Signatures of a Charge Density Wave Phase and the Chiral Anomaly in the Fermionic Material Cobalt Monosilicide CoSi
Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles with extremely low effective mass and high mobility. Weyl materials contain such topological states in the bulk and additionally have a non‐trivial ch...
Saved in:
Published in | Advanced electronic materials Vol. 6; no. 2 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles with extremely low effective mass and high mobility. Weyl materials contain such topological states in the bulk and additionally have a non‐trivial chiral charge. However, despite known quantum effects caused by these chiral states, the interplay between chiral states, and a charge density wave phase, an ordering of the electrons to a correlated phase is not experimentally explored. Indications for the formation of a charge density wave phase in the Weyl material cobalt monosilicide CoSi are observed. Furthermore, the typical signatures of the charge density wave phase together with typical signatures of Weyl fermions in magnetic field dependent electrical transport characterization are investigated. The charge density wave and the chiral contribution to the electrical magneto‐transport are separated as well as a suppression of the charge density wave phase is observed in magnetic fields.
The framework model of an interplay between a charge density wave and features of topological transport is investigated in the electrical transport. Single crystalline ribbons of cobalt silicide are prepared from bulk and characterized. The electrical transport is analyzed with a semiclassical model for quantum transport. Features of a charge density wave phase in combination with chiral anomaly are investigated. |
---|---|
AbstractList | Abstract
Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles with extremely low effective mass and high mobility. Weyl materials contain such topological states in the bulk and additionally have a non‐trivial chiral charge. However, despite known quantum effects caused by these chiral states, the interplay between chiral states, and a charge density wave phase, an ordering of the electrons to a correlated phase is not experimentally explored. Indications for the formation of a charge density wave phase in the Weyl material cobalt monosilicide CoSi are observed. Furthermore, the typical signatures of the charge density wave phase together with typical signatures of Weyl fermions in magnetic field dependent electrical transport characterization are investigated. The charge density wave and the chiral contribution to the electrical magneto‐transport are separated as well as a suppression of the charge density wave phase is observed in magnetic fields. Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles with extremely low effective mass and high mobility. Weyl materials contain such topological states in the bulk and additionally have a non‐trivial chiral charge. However, despite known quantum effects caused by these chiral states, the interplay between chiral states, and a charge density wave phase, an ordering of the electrons to a correlated phase is not experimentally explored. Indications for the formation of a charge density wave phase in the Weyl material cobalt monosilicide CoSi are observed. Furthermore, the typical signatures of the charge density wave phase together with typical signatures of Weyl fermions in magnetic field dependent electrical transport characterization are investigated. The charge density wave and the chiral contribution to the electrical magneto‐transport are separated as well as a suppression of the charge density wave phase is observed in magnetic fields. The framework model of an interplay between a charge density wave and features of topological transport is investigated in the electrical transport. Single crystalline ribbons of cobalt silicide are prepared from bulk and characterized. The electrical transport is analyzed with a semiclassical model for quantum transport. Features of a charge density wave phase in combination with chiral anomaly are investigated. |
Author | Schierning, Gabi Lammel, Michaela Reith, Heiko Schnatmann, Lauritz Geishendorf, Kevin Nielsch, Kornelius Thomas, Andy Burkov, Alexander Damm, Christine Novikov, Sergey |
Author_xml | – sequence: 1 givenname: Lauritz surname: Schnatmann fullname: Schnatmann, Lauritz organization: Technical University of Dresden – sequence: 2 givenname: Kevin surname: Geishendorf fullname: Geishendorf, Kevin organization: Technical University of Dresden – sequence: 3 givenname: Michaela surname: Lammel fullname: Lammel, Michaela organization: Technical University of Dresden – sequence: 4 givenname: Christine surname: Damm fullname: Damm, Christine organization: Leibniz Institute of Solid State and Materials Research – sequence: 5 givenname: Sergey surname: Novikov fullname: Novikov, Sergey organization: Ioffe Institute – sequence: 6 givenname: Andy surname: Thomas fullname: Thomas, Andy organization: Leibniz Institute of Solid State and Materials Research – sequence: 7 givenname: Alexander surname: Burkov fullname: Burkov, Alexander organization: Ioffe Institute – sequence: 8 givenname: Heiko surname: Reith fullname: Reith, Heiko organization: Leibniz Institute of Solid State and Materials Research – sequence: 9 givenname: Kornelius surname: Nielsch fullname: Nielsch, Kornelius organization: Technical University of Dresden – sequence: 10 givenname: Gabi orcidid: 0000-0003-2591-2463 surname: Schierning fullname: Schierning, Gabi email: g.schierning@ifw-dresden.de organization: Leibniz Institute of Solid State and Materials Research |
BookMark | eNqFkE1Lw0AURQepYK3dup4_kPomk89lia0VWhSq6C68JC_tSDIjM1HJvze1ou5c3cvjnLe452ykjSbGLgXMBIB_hdS0Mx9ECpCE8Qkb-yJNPRHB8-hPP2NT514AQMSRDEI5Zm6rdhq7N0uOm5ojz_Zod8SvSTvV9fwJ34nf79ERR13xbk8DoSw2fK5Ni03Plf66Lsm2ymhV8g12ZNVAZKbApuMbo41TjSpVNchmqy7YaY2No-l3TtjjcvGQrbz13c1tNl97pUzD2POLWCaCQKYJypAEiCQsiwQhKuIqqMN4SEpABnVZiMSvq0AU5AcVRiItBdRywmbHv6U1zlmq81erWrR9LiA_rJYfVst_VhuE9Ch8qIb6f-h8vlhvft1P-DNzIA |
CitedBy_id | crossref_primary_10_1021_acsami_3c05634 crossref_primary_10_1134_S1063783422120034 crossref_primary_10_1007_s11172_020_3047_5 crossref_primary_10_3390_cryst12091256 crossref_primary_10_1002_aelm_202101081 crossref_primary_10_1103_PhysRevMaterials_5_124418 crossref_primary_10_1038_s41467_022_30612_0 crossref_primary_10_3390_cryst11020143 |
Cites_doi | 10.1134/S1063782617060094 10.1007/s11664-017-6005-8 10.1103/RevModPhys.66.25 10.1038/s41586-019-1037-2 10.1038/srep45217 10.1038/s41567-018-0234-5 10.1103/PhysRevLett.114.237001 10.1038/nnano.2015.143 10.1088/0953-8984/27/11/113201 10.1143/JPSJ.20.933 10.1038/nmat4684 10.1088/1361-648X/aab0ba 10.1126/science.aaa9297 10.1002/adfm.201805418 10.1038/s41586-019-1031-8 10.1063/1.881498 10.1103/PhysRevB.92.125141 10.1038/ncomms10735 10.1103/PhysRevB.81.041203 10.1103/RevModPhys.60.1129 10.1103/PhysRevLett.93.076406 10.1126/science.aad2713 10.1126/science.1154115 10.1126/science.aaf5037 10.1103/PhysRevB.87.161107 10.1007/BF01339504 10.1103/PhysRevB.84.075129 10.1126/science.aac6089 10.1117/12.2063426 10.1038/ncomms8637 10.1103/PhysRevB.92.035203 10.1021/acs.chemmater.7b05261 10.1038/nmat2090 10.1103/PhysRevLett.122.076402 10.1088/0953-2048/14/4/201 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 24P WIN AAYXX CITATION |
DOI | 10.1002/aelm.201900857 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | 10_1002_aelm_201900857 AELM201900857 |
Genre | article |
GrantInformation_xml | – fundername: Russian Science Foundation funderid: 16‐42‐01067 – fundername: Deutsche Forschungsgesellschaft funderid: 616/22‐1 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WIN WOHZO WXSBR ZZTAW AAYXX CITATION |
ID | FETCH-LOGICAL-c3957-2b7381e0398a35e10185cb8a06b7d4f576b7e8034fcb182fd41be24da619c10f3 |
IEDL.DBID | 24P |
ISSN | 2199-160X |
IngestDate | Fri Aug 23 00:53:57 EDT 2024 Sat Aug 24 01:07:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3957-2b7381e0398a35e10185cb8a06b7d4f576b7e8034fcb182fd41be24da619c10f3 |
ORCID | 0000-0003-2591-2463 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.201900857 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1002_aelm_201900857 wiley_primary_10_1002_aelm_201900857_AELM201900857 |
PublicationCentury | 2000 |
PublicationDate | February 2020 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2020 |
References | 2017; 119 2018; 122 2017; 7 2015; 6 2015; 5 2017; 47 2015; 92 2013; 87 2011; 84 2015; 10 2019; 567 1994; 66 2008; 7 2006 2015; 349 2010; 81 2016; 15 2017; 51 2015; 350 1965; 20 2016; 7 2015; 27 2004; 93 2014; 9167 2015; 114 2008; 319 2019 2016; 353 2019; 29 2018; 30 1996; 49 1988; 60 2001; 14 2018; 14 1929; 53 2003; 67 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 Lu H.‐Z. (e_1_2_7_38_1) 2014; 9167 e_1_2_7_10_1 Huang X. (e_1_2_7_34_1) 2015; 5 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 Rowe D. M. (e_1_2_7_27_1) 2006 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_36_1 Sugiyama J. (e_1_2_7_20_1) 2003; 67 e_1_2_7_37_1 e_1_2_7_39_1 Tang P. (e_1_2_7_6_1) 2017; 119 |
References_xml | – volume: 14 start-page: 1125 year: 2018 publication-title: Nat. Phys. – volume: 66 start-page: 25 year: 1994 publication-title: Rev. Mod. Phys. – volume: 51 start-page: 689 year: 2017 publication-title: Semiconductors – volume: 53 start-page: 330 year: 1929 publication-title: Z. Phys. – volume: 49 start-page: 42 year: 1996 publication-title: Phys. Today – volume: 319 start-page: 1509 year: 2008 publication-title: Science – volume: 30 year: 2018 publication-title: J. Phys.: Condens. Matter – volume: 353 start-page: 6299 year: 2016 publication-title: Science – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 14 start-page: R1 year: 2001 publication-title: Supercond. Sci. Technol. – volume: 350 start-page: 1314 year: 2015 publication-title: Science – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 5 year: 2015 publication-title: Phys. Rev. X – volume: 7 start-page: 105 year: 2008 publication-title: Nat. Mater. – volume: 349 start-page: 613 year: 2015 publication-title: Science – volume: 47 start-page: 3277 year: 2017 publication-title: J. Electron. Mater. – volume: 67 start-page: 1 year: 2003 publication-title: Phys. Rev. B – volume: 60 start-page: 1129 year: 1988 publication-title: Rev. Mod. Phys. – volume: 27 year: 2015 publication-title: J. Phys.: Condens. Matter – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 119 start-page: 20 year: 2017 publication-title: Phys. Rev. Lett. – volume: 122 year: 2018 publication-title: Phys. Rev. Lett. – volume: 15 start-page: 1161 year: 2016 publication-title: Nat. Mater. – volume: 81 year: 2010 publication-title: Phys. Rev. B – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 9167 year: 2014 publication-title: Process of SPIE – year: 2006 – volume: 567 start-page: 496 year: 2019 publication-title: Nature – volume: 6 start-page: 7637 year: 2015 publication-title: Nat. Commun. – volume: 93 start-page: 7 year: 2004 publication-title: Phys. Rev. Lett. – volume: 30 start-page: 1146 year: 2018 publication-title: Chem. Mater. – volume: 350 start-page: 378 year: 2015 publication-title: Science – volume: 10 start-page: 765 year: 2015 publication-title: Nat. Nanotechnol. – volume: 567 start-page: 500 year: 2019 publication-title: Nature – volume: 20 start-page: 933 year: 1965 publication-title: J. Phys. Soc. Jpn. – year: 2019 – volume: 92 year: 2015 publication-title: Phys. Rev. B – ident: e_1_2_7_8_1 doi: 10.1134/S1063782617060094 – ident: e_1_2_7_9_1 doi: 10.1007/s11664-017-6005-8 – ident: e_1_2_7_19_1 doi: 10.1103/RevModPhys.66.25 – ident: e_1_2_7_3_1 doi: 10.1038/s41586-019-1037-2 – ident: e_1_2_7_25_1 doi: 10.1038/srep45217 – ident: e_1_2_7_39_1 doi: 10.1038/s41567-018-0234-5 – ident: e_1_2_7_29_1 doi: 10.1103/PhysRevLett.114.237001 – ident: e_1_2_7_26_1 doi: 10.1038/nnano.2015.143 – ident: e_1_2_7_28_1 – ident: e_1_2_7_14_1 doi: 10.1088/0953-8984/27/11/113201 – ident: e_1_2_7_17_1 doi: 10.1143/JPSJ.20.933 – ident: e_1_2_7_37_1 doi: 10.1038/nmat4684 – ident: e_1_2_7_5_1 doi: 10.1088/1361-648X/aab0ba – ident: e_1_2_7_40_1 doi: 10.1126/science.aaa9297 – ident: e_1_2_7_13_1 doi: 10.1002/adfm.201805418 – ident: e_1_2_7_2_1 doi: 10.1038/s41586-019-1031-8 – volume: 67 start-page: 1 year: 2003 ident: e_1_2_7_20_1 publication-title: Phys. Rev. B contributor: fullname: Sugiyama J. – ident: e_1_2_7_21_1 doi: 10.1063/1.881498 – ident: e_1_2_7_30_1 doi: 10.1103/PhysRevB.92.125141 – ident: e_1_2_7_18_1 doi: 10.1038/ncomms10735 – ident: e_1_2_7_11_1 doi: 10.1103/PhysRevB.81.041203 – ident: e_1_2_7_22_1 doi: 10.1103/RevModPhys.60.1129 – ident: e_1_2_7_33_1 doi: 10.1103/PhysRevLett.93.076406 – ident: e_1_2_7_15_1 doi: 10.1126/science.aad2713 – ident: e_1_2_7_24_1 doi: 10.1126/science.1154115 – ident: e_1_2_7_4_1 doi: 10.1126/science.aaf5037 – volume: 5 start-page: 031023 year: 2015 ident: e_1_2_7_34_1 publication-title: Phys. Rev. X contributor: fullname: Huang X. – ident: e_1_2_7_31_1 doi: 10.1103/PhysRevB.87.161107 – ident: e_1_2_7_1_1 doi: 10.1007/BF01339504 – ident: e_1_2_7_32_1 doi: 10.1103/PhysRevB.84.075129 – ident: e_1_2_7_36_1 doi: 10.1126/science.aac6089 – volume: 9167 start-page: 91672E year: 2014 ident: e_1_2_7_38_1 publication-title: Process of SPIE doi: 10.1117/12.2063426 contributor: fullname: Lu H.‐Z. – volume: 119 start-page: 20 year: 2017 ident: e_1_2_7_6_1 publication-title: Phys. Rev. Lett. contributor: fullname: Tang P. – ident: e_1_2_7_10_1 doi: 10.1038/ncomms8637 – ident: e_1_2_7_35_1 doi: 10.1103/PhysRevB.92.035203 – ident: e_1_2_7_12_1 doi: 10.1021/acs.chemmater.7b05261 – ident: e_1_2_7_7_1 doi: 10.1038/nmat2090 – ident: e_1_2_7_16_1 doi: 10.1103/PhysRevLett.122.076402 – ident: e_1_2_7_23_1 doi: 10.1088/0953-2048/14/4/201 – volume-title: Thermoelectrics Handbook: Macro to Nano year: 2006 ident: e_1_2_7_27_1 contributor: fullname: Rowe D. M. |
SSID | ssj0001763453 |
Score | 2.2338407 |
Snippet | Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles with... Abstract Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles... |
SourceID | crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | charge density wave chiral anomalies cobalt silicide quantum transport |
Title | Signatures of a Charge Density Wave Phase and the Chiral Anomaly in the Fermionic Material Cobalt Monosilicide CoSi |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.201900857 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMCDbhcvoqg4P0YOgqewNknX5jjmxhAng1kdXkrSJrMwW9mqsP_evHafJ8FjS5LD63t97yXv_YLQnevGyjNSEca0IpxzRhQVCbG64uskoMYX0I08fG4PQv448SY7XfwVH2Kz4QaWUf6vwcClWrS20FCpZ9BJbh0aQNoPUR2wMUDPp3y03WWx5sNLFKW1TEHctjNZkxsd2tpfYs8z7Uaqpavpn6DjVYyIO9VHPUUHOjtDi3E6rSicC5wbLDEclE81foAK9GKJ3-SPxqMP65SwzBJs4zo7Ip3DOln-KWdLnGbl2z6UvwAQFw9lUeof7gIUpMDWvvNFOkvjNLGT83F6jsJ-76U7IKsbE0gM522EKt96YO0wEUjmaaBxebEKpNNWfsKNzS2UrwOHcRMrm1iYhLtKU55Im0bFrmPYBapleaYvEdax8Y2hgiuqeOAJqT0mpHJcnQhl05gGul9LK_qqwBhRhUCmEcg12si1gWgpzD-GRZ3e03DzdPWfSdfoiEI6XBZV36BaMf_WtzZmKFSzVIsmqndew_fwF4iXuqM |
link.rule.ids | 315,783,787,11574,27936,27937,46064,46488,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8UDnoxGjXiZw8mnhq2tmPbkSAElRETQImXpd1aXIKbgWnCf2_fxoecTDxuaXt4e7-9718RurXtSDpaSMKYkoRzzoikfkyMrrgq9qh2fZhGDvqN7og_jp1VNyHMwpT8EOuEGyCj-F8DwCEhXd-whgo1hVFyY9GApX0XVR0o6lVQtfkyehttEi0GQbxgozTg9IndsMYr8kaL1rcP2TJOv53Vwtp0DtHB0k3EzfK7HqEdlR6j-SCZlEScc5xpLDDUyicK30MTer7Ar-Jb4ed3Y5ewSGNsXDuzIpnBOWn2IaYLnKTF2w50wAAnLg5EXqggbgEvSI4NxLN5Mk2iJDabs0Fygkad9rDVJctLE0gEJTdCpWuMsLKY7wnmKCDkciLpCash3ZhrE15IV3kW4zqSJrbQMbelojwWJpKKbEuzU1RJs1SdIawi7WpNfS6p5J7jC-UwX0jLVrEvTSRTQ3craYWfJTdGWLIg0xDkGq7lWkO0EOYfy8Jmuxesn87_s-kG7XWHQS_sPfSfLtA-hei46LG-RJV89qWujAuRy-ulkvwAg0W-Hw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMCDThAvoqg4P3MQPIW1abo2x7GtTN3GYA53K0mTzMJsx1aF_fcm6T5PgseWJIfX9_reS977BYAn1024rxhHnic5IoR4iGMqkNaVQIoQq4CabuRev94ZkdexP97p4i_5EJsNN2MZ9n9tDHwmVG0LDWVyajrJtUMzkPZDcER0LG7o-ZgMtrss2nyIRVFqy6TIrTvjNbnRwbX9JfY8026kal1NdAZOVzEibJQf9RwcyOwCLIbppKRwLmCuIIPmoHwiYctUoBdL-MF-JBx8aqcEWSagjuv0iHRu1snyLzZdwjSzbyNT_mKAuLDHCqt_sGmgIAXU9p0v0mmapEJPzofpJRhF7fdmB61uTECJOW9DmAfaA0vHoyHzfGloXH7CQ-bUeSCI0rkFD2ToeEQlXCcWShCXS0wE02lU4jrKuwKVLM_kNYAyUYFSmBKOOQl9yqTvUcYdVwrKdRpTBc9racWzEowRlwhkHBu5xhu5VgG2wvxjWNxod3ubp5v_THoEx4NWFHdf-m-34ASbzNjWV9-BSjH_lvc6fCj4g9WQX9XNu3k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signatures+of+a+Charge+Density+Wave+Phase+and+the+Chiral+Anomaly+in+the+Fermionic+Material+Cobalt+Monosilicide+CoSi&rft.jtitle=Advanced+electronic+materials&rft.au=Schnatmann%2C+Lauritz&rft.au=Geishendorf%2C+Kevin&rft.au=Lammel%2C+Michaela&rft.au=Damm%2C+Christine&rft.date=2020-02-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1002%2Faelm.201900857&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aelm_201900857 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |