Signatures of a Charge Density Wave Phase and the Chiral Anomaly in the Fermionic Material Cobalt Monosilicide CoSi

Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles with extremely low effective mass and high mobility. Weyl materials contain such topological states in the bulk and additionally have a non‐trivial ch...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 6; no. 2
Main Authors Schnatmann, Lauritz, Geishendorf, Kevin, Lammel, Michaela, Damm, Christine, Novikov, Sergey, Thomas, Andy, Burkov, Alexander, Reith, Heiko, Nielsch, Kornelius, Schierning, Gabi
Format Journal Article
LanguageEnglish
Published 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles with extremely low effective mass and high mobility. Weyl materials contain such topological states in the bulk and additionally have a non‐trivial chiral charge. However, despite known quantum effects caused by these chiral states, the interplay between chiral states, and a charge density wave phase, an ordering of the electrons to a correlated phase is not experimentally explored. Indications for the formation of a charge density wave phase in the Weyl material cobalt monosilicide CoSi are observed. Furthermore, the typical signatures of the charge density wave phase together with typical signatures of Weyl fermions in magnetic field dependent electrical transport characterization are investigated. The charge density wave and the chiral contribution to the electrical magneto‐transport are separated as well as a suppression of the charge density wave phase is observed in magnetic fields. The framework model of an interplay between a charge density wave and features of topological transport is investigated in the electrical transport. Single crystalline ribbons of cobalt silicide are prepared from bulk and characterized. The electrical transport is analyzed with a semiclassical model for quantum transport. Features of a charge density wave phase in combination with chiral anomaly are investigated.
AbstractList Abstract Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles with extremely low effective mass and high mobility. Weyl materials contain such topological states in the bulk and additionally have a non‐trivial chiral charge. However, despite known quantum effects caused by these chiral states, the interplay between chiral states, and a charge density wave phase, an ordering of the electrons to a correlated phase is not experimentally explored. Indications for the formation of a charge density wave phase in the Weyl material cobalt monosilicide CoSi are observed. Furthermore, the typical signatures of the charge density wave phase together with typical signatures of Weyl fermions in magnetic field dependent electrical transport characterization are investigated. The charge density wave and the chiral contribution to the electrical magneto‐transport are separated as well as a suppression of the charge density wave phase is observed in magnetic fields.
Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles with extremely low effective mass and high mobility. Weyl materials contain such topological states in the bulk and additionally have a non‐trivial chiral charge. However, despite known quantum effects caused by these chiral states, the interplay between chiral states, and a charge density wave phase, an ordering of the electrons to a correlated phase is not experimentally explored. Indications for the formation of a charge density wave phase in the Weyl material cobalt monosilicide CoSi are observed. Furthermore, the typical signatures of the charge density wave phase together with typical signatures of Weyl fermions in magnetic field dependent electrical transport characterization are investigated. The charge density wave and the chiral contribution to the electrical magneto‐transport are separated as well as a suppression of the charge density wave phase is observed in magnetic fields. The framework model of an interplay between a charge density wave and features of topological transport is investigated in the electrical transport. Single crystalline ribbons of cobalt silicide are prepared from bulk and characterized. The electrical transport is analyzed with a semiclassical model for quantum transport. Features of a charge density wave phase in combination with chiral anomaly are investigated.
Author Schierning, Gabi
Lammel, Michaela
Reith, Heiko
Schnatmann, Lauritz
Geishendorf, Kevin
Nielsch, Kornelius
Thomas, Andy
Burkov, Alexander
Damm, Christine
Novikov, Sergey
Author_xml – sequence: 1
  givenname: Lauritz
  surname: Schnatmann
  fullname: Schnatmann, Lauritz
  organization: Technical University of Dresden
– sequence: 2
  givenname: Kevin
  surname: Geishendorf
  fullname: Geishendorf, Kevin
  organization: Technical University of Dresden
– sequence: 3
  givenname: Michaela
  surname: Lammel
  fullname: Lammel, Michaela
  organization: Technical University of Dresden
– sequence: 4
  givenname: Christine
  surname: Damm
  fullname: Damm, Christine
  organization: Leibniz Institute of Solid State and Materials Research
– sequence: 5
  givenname: Sergey
  surname: Novikov
  fullname: Novikov, Sergey
  organization: Ioffe Institute
– sequence: 6
  givenname: Andy
  surname: Thomas
  fullname: Thomas, Andy
  organization: Leibniz Institute of Solid State and Materials Research
– sequence: 7
  givenname: Alexander
  surname: Burkov
  fullname: Burkov, Alexander
  organization: Ioffe Institute
– sequence: 8
  givenname: Heiko
  surname: Reith
  fullname: Reith, Heiko
  organization: Leibniz Institute of Solid State and Materials Research
– sequence: 9
  givenname: Kornelius
  surname: Nielsch
  fullname: Nielsch, Kornelius
  organization: Technical University of Dresden
– sequence: 10
  givenname: Gabi
  orcidid: 0000-0003-2591-2463
  surname: Schierning
  fullname: Schierning, Gabi
  email: g.schierning@ifw-dresden.de
  organization: Leibniz Institute of Solid State and Materials Research
BookMark eNqFkE1Lw0AURQepYK3dup4_kPomk89lia0VWhSq6C68JC_tSDIjM1HJvze1ou5c3cvjnLe452ykjSbGLgXMBIB_hdS0Mx9ECpCE8Qkb-yJNPRHB8-hPP2NT514AQMSRDEI5Zm6rdhq7N0uOm5ojz_Zod8SvSTvV9fwJ34nf79ERR13xbk8DoSw2fK5Ni03Plf66Lsm2ymhV8g12ZNVAZKbApuMbo41TjSpVNchmqy7YaY2No-l3TtjjcvGQrbz13c1tNl97pUzD2POLWCaCQKYJypAEiCQsiwQhKuIqqMN4SEpABnVZiMSvq0AU5AcVRiItBdRywmbHv6U1zlmq81erWrR9LiA_rJYfVst_VhuE9Ch8qIb6f-h8vlhvft1P-DNzIA
CitedBy_id crossref_primary_10_1021_acsami_3c05634
crossref_primary_10_1134_S1063783422120034
crossref_primary_10_1007_s11172_020_3047_5
crossref_primary_10_3390_cryst12091256
crossref_primary_10_1002_aelm_202101081
crossref_primary_10_1103_PhysRevMaterials_5_124418
crossref_primary_10_1038_s41467_022_30612_0
crossref_primary_10_3390_cryst11020143
Cites_doi 10.1134/S1063782617060094
10.1007/s11664-017-6005-8
10.1103/RevModPhys.66.25
10.1038/s41586-019-1037-2
10.1038/srep45217
10.1038/s41567-018-0234-5
10.1103/PhysRevLett.114.237001
10.1038/nnano.2015.143
10.1088/0953-8984/27/11/113201
10.1143/JPSJ.20.933
10.1038/nmat4684
10.1088/1361-648X/aab0ba
10.1126/science.aaa9297
10.1002/adfm.201805418
10.1038/s41586-019-1031-8
10.1063/1.881498
10.1103/PhysRevB.92.125141
10.1038/ncomms10735
10.1103/PhysRevB.81.041203
10.1103/RevModPhys.60.1129
10.1103/PhysRevLett.93.076406
10.1126/science.aad2713
10.1126/science.1154115
10.1126/science.aaf5037
10.1103/PhysRevB.87.161107
10.1007/BF01339504
10.1103/PhysRevB.84.075129
10.1126/science.aac6089
10.1117/12.2063426
10.1038/ncomms8637
10.1103/PhysRevB.92.035203
10.1021/acs.chemmater.7b05261
10.1038/nmat2090
10.1103/PhysRevLett.122.076402
10.1088/0953-2048/14/4/201
ContentType Journal Article
Copyright 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 24P
WIN
AAYXX
CITATION
DOI 10.1002/aelm.201900857
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID 10_1002_aelm_201900857
AELM201900857
Genre article
GrantInformation_xml – fundername: Russian Science Foundation
  funderid: 16‐42‐01067
– fundername: Deutsche Forschungsgesellschaft
  funderid: 616/22‐1
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WIN
WOHZO
WXSBR
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c3957-2b7381e0398a35e10185cb8a06b7d4f576b7e8034fcb182fd41be24da619c10f3
IEDL.DBID 24P
ISSN 2199-160X
IngestDate Fri Aug 23 00:53:57 EDT 2024
Sat Aug 24 01:07:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3957-2b7381e0398a35e10185cb8a06b7d4f576b7e8034fcb182fd41be24da619c10f3
ORCID 0000-0003-2591-2463
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.201900857
PageCount 8
ParticipantIDs crossref_primary_10_1002_aelm_201900857
wiley_primary_10_1002_aelm_201900857_AELM201900857
PublicationCentury 2000
PublicationDate February 2020
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Advanced electronic materials
PublicationYear 2020
References 2017; 119
2018; 122
2017; 7
2015; 6
2015; 5
2017; 47
2015; 92
2013; 87
2011; 84
2015; 10
2019; 567
1994; 66
2008; 7
2006
2015; 349
2010; 81
2016; 15
2017; 51
2015; 350
1965; 20
2016; 7
2015; 27
2004; 93
2014; 9167
2015; 114
2008; 319
2019
2016; 353
2019; 29
2018; 30
1996; 49
1988; 60
2001; 14
2018; 14
1929; 53
2003; 67
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
Lu H.‐Z. (e_1_2_7_38_1) 2014; 9167
e_1_2_7_10_1
Huang X. (e_1_2_7_34_1) 2015; 5
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
Rowe D. M. (e_1_2_7_27_1) 2006
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
Sugiyama J. (e_1_2_7_20_1) 2003; 67
e_1_2_7_37_1
e_1_2_7_39_1
Tang P. (e_1_2_7_6_1) 2017; 119
References_xml – volume: 14
  start-page: 1125
  year: 2018
  publication-title: Nat. Phys.
– volume: 66
  start-page: 25
  year: 1994
  publication-title: Rev. Mod. Phys.
– volume: 51
  start-page: 689
  year: 2017
  publication-title: Semiconductors
– volume: 53
  start-page: 330
  year: 1929
  publication-title: Z. Phys.
– volume: 49
  start-page: 42
  year: 1996
  publication-title: Phys. Today
– volume: 319
  start-page: 1509
  year: 2008
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: J. Phys.: Condens. Matter
– volume: 353
  start-page: 6299
  year: 2016
  publication-title: Science
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 14
  start-page: R1
  year: 2001
  publication-title: Supercond. Sci. Technol.
– volume: 350
  start-page: 1314
  year: 2015
  publication-title: Science
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 5
  year: 2015
  publication-title: Phys. Rev. X
– volume: 7
  start-page: 105
  year: 2008
  publication-title: Nat. Mater.
– volume: 349
  start-page: 613
  year: 2015
  publication-title: Science
– volume: 47
  start-page: 3277
  year: 2017
  publication-title: J. Electron. Mater.
– volume: 67
  start-page: 1
  year: 2003
  publication-title: Phys. Rev. B
– volume: 60
  start-page: 1129
  year: 1988
  publication-title: Rev. Mod. Phys.
– volume: 27
  year: 2015
  publication-title: J. Phys.: Condens. Matter
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 119
  start-page: 20
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 122
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 1161
  year: 2016
  publication-title: Nat. Mater.
– volume: 81
  year: 2010
  publication-title: Phys. Rev. B
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 9167
  year: 2014
  publication-title: Process of SPIE
– year: 2006
– volume: 567
  start-page: 496
  year: 2019
  publication-title: Nature
– volume: 6
  start-page: 7637
  year: 2015
  publication-title: Nat. Commun.
– volume: 93
  start-page: 7
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 30
  start-page: 1146
  year: 2018
  publication-title: Chem. Mater.
– volume: 350
  start-page: 378
  year: 2015
  publication-title: Science
– volume: 10
  start-page: 765
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 567
  start-page: 500
  year: 2019
  publication-title: Nature
– volume: 20
  start-page: 933
  year: 1965
  publication-title: J. Phys. Soc. Jpn.
– year: 2019
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– ident: e_1_2_7_8_1
  doi: 10.1134/S1063782617060094
– ident: e_1_2_7_9_1
  doi: 10.1007/s11664-017-6005-8
– ident: e_1_2_7_19_1
  doi: 10.1103/RevModPhys.66.25
– ident: e_1_2_7_3_1
  doi: 10.1038/s41586-019-1037-2
– ident: e_1_2_7_25_1
  doi: 10.1038/srep45217
– ident: e_1_2_7_39_1
  doi: 10.1038/s41567-018-0234-5
– ident: e_1_2_7_29_1
  doi: 10.1103/PhysRevLett.114.237001
– ident: e_1_2_7_26_1
  doi: 10.1038/nnano.2015.143
– ident: e_1_2_7_28_1
– ident: e_1_2_7_14_1
  doi: 10.1088/0953-8984/27/11/113201
– ident: e_1_2_7_17_1
  doi: 10.1143/JPSJ.20.933
– ident: e_1_2_7_37_1
  doi: 10.1038/nmat4684
– ident: e_1_2_7_5_1
  doi: 10.1088/1361-648X/aab0ba
– ident: e_1_2_7_40_1
  doi: 10.1126/science.aaa9297
– ident: e_1_2_7_13_1
  doi: 10.1002/adfm.201805418
– ident: e_1_2_7_2_1
  doi: 10.1038/s41586-019-1031-8
– volume: 67
  start-page: 1
  year: 2003
  ident: e_1_2_7_20_1
  publication-title: Phys. Rev. B
  contributor:
    fullname: Sugiyama J.
– ident: e_1_2_7_21_1
  doi: 10.1063/1.881498
– ident: e_1_2_7_30_1
  doi: 10.1103/PhysRevB.92.125141
– ident: e_1_2_7_18_1
  doi: 10.1038/ncomms10735
– ident: e_1_2_7_11_1
  doi: 10.1103/PhysRevB.81.041203
– ident: e_1_2_7_22_1
  doi: 10.1103/RevModPhys.60.1129
– ident: e_1_2_7_33_1
  doi: 10.1103/PhysRevLett.93.076406
– ident: e_1_2_7_15_1
  doi: 10.1126/science.aad2713
– ident: e_1_2_7_24_1
  doi: 10.1126/science.1154115
– ident: e_1_2_7_4_1
  doi: 10.1126/science.aaf5037
– volume: 5
  start-page: 031023
  year: 2015
  ident: e_1_2_7_34_1
  publication-title: Phys. Rev. X
  contributor:
    fullname: Huang X.
– ident: e_1_2_7_31_1
  doi: 10.1103/PhysRevB.87.161107
– ident: e_1_2_7_1_1
  doi: 10.1007/BF01339504
– ident: e_1_2_7_32_1
  doi: 10.1103/PhysRevB.84.075129
– ident: e_1_2_7_36_1
  doi: 10.1126/science.aac6089
– volume: 9167
  start-page: 91672E
  year: 2014
  ident: e_1_2_7_38_1
  publication-title: Process of SPIE
  doi: 10.1117/12.2063426
  contributor:
    fullname: Lu H.‐Z.
– volume: 119
  start-page: 20
  year: 2017
  ident: e_1_2_7_6_1
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Tang P.
– ident: e_1_2_7_10_1
  doi: 10.1038/ncomms8637
– ident: e_1_2_7_35_1
  doi: 10.1103/PhysRevB.92.035203
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.chemmater.7b05261
– ident: e_1_2_7_7_1
  doi: 10.1038/nmat2090
– ident: e_1_2_7_16_1
  doi: 10.1103/PhysRevLett.122.076402
– ident: e_1_2_7_23_1
  doi: 10.1088/0953-2048/14/4/201
– volume-title: Thermoelectrics Handbook: Macro to Nano
  year: 2006
  ident: e_1_2_7_27_1
  contributor:
    fullname: Rowe D. M.
SSID ssj0001763453
Score 2.2338407
Snippet Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles with...
Abstract Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms charge density wave
chiral anomalies
cobalt silicide
quantum transport
Title Signatures of a Charge Density Wave Phase and the Chiral Anomaly in the Fermionic Material Cobalt Monosilicide CoSi
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.201900857
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMCDbhcvoqg4P0YOgqewNknX5jjmxhAng1kdXkrSJrMwW9mqsP_evHafJ8FjS5LD63t97yXv_YLQnevGyjNSEca0IpxzRhQVCbG64uskoMYX0I08fG4PQv448SY7XfwVH2Kz4QaWUf6vwcClWrS20FCpZ9BJbh0aQNoPUR2wMUDPp3y03WWx5sNLFKW1TEHctjNZkxsd2tpfYs8z7Uaqpavpn6DjVYyIO9VHPUUHOjtDi3E6rSicC5wbLDEclE81foAK9GKJ3-SPxqMP65SwzBJs4zo7Ip3DOln-KWdLnGbl2z6UvwAQFw9lUeof7gIUpMDWvvNFOkvjNLGT83F6jsJ-76U7IKsbE0gM522EKt96YO0wEUjmaaBxebEKpNNWfsKNzS2UrwOHcRMrm1iYhLtKU55Im0bFrmPYBapleaYvEdax8Y2hgiuqeOAJqT0mpHJcnQhl05gGul9LK_qqwBhRhUCmEcg12si1gWgpzD-GRZ3e03DzdPWfSdfoiEI6XBZV36BaMf_WtzZmKFSzVIsmqndew_fwF4iXuqM
link.rule.ids 315,783,787,11574,27936,27937,46064,46488,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8UDnoxGjXiZw8mnhq2tmPbkSAElRETQImXpd1aXIKbgWnCf2_fxoecTDxuaXt4e7-9718RurXtSDpaSMKYkoRzzoikfkyMrrgq9qh2fZhGDvqN7og_jp1VNyHMwpT8EOuEGyCj-F8DwCEhXd-whgo1hVFyY9GApX0XVR0o6lVQtfkyehttEi0GQbxgozTg9IndsMYr8kaL1rcP2TJOv53Vwtp0DtHB0k3EzfK7HqEdlR6j-SCZlEScc5xpLDDUyicK30MTer7Ar-Jb4ed3Y5ewSGNsXDuzIpnBOWn2IaYLnKTF2w50wAAnLg5EXqggbgEvSI4NxLN5Mk2iJDabs0Fygkad9rDVJctLE0gEJTdCpWuMsLKY7wnmKCDkciLpCash3ZhrE15IV3kW4zqSJrbQMbelojwWJpKKbEuzU1RJs1SdIawi7WpNfS6p5J7jC-UwX0jLVrEvTSRTQ3craYWfJTdGWLIg0xDkGq7lWkO0EOYfy8Jmuxesn87_s-kG7XWHQS_sPfSfLtA-hei46LG-RJV89qWujAuRy-ulkvwAg0W-Hw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMCDThAvoqg4P3MQPIW1abo2x7GtTN3GYA53K0mTzMJsx1aF_fcm6T5PgseWJIfX9_reS977BYAn1024rxhHnic5IoR4iGMqkNaVQIoQq4CabuRev94ZkdexP97p4i_5EJsNN2MZ9n9tDHwmVG0LDWVyajrJtUMzkPZDcER0LG7o-ZgMtrss2nyIRVFqy6TIrTvjNbnRwbX9JfY8026kal1NdAZOVzEibJQf9RwcyOwCLIbppKRwLmCuIIPmoHwiYctUoBdL-MF-JBx8aqcEWSagjuv0iHRu1snyLzZdwjSzbyNT_mKAuLDHCqt_sGmgIAXU9p0v0mmapEJPzofpJRhF7fdmB61uTECJOW9DmAfaA0vHoyHzfGloXH7CQ-bUeSCI0rkFD2ToeEQlXCcWShCXS0wE02lU4jrKuwKVLM_kNYAyUYFSmBKOOQl9yqTvUcYdVwrKdRpTBc9racWzEowRlwhkHBu5xhu5VgG2wvxjWNxod3ubp5v_THoEx4NWFHdf-m-34ASbzNjWV9-BSjH_lvc6fCj4g9WQX9XNu3k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signatures+of+a+Charge+Density+Wave+Phase+and+the+Chiral+Anomaly+in+the+Fermionic+Material+Cobalt+Monosilicide+CoSi&rft.jtitle=Advanced+electronic+materials&rft.au=Schnatmann%2C+Lauritz&rft.au=Geishendorf%2C+Kevin&rft.au=Lammel%2C+Michaela&rft.au=Damm%2C+Christine&rft.date=2020-02-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1002%2Faelm.201900857&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aelm_201900857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon