Annealing‐Induced Hardening in Ultrafine‐Grained and Nanocrystalline Materials

Annealing of deformed metals is considered as a process necessarily leading to softening due to the annihilation of lattice defects. However, in ultrafine‐grained (UFG) and nanocrystalline materials, annealing at moderate temperatures may induce hardening. This review summarizes those effects that c...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials Vol. 22; no. 1
Main Author Gubicza, Jenő
Format Journal Article
LanguageEnglish
Published 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Annealing of deformed metals is considered as a process necessarily leading to softening due to the annihilation of lattice defects. However, in ultrafine‐grained (UFG) and nanocrystalline materials, annealing at moderate temperatures may induce hardening. This review summarizes those effects that can result in annealing‐induced hardening (AH) in fine‐grained materials. It is noted that only those hardening phenomena are considered as AH effects that are not accompanied by the change of the phase composition and/or the grain size. Therefore, herein, strengthening caused by precipitation is not discussed. It is shown that heat treatment of nanomaterials can cause hardening due to the relaxation of grain boundaries and segregation of alloying elements to the grain boundaries as these effects hinder the occurrence of grain boundary sliding. For UFG metallic materials processed by severe plastic deformation techniques, the annihilation of mobile dislocations and the clustering of the remaining dislocations into low‐angle grain boundaries during annealing can yield hardening. It is also shown that plastic deformation after annealing can cause a restoration of the yield strength and hardness to the same level as observed before annealing. The possible reasons of this deformation‐induced softening effect are discussed in detail. Short‐time annealing at moderate temperatures may yield hardening in ultrafine‐grained and nanocrystalline materials. The relative increase in the yield strength or hardness is usually between 3% and 30%; however, extremely large annealing‐induced hardening (126%) is observed in electrodeposited Ni‐Mo alloys. Herein, the main reasons of anneal‐hardening are discussed in detail.
AbstractList Annealing of deformed metals is considered as a process necessarily leading to softening due to the annihilation of lattice defects. However, in ultrafine‐grained (UFG) and nanocrystalline materials, annealing at moderate temperatures may induce hardening. This review summarizes those effects that can result in annealing‐induced hardening (AH) in fine‐grained materials. It is noted that only those hardening phenomena are considered as AH effects that are not accompanied by the change of the phase composition and/or the grain size. Therefore, herein, strengthening caused by precipitation is not discussed. It is shown that heat treatment of nanomaterials can cause hardening due to the relaxation of grain boundaries and segregation of alloying elements to the grain boundaries as these effects hinder the occurrence of grain boundary sliding. For UFG metallic materials processed by severe plastic deformation techniques, the annihilation of mobile dislocations and the clustering of the remaining dislocations into low‐angle grain boundaries during annealing can yield hardening. It is also shown that plastic deformation after annealing can cause a restoration of the yield strength and hardness to the same level as observed before annealing. The possible reasons of this deformation‐induced softening effect are discussed in detail. Short‐time annealing at moderate temperatures may yield hardening in ultrafine‐grained and nanocrystalline materials. The relative increase in the yield strength or hardness is usually between 3% and 30%; however, extremely large annealing‐induced hardening (126%) is observed in electrodeposited Ni‐Mo alloys. Herein, the main reasons of anneal‐hardening are discussed in detail.
Author Gubicza, Jenő
Author_xml – sequence: 1
  givenname: Jenő
  orcidid: 0000-0002-8938-7293
  surname: Gubicza
  fullname: Gubicza, Jenő
  email: jeno.gubicza@ttk.elte.hu
  organization: Eötvös Loránd University
BookMark eNqFkM1KAzEUhYNUsK1uXc8LTL3JTJLJstTaFqyC2PVwzY9EphnJjEh3PoLP6JOYUlEQxNU5HM53uZwRGYQ2WELOKUwoALtAY7cTBlQBcJBHZEg5kzkTZTVIviyqnAouTsio654AKAVaDMndNASLjQ-PH2_vq2BetDXZEqOxIWWZD9mm6SM6H2wqLCImYzIMJrvB0Oq463psEm6zNfY2emy6U3LsktizLx2TzdX8frbMr28Xq9n0OteF4jI3VFbuodBCMUM5F1gqZoVBDZwqZwqZYldxoBo0lw6FVMgk1Q5Bs4rbYkzKw10d266L1tXa99j7NqSHfVNTqPe71Ptd6u9dEjb5hT1Hv8W4-xtQB-DVN3b3T7ueXs7XP-wn45F60A
CitedBy_id crossref_primary_10_1016_j_msea_2022_143399
crossref_primary_10_1016_j_msea_2023_145976
crossref_primary_10_2139_ssrn_3998834
crossref_primary_10_2320_matertrans_MT_MF2022013
crossref_primary_10_1016_j_matchar_2020_110807
crossref_primary_10_1002_adem_202000909
crossref_primary_10_1016_j_jallcom_2022_168005
crossref_primary_10_1016_j_scriptamat_2022_114799
crossref_primary_10_2320_matertrans_MT_MF2022050
crossref_primary_10_22226_2410_3535_2020_4_547_550
crossref_primary_10_3390_ma13102241
crossref_primary_10_3390_nano10112254
crossref_primary_10_1007_s11661_022_06641_1
crossref_primary_10_1039_D3MA01044A
crossref_primary_10_1002_adem_202400773
crossref_primary_10_1016_j_nanoms_2023_12_007
crossref_primary_10_1002_adem_202400578
crossref_primary_10_17586_2687_0568_2023_5_2_32_55
crossref_primary_10_3390_nano12193371
crossref_primary_10_1007_s10853_023_09250_4
crossref_primary_10_1016_j_jallcom_2022_166597
crossref_primary_10_2320_jinstmet_JD202405
crossref_primary_10_1557_s43578_024_01363_z
crossref_primary_10_1016_j_surfcoat_2023_129740
crossref_primary_10_1016_j_vacuum_2024_113831
crossref_primary_10_1016_j_matchar_2020_110550
crossref_primary_10_1002_adem_202401657
crossref_primary_10_1016_j_msea_2020_140588
crossref_primary_10_1016_j_msea_2020_140422
crossref_primary_10_1016_j_intermet_2021_107445
crossref_primary_10_1016_j_matlet_2021_130490
crossref_primary_10_1080_10426914_2023_2290242
crossref_primary_10_1016_j_actamat_2023_119491
crossref_primary_10_1016_j_scriptamat_2022_114773
crossref_primary_10_1080_10408436_2024_2391333
crossref_primary_10_1140_epjs_s11734_022_00572_z
crossref_primary_10_2139_ssrn_4115195
crossref_primary_10_1016_j_jallcom_2023_169791
crossref_primary_10_1007_s12540_024_01745_2
crossref_primary_10_1016_j_msea_2023_145122
crossref_primary_10_2320_matertrans_MT_MF2022029
crossref_primary_10_1016_j_msea_2023_145043
crossref_primary_10_2320_matertrans_MT_MF2022022
crossref_primary_10_3390_coatings9100644
crossref_primary_10_1088_2631_6331_acc3d5
crossref_primary_10_1007_s10853_020_05264_4
crossref_primary_10_1002_adem_202400341
crossref_primary_10_1016_j_jmrt_2025_01_053
crossref_primary_10_1039_D3TC03739H
crossref_primary_10_2355_isijinternational_ISIJINT_2022_328
crossref_primary_10_1016_j_jallcom_2025_179618
crossref_primary_10_1016_j_jallcom_2024_174667
crossref_primary_10_1016_j_matlet_2021_130235
crossref_primary_10_1002_admi_202200087
crossref_primary_10_1177_16878132241296268
Cites_doi 10.1016/j.scriptamat.2015.06.002
10.1557/jmr.2013.9
10.1007/s11661-000-0011-8
10.1126/science.aal5166
10.1016/j.msea.2012.08.005
10.1016/j.msea.2012.11.027
10.1126/science.1229369
10.1088/0370-1301/64/9/303
10.1016/j.matlet.2016.09.114
10.1016/S1359-6462(03)00395-6
10.1016/j.actamat.2009.06.002
10.1016/j.scriptamat.2004.08.015
10.1007/s00542-007-0536-5
10.1016/j.msea.2015.12.046
10.1016/j.msea.2013.11.080
10.1126/science.1159610
10.1179/msc.1978.12.4.183
10.1016/S1359-6462(97)00210-8
10.1016/0921-5093(93)90319-A
10.1016/0956-7151(93)90110-E
10.1016/j.actamat.2007.05.018
10.1016/0956-716X(92)90405-4
10.1016/j.msea.2007.05.019
10.1016/j.actamat.2017.08.057
10.1063/1.3062849
10.2320/jinstmet1952.19.2_103
10.1016/j.jallcom.2008.01.067
10.1557/jmr.2012.55
10.1016/j.jmst.2014.03.008
10.1134/S1063774512040062
10.1016/j.jallcom.2015.04.102
10.1016/j.mser.2006.11.002
10.1007/s10853-012-6731-5
10.1016/j.msea.2011.06.080
10.1016/j.msea.2018.11.143
10.1126/science.1124268
10.1016/j.scriptamat.2010.07.014
10.1016/0001-6160(73)90057-6
10.1016/j.scriptamat.2011.06.048
10.1016/j.scriptamat.2009.02.018
10.1016/j.scriptamat.2006.12.036
10.1016/j.matchar.2017.05.034
10.1002/adma.200501232
10.1016/j.scriptamat.2018.11.042
10.1016/j.msea.2014.06.084
10.1016/j.scriptamat.2011.10.023
10.1016/S1359-6454(02)00195-7
10.1016/j.msea.2014.02.051
10.1002/adem.201800184
10.1016/j.scriptamat.2014.09.023
10.1016/j.msea.2014.12.104
10.1016/j.msea.2012.11.048
10.1016/j.msea.2015.01.055
10.4018/978-1-4666-5852-3
10.1016/j.scriptamat.2011.03.029
10.1007/BF00721472
10.1080/14786436008238320
10.1016/j.ijplas.2017.09.003
10.1016/j.matlet.2014.07.188
10.1007/s10853-006-0969-8
10.1016/j.msea.2016.10.066
10.1016/j.msea.2018.08.061
10.1016/j.msea.2016.02.060
10.1016/j.actamat.2013.08.018
10.1007/BF02811734
10.1007/BF02644464
10.1016/j.matlet.2010.10.090
10.1016/j.msea.2014.05.016
10.1016/j.msea.2018.07.107
10.1016/j.msea.2009.12.005
10.1016/j.msea.2009.09.054
10.1016/j.pmatsci.2005.08.003
10.1007/BF02811623
10.1016/j.scriptamat.2013.03.006
10.1016/j.actamat.2009.05.017
10.1016/j.scriptamat.2012.06.031
ContentType Journal Article
Copyright 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
AAYXX
CITATION
DOI 10.1002/adem.201900507
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 10_1002_adem_201900507
ADEM201900507
Genre article
GrantInformation_xml – fundername: Ministry of Human Capacities of Hungary
  funderid: 1783-3/2018/FEKUTSRAT
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
24P
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c3957-d178fb3c692d1556a492e6dac0519fd372d1f8501c0c57fa679a271cfa0c285e3
IEDL.DBID DR2
ISSN 1438-1656
IngestDate Thu Apr 24 23:10:32 EDT 2025
Tue Jul 01 02:51:03 EDT 2025
Wed Jan 22 16:37:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3957-d178fb3c692d1556a492e6dac0519fd372d1f8501c0c57fa679a271cfa0c285e3
ORCID 0000-0002-8938-7293
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201900507
PageCount 14
ParticipantIDs crossref_citationtrail_10_1002_adem_201900507
crossref_primary_10_1002_adem_201900507
wiley_primary_10_1002_adem_201900507_ADEM201900507
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Advanced engineering materials
PublicationYear 2020
References 2014; 613
2013; 69
1983; 2
2002; 50
1960; 5
2013; 61
2013; 568
2013; 562
2015; 628
2015; 627
2000; 1
2015; 107
2019; 162
2013; 8
2012; 57
2017; 355
1951; 64
2014; 136
2010; 63
1993; 166
2017; 679
2014; 602
2009; 57
1955; 19
2018; 735
2014; 609
2018; 734
2011; 528
2011; 65
2003; 49
2012; 27
1971; 2
2012; 67
2012; 66
2009; 324
2013; 48
2010; 527
2006; 51
1978; 12
2015; 642
2006; 54
2015; 95
2009; 60
1993; 41
2008; 14
2006; 18
2017; 130
2019; 744
2013; 340
2014; 594
1938; 62
2007; 55
1979; 10
2018; 20
2007; 56
2008; 93
1976; 7
2006; 312
1953; 174
2004; 51
1973; 21
2016; 659
1997; 37
2017; 99
2000; 31
2017
2017; 140
2014
2016; 654
2017; 186
1992; 27
2007; 42
2014; 30
2008; 483–484
2012; 558
2009; 468
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_81_1
e_1_2_8_5_1
Taylor G. I. (e_1_2_8_2_1) 1938; 62
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Gubicza J. (e_1_2_8_10_1) 2017
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
Rath B. B. (e_1_2_8_3_1) 2000; 1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
Petch N. J. (e_1_2_8_6_1) 1953; 174
Valiev R. Z. (e_1_2_8_8_1) 2014
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 64
  start-page: 747
  year: 1951
  publication-title: Proc. Phys. Soc. London B
– volume: 62
  start-page: 307
  year: 1938
  publication-title: J. Inst. Metall.
– volume: 10
  start-page: 1889
  year: 1979
  publication-title: Metall. Mater. Trans. A
– volume: 613
  start-page: 103
  year: 2014
  publication-title: Mater. Sci. Eng. A
– volume: 57
  start-page: 4404
  year: 2009
  publication-title: Acta Mater.
– volume: 654
  start-page: 344
  year: 2016
  publication-title: Mater. Sci. Eng. A
– volume: 20
  start-page: 1800184
  year: 2018
  publication-title: Adv. Eng. Mater.
– volume: 735
  start-page: 354
  year: 2018
  publication-title: Mater. Sci. Eng. A
– volume: 609
  start-page: 217
  year: 2014
  publication-title: Mater. Sci. Eng. A
– volume: 355
  start-page: 1292
  year: 2017
  publication-title: Science
– volume: 57
  start-page: 541
  year: 2012
  publication-title: Crystallogr. Rep.
– volume: 324
  start-page: 349
  year: 2009
  publication-title: Science
– volume: 69
  start-page: 65
  year: 2013
  publication-title: Scripta Mater.
– volume: 27
  start-page: 1285
  year: 2012
  publication-title: J. Mater. Res.
– year: 2014
– volume: 312
  start-page: 249
  year: 2006
  publication-title: Science
– volume: 65
  start-page: 1
  year: 2011
  publication-title: Scripta Mater.
– volume: 99
  start-page: 102
  year: 2017
  publication-title: Int. J. Plasticity
– volume: 568
  start-page: 184
  year: 2013
  publication-title: Mater. Sci. Eng. A
– volume: 93
  start-page: 261907
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 63
  start-page: 949
  year: 2010
  publication-title: Scripta Mater.
– volume: 186
  start-page: 334
  year: 2017
  publication-title: Mater. Lett.
– volume: 8
  start-page: 1813
  year: 2013
  publication-title: J. Mater. Res.
– volume: 54
  start-page: 121
  year: 2006
  publication-title: Mater. Sci. Eng. R
– volume: 41
  start-page: 2953
  year: 1993
  publication-title: Acta Metall. Mater.
– volume: 744
  start-page: 241
  year: 2019
  publication-title: Mater. Sci. Eng. A
– volume: 562
  start-page: 196
  year: 2013
  publication-title: Mater. Sci. Eng. A
– volume: 60
  start-page: 1078
  year: 2009
  publication-title: Scripta Mater.
– volume: 49
  start-page: 669
  year: 2003
  publication-title: Scripta Mater.
– volume: 30
  start-page: 731
  year: 2014
  publication-title: J. Mater. Sci. Technol.
– volume: 7
  start-page: 249
  year: 1976
  publication-title: Metall. Trans. A
– volume: 642
  start-page: 92
  year: 2015
  publication-title: J. Alloys Compd.
– volume: 166
  start-page: 161
  year: 1993
  publication-title: Mater. Sci. Eng. A
– volume: 14
  start-page: 1531
  year: 2008
  publication-title: Microsyst. Technol.
– volume: 136
  start-page: 349
  year: 2014
  publication-title: Mater. Lett.
– volume: 21
  start-page: 149
  year: 1973
  publication-title: Acta Metall.
– volume: 162
  start-page: 345
  year: 2019
  publication-title: Scripta Mater.
– volume: 468
  start-page: 230
  year: 2009
  publication-title: J. Alloys Compd.
– volume: 527
  start-page: 2297
  year: 2010
  publication-title: Mater. Sci. Eng. A
– volume: 527
  start-page: 1143
  year: 2010
  publication-title: Mater. Sci. Eng. A
– volume: 107
  start-page: 127
  year: 2015
  publication-title: Scripta Mater.
– volume: 65
  start-page: 660
  year: 2011
  publication-title: Scripta Mater
– volume: 19
  start-page: 103
  year: 1955
  publication-title: J. Jpn. Inst. Metals
– volume: 340
  start-page: 957
  year: 2013
  publication-title: Science
– volume: 27
  start-page: 855
  year: 1992
  publication-title: Scripta Metall. Mater
– volume: 57
  start-page: 4198
  year: 2009
  publication-title: Acta Mater.
– volume: 66
  start-page: 147
  year: 2012
  publication-title: Scripta Mater
– volume: 18
  start-page: 34
  year: 2006
  publication-title: Adv. Mater.
– volume: 130
  start-page: 56.
  year: 2017
  publication-title: Mater. Char.
– volume: 558
  start-page: 309
  year: 2012
  publication-title: Mater. Sci. Eng. A
– volume: 679
  start-page: 428
  year: 2017
  publication-title: Mater. Sci. Eng. A
– volume: 628
  start-page: 207
  year: 2015
  publication-title: Mater. Sci. Eng. A
– volume: 734
  start-page: 338
  year: 2018
  publication-title: Mater. Sci. Eng. A
– volume: 65
  start-page: 514
  year: 2011
  publication-title: Mater. Lett.
– volume: 61
  start-page: 7035
  year: 2013
  publication-title: Acta Mater.
– volume: 42
  start-page: 1444
  year: 2007
  publication-title: J. Mater. Sci.
– volume: 95
  start-page: 27
  year: 2015
  publication-title: Scripta Mater.
– volume: 2
  start-page: 3411
  year: 1971
  publication-title: Metall. Mater. Tran. B
– volume: 56
  start-page: 713
  year: 2007
  publication-title: Scripta Mater.
– volume: 594
  start-page: 287
  year: 2014
  publication-title: Mater. Sci. Eng. A
– volume: 31
  start-page: 691
  year: 2000
  publication-title: Metall. Mater. Trans. A
– volume: 37
  start-page: 1089
  year: 1997
  publication-title: Scripta Mater.
– volume: 55
  start-page: 5007
  year: 2007
  publication-title: Acta Mater.
– volume: 627
  start-page: 56
  year: 2015
  publication-title: Mater. Sci. Eng. A
– volume: 602
  start-page: 25
  year: 2014
  publication-title: Mater. Sci. Eng. A
– volume: 67
  start-page: 720
  year: 2012
  publication-title: Scripta Mater.
– volume: 2
  start-page: 522
  year: 1983
  publication-title: J. Mater. Sci. Lett.
– volume: 1
  start-page: 61
  year: 2000
  publication-title: Mater. Chem. Phys.
– volume: 483–484
  start-page: 231
  year: 2008
  publication-title: Mater. Sci. Eng. A
– volume: 174
  start-page: 25
  year: 1953
  publication-title: J. Iron Steel Inst.
– volume: 5
  start-page: 1119
  year: 1960
  publication-title: Phil. Mag.
– volume: 48
  start-page: 220
  year: 2013
  publication-title: J. Mater. Sci.
– volume: 659
  start-page: 165
  year: 2016
  publication-title: Mater. Sci. Eng. A
– volume: 51
  start-page: 1023
  year: 2004
  publication-title: Scripta Mater.
– volume: 50
  start-page: 3927
  year: 2002
  publication-title: Acta Mater.
– year: 2017
– volume: 51
  start-page: 427
  year: 2006
  publication-title: Prog. Mater. Sci.
– volume: 140
  start-page: 443
  year: 2017
  publication-title: Acta Mater.
– volume: 12
  start-page: 183
  year: 1978
  publication-title: Met. Sci.
– volume: 528
  start-page: 7514
  year: 2011
  publication-title: Mater. Sci. Eng. A
– volume: 62
  start-page: 307
  year: 1938
  ident: e_1_2_8_2_1
  publication-title: J. Inst. Metall.
– ident: e_1_2_8_19_1
  doi: 10.1016/j.scriptamat.2015.06.002
– ident: e_1_2_8_62_1
  doi: 10.1557/jmr.2013.9
– ident: e_1_2_8_67_1
  doi: 10.1007/s11661-000-0011-8
– ident: e_1_2_8_50_1
  doi: 10.1126/science.aal5166
– ident: e_1_2_8_46_1
  doi: 10.1016/j.msea.2012.08.005
– ident: e_1_2_8_79_1
  doi: 10.1016/j.msea.2012.11.027
– ident: e_1_2_8_23_1
  doi: 10.1126/science.1229369
– ident: e_1_2_8_5_1
  doi: 10.1088/0370-1301/64/9/303
– ident: e_1_2_8_82_1
  doi: 10.1016/j.matlet.2016.09.114
– ident: e_1_2_8_47_1
  doi: 10.1016/S1359-6462(03)00395-6
– ident: e_1_2_8_71_1
  doi: 10.1016/j.actamat.2009.06.002
– ident: e_1_2_8_49_1
  doi: 10.1016/j.scriptamat.2004.08.015
– ident: e_1_2_8_56_1
  doi: 10.1007/s00542-007-0536-5
– ident: e_1_2_8_20_1
  doi: 10.1016/j.msea.2015.12.046
– ident: e_1_2_8_22_1
  doi: 10.1016/j.msea.2013.11.080
– ident: e_1_2_8_4_1
  doi: 10.1126/science.1159610
– ident: e_1_2_8_14_1
  doi: 10.1179/msc.1978.12.4.183
– ident: e_1_2_8_29_1
  doi: 10.1016/S1359-6462(97)00210-8
– ident: e_1_2_8_27_1
  doi: 10.1016/0921-5093(93)90319-A
– ident: e_1_2_8_28_1
  doi: 10.1016/0956-7151(93)90110-E
– ident: e_1_2_8_37_1
  doi: 10.1016/j.actamat.2007.05.018
– ident: e_1_2_8_26_1
  doi: 10.1016/0956-716X(92)90405-4
– ident: e_1_2_8_65_1
  doi: 10.1016/j.msea.2007.05.019
– ident: e_1_2_8_70_1
  doi: 10.1016/j.actamat.2017.08.057
– ident: e_1_2_8_73_1
  doi: 10.1063/1.3062849
– ident: e_1_2_8_18_1
  doi: 10.2320/jinstmet1952.19.2_103
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jallcom.2008.01.067
– ident: e_1_2_8_57_1
  doi: 10.1557/jmr.2012.55
– ident: e_1_2_8_61_1
  doi: 10.1016/j.jmst.2014.03.008
– ident: e_1_2_8_66_1
  doi: 10.1134/S1063774512040062
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jallcom.2015.04.102
– ident: e_1_2_8_25_1
  doi: 10.1016/j.mser.2006.11.002
– ident: e_1_2_8_41_1
  doi: 10.1007/s10853-012-6731-5
– ident: e_1_2_8_77_1
  doi: 10.1016/j.msea.2011.06.080
– ident: e_1_2_8_42_1
  doi: 10.1016/j.msea.2018.11.143
– ident: e_1_2_8_30_1
  doi: 10.1126/science.1124268
– volume: 1
  start-page: 61
  year: 2000
  ident: e_1_2_8_3_1
  publication-title: Mater. Chem. Phys.
– ident: e_1_2_8_75_1
  doi: 10.1016/j.scriptamat.2010.07.014
– ident: e_1_2_8_11_1
  doi: 10.1016/0001-6160(73)90057-6
– ident: e_1_2_8_69_1
  doi: 10.1016/j.scriptamat.2011.06.048
– ident: e_1_2_8_34_1
  doi: 10.1016/j.scriptamat.2009.02.018
– ident: e_1_2_8_52_1
  doi: 10.1016/j.scriptamat.2006.12.036
– ident: e_1_2_8_63_1
  doi: 10.1016/j.matchar.2017.05.034
– ident: e_1_2_8_81_1
  doi: 10.1002/adma.200501232
– ident: e_1_2_8_44_1
  doi: 10.1016/j.scriptamat.2018.11.042
– ident: e_1_2_8_78_1
  doi: 10.1016/j.msea.2014.06.084
– ident: e_1_2_8_32_1
  doi: 10.1016/j.scriptamat.2011.10.023
– volume: 174
  start-page: 25
  year: 1953
  ident: e_1_2_8_6_1
  publication-title: J. Iron Steel Inst.
– ident: e_1_2_8_59_1
  doi: 10.1016/S1359-6454(02)00195-7
– ident: e_1_2_8_21_1
  doi: 10.1016/j.msea.2014.02.051
– ident: e_1_2_8_36_1
  doi: 10.1002/adem.201800184
– ident: e_1_2_8_68_1
  doi: 10.1016/j.scriptamat.2014.09.023
– ident: e_1_2_8_45_1
  doi: 10.1016/j.msea.2014.12.104
– volume-title: Bulk Nanostructured Materials, Fundamentals and Applications
  year: 2014
  ident: e_1_2_8_8_1
– ident: e_1_2_8_60_1
  doi: 10.1016/j.msea.2012.11.048
– ident: e_1_2_8_38_1
  doi: 10.1016/j.msea.2015.01.055
– ident: e_1_2_8_64_1
  doi: 10.4018/978-1-4666-5852-3
– ident: e_1_2_8_55_1
  doi: 10.1016/j.scriptamat.2011.03.029
– ident: e_1_2_8_12_1
  doi: 10.1007/BF00721472
– ident: e_1_2_8_16_1
  doi: 10.1080/14786436008238320
– ident: e_1_2_8_72_1
  doi: 10.1016/j.ijplas.2017.09.003
– ident: e_1_2_8_74_1
  doi: 10.1016/j.matlet.2014.07.188
– ident: e_1_2_8_54_1
  doi: 10.1007/s10853-006-0969-8
– ident: e_1_2_8_80_1
  doi: 10.1016/j.msea.2016.10.066
– ident: e_1_2_8_53_1
  doi: 10.1016/j.msea.2018.08.061
– ident: e_1_2_8_39_1
  doi: 10.1016/j.msea.2016.02.060
– ident: e_1_2_8_7_1
  doi: 10.1016/j.actamat.2013.08.018
– volume-title: Defect Structure and Properties of Nanomaterials
  year: 2017
  ident: e_1_2_8_10_1
– ident: e_1_2_8_15_1
  doi: 10.1007/BF02811734
– ident: e_1_2_8_13_1
  doi: 10.1007/BF02644464
– ident: e_1_2_8_33_1
  doi: 10.1016/j.matlet.2010.10.090
– ident: e_1_2_8_40_1
  doi: 10.1016/j.msea.2014.05.016
– ident: e_1_2_8_43_1
  doi: 10.1016/j.msea.2018.07.107
– ident: e_1_2_8_51_1
  doi: 10.1016/j.msea.2009.12.005
– ident: e_1_2_8_35_1
  doi: 10.1016/j.msea.2009.09.054
– ident: e_1_2_8_9_1
  doi: 10.1016/j.pmatsci.2005.08.003
– ident: e_1_2_8_17_1
  doi: 10.1007/BF02811623
– ident: e_1_2_8_76_1
  doi: 10.1016/j.scriptamat.2013.03.006
– ident: e_1_2_8_31_1
  doi: 10.1016/j.actamat.2009.05.017
– ident: e_1_2_8_58_1
  doi: 10.1016/j.scriptamat.2012.06.031
SSID ssj0011013
Score 2.4910932
SecondaryResourceType review_article
Snippet Annealing of deformed metals is considered as a process necessarily leading to softening due to the annihilation of lattice defects. However, in...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms annealing-induced hardening
dislocations
grain boundaries
nanocrystalline materials
segregation
Title Annealing‐Induced Hardening in Ultrafine‐Grained and Nanocrystalline Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201900507
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60Jz34Fuuj5CB42jbdPDZ7LGItQkWKhd7CPkEsqdT0oCd_gr_RX-JO0sZWEEGPWWZDMpmd-bI78w3Aua-FC-sqIFy2KQmZjgkXPCIBlVyrwFmRxtrh_m3cG4Y3o2i0VMVf8kNUG264Mgp_jQtcyOfWF2koZo9jahZHChMsJ8eELURFg4o_yoW2oj8ytvgmSDOzYG30aWt1-kpUWkapRZjpboNYPGCZXfLYnOWyqV6_cTf-5w12YGuOQb1OaTS7sGayPdhcYibch0HH-V-Bpeofb-_Y3kMZ7eEpv8F9FO8h84bjfCqsm-EErrHPhBMQmfacu56o6YsDncj2bby-yEsjP4Bh9-r-skfm7ReIwsM7otsssTJQMafaoY5YhJyaWAuFqM_qgLlhm0R-W_kqYlbEjAvK2soKX9EkMsEh1LJJZo7Ac-NKuDup0A9DwWKpZSSdJ_ATaVlgTR3IQv2pmnOTY4uMcVqyKtMUdZVWuqrDRSX_VLJy_ChJi0_wi1iKZl9dHf9l0glsUPwXL7ZnTqGWT2fmzAGWXDZgnYZ3jcI0PwGs-eTQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeGZCY3CbOw_FYAaVA26FqJbbITwlRpahKB5j4CfxGfgm-pA0tEkKCMdY5Si7nu8v5_H0InbuK27AufcyER3BAVYQZZyH2iWBK-taKFJwd7nSj1iC4ewhn3YRwFqbAhygLbrAycn8NCxwK0vUv1FBoH4feLAYYJnQZrQCtN8DnX_VKBCkb3HKGZCD5xgA0M8NtdEl9cf5CXJrPU_NA09xEYvaIRX_JU22SiZp8_Ybe-K932EIb0zTUaRR2s42WdLqD1ufACXdRr2FdMIfT6h9v78DwIbVyYKNfQynFeUydwTAbc2NnWIEboJqwAjxVjvXYIzl-sXknAH5rp8Ozws730KB53b9s4SkDA5awf4eVR2MjfBkxomziEfGAER0pLiHxM8qndtjEoetJV4bU8IgyTqgnDXcliUPt76NKOkr1AXLsuOT2TjJwg4DTSCgRCusM3FgY6htdRXim_0RO4cmBJWOYFMDKJAFdJaWuquiilH8ugDl-lCT5N_hFLAHLL68O_zLpDK22-p120r7t3h-hNQK_5nm15hhVsvFEn9j8JROnuYV-AqCM6BU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60guhBfGJ95iB4Ck02m2z2WNRaHy1FLPQW9glCSUuJB2_-BH-jv8SZpMb2IILHLDM5TOaVnZlvCLkIjISwriNfqJD6jJvEF1LEfkSVMDoCLTI4O9zrJ90hux_Fo4Up_gofor5wQ8so_TUa-NS41g9oKHaPY2uWQAgTvkrWsOKHTV2UDeo6Aihc2WLPwKwRZ-YbtjGgrWX-pbC0mKaWcaazTbbmCaLXrr7oDlmx-S7ZXIAN3CNPbXCOEufIP98_cPeGtsbDErzFSw7vJfeG42ImHXAAwS0ugQACmRsPfOlEz94gI0Qobuv1ZFFp4D4Zdm6er7r-fDeCr7Gy5puQp05FOhHUQEqQSCaoTYzUmJI5E3E4dmkchDrQMXcy4UJSHmonA03T2EYHpJFPcntIPDjXEt6kWcCY5IkyKlZgpkGqHI-cbRL_WzSZngOH4_6KcVZBHtMMRZnVomySy5p-WkFm_EpJS0n_QZahTtZPR_9hOifrg-tO9njXfzgmGxT_mctrlBPSKGav9hQSi0KdlbrzBTXcxW8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Annealing%E2%80%90Induced+Hardening+in+Ultrafine%E2%80%90Grained+and+Nanocrystalline+Materials&rft.jtitle=Advanced+engineering+materials&rft.au=Gubicza%2C+Jen%C5%91&rft.date=2020-01-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=22&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.201900507&rft.externalDBID=10.1002%252Fadem.201900507&rft.externalDocID=ADEM201900507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon