Annealing‐Induced Hardening in Ultrafine‐Grained and Nanocrystalline Materials
Annealing of deformed metals is considered as a process necessarily leading to softening due to the annihilation of lattice defects. However, in ultrafine‐grained (UFG) and nanocrystalline materials, annealing at moderate temperatures may induce hardening. This review summarizes those effects that c...
Saved in:
Published in | Advanced engineering materials Vol. 22; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Annealing of deformed metals is considered as a process necessarily leading to softening due to the annihilation of lattice defects. However, in ultrafine‐grained (UFG) and nanocrystalline materials, annealing at moderate temperatures may induce hardening. This review summarizes those effects that can result in annealing‐induced hardening (AH) in fine‐grained materials. It is noted that only those hardening phenomena are considered as AH effects that are not accompanied by the change of the phase composition and/or the grain size. Therefore, herein, strengthening caused by precipitation is not discussed. It is shown that heat treatment of nanomaterials can cause hardening due to the relaxation of grain boundaries and segregation of alloying elements to the grain boundaries as these effects hinder the occurrence of grain boundary sliding. For UFG metallic materials processed by severe plastic deformation techniques, the annihilation of mobile dislocations and the clustering of the remaining dislocations into low‐angle grain boundaries during annealing can yield hardening. It is also shown that plastic deformation after annealing can cause a restoration of the yield strength and hardness to the same level as observed before annealing. The possible reasons of this deformation‐induced softening effect are discussed in detail.
Short‐time annealing at moderate temperatures may yield hardening in ultrafine‐grained and nanocrystalline materials. The relative increase in the yield strength or hardness is usually between 3% and 30%; however, extremely large annealing‐induced hardening (126%) is observed in electrodeposited Ni‐Mo alloys. Herein, the main reasons of anneal‐hardening are discussed in detail. |
---|---|
AbstractList | Annealing of deformed metals is considered as a process necessarily leading to softening due to the annihilation of lattice defects. However, in ultrafine‐grained (UFG) and nanocrystalline materials, annealing at moderate temperatures may induce hardening. This review summarizes those effects that can result in annealing‐induced hardening (AH) in fine‐grained materials. It is noted that only those hardening phenomena are considered as AH effects that are not accompanied by the change of the phase composition and/or the grain size. Therefore, herein, strengthening caused by precipitation is not discussed. It is shown that heat treatment of nanomaterials can cause hardening due to the relaxation of grain boundaries and segregation of alloying elements to the grain boundaries as these effects hinder the occurrence of grain boundary sliding. For UFG metallic materials processed by severe plastic deformation techniques, the annihilation of mobile dislocations and the clustering of the remaining dislocations into low‐angle grain boundaries during annealing can yield hardening. It is also shown that plastic deformation after annealing can cause a restoration of the yield strength and hardness to the same level as observed before annealing. The possible reasons of this deformation‐induced softening effect are discussed in detail.
Short‐time annealing at moderate temperatures may yield hardening in ultrafine‐grained and nanocrystalline materials. The relative increase in the yield strength or hardness is usually between 3% and 30%; however, extremely large annealing‐induced hardening (126%) is observed in electrodeposited Ni‐Mo alloys. Herein, the main reasons of anneal‐hardening are discussed in detail. |
Author | Gubicza, Jenő |
Author_xml | – sequence: 1 givenname: Jenő orcidid: 0000-0002-8938-7293 surname: Gubicza fullname: Gubicza, Jenő email: jeno.gubicza@ttk.elte.hu organization: Eötvös Loránd University |
BookMark | eNqFkM1KAzEUhYNUsK1uXc8LTL3JTJLJstTaFqyC2PVwzY9EphnJjEh3PoLP6JOYUlEQxNU5HM53uZwRGYQ2WELOKUwoALtAY7cTBlQBcJBHZEg5kzkTZTVIviyqnAouTsio654AKAVaDMndNASLjQ-PH2_vq2BetDXZEqOxIWWZD9mm6SM6H2wqLCImYzIMJrvB0Oq463psEm6zNfY2emy6U3LsktizLx2TzdX8frbMr28Xq9n0OteF4jI3VFbuodBCMUM5F1gqZoVBDZwqZwqZYldxoBo0lw6FVMgk1Q5Bs4rbYkzKw10d266L1tXa99j7NqSHfVNTqPe71Ptd6u9dEjb5hT1Hv8W4-xtQB-DVN3b3T7ueXs7XP-wn45F60A |
CitedBy_id | crossref_primary_10_1016_j_msea_2022_143399 crossref_primary_10_1016_j_msea_2023_145976 crossref_primary_10_2139_ssrn_3998834 crossref_primary_10_2320_matertrans_MT_MF2022013 crossref_primary_10_1016_j_matchar_2020_110807 crossref_primary_10_1002_adem_202000909 crossref_primary_10_1016_j_jallcom_2022_168005 crossref_primary_10_1016_j_scriptamat_2022_114799 crossref_primary_10_2320_matertrans_MT_MF2022050 crossref_primary_10_22226_2410_3535_2020_4_547_550 crossref_primary_10_3390_ma13102241 crossref_primary_10_3390_nano10112254 crossref_primary_10_1007_s11661_022_06641_1 crossref_primary_10_1039_D3MA01044A crossref_primary_10_1002_adem_202400773 crossref_primary_10_1016_j_nanoms_2023_12_007 crossref_primary_10_1002_adem_202400578 crossref_primary_10_17586_2687_0568_2023_5_2_32_55 crossref_primary_10_3390_nano12193371 crossref_primary_10_1007_s10853_023_09250_4 crossref_primary_10_1016_j_jallcom_2022_166597 crossref_primary_10_2320_jinstmet_JD202405 crossref_primary_10_1557_s43578_024_01363_z crossref_primary_10_1016_j_surfcoat_2023_129740 crossref_primary_10_1016_j_vacuum_2024_113831 crossref_primary_10_1016_j_matchar_2020_110550 crossref_primary_10_1002_adem_202401657 crossref_primary_10_1016_j_msea_2020_140588 crossref_primary_10_1016_j_msea_2020_140422 crossref_primary_10_1016_j_intermet_2021_107445 crossref_primary_10_1016_j_matlet_2021_130490 crossref_primary_10_1080_10426914_2023_2290242 crossref_primary_10_1016_j_actamat_2023_119491 crossref_primary_10_1016_j_scriptamat_2022_114773 crossref_primary_10_1080_10408436_2024_2391333 crossref_primary_10_1140_epjs_s11734_022_00572_z crossref_primary_10_2139_ssrn_4115195 crossref_primary_10_1016_j_jallcom_2023_169791 crossref_primary_10_1007_s12540_024_01745_2 crossref_primary_10_1016_j_msea_2023_145122 crossref_primary_10_2320_matertrans_MT_MF2022029 crossref_primary_10_1016_j_msea_2023_145043 crossref_primary_10_2320_matertrans_MT_MF2022022 crossref_primary_10_3390_coatings9100644 crossref_primary_10_1088_2631_6331_acc3d5 crossref_primary_10_1007_s10853_020_05264_4 crossref_primary_10_1002_adem_202400341 crossref_primary_10_1016_j_jmrt_2025_01_053 crossref_primary_10_1039_D3TC03739H crossref_primary_10_2355_isijinternational_ISIJINT_2022_328 crossref_primary_10_1016_j_jallcom_2025_179618 crossref_primary_10_1016_j_jallcom_2024_174667 crossref_primary_10_1016_j_matlet_2021_130235 crossref_primary_10_1002_admi_202200087 crossref_primary_10_1177_16878132241296268 |
Cites_doi | 10.1016/j.scriptamat.2015.06.002 10.1557/jmr.2013.9 10.1007/s11661-000-0011-8 10.1126/science.aal5166 10.1016/j.msea.2012.08.005 10.1016/j.msea.2012.11.027 10.1126/science.1229369 10.1088/0370-1301/64/9/303 10.1016/j.matlet.2016.09.114 10.1016/S1359-6462(03)00395-6 10.1016/j.actamat.2009.06.002 10.1016/j.scriptamat.2004.08.015 10.1007/s00542-007-0536-5 10.1016/j.msea.2015.12.046 10.1016/j.msea.2013.11.080 10.1126/science.1159610 10.1179/msc.1978.12.4.183 10.1016/S1359-6462(97)00210-8 10.1016/0921-5093(93)90319-A 10.1016/0956-7151(93)90110-E 10.1016/j.actamat.2007.05.018 10.1016/0956-716X(92)90405-4 10.1016/j.msea.2007.05.019 10.1016/j.actamat.2017.08.057 10.1063/1.3062849 10.2320/jinstmet1952.19.2_103 10.1016/j.jallcom.2008.01.067 10.1557/jmr.2012.55 10.1016/j.jmst.2014.03.008 10.1134/S1063774512040062 10.1016/j.jallcom.2015.04.102 10.1016/j.mser.2006.11.002 10.1007/s10853-012-6731-5 10.1016/j.msea.2011.06.080 10.1016/j.msea.2018.11.143 10.1126/science.1124268 10.1016/j.scriptamat.2010.07.014 10.1016/0001-6160(73)90057-6 10.1016/j.scriptamat.2011.06.048 10.1016/j.scriptamat.2009.02.018 10.1016/j.scriptamat.2006.12.036 10.1016/j.matchar.2017.05.034 10.1002/adma.200501232 10.1016/j.scriptamat.2018.11.042 10.1016/j.msea.2014.06.084 10.1016/j.scriptamat.2011.10.023 10.1016/S1359-6454(02)00195-7 10.1016/j.msea.2014.02.051 10.1002/adem.201800184 10.1016/j.scriptamat.2014.09.023 10.1016/j.msea.2014.12.104 10.1016/j.msea.2012.11.048 10.1016/j.msea.2015.01.055 10.4018/978-1-4666-5852-3 10.1016/j.scriptamat.2011.03.029 10.1007/BF00721472 10.1080/14786436008238320 10.1016/j.ijplas.2017.09.003 10.1016/j.matlet.2014.07.188 10.1007/s10853-006-0969-8 10.1016/j.msea.2016.10.066 10.1016/j.msea.2018.08.061 10.1016/j.msea.2016.02.060 10.1016/j.actamat.2013.08.018 10.1007/BF02811734 10.1007/BF02644464 10.1016/j.matlet.2010.10.090 10.1016/j.msea.2014.05.016 10.1016/j.msea.2018.07.107 10.1016/j.msea.2009.12.005 10.1016/j.msea.2009.09.054 10.1016/j.pmatsci.2005.08.003 10.1007/BF02811623 10.1016/j.scriptamat.2013.03.006 10.1016/j.actamat.2009.05.017 10.1016/j.scriptamat.2012.06.031 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/adem.201900507 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1527-2648 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adem_201900507 ADEM201900507 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Human Capacities of Hungary funderid: 1783-3/2018/FEKUTSRAT |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 24P 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E QRW R.K ROL RWI RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ XPP XV2 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c3957-d178fb3c692d1556a492e6dac0519fd372d1f8501c0c57fa679a271cfa0c285e3 |
IEDL.DBID | DR2 |
ISSN | 1438-1656 |
IngestDate | Thu Apr 24 23:10:32 EDT 2025 Tue Jul 01 02:51:03 EDT 2025 Wed Jan 22 16:37:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3957-d178fb3c692d1556a492e6dac0519fd372d1f8501c0c57fa679a271cfa0c285e3 |
ORCID | 0000-0002-8938-7293 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201900507 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1002_adem_201900507 crossref_primary_10_1002_adem_201900507 wiley_primary_10_1002_adem_201900507_ADEM201900507 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationTitle | Advanced engineering materials |
PublicationYear | 2020 |
References | 2014; 613 2013; 69 1983; 2 2002; 50 1960; 5 2013; 61 2013; 568 2013; 562 2015; 628 2015; 627 2000; 1 2015; 107 2019; 162 2013; 8 2012; 57 2017; 355 1951; 64 2014; 136 2010; 63 1993; 166 2017; 679 2014; 602 2009; 57 1955; 19 2018; 735 2014; 609 2018; 734 2011; 528 2011; 65 2003; 49 2012; 27 1971; 2 2012; 67 2012; 66 2009; 324 2013; 48 2010; 527 2006; 51 1978; 12 2015; 642 2006; 54 2015; 95 2009; 60 1993; 41 2008; 14 2006; 18 2017; 130 2019; 744 2013; 340 2014; 594 1938; 62 2007; 55 1979; 10 2018; 20 2007; 56 2008; 93 1976; 7 2006; 312 1953; 174 2004; 51 1973; 21 2016; 659 1997; 37 2017; 99 2000; 31 2017 2017; 140 2014 2016; 654 2017; 186 1992; 27 2007; 42 2014; 30 2008; 483–484 2012; 558 2009; 468 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_81_1 e_1_2_8_5_1 Taylor G. I. (e_1_2_8_2_1) 1938; 62 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Gubicza J. (e_1_2_8_10_1) 2017 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 Rath B. B. (e_1_2_8_3_1) 2000; 1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Petch N. J. (e_1_2_8_6_1) 1953; 174 Valiev R. Z. (e_1_2_8_8_1) 2014 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 64 start-page: 747 year: 1951 publication-title: Proc. Phys. Soc. London B – volume: 62 start-page: 307 year: 1938 publication-title: J. Inst. Metall. – volume: 10 start-page: 1889 year: 1979 publication-title: Metall. Mater. Trans. A – volume: 613 start-page: 103 year: 2014 publication-title: Mater. Sci. Eng. A – volume: 57 start-page: 4404 year: 2009 publication-title: Acta Mater. – volume: 654 start-page: 344 year: 2016 publication-title: Mater. Sci. Eng. A – volume: 20 start-page: 1800184 year: 2018 publication-title: Adv. Eng. Mater. – volume: 735 start-page: 354 year: 2018 publication-title: Mater. Sci. Eng. A – volume: 609 start-page: 217 year: 2014 publication-title: Mater. Sci. Eng. A – volume: 355 start-page: 1292 year: 2017 publication-title: Science – volume: 57 start-page: 541 year: 2012 publication-title: Crystallogr. Rep. – volume: 324 start-page: 349 year: 2009 publication-title: Science – volume: 69 start-page: 65 year: 2013 publication-title: Scripta Mater. – volume: 27 start-page: 1285 year: 2012 publication-title: J. Mater. Res. – year: 2014 – volume: 312 start-page: 249 year: 2006 publication-title: Science – volume: 65 start-page: 1 year: 2011 publication-title: Scripta Mater. – volume: 99 start-page: 102 year: 2017 publication-title: Int. J. Plasticity – volume: 568 start-page: 184 year: 2013 publication-title: Mater. Sci. Eng. A – volume: 93 start-page: 261907 year: 2008 publication-title: Appl. Phys. Lett. – volume: 63 start-page: 949 year: 2010 publication-title: Scripta Mater. – volume: 186 start-page: 334 year: 2017 publication-title: Mater. Lett. – volume: 8 start-page: 1813 year: 2013 publication-title: J. Mater. Res. – volume: 54 start-page: 121 year: 2006 publication-title: Mater. Sci. Eng. R – volume: 41 start-page: 2953 year: 1993 publication-title: Acta Metall. Mater. – volume: 744 start-page: 241 year: 2019 publication-title: Mater. Sci. Eng. A – volume: 562 start-page: 196 year: 2013 publication-title: Mater. Sci. Eng. A – volume: 60 start-page: 1078 year: 2009 publication-title: Scripta Mater. – volume: 49 start-page: 669 year: 2003 publication-title: Scripta Mater. – volume: 30 start-page: 731 year: 2014 publication-title: J. Mater. Sci. Technol. – volume: 7 start-page: 249 year: 1976 publication-title: Metall. Trans. A – volume: 642 start-page: 92 year: 2015 publication-title: J. Alloys Compd. – volume: 166 start-page: 161 year: 1993 publication-title: Mater. Sci. Eng. A – volume: 14 start-page: 1531 year: 2008 publication-title: Microsyst. Technol. – volume: 136 start-page: 349 year: 2014 publication-title: Mater. Lett. – volume: 21 start-page: 149 year: 1973 publication-title: Acta Metall. – volume: 162 start-page: 345 year: 2019 publication-title: Scripta Mater. – volume: 468 start-page: 230 year: 2009 publication-title: J. Alloys Compd. – volume: 527 start-page: 2297 year: 2010 publication-title: Mater. Sci. Eng. A – volume: 527 start-page: 1143 year: 2010 publication-title: Mater. Sci. Eng. A – volume: 107 start-page: 127 year: 2015 publication-title: Scripta Mater. – volume: 65 start-page: 660 year: 2011 publication-title: Scripta Mater – volume: 19 start-page: 103 year: 1955 publication-title: J. Jpn. Inst. Metals – volume: 340 start-page: 957 year: 2013 publication-title: Science – volume: 27 start-page: 855 year: 1992 publication-title: Scripta Metall. Mater – volume: 57 start-page: 4198 year: 2009 publication-title: Acta Mater. – volume: 66 start-page: 147 year: 2012 publication-title: Scripta Mater – volume: 18 start-page: 34 year: 2006 publication-title: Adv. Mater. – volume: 130 start-page: 56. year: 2017 publication-title: Mater. Char. – volume: 558 start-page: 309 year: 2012 publication-title: Mater. Sci. Eng. A – volume: 679 start-page: 428 year: 2017 publication-title: Mater. Sci. Eng. A – volume: 628 start-page: 207 year: 2015 publication-title: Mater. Sci. Eng. A – volume: 734 start-page: 338 year: 2018 publication-title: Mater. Sci. Eng. A – volume: 65 start-page: 514 year: 2011 publication-title: Mater. Lett. – volume: 61 start-page: 7035 year: 2013 publication-title: Acta Mater. – volume: 42 start-page: 1444 year: 2007 publication-title: J. Mater. Sci. – volume: 95 start-page: 27 year: 2015 publication-title: Scripta Mater. – volume: 2 start-page: 3411 year: 1971 publication-title: Metall. Mater. Tran. B – volume: 56 start-page: 713 year: 2007 publication-title: Scripta Mater. – volume: 594 start-page: 287 year: 2014 publication-title: Mater. Sci. Eng. A – volume: 31 start-page: 691 year: 2000 publication-title: Metall. Mater. Trans. A – volume: 37 start-page: 1089 year: 1997 publication-title: Scripta Mater. – volume: 55 start-page: 5007 year: 2007 publication-title: Acta Mater. – volume: 627 start-page: 56 year: 2015 publication-title: Mater. Sci. Eng. A – volume: 602 start-page: 25 year: 2014 publication-title: Mater. Sci. Eng. A – volume: 67 start-page: 720 year: 2012 publication-title: Scripta Mater. – volume: 2 start-page: 522 year: 1983 publication-title: J. Mater. Sci. Lett. – volume: 1 start-page: 61 year: 2000 publication-title: Mater. Chem. Phys. – volume: 483–484 start-page: 231 year: 2008 publication-title: Mater. Sci. Eng. A – volume: 174 start-page: 25 year: 1953 publication-title: J. Iron Steel Inst. – volume: 5 start-page: 1119 year: 1960 publication-title: Phil. Mag. – volume: 48 start-page: 220 year: 2013 publication-title: J. Mater. Sci. – volume: 659 start-page: 165 year: 2016 publication-title: Mater. Sci. Eng. A – volume: 51 start-page: 1023 year: 2004 publication-title: Scripta Mater. – volume: 50 start-page: 3927 year: 2002 publication-title: Acta Mater. – year: 2017 – volume: 51 start-page: 427 year: 2006 publication-title: Prog. Mater. Sci. – volume: 140 start-page: 443 year: 2017 publication-title: Acta Mater. – volume: 12 start-page: 183 year: 1978 publication-title: Met. Sci. – volume: 528 start-page: 7514 year: 2011 publication-title: Mater. Sci. Eng. A – volume: 62 start-page: 307 year: 1938 ident: e_1_2_8_2_1 publication-title: J. Inst. Metall. – ident: e_1_2_8_19_1 doi: 10.1016/j.scriptamat.2015.06.002 – ident: e_1_2_8_62_1 doi: 10.1557/jmr.2013.9 – ident: e_1_2_8_67_1 doi: 10.1007/s11661-000-0011-8 – ident: e_1_2_8_50_1 doi: 10.1126/science.aal5166 – ident: e_1_2_8_46_1 doi: 10.1016/j.msea.2012.08.005 – ident: e_1_2_8_79_1 doi: 10.1016/j.msea.2012.11.027 – ident: e_1_2_8_23_1 doi: 10.1126/science.1229369 – ident: e_1_2_8_5_1 doi: 10.1088/0370-1301/64/9/303 – ident: e_1_2_8_82_1 doi: 10.1016/j.matlet.2016.09.114 – ident: e_1_2_8_47_1 doi: 10.1016/S1359-6462(03)00395-6 – ident: e_1_2_8_71_1 doi: 10.1016/j.actamat.2009.06.002 – ident: e_1_2_8_49_1 doi: 10.1016/j.scriptamat.2004.08.015 – ident: e_1_2_8_56_1 doi: 10.1007/s00542-007-0536-5 – ident: e_1_2_8_20_1 doi: 10.1016/j.msea.2015.12.046 – ident: e_1_2_8_22_1 doi: 10.1016/j.msea.2013.11.080 – ident: e_1_2_8_4_1 doi: 10.1126/science.1159610 – ident: e_1_2_8_14_1 doi: 10.1179/msc.1978.12.4.183 – ident: e_1_2_8_29_1 doi: 10.1016/S1359-6462(97)00210-8 – ident: e_1_2_8_27_1 doi: 10.1016/0921-5093(93)90319-A – ident: e_1_2_8_28_1 doi: 10.1016/0956-7151(93)90110-E – ident: e_1_2_8_37_1 doi: 10.1016/j.actamat.2007.05.018 – ident: e_1_2_8_26_1 doi: 10.1016/0956-716X(92)90405-4 – ident: e_1_2_8_65_1 doi: 10.1016/j.msea.2007.05.019 – ident: e_1_2_8_70_1 doi: 10.1016/j.actamat.2017.08.057 – ident: e_1_2_8_73_1 doi: 10.1063/1.3062849 – ident: e_1_2_8_18_1 doi: 10.2320/jinstmet1952.19.2_103 – ident: e_1_2_8_48_1 doi: 10.1016/j.jallcom.2008.01.067 – ident: e_1_2_8_57_1 doi: 10.1557/jmr.2012.55 – ident: e_1_2_8_61_1 doi: 10.1016/j.jmst.2014.03.008 – ident: e_1_2_8_66_1 doi: 10.1134/S1063774512040062 – ident: e_1_2_8_24_1 doi: 10.1016/j.jallcom.2015.04.102 – ident: e_1_2_8_25_1 doi: 10.1016/j.mser.2006.11.002 – ident: e_1_2_8_41_1 doi: 10.1007/s10853-012-6731-5 – ident: e_1_2_8_77_1 doi: 10.1016/j.msea.2011.06.080 – ident: e_1_2_8_42_1 doi: 10.1016/j.msea.2018.11.143 – ident: e_1_2_8_30_1 doi: 10.1126/science.1124268 – volume: 1 start-page: 61 year: 2000 ident: e_1_2_8_3_1 publication-title: Mater. Chem. Phys. – ident: e_1_2_8_75_1 doi: 10.1016/j.scriptamat.2010.07.014 – ident: e_1_2_8_11_1 doi: 10.1016/0001-6160(73)90057-6 – ident: e_1_2_8_69_1 doi: 10.1016/j.scriptamat.2011.06.048 – ident: e_1_2_8_34_1 doi: 10.1016/j.scriptamat.2009.02.018 – ident: e_1_2_8_52_1 doi: 10.1016/j.scriptamat.2006.12.036 – ident: e_1_2_8_63_1 doi: 10.1016/j.matchar.2017.05.034 – ident: e_1_2_8_81_1 doi: 10.1002/adma.200501232 – ident: e_1_2_8_44_1 doi: 10.1016/j.scriptamat.2018.11.042 – ident: e_1_2_8_78_1 doi: 10.1016/j.msea.2014.06.084 – ident: e_1_2_8_32_1 doi: 10.1016/j.scriptamat.2011.10.023 – volume: 174 start-page: 25 year: 1953 ident: e_1_2_8_6_1 publication-title: J. Iron Steel Inst. – ident: e_1_2_8_59_1 doi: 10.1016/S1359-6454(02)00195-7 – ident: e_1_2_8_21_1 doi: 10.1016/j.msea.2014.02.051 – ident: e_1_2_8_36_1 doi: 10.1002/adem.201800184 – ident: e_1_2_8_68_1 doi: 10.1016/j.scriptamat.2014.09.023 – ident: e_1_2_8_45_1 doi: 10.1016/j.msea.2014.12.104 – volume-title: Bulk Nanostructured Materials, Fundamentals and Applications year: 2014 ident: e_1_2_8_8_1 – ident: e_1_2_8_60_1 doi: 10.1016/j.msea.2012.11.048 – ident: e_1_2_8_38_1 doi: 10.1016/j.msea.2015.01.055 – ident: e_1_2_8_64_1 doi: 10.4018/978-1-4666-5852-3 – ident: e_1_2_8_55_1 doi: 10.1016/j.scriptamat.2011.03.029 – ident: e_1_2_8_12_1 doi: 10.1007/BF00721472 – ident: e_1_2_8_16_1 doi: 10.1080/14786436008238320 – ident: e_1_2_8_72_1 doi: 10.1016/j.ijplas.2017.09.003 – ident: e_1_2_8_74_1 doi: 10.1016/j.matlet.2014.07.188 – ident: e_1_2_8_54_1 doi: 10.1007/s10853-006-0969-8 – ident: e_1_2_8_80_1 doi: 10.1016/j.msea.2016.10.066 – ident: e_1_2_8_53_1 doi: 10.1016/j.msea.2018.08.061 – ident: e_1_2_8_39_1 doi: 10.1016/j.msea.2016.02.060 – ident: e_1_2_8_7_1 doi: 10.1016/j.actamat.2013.08.018 – volume-title: Defect Structure and Properties of Nanomaterials year: 2017 ident: e_1_2_8_10_1 – ident: e_1_2_8_15_1 doi: 10.1007/BF02811734 – ident: e_1_2_8_13_1 doi: 10.1007/BF02644464 – ident: e_1_2_8_33_1 doi: 10.1016/j.matlet.2010.10.090 – ident: e_1_2_8_40_1 doi: 10.1016/j.msea.2014.05.016 – ident: e_1_2_8_43_1 doi: 10.1016/j.msea.2018.07.107 – ident: e_1_2_8_51_1 doi: 10.1016/j.msea.2009.12.005 – ident: e_1_2_8_35_1 doi: 10.1016/j.msea.2009.09.054 – ident: e_1_2_8_9_1 doi: 10.1016/j.pmatsci.2005.08.003 – ident: e_1_2_8_17_1 doi: 10.1007/BF02811623 – ident: e_1_2_8_76_1 doi: 10.1016/j.scriptamat.2013.03.006 – ident: e_1_2_8_31_1 doi: 10.1016/j.actamat.2009.05.017 – ident: e_1_2_8_58_1 doi: 10.1016/j.scriptamat.2012.06.031 |
SSID | ssj0011013 |
Score | 2.4910932 |
SecondaryResourceType | review_article |
Snippet | Annealing of deformed metals is considered as a process necessarily leading to softening due to the annihilation of lattice defects. However, in... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | annealing-induced hardening dislocations grain boundaries nanocrystalline materials segregation |
Title | Annealing‐Induced Hardening in Ultrafine‐Grained and Nanocrystalline Materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201900507 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60Jz34Fuuj5CB42jbdPDZ7LGItQkWKhd7CPkEsqdT0oCd_gr_RX-JO0sZWEEGPWWZDMpmd-bI78w3Aua-FC-sqIFy2KQmZjgkXPCIBlVyrwFmRxtrh_m3cG4Y3o2i0VMVf8kNUG264Mgp_jQtcyOfWF2koZo9jahZHChMsJ8eELURFg4o_yoW2oj8ytvgmSDOzYG30aWt1-kpUWkapRZjpboNYPGCZXfLYnOWyqV6_cTf-5w12YGuOQb1OaTS7sGayPdhcYibch0HH-V-Bpeofb-_Y3kMZ7eEpv8F9FO8h84bjfCqsm-EErrHPhBMQmfacu56o6YsDncj2bby-yEsjP4Bh9-r-skfm7ReIwsM7otsssTJQMafaoY5YhJyaWAuFqM_qgLlhm0R-W_kqYlbEjAvK2soKX9EkMsEh1LJJZo7Ac-NKuDup0A9DwWKpZSSdJ_ATaVlgTR3IQv2pmnOTY4uMcVqyKtMUdZVWuqrDRSX_VLJy_ChJi0_wi1iKZl9dHf9l0glsUPwXL7ZnTqGWT2fmzAGWXDZgnYZ3jcI0PwGs-eTQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeGZCY3CbOw_FYAaVA26FqJbbITwlRpahKB5j4CfxGfgm-pA0tEkKCMdY5Si7nu8v5_H0InbuK27AufcyER3BAVYQZZyH2iWBK-taKFJwd7nSj1iC4ewhn3YRwFqbAhygLbrAycn8NCxwK0vUv1FBoH4feLAYYJnQZrQCtN8DnX_VKBCkb3HKGZCD5xgA0M8NtdEl9cf5CXJrPU_NA09xEYvaIRX_JU22SiZp8_Ybe-K932EIb0zTUaRR2s42WdLqD1ufACXdRr2FdMIfT6h9v78DwIbVyYKNfQynFeUydwTAbc2NnWIEboJqwAjxVjvXYIzl-sXknAH5rp8Ozws730KB53b9s4SkDA5awf4eVR2MjfBkxomziEfGAER0pLiHxM8qndtjEoetJV4bU8IgyTqgnDXcliUPt76NKOkr1AXLsuOT2TjJwg4DTSCgRCusM3FgY6htdRXim_0RO4cmBJWOYFMDKJAFdJaWuquiilH8ugDl-lCT5N_hFLAHLL68O_zLpDK22-p120r7t3h-hNQK_5nm15hhVsvFEn9j8JROnuYV-AqCM6BU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60guhBfGJ95iB4Ck02m2z2WNRaHy1FLPQW9glCSUuJB2_-BH-jv8SZpMb2IILHLDM5TOaVnZlvCLkIjISwriNfqJD6jJvEF1LEfkSVMDoCLTI4O9zrJ90hux_Fo4Up_gofor5wQ8so_TUa-NS41g9oKHaPY2uWQAgTvkrWsOKHTV2UDeo6Aihc2WLPwKwRZ-YbtjGgrWX-pbC0mKaWcaazTbbmCaLXrr7oDlmx-S7ZXIAN3CNPbXCOEufIP98_cPeGtsbDErzFSw7vJfeG42ImHXAAwS0ugQACmRsPfOlEz94gI0Qobuv1ZFFp4D4Zdm6er7r-fDeCr7Gy5puQp05FOhHUQEqQSCaoTYzUmJI5E3E4dmkchDrQMXcy4UJSHmonA03T2EYHpJFPcntIPDjXEt6kWcCY5IkyKlZgpkGqHI-cbRL_WzSZngOH4_6KcVZBHtMMRZnVomySy5p-WkFm_EpJS0n_QZahTtZPR_9hOifrg-tO9njXfzgmGxT_mctrlBPSKGav9hQSi0KdlbrzBTXcxW8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Annealing%E2%80%90Induced+Hardening+in+Ultrafine%E2%80%90Grained+and+Nanocrystalline+Materials&rft.jtitle=Advanced+engineering+materials&rft.au=Gubicza%2C+Jen%C5%91&rft.date=2020-01-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=22&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.201900507&rft.externalDBID=10.1002%252Fadem.201900507&rft.externalDocID=ADEM201900507 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |