ref063) 2008
Y Kim (pdig.0000347.ref066) 2016; 18
I Ahn (pdig.0000347.ref048) 2021; 21
S Succi (pdig.0000347.ref019) 2019; 377
pdig.0000347.ref002
D Stephenson (pdig.0000347.ref005) 2020; 4
P Shi (pdig.0000347.ref057) 2019; 10
M Tayefi (pdig.0000347.ref007) 2021; 13
B Shen (pdig.0000347.ref010) 2019; 17
A Papadopoulos (pdig.0000347.ref043) 2020; 10
M Bradway (pdig.0000347.ref070) 2020; 8
LM Blair (pdig.0000347.ref037) 2016; 30
M Delgado-Rodríguez (pdig.0000347.ref058) 2004; 58
H Hemingway (pdig.0000347.ref004) 2018; 39
A Ercole (pdig.0000347.ref053) 2020; 4
JD Hafferty (pdig.0000347.ref011) 2017; 52
X Zhang (pdig.0000347.ref015) 2017; 27
C Kaur (pdig.0000347.ref029) 2023; 81
EG Ross (pdig.0000347.ref045) 2019; 12
(pdig.0000347.ref064) 2019
T Matoba (pdig.0000347.ref049) 2019; 60
R Badawy (pdig.0000347.ref003) 2019; 3
MJ Page (pdig.0000347.ref030) 2021; 372
H-J Kong (pdig.0000347.ref001) 2019; 25
SN Baldassano (pdig.0000347.ref032) 2019; 101
JS Rumsfeld (pdig.0000347.ref038) 2016; 13
WA Kukull (pdig.0000347.ref065) 2012; 78
F Cerreta (pdig.0000347.ref054) 2020; 19
J. Ranstam (pdig.0000347.ref062) 2008; 49
RS D’Souza (pdig.0000347.ref061) 2021; 96
P. Schofield (pdig.0000347.ref039) 2017; 41
B. Foreman (pdig.0000347.ref018) 2020; 17
JL Freudenheim (pdig.0000347.ref059) 2005; 82
S Dash (pdig.0000347.ref026) 2019
S Kandel (pdig.0000347.ref023) 2011; 10
S Park (pdig.0000347.ref024) 2019; 7
pdig.0000347.ref031
pdig.0000347.ref072
S Sheikhalishahi (pdig.0000347.ref017) 2019; 7
pdig.0000347.ref069
A Haines-Delmont (pdig.0000347.ref040) 2020; 8
E Sükei (pdig.0000347.ref047) 2021; 9
pdig.0000347.ref067
A Caliebe (pdig.0000347.ref027) 2019; 19
CM Gillan (pdig.0000347.ref050) 2021; 44
AJ Espay (pdig.0000347.ref016) 2016
K Huckvale (pdig.0000347.ref014) 2019; 2
F Ali (pdig.0000347.ref025) 2021; 114
L van den Heuvel (pdig.0000347.ref034) 2020; 10
I. Sim (pdig.0000347.ref021) 2019; 381
T Hulsen (pdig.0000347.ref022) 2021
RA Clark (pdig.0000347.ref035) 2019; 7
MSR Sajal (pdig.0000347.ref046) 2020; 7
B Li (pdig.0000347.ref042) 2019; 43
RR van de Leur (pdig.0000347.ref071) 2020; 9
A Silverio (pdig.0000347.ref008) 2019; 6
A Rodriguez (pdig.0000347.ref033) 2018; 183
NC Jacobson (pdig.0000347.ref041) 2020; 22
References_xml – volume: 2
  start-page: 88
  year: 2019
  ident: pdig.0000347.ref014
  article-title: Toward clinical digital phenotyping: a timely opportunity to consider purpose, quality, and safety
  publication-title: NPJ digital medicine
  doi: 10.1038/s41746-019-0166-1
– volume: 78
  start-page: 1886
  year: 2012
  ident: pdig.0000347.ref065
  article-title: Generalizability: the trees, the forest, and the low-hanging fruit
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318258f812
– ident: pdig.0000347.ref055
– volume: 9
  start-page: 146
  year: 2020
  ident: pdig.0000347.ref071
  article-title: Big Data and Artificial Intelligence: Opportunities and Threats in Electrophysiology
  publication-title: Arrhythmia & electrophysiology review
  doi: 10.15420/aer.2020.26
– volume: 10
  start-page: 271
  year: 2011
  ident: pdig.0000347.ref023
  article-title: Research directions in data wrangling: Visualizations and transformations for usable and credible data
  publication-title: Information Visualization
  doi: 10.1177/1473871611415994
– volume: 8
  start-page: e16814
  year: 2020
  ident: pdig.0000347.ref070
  article-title: Methods and Measures Used to Evaluate Patient-Operated Mobile Health Interventions: Scoping Literature Review
  publication-title: JMIR mHealth and uHealth
  doi: 10.2196/16814
– volume: 18
  start-page: e41
  year: 2016
  ident: pdig.0000347.ref066
  article-title: Garbage in, Garbage Out: Data Collection, Quality Assessment and Reporting Standards for Social Media Data Use in Health Research, Infodemiology and Digital Disease Detection
  publication-title: Journal of medical Internet research
  doi: 10.2196/jmir.4738
– start-page: 301
  volume-title: Data Management, Analytics and Innovation
  year: 2020
  ident: pdig.0000347.ref006
  doi: 10.1007/978-981-32-9949-8_22
– volume: 10
  start-page: 21370
  year: 2020
  ident: pdig.0000347.ref043
  article-title: Unobtrusive detection of Parkinson’s disease from multi-modal and in-the-wild sensor data using deep learning techniques
  publication-title: Scientific reports
  doi: 10.1038/s41598-020-78418-8
– volume: 381
  start-page: 956
  year: 2019
  ident: pdig.0000347.ref021
  article-title: Mobile Devices and Health
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1806949
– volume: 17
  start-page: 593
  year: 2020
  ident: pdig.0000347.ref018
  article-title: Neurocritical Care: Bench to Bedside (Eds. Claude Hemphill, Michael James) Integrating and Using Big Data in Neurocritical Care
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-020-00846-1
– volume: 101
  start-page: 106457
  year: 2019
  ident: pdig.0000347.ref032
  article-title: Big data in status epilepticus
  publication-title: Epilepsy & behavior: E&B
  doi: 10.1016/j.yebeh.2019.106457
– volume: 60
  start-page: 264
  year: 2019
  ident: pdig.0000347.ref049
  article-title: Architecture of the Japan Ischemic Heart Disease Multimodal Prospective Data Acquisition for Precision Treatment (J-IMPACT) System
  publication-title: International heart journal
  doi: 10.1536/ihj.18-113
– volume: 10
  start-page: 223
  year: 2020
  ident: pdig.0000347.ref034
  article-title: Quadruple Decision Making for Parkinson’s Disease Patients: Combining Expert Opinion, Patient Preferences, Scientific Evidence, and Big Data Approaches to Reach Precision Medicine
  publication-title: J Parkinsons Dis
  doi: 10.3233/JPD-191712
– volume: 30
  start-page: 84
  year: 2016
  ident: pdig.0000347.ref037
  article-title: Publicly Available Data and Pediatric Mental Health: Leveraging Big Data to Answer Big Questions for Children
  publication-title: J Pediatr Health Care
  doi: 10.1016/j.pedhc.2015.08.001
– volume: 58
  start-page: 635
  year: 2004
  ident: pdig.0000347.ref058
  article-title: Bias
  publication-title: J Epidemiol Community Health
  doi: 10.1136/jech.2003.008466
– volume: 3
  start-page: 116
  year: 2019
  ident: pdig.0000347.ref003
  article-title: Metadata Concepts for Advancing the Use of Digital Health Technologies in Clinical Research
  publication-title: Digital biomarkers
  doi: 10.1159/000502951
– volume: 44
  start-page: 129
  year: 2021
  ident: pdig.0000347.ref050
  article-title: Smartphones and the Neuroscience of Mental Health
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev-neuro-101220-014053
– volume: 19
  start-page: 573
  year: 2020
  ident: pdig.0000347.ref054
  article-title: Digital technologies for medicines: shaping a framework for success
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/d41573-020-00080-6
– volume: 39
  start-page: 1481
  year: 2018
  ident: pdig.0000347.ref004
  article-title: Big data from electronic health records for early and late translational cardiovascular research: challenges and potential
  publication-title: European Heart Journal
  doi: 10.1093/eurheartj/ehx487
– ident: pdig.0000347.ref069
– volume: 30
  start-page: 362
  year: 2019
  ident: pdig.0000347.ref028
  article-title: Leveraging Big Data Analytics to Improve Quality of Care in Healthcare Organizations: A Configurational Perspective
  publication-title: British Journal of Management
  doi: 10.1111/1467-8551.12332
– volume: 183
  start-page: 99
  year: 2018
  ident: pdig.0000347.ref033
  article-title: Medical Device Connectivity Challenges Outline the Technical Requirements and Standards For Promoting Big Data Research and Personalized Medicine in Neurocritical Care
  publication-title: Military medicine
  doi: 10.1093/milmed/usx146
– volume: 41
  start-page: 129
  year: 2017
  ident: pdig.0000347.ref039
  article-title: Big data in mental health research—do the ns justify the means? Using large data-sets of electronic health records for mental health research
  publication-title: BJPsych bulletin
  doi: 10.1192/pb.bp.116.055053
– ident: pdig.0000347.ref052
– volume: 338
  start-page: b605
  year: 2009
  ident: pdig.0000347.ref060
  article-title: Prognosis and prognostic research: validating a prognostic model
  publication-title: BMJ
  doi: 10.1136/bmj.b605
– volume: 6
  start-page: 36
  year: 2019
  ident: pdig.0000347.ref008
  article-title: Big Health Data and Cardiovascular Diseases: A Challenge for Research, an Opportunity for Clinical Care
  publication-title: Frontiers in medicine
  doi: 10.3389/fmed.2019.00036
– volume: 22
  start-page: e16760
  year: 2020
  ident: pdig.0000347.ref068
  article-title: Toward the Development of Data Governance Standards for Using Clinical Free-Text Data in Health Research: Position Paper
  publication-title: Journal of medical Internet research
  doi: 10.2196/16760
– volume: 13
  year: 2021
  ident: pdig.0000347.ref007
  article-title: Challenges and opportunities beyond structured data in analysis of electronic health records
  publication-title: WIREs Computational Statistics
  doi: 10.1002/wics.1549
– start-page: 69
  year: 2021
  ident: pdig.0000347.ref022
  publication-title: Challenges and solutions for big data in personalized healthcare
– ident: pdig.0000347.ref056
– ident: pdig.0000347.ref031
– start-page: 6
  year: 2019
  ident: pdig.0000347.ref026
  article-title: Big data in healthcare: management, analysis and future prospects
  publication-title: Journal of Big Data
– volume: 4
  start-page: 354
  year: 2020
  ident: pdig.0000347.ref053
  article-title: Guidelines for Data Acquisition, Quality and Curation for Observational Research Designs (DAQCORD)
  publication-title: J Clin Trans Sci
  doi: 10.1017/cts.2020.24
– volume: 7
  start-page: e12239
  year: 2019
  ident: pdig.0000347.ref017
  article-title: Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review
  publication-title: JMIR Medical Informatics
  doi: 10.2196/12239
– volume: 377
  start-page: 20180145
  year: 2019
  ident: pdig.0000347.ref019
  article-title: Big data: the end of the scientific method?
  publication-title: Philosophical transactions Series A, Mathematical, physical, and engineering sciences
– volume: 49
  start-page: 105
  year: 2008
  ident: pdig.0000347.ref062
  article-title: Methodological note: accuracy, precision, and validity
  publication-title: Acta radiologica (Stockholm, Sweden: 1987)
  doi: 10.1080/02841850701772706
– start-page: 888
  volume-title: Encyclopedia of Public Health
  year: 2008
  ident: pdig.0000347.ref063
  doi: 10.1007/978-1-4020-5614-7_2081
– volume: 7
  start-page: e14473
  year: 2019
  ident: pdig.0000347.ref024
  article-title: Clustering Insomnia Patterns by Data From Wearable Devices: Algorithm Development and Validation Study
  publication-title: JMIR mHealth and uHealth
  doi: 10.2196/14473
– ident: pdig.0000347.ref072
– volume: 81
  start-page: 806
  year: 2023
  ident: pdig.0000347.ref029
  article-title: Artificial intelligence techniques for cancer detection in medical image processing: A review. Materials Today
  publication-title: Proceedings
– ident: pdig.0000347.ref051
– volume: 5
  start-page: e24473
  year: 2021
  ident: pdig.0000347.ref012
  article-title: Predicting Cardiovascular Risk Using Social Media Data: Performance Evaluation of Machine-Learning Models
  publication-title: JMIR cardio
  doi: 10.2196/24473
– volume: 46
  start-page: 1699
  year: 2017
  ident: pdig.0000347.ref020
  article-title: A guide to evaluating linkage quality for the analysis of linked data
  publication-title: International Journal of Epidemiology
  doi: 10.1093/ije/dyx177
– year: 2016
  ident: pdig.0000347.ref016
  article-title: Technology in Parkinson’s disease: Challenges and opportunities
  publication-title: Movement disorders: official journal of the Movement Disorder Society
– volume: 82
  start-page: 657
  year: 2005
  ident: pdig.0000347.ref059
  article-title: Alcohol consumption and risk of lung cancer: a pooled analysis of cohort studies
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/82.3.657
– volume: 19
  year: 2019
  ident: pdig.0000347.ref027
  article-title: Does big data require a methodological change in medical research?
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/s12874-019-0774-0
– volume: 25
  start-page: 1
  year: 2019
  ident: pdig.0000347.ref001
  article-title: Managing Unstructured Big Data in Healthcare System
  publication-title: Healthcare informatics research
  doi: 10.4258/hir.2019.25.1.1
– volume: 9
  start-page: e24465
  year: 2021
  ident: pdig.0000347.ref047
  article-title: Predicting Emotional States Using Behavioral Markers Derived From Passively Sensed Data: Data-Driven Machine Learning Approach
  publication-title: JMIR mHealth and uHealth
  doi: 10.2196/24465
– volume: 10
  start-page: 137
  year: 2019
  ident: pdig.0000347.ref057
  article-title: Data Consistency Theory and Case Study for Scientific Big Data
  publication-title: Information
  doi: 10.3390/info10040137
– ident: pdig.0000347.ref067
– volume: 17
  start-page: 415
  year: 2019
  ident: pdig.0000347.ref010
  article-title: Translational Informatics for Parkinson’s Disease: from Big Biomedical Data to Small Actionable Alterations
  publication-title: Genomics, proteomics & bioinformatics
  doi: 10.1016/j.gpb.2018.10.007
– volume: 21
  start-page: 29
  year: 2021
  ident: pdig.0000347.ref048
  article-title: CardioNet: a manually curated database for artificial intelligence-based research on cardiovascular diseases
  publication-title: BMC medical informatics and decision making
  doi: 10.1186/s12911-021-01392-2
– volume: 96
  start-page: 2218
  year: 2021
  ident: pdig.0000347.ref061
  article-title: A Proposed Approach for Conducting Studies That Use Data From Social Media Platforms
  publication-title: Mayo Clinic proceedings
  doi: 10.1016/j.mayocp.2021.02.010
– volume: 7
  start-page: 12
  year: 2020
  ident: pdig.0000347.ref046
  article-title: Telemonitoring Parkinson’s disease using machine learning by combining tremor and voice analysis
  publication-title: Brain Inform
  doi: 10.1186/s40708-020-00113-1
– ident: pdig.0000347.ref002
– volume: 12
  start-page: e004741
  year: 2019
  ident: pdig.0000347.ref045
  article-title: Predicting Future Cardiovascular Events in Patients With Peripheral Artery Disease Using Electronic Health Record Data
  publication-title: Circulation Cardiovascular quality and outcomes
  doi: 10.1161/CIRCOUTCOMES.118.004741
– volume: 8
  start-page: e15901
  year: 2020
  ident: pdig.0000347.ref040
  article-title: Testing Suicide Risk Prediction Algorithms Using Phone Measurements With Patients in Acute Mental Health Settings: Feasibility Study
  publication-title: JMIR mHealth and uHealth
  doi: 10.2196/15901
– volume: 4
  start-page: 28
  year: 2020
  ident: pdig.0000347.ref005
  article-title: Precompetitive Consensus Building to Facilitate the Use of Digital Health Technologies to Support Parkinson Disease Drug Development through Regulatory Science
  publication-title: Digital biomarkers
  doi: 10.1159/000512500
– volume: 13
  start-page: 350
  year: 2016
  ident: pdig.0000347.ref038
  article-title: Big data analytics to improve cardiovascular care: promise and challenges
  publication-title: Nature reviews Cardiology
  doi: 10.1038/nrcardio.2016.42
– volume: 11
  year: 2021
  ident: pdig.0000347.ref009
  article-title: Multi-Layer Picture of Neurodegenerative Diseases: Lessons from the Use of Big Data through Artificial Intelligence
  publication-title: Journal of personalized medicine
  doi: 10.3390/jpm11040280
– volume-title: Reproducibility and Replicability in Science
  year: 2019
  ident: pdig.0000347.ref064
– volume: 27
  start-page: 95
  year: 2017
  ident: pdig.0000347.ref015
  article-title: Big Data Science: Opportunities and Challenges to Address Minority Health and Health Disparities in the 21st Century
  publication-title: Ethnicity & disease
  doi: 10.18865/ed.27.2.95
– volume: 7
  year: 2019
  ident: pdig.0000347.ref035
  article-title: The Keeping on Track Study: Exploring the Activity Levels and Utilization of Healthcare Services of Acute Coronary Syndrome (ACS) Patients in the First 30-Days after Discharge from Hospital
  publication-title: Medical sciences (Basel, Switzerland)
– volume: 372
  start-page: n71
  year: 2021
  ident: pdig.0000347.ref030
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ (Clinical research ed)
– volume: 22
  start-page: e16875
  year: 2020
  ident: pdig.0000347.ref041
  article-title: Digital Biomarkers of Social Anxiety Severity: Digital Phenotyping Using Passive Smartphone Sensors
  publication-title: Journal of medical Internet research
  doi: 10.2196/16875
– volume: 43
  start-page: 228
  year: 2019
  ident: pdig.0000347.ref042
  article-title: Computer-Aided Diagnosis and Clinical Trials of Cardiovascular Diseases Based on Artificial Intelligence Technologies for Risk-Early Warning Model
  publication-title: Journal of medical systems
  doi: 10.1007/s10916-019-1346-x
– volume: 26
  start-page: 895
  year: 2019
  ident: pdig.0000347.ref036
  article-title: Social determinants of health in mental health care and research: a case for greater inclusion
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1093/jamia/ocz049
– volume: 6
  start-page: e008721
  year: 2016
  ident: pdig.0000347.ref013
  article-title: Cohort profile of the South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLaM BRC) Case Register: current status and recent enhancement of an Electronic Mental Health Record-derived data resource
  publication-title: BMJ open
  doi: 10.1136/bmjopen-2015-008721
– volume: 264
  start-page: 273
  year: 2019
  ident: pdig.0000347.ref044
  article-title: Enhancing Prediction Models for One-Year Mortality in Patients with Acute Myocardial Infarction and Post Myocardial Infarction Syndrome
  publication-title: Studies in health technology and informatics
– volume: 52
  start-page: 127
  year: 2017
  ident: pdig.0000347.ref011
  article-title: Invited Commentary on Stewart and Davis \textquotedbl “Big data” in mental health research-current status and emerging possibilities\textquotedbl
  publication-title: Social psychiatry and psychiatric epidemiology
  doi: 10.1007/s00127-016-1294-4
– volume: 114
  start-page: 23
  year: 2021
  ident: pdig.0000347.ref025
  article-title: An intelligent healthcare monitoring framework using wearable sensors and social networking data
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2020.07.047
SSID ssj0002810791
Score 2.3095717
Snippet Digital data play an increasingly important role in advancing health research and care. However, most digital data in healthcare are in an unstructured and...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0000347
SubjectTerms Best practice
Big Data
Cardiology
Computer and Information Sciences
Electronic health records
Engineering and Technology
Hypotheses
Medical research
Medicine and Health Sciences
Mental health
Neurology
Research and Analysis Methods
Sensors
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELWgSIhLxadYKGiQuIYmthPbXFCpqCqkcqLS3iJ_dldC2WXDSvz8ziTOtrmAckucxPJMMs8ez3uMfcQQVSdDdVta-EIGVxW2bkwRVG0xvgQ8qDj56kdzeS2_L-tlXnDr87bK6Z84_KjDxtMa-alAbNAg-tbqy_Z3QapRlF3NEhoP2aOBugz9WS3VYY2Fa5zcmCpXzAlVnWYDfdqG9c1AXShIV-VeRBqI-2doc75X8l7wuXjKjjNqhLPRzM_Yg9g9Z4-vcl78Bft7Pmmi9GC7AA6fCVMBVA8ITAG7QvogsM-UsftdDED7QwE9aO1XtEoI6w7GwkjIJECrz3AGd2zP0NndSBUOY83LS3Z98e3n-WWRNRUKTxm5IlTRuhCstyZZ7rQjnV8eEJQkrSVXyhjuFMK-MuHcpg5KNc5FXiqlUio9F6_YUbfp4msGUaZUcymsqZP09IyyjJFjRNTORmcWTEzj2vpMOE66F7_aIYumcOIxjl5L1mizNRasONy1HQk3_tP-K5ns0JbosocTm91Nm7--NvgQyui10VzI0jorGiu9VcGlSjmJXT2ZDD69pG_vPG7BPhwu49dHKRXbxc2-b3G-SZANYeqC6ZmjzDo0v9KtVwOPNw49ia7KN_9--1v2hDTuxx2EJ-wInSS-QyT0x70f3P0WEiUPXA
  priority: 102
  providerName: ProQuest
Title Challenges and best practices for digital unstructured data enrichment in health research: A systematic narrative review
URI https://www.proquest.com/docview/3085662687
https://www.proquest.com/docview/2876635951
https://pubmed.ncbi.nlm.nih.gov/PMC10566734
https://doaj.org/article/dcdd0ec8982340aba36a4ca7dbf17b49
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtCqGX0jYp3SZdVOjViSzJlpRbsiSEQkIIDezN6NndUpyQ7UJ-fkYPb9enXIrBB0u2ZM2I-UbSfIPQdzBRTVAxbksyW3Fn6ko3raqcaDTYFwdXDE6-um4v7_iPeTPfSvUVz4RleuA8cMfOOke8lUpSxok2mrWaWy2cCbUwPIXuEUW2nKnfackI3BpVl1g5JurjIpqjB7f8lUgLWcyosmWLEmX_CGeOT0lumZ2L9-hdwYv4NPfzA3rl-49o96rsiO-hp9mQDWWFde-wgW_iIfRphQGSYuhKzAyC14Usdv3oHY4nQzHoztIu4vogXvY4h0TiQv-zOMGn-B_PM-71YyYJxznaZR_dXZz_nF1WJZtCZeNeXOVqr41z2moVNDXSxAy_1AEcCVJyKoRS1AgAfCSAV9M4IVpjPCVCiBCIpewT2unve_8ZYc9DaChnWjWB2_gNQrynYAul0d6oCWLDuHa2UI3HjBd_urR_JsDlyKPXRWl0RRoTVG3eeshUGy_UP4si29SNRNnpAahPV9Sne0l9JuhwEPjQyKpjgENb8PQktPFtUwzzLm6m6N7fr1cdeJoRrAFAnSA5UpRRh8Yl_XKRGLxh6GO6Vf7lf_zCAXpLAXnlE4aHaAdUyX8FpPTXTNFrMRdwl7N6it6cnV_f3E7TRJmmZa1nRB4drg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWmThq8IBggCgOMBI9hiePEDhKatrGpY2uF0CbtLfhzrYTS0lABf4rfuHsTp1te4GnqW_Nl-V77Hvv6nkPIWwhRmS-wbkumJuJWJ5HK8iKyIlMQXyz8sDh5PMlHF_zzZXa5Qf52tTB4rLKbE5uJ2s4N7pHvpoANckDfUuwtfkSoGoXZ1U5Co3WLU_fnFyzZ6o8nn8C-7xg7Pjo_HEVBVSAymJOKbOKUtlYZVXjFtNSodMsshGUvJWdCFAXTAoBP7AHdZ1aIXGvHYiGE97FBogOY8jc5VrQOyObB0eTL1_WuDpOwnCqSUKOXimQ3uMT7hZ1dNWSJKSq53IqBjVRAD9_2T2feCnfHD8mDgFPpfutYj8iGq7bJ1jhk4h-T34edCktNVWWphnfSruSqpgCFKTQFFUnoKpDUrpbOUjyRSsFnZ2aK-5J0VtG2FJMG2qHpB7pPb_ilaaWWLTk5batsnpCLO-nvp2RQzSv3jFDHvc8YT1WReW7wHXHsHIMYLLVyuhiStOvX0gSKc1Ta-F42eTsBS52290q0RhmsMSTR-qlFS_Hxn_sP0GTre5Ggu_ljvrwqw3gvrbE2dkYWkqU8VlqlueJGCat9IjSHpu50Bu8-Upc3Pj4kb9aXYbxjEkdVbr6qS1jhIkgEYDwksucovQb1r1SzacMcDl2PMq_8-b-__prcG52Pz8qzk8npC3KfAa5rzy_ukAE4jHsJOOynfhWcn5Jvdz3ergE27U0l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+best+practices+for+digital+unstructured+data+enrichment+in+health+research%3A+A+systematic+narrative+review&rft.jtitle=PLOS+digital+health&rft.au=Sedlakova%2C+Jana&rft.au=Daniore%2C+Paola&rft.au=Horn+Wintsch%2C+Andrea&rft.au=Wolf%2C+Markus&rft.date=2023-10-01&rft.issn=2767-3170&rft.eissn=2767-3170&rft.volume=2&rft.issue=10&rft.spage=e0000347&rft_id=info:doi/10.1371%2Fjournal.pdig.0000347&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pdig_0000347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-3170&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-3170&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-3170&client=summon