What we use is not what we know: environmental predictors in plant distribution models

Aims: The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as highlighted in multiple earlier studies. Because variable selection is directly related to a model's capacit...

Full description

Saved in:
Bibliographic Details
Published inJournal of vegetation science Vol. 27; no. 6; pp. 1308 - 1322
Main Authors Mod, Heidi K., Scherrer, Daniel, Luoto, Miska, Guisan, Antoine
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.11.2016
John Wiley & Sons Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims: The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as highlighted in multiple earlier studies. Because variable selection is directly related to a model's capacity to capture important species' environmental requirements, one would expect an explicit prior consideration of all ecophysiologically meaningful variables. For plants, these include temperature, water, soil nutrients, light, and in some cases, disturbances and biotic interactions. However, the set of predictors used in published correlative plant SDM studies varies considerably. No comprehensive review exists of what environmental predictors are meaningful, available (or missing) and used in practice to predict plant distributions. Contributing to answer these questions is the aim of this review. Methods: We carried out an extensive, systematic review of recently published plant SDM studies (years 2010-2015; n = 200) to determine the predictors used (and not used) in the models. We additionally conducted an in-depth review of SDM studies in selected journals to identify temporal trends in the use of predictors (years 2000-2015; n = 40). Results: A large majority of plant SDM studies neglected several ecophysiologically meaningful environmental variables, and the number of relevant predictors used in models has stagnated or even declined over the last 15 yr. Conclusions: Neglecting ecophysiologically meaningful predictors can result in incomplete niche quantification and can thus limit the predictive power of plant SDMs. Some of these missing predictors are already available spatially or may soon become available (e.g. soil moisture). However, others are not yet easily obtainable across whole study extents (e.g. soil pH and nutrients), and their development should receive increased attention. We conclude that more effort should be made to build ecologically more sound plant SDMs. This requires a more thorough rationale for the choice of environmental predictors needed to meet the study goal, and the development of missing ones. The latter calls for increased collaborative effort between ecological and geo-environmental sciences.
AbstractList AIMS: The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as highlighted in multiple earlier studies. Because variable selection is directly related to a model's capacity to capture important species' environmental requirements, one would expect an explicit prior consideration of all ecophysiologically meaningful variables. For plants, these include temperature, water, soil nutrients, light, and in some cases, disturbances and biotic interactions. However, the set of predictors used in published correlative plant SDM studies varies considerably. No comprehensive review exists of what environmental predictors are meaningful, available (or missing) and used in practice to predict plant distributions. Contributing to answer these questions is the aim of this review. METHODS: We carried out an extensive, systematic review of recently published plant SDM studies (years 2010–2015; n = 200) to determine the predictors used (and not used) in the models. We additionally conducted an in‐depth review of SDM studies in selected journals to identify temporal trends in the use of predictors (years 2000–2015; n = 40). RESULTS: A large majority of plant SDM studies neglected several ecophysiologically meaningful environmental variables, and the number of relevant predictors used in models has stagnated or even declined over the last 15 yr. CONCLUSIONS: Neglecting ecophysiologically meaningful predictors can result in incomplete niche quantification and can thus limit the predictive power of plant SDMs. Some of these missing predictors are already available spatially or may soon become available (e.g. soil moisture). However, others are not yet easily obtainable across whole study extents (e.g. soil pH and nutrients), and their development should receive increased attention. We conclude that more effort should be made to build ecologically more sound plant SDMs. This requires a more thorough rationale for the choice of environmental predictors needed to meet the study goal, and the development of missing ones. The latter calls for increased collaborative effort between ecological and geo‐environmental sciences.
Aims The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as highlighted in multiple earlier studies. Because variable selection is directly related to a model's capacity to capture important species' environmental requirements, one would expect an explicit prior consideration of all ecophysiologically meaningful variables. For plants, these include temperature, water, soil nutrients, light, and in some cases, disturbances and biotic interactions. However, the set of predictors used in published correlative plant SDM studies varies considerably. No comprehensive review exists of what environmental predictors are meaningful, available (or missing) and used in practice to predict plant distributions. Contributing to answer these questions is the aim of this review. Methods We carried out an extensive, systematic review of recently published plant SDM studies (years 2010–2015; n = 200) to determine the predictors used (and not used) in the models. We additionally conducted an in‐depth review of SDM studies in selected journals to identify temporal trends in the use of predictors (years 2000–2015; n = 40). Results A large majority of plant SDM studies neglected several ecophysiologically meaningful environmental variables, and the number of relevant predictors used in models has stagnated or even declined over the last 15 yr. Conclusions Neglecting ecophysiologically meaningful predictors can result in incomplete niche quantification and can thus limit the predictive power of plant SDMs. Some of these missing predictors are already available spatially or may soon become available (e.g. soil moisture). However, others are not yet easily obtainable across whole study extents (e.g. soil pH and nutrients), and their development should receive increased attention. We conclude that more effort should be made to build ecologically more sound plant SDMs. This requires a more thorough rationale for the choice of environmental predictors needed to meet the study goal, and the development of missing ones. The latter calls for increased collaborative effort between ecological and geo‐environmental sciences. Predictors included in species distribution models (SDMs) vary greatly between studies. This review identifies the predictors omitted in plant SDMs and reasons for their omission. We conclude that effort is needed to develop more ecologically sound predictors and related SDMs. This requires increased collaboration between ecological and geo‐environmental sciences and a more theoretically solid basis for the selection of predictors.
Aims The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as highlighted in multiple earlier studies. Because variable selection is directly related to a model's capacity to capture important species' environmental requirements, one would expect an explicit prior consideration of all ecophysiologically meaningful variables. For plants, these include temperature, water, soil nutrients, light, and in some cases, disturbances and biotic interactions. However, the set of predictors used in published correlative plant SDM studies varies considerably. No comprehensive review exists of what environmental predictors are meaningful, available (or missing) and used in practice to predict plant distributions. Contributing to answer these questions is the aim of this review. Methods We carried out an extensive, systematic review of recently published plant SDM studies (years 2010-2015; n = 200) to determine the predictors used (and not used) in the models. We additionally conducted an in-depth review of SDM studies in selected journals to identify temporal trends in the use of predictors (years 2000-2015; n = 40). Results A large majority of plant SDM studies neglected several ecophysiologically meaningful environmental variables, and the number of relevant predictors used in models has stagnated or even declined over the last 15 yr. Conclusions Neglecting ecophysiologically meaningful predictors can result in incomplete niche quantification and can thus limit the predictive power of plant SDMs. Some of these missing predictors are already available spatially or may soon become available (e.g. soil moisture). However, others are not yet easily obtainable across whole study extents (e.g. soil pH and nutrients), and their development should receive increased attention. We conclude that more effort should be made to build ecologically more sound plant SDMs. This requires a more thorough rationale for the choice of environmental predictors needed to meet the study goal, and the development of missing ones. The latter calls for increased collaborative effort between ecological and geo-environmental sciences. Predictors included in species distribution models (SDMs) vary greatly between studies. This review identifies the predictors omitted in plant SDMs and reasons for their omission. We conclude that effort is needed to develop more ecologically sound predictors and related SDMs. This requires increased collaboration between ecological and geo-environmental sciences and a more theoretically solid basis for the selection of predictors.
Author Scherrer, Daniel
Mod, Heidi K.
Luoto, Miska
Guisan, Antoine
Author_xml – sequence: 1
  givenname: Heidi K.
  surname: Mod
  fullname: Mod, Heidi K.
  email: heidi.mod@helsinki.fi, heidi.mod@helsinki.fi
  organization: Department of Geosciences and Geography, University of Helsinki, PO Box 64 (Gustaf Hällstöminkatu 2a), FI-00014, Helsinki, Finland
– sequence: 2
  givenname: Daniel
  surname: Scherrer
  fullname: Scherrer, Daniel
  email: daniel.scherrer@unil.ch
  organization: Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015, Lausanne, Switzerland
– sequence: 3
  givenname: Miska
  surname: Luoto
  fullname: Luoto, Miska
  email: miska.luoto@helsinki.fi
  organization: Department of Geosciences and Geography, University of Helsinki, PO Box 64 (Gustaf Hällstöminkatu 2a), FI-00014, Helsinki, Finland
– sequence: 4
  givenname: Antoine
  surname: Guisan
  fullname: Guisan, Antoine
  email: antoine.guisan@unil.ch
  organization: Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015, Lausanne, Switzerland
BookMark eNqFkU9PGzEQxS1EpfKnh34AJB_pYcFje-M1N4QKLaByoCW9Wd7dieqwsVPbIeXb1yGBQwWqL_b4_d5o_LxLtn3wSMhHYEdQ1vH0IR0Bl1JukR0Y1bICYGK7nIGxSnMh3pPdlKaMgdIj2CF341820yXSRULqEvWhVJurex-WJxT9g4vBz9BnO9B5xN51OcREnafzwfpMe5dydO0iu-DpLPQ4pH3ybmKHhB82-x75cf75-9mX6vrm4uvZ6XXVCV2GE51C4CCtBWgBG6ERoZ3YCRNKY891z5XWWHd1QXrZ65a3QrY1oFK8s0LskcN133kMvxeYspm51OFQ5sKwSIYzzhrdMPl_FJpRI4QCWKHHa7SLIaWIE9O5bFfPy9G6wQAzq7BNCds8hV0cn_5xzKOb2fj4KrvpvnQDPr4Nmsu722fHwdoxTSX5F4eUILgCVfRqrZePwD8vuo33ZqSEqs3424URwM6b8U8wV-IvEaqpkw
CitedBy_id crossref_primary_10_1002_ece3_8272
crossref_primary_10_1111_geb_13315
crossref_primary_10_3390_e21060571
crossref_primary_10_1016_j_scitotenv_2022_153697
crossref_primary_10_1007_s10531_023_02608_9
crossref_primary_10_1016_j_biocon_2022_109742
crossref_primary_10_1111_1365_2745_13625
crossref_primary_10_1111_ddi_13779
crossref_primary_10_1016_j_ecolind_2020_106889
crossref_primary_10_1088_1748_9326_11_12_124028
crossref_primary_10_3390_biology10030203
crossref_primary_10_1002_ece3_5969
crossref_primary_10_1016_j_agrformet_2024_110361
crossref_primary_10_1111_ecog_06022
crossref_primary_10_1111_csp2_13179
crossref_primary_10_1002_ecm_1433
crossref_primary_10_1007_s10530_024_03490_4
crossref_primary_10_1177_0309133317738162
crossref_primary_10_1016_j_crsust_2021_100092
crossref_primary_10_1111_gcb_15330
crossref_primary_10_53463_ecopers_20240253
crossref_primary_10_1002_joc_7497
crossref_primary_10_1002_rse2_255
crossref_primary_10_1016_j_atech_2024_100508
crossref_primary_10_1111_ele_12794
crossref_primary_10_1093_aob_mcad029
crossref_primary_10_1111_ddi_13787
crossref_primary_10_3389_fpls_2023_1125019
crossref_primary_10_3390_land12071433
crossref_primary_10_1111_gcb_15569
crossref_primary_10_1016_j_geodrs_2021_e00437
crossref_primary_10_3389_fmicb_2019_00656
crossref_primary_10_1088_1748_9326_ab80ee
crossref_primary_10_1111_mec_17646
crossref_primary_10_1002_ece3_3436
crossref_primary_10_1111_oik_05764
crossref_primary_10_1007_s00267_020_01282_9
crossref_primary_10_1016_j_baae_2021_04_002
crossref_primary_10_1111_1365_2745_13451
crossref_primary_10_1111_2041_210X_13565
crossref_primary_10_1111_jbi_14382
crossref_primary_10_3390_rs13101892
crossref_primary_10_7717_peerj_9839
crossref_primary_10_1016_j_jnc_2019_04_001
crossref_primary_10_1016_j_scitotenv_2022_157959
crossref_primary_10_1111_geb_12967
crossref_primary_10_3390_su15129271
crossref_primary_10_1111_ddi_13275
crossref_primary_10_1002_ece3_10986
crossref_primary_10_1111_ddi_12868
crossref_primary_10_1177_03091333221143643
crossref_primary_10_3389_fpls_2022_934959
crossref_primary_10_1038_s41598_022_16046_0
crossref_primary_10_1007_s11104_019_04016_x
crossref_primary_10_1016_j_foreco_2018_11_040
crossref_primary_10_1016_j_sajb_2022_04_036
crossref_primary_10_1111_ecog_05117
crossref_primary_10_1111_ecog_04421
crossref_primary_10_1111_ecog_06721
crossref_primary_10_1111_oik_09998
crossref_primary_10_3390_su12229608
crossref_primary_10_1016_j_foreco_2022_120249
crossref_primary_10_1093_femsec_fiaa051
crossref_primary_10_3390_atmos12050543
crossref_primary_10_1088_1748_9326_abda6e
crossref_primary_10_1016_j_scitotenv_2024_173719
crossref_primary_10_1371_journal_pone_0186025
crossref_primary_10_2478_eko_2022_0024
crossref_primary_10_1016_j_ecoinf_2023_102080
crossref_primary_10_1007_s10531_023_02700_0
crossref_primary_10_1371_journal_pone_0244494
crossref_primary_10_1111_ddi_13207
crossref_primary_10_1016_j_kjs_2023_02_027
crossref_primary_10_1073_pnas_2001254117
crossref_primary_10_1111_jbi_13434
crossref_primary_10_1007_s00382_020_05319_x
crossref_primary_10_1016_j_foreco_2022_120356
crossref_primary_10_1111_oik_09507
crossref_primary_10_1016_j_ecoinf_2023_102110
crossref_primary_10_1111_ecog_07086
crossref_primary_10_3389_fcosc_2022_870041
crossref_primary_10_1007_s10531_023_02546_6
crossref_primary_10_1111_cobi_13518
crossref_primary_10_1111_geb_13639
crossref_primary_10_1016_j_scitotenv_2021_146680
crossref_primary_10_1080_00103624_2023_2265409
crossref_primary_10_1111_nph_19601
crossref_primary_10_3832_ifor2588_011
crossref_primary_10_3390_rs13081588
crossref_primary_10_1007_s10530_022_02838_y
crossref_primary_10_1016_j_ecolmodel_2019_108817
crossref_primary_10_1111_ddi_12889
crossref_primary_10_3389_ffgc_2019_00092
crossref_primary_10_1016_j_ecoinf_2021_101358
crossref_primary_10_1016_j_heliyon_2023_e20199
crossref_primary_10_1111_ecog_04960
crossref_primary_10_1111_1365_2745_14233
crossref_primary_10_1111_jbi_13787
crossref_primary_10_1007_s11273_021_09799_4
crossref_primary_10_3390_agronomy10010034
crossref_primary_10_1016_j_foreco_2020_118428
crossref_primary_10_1016_j_rse_2019_111626
crossref_primary_10_1111_tgis_13067
crossref_primary_10_1038_s41598_019_39133_1
crossref_primary_10_1016_j_biocon_2017_06_019
crossref_primary_10_5194_gh_76_385_2021
crossref_primary_10_1111_ddi_13468
crossref_primary_10_3389_fevo_2022_952439
crossref_primary_10_1186_s12862_024_02310_6
crossref_primary_10_1111_ddi_13749
crossref_primary_10_3390_f15010130
crossref_primary_10_1111_ddi_13906
crossref_primary_10_1038_s41467_023_39573_4
crossref_primary_10_1038_s41598_019_52293_4
crossref_primary_10_1002_rse2_298
crossref_primary_10_1111_jbi_13803
crossref_primary_10_1111_ecog_06852
crossref_primary_10_1111_jbi_14344
crossref_primary_10_1111_2041_210X_13488
crossref_primary_10_1016_j_earscirev_2025_105075
crossref_primary_10_1002_ecs2_4305
crossref_primary_10_1016_j_jenvman_2022_116428
crossref_primary_10_1016_j_cub_2021_08_035
crossref_primary_10_1016_j_scitotenv_2024_171741
crossref_primary_10_3390_f12030330
crossref_primary_10_1088_1755_1315_743_1_012014
crossref_primary_10_1038_s41558_018_0311_x
crossref_primary_10_1016_j_actao_2021_103764
crossref_primary_10_1177_1940082919864269
crossref_primary_10_1007_s00477_021_02062_5
crossref_primary_10_1071_BT24064
crossref_primary_10_1002_ece3_70528
crossref_primary_10_1111_ddi_12548
crossref_primary_10_1111_jbi_14608
crossref_primary_10_1111_jvs_13093
crossref_primary_10_1111_ecog_05317
crossref_primary_10_2139_ssrn_3973754
crossref_primary_10_3390_plants11060731
crossref_primary_10_1111_mec_14567
crossref_primary_10_1002_ecy_2891
crossref_primary_10_1111_ddi_12939
crossref_primary_10_3389_fevo_2023_1106197
crossref_primary_10_1111_1365_2664_14183
crossref_primary_10_3897_alpento_6_83730
crossref_primary_10_1007_s10531_024_02973_z
crossref_primary_10_1007_s10113_019_01554_z
crossref_primary_10_1002_met_2166
crossref_primary_10_1371_journal_pone_0225936
crossref_primary_10_3390_plants13131810
crossref_primary_10_1111_gcb_15946
crossref_primary_10_1111_geb_13447
crossref_primary_10_1007_s00442_022_05110_1
crossref_primary_10_1016_j_ecoinf_2019_100987
crossref_primary_10_1111_1365_2745_13434
crossref_primary_10_1111_ecog_07328
crossref_primary_10_1111_1365_2745_14403
crossref_primary_10_1016_j_gecco_2022_e02286
crossref_primary_10_1111_jbi_14689
crossref_primary_10_1016_j_biocon_2025_111103
crossref_primary_10_1016_j_ecolmodel_2018_05_006
crossref_primary_10_1111_jbi_13755
crossref_primary_10_1371_journal_pone_0232078
crossref_primary_10_1002_pei3_10031
crossref_primary_10_1016_j_ecolmodel_2021_109693
crossref_primary_10_1016_j_gecco_2022_e02167
crossref_primary_10_1371_journal_pone_0285115
crossref_primary_10_1071_BT21124
crossref_primary_10_1111_ecog_06072
crossref_primary_10_1111_geb_13200
crossref_primary_10_1371_journal_pone_0208823
crossref_primary_10_1016_j_heliyon_2024_e32696
crossref_primary_10_1111_gcb_17560
crossref_primary_10_31590_ejosat_848961
crossref_primary_10_3390_plants13081109
Cites_doi 10.1111/j.1365-2699.2011.02663.x
10.1007/s11258-012-0098-1
10.1371/journal.pone.0063708
10.1111/1365-2664.12230
10.1111/j.1654-1103.2007.tb02566.x
10.1016/j.rse.2009.11.016
10.1098/rsbl.2014.0347
10.1111/j.1365-2699.2011.02550.x
10.1111/1365-2745.12149
10.1002/rse2.7
10.1177/0309133313512667
10.1111/j.1365-2699.2005.01443.x
10.2307/4072271
10.1016/j.baae.2006.11.001
10.1111/gcb.12051
10.1111/j.1469-8137.1976.tb01532.x
10.1111/jvs.12059
10.1111/j.1600-0587.2012.07922.x
10.1111/geb.12012
10.2307/3546481
10.1890/12-1482.1
10.1111/j.1365-2699.2010.02415.x
10.1111/j.1600-0587.2011.07103.x
10.1007/s00704-011-0556-z
10.1007/s00484-013-0690-7
10.1111/j.1365-2664.2007.01348.x
10.1111/j.1654-1103.2010.01244.x
10.1657/1938-4246-45.4.429
10.1657/1938-4246-41.3.347
10.1111/j.1600-0587.2010.06953.x
10.1101/SQB.1957.022.01.039
10.1111/j.1365-2699.2006.01535.x
10.1111/j.1469-8137.2006.01886.x
10.23943/princeton/9780691136868.001.0001
10.1111/j.1600-0587.2010.06386.x
10.1111/j.1365-2486.2005.001018.x
10.1007/978-3-642-96281-3
10.1177/030913339501900403
10.1111/jfr3.12037
10.1007/978-3-642-54435-4_27
10.1890/13-0924.1
10.1046/j.0305-0270.2003.00991.x
10.1073/pnas.0901643106
10.1186/2192-1709-2-30
10.1146/annurev-ecolsys-102209-144647
10.1111/2041-210X.12203
10.1111/j.1365-2699.2010.02405.x
10.1111/j.1461-0248.2011.01610.x
10.1111/j.1461-0248.2005.00792.x
10.1007/s11258-010-9880-0
10.1127/0941-2948/2013/0399
10.1017/CBO9780511810602
10.1007/s11258-005-9031-1
10.1111/j.1654-1103.2011.01274.x
10.1111/brv.12222
10.1111/j.1654-1103.2009.01098.x
10.1002/joc.1276
10.1023/A:1008985925162
10.1111/j.1756-1051.2013.00082.x
10.1111/j.1365-2486.2009.02122.x
10.1111/j.1365-2699.2010.02416.x
10.1111/ddi.12216
10.1016/j.rse.2010.06.009
10.1890/02-3114
10.1111/j.1600-0587.2010.06229.x
10.1111/ddi.12229
10.1111/ddi.12144
10.1111/j.1365-2664.2006.01164.x
10.1890/06-0539
10.1007/978-0-387-78341-3_5
10.1007/s00035-014-0124-0
10.1111/gcb.12257
10.1111/j.1472-4642.2008.00482.x
10.1371/journal.pone.0107037
10.1016/j.ecolmodel.2006.07.005
10.1126/science.1215933
10.1111/j.1365-2699.2006.01466.x
10.1111/j.1469-185X.2012.00235.x
10.1111/ele.12189
10.1080/136588197242266
10.1155/2013/424178
10.1038/nature09492
10.1111/j.1365-2699.2010.02407.x
10.1007/s00382-012-1590-y
10.1016/j.ecolmodel.2012.06.019
10.1111/j.1461-0248.2005.00829.x
10.1111/2041-210X.12355
10.1111/j.1466-8238.2007.00359.x
10.1016/j.tree.2006.02.002
10.1007/s00300-010-0945-2
10.1016/j.biocon.2006.10.044
10.1111/gcb.12286
10.17161/bi.v2i0.4
10.1007/s10530-011-9963-4
10.1098/rsbl.2008.0254
10.1111/j.1600-0587.2011.06948.x
10.1046/j.1466-822X.2003.00042.x
10.1371/journal.pone.0086487
10.1126/science.1188528
10.1111/1365-2664.12482
10.1007/s10531-013-0509-1
10.1111/j.1600-0587.2012.07348.x
10.1111/j.1365-2486.2012.02679.x
10.1146/annurev.ecolsys.110308.120159
10.1111/2041-210X.12180
10.1111/1365-2745.12239
10.1111/j.1654-1103.2002.tb02087.x
10.1007/BF00031679
10.1111/jvs.12002
10.1111/j.1365-2486.2011.02584.x
10.1073/pnas.1400069111
10.1086/283244
10.1111/j.1365-2699.2006.01584.x
10.1111/jvs.12148
10.1007/BF00048865
ContentType Journal Article
Copyright Copyright © 2017 International Association for Vegetation Science
2016 International Association for Vegetation Science
Copyright_xml – notice: Copyright © 2017 International Association for Vegetation Science
– notice: 2016 International Association for Vegetation Science
DBID BSCLL
AAYXX
CITATION
7SN
7ST
C1K
SOI
7S9
L.6
DOI 10.1111/jvs.12444
DatabaseName Istex
CrossRef
Ecology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Ecology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Ecology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1654-1103
Editor Scheiner, Sam
Editor_xml – sequence: 5
  givenname: Sam
  surname: Scheiner
  fullname: Scheiner, Sam
EndPage 1322
ExternalDocumentID 10_1111_jvs_12444
JVS12444
44132717
ark_67375_WNG_310F8WX1_K
Genre article
GrantInformation_xml – fundername: Academy of Finland
  funderid: 286950
– fundername: Research Foundation of the University of Helsinki
– fundername: Swiss National Science Foundation
  funderid: 31003A‐152866/1
– fundername: Kordelin Foundation
GroupedDBID -JH
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29L
2~F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAXTN
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPLY
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEJZ
AEEZP
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFFIJ
AFFPM
AFGKR
AFNWH
AFPWT
AFRAH
AGUYK
AHBTC
AHXOZ
AI.
AICQM
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CBGCD
COF
CS3
D-E
D-F
DATOO
DC7
DCZOG
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EQZMY
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
H13
HF~
HGD
HGLYW
HTVGU
HVGLF
HZ~
IAG
IAO
IEP
IHR
IPSME
ITC
J0M
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PQ0
Q.N
Q11
Q5J
QB0
R.K
RBO
ROL
RWI
RX1
SA0
SUPJJ
TEORI
TUS
UB1
VH1
VOH
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~02
~8M
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AAYCA
ACHIC
ACUHS
ACYXJ
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AANHP
ACRPL
ADNMO
AAYXX
CITATION
7SN
7ST
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c3954-3c7e1214aa11b1e839ee1bfaf0379ed29d2799e5c54aad4d9b2b34b51e772ca33
IEDL.DBID DR2
ISSN 1100-9233
IngestDate Fri Jul 11 18:24:16 EDT 2025
Fri Jul 11 02:06:26 EDT 2025
Thu Apr 24 23:06:54 EDT 2025
Thu Jul 03 08:44:10 EDT 2025
Wed Jan 22 16:18:09 EST 2025
Thu Jul 03 22:16:54 EDT 2025
Wed Oct 30 10:00:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3954-3c7e1214aa11b1e839ee1bfaf0379ed29d2799e5c54aad4d9b2b34b51e772ca33
Notes Kordelin Foundation
istex:EEDED045A510C903A7A86A56D1BAE32FDBF91834
ark:/67375/WNG-310F8WX1-K
Research Foundation of the University of Helsinki
Swiss National Science Foundation - No. 31003A-152866/1
ArticleID:JVS12444
Appendix S1. Ecophysiological meaning of different categories of variables for plant species. Appendix S2. Journals and numbers of studies included in the paper. Appendix S3. Variables included in the different classes and categories.
Academy of Finland - No. 286950
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1868337113
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_2020898043
proquest_miscellaneous_1868337113
crossref_citationtrail_10_1111_jvs_12444
crossref_primary_10_1111_jvs_12444
wiley_primary_10_1111_jvs_12444_JVS12444
jstor_primary_44132717
istex_primary_ark_67375_WNG_310F8WX1_K
PublicationCentury 2000
PublicationDate 2016-11
20161101
November 2016
2016-11-00
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11
PublicationDecade 2010
PublicationTitle Journal of vegetation science
PublicationTitleAlternate J Veg Sci
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
References Austin, M.P. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200: 1-19.
Aalto, J., le Roux, P.C. & Luoto, M. 2014. The meso-scale drivers of temperature extremes in high-latitude Fennoscandia. Climate Dynamics 42: 237-252.
Grinnell, J. 1917. The niche-relationships of the California thrasher. The Auk 34: 427-433.
Coudun, C., Gégout, J.-C., Piedallu, C. & Rameau, J.-C. 2006. Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (l.) in France. Journal of Biogeography 33: 1750-1763.
McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178-185.
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., (...) & Lautenbach, S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27-46.
Scherber, C., Eisenhauer, N., Weisser, W.W., Schmid, B., Voigt, W., Fischer, M., Schulze, E.-D., Roscher, C., Weigelt, A., (...) & Tscharntke, T. 2010. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468: 553-556.
Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., (...) & O'Hara, R.B. 2012. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography 39: 2163-2178.
Gunton, R.M., Polce, C. & Kunin, W.E. 2015. Predicting ground temperatures across European landscapes. Methods in Ecology and Evolution 6: 532-542.
Lakshmi, V. 2013. Remote sensing of soil moisture. ISRN Soil Science 33: 1-33.
Fukami, T., Martijn Bezemer, T., Mortimer, S.R. & van der Putten, W.H. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecology Letters 8: 1283-1290.
Callaway, R.M., Brooker, R.W., Choler, P., Kikvidze, Z., Lortie, C.J., Michalet, R., Paolini, L., Pugnaire, F.I., Newingham, B., (...) & Cook, B.J. 2002. Positive interactions among alpine plants increase with stress. Nature 417: 844-848.
le Roux, P.C., Virtanen, R. & Luoto, M. 2013a. Geomorphological disturbance is necessary for predicting fine-scale species distributions. Ecography 36: 800-808.
Mod, H.K., le Roux, P.C. & Luoto, M. 2014. Outcomes of biotic interactions are dependent on multiple environmental variables. Journal of Vegetation Science 25: 1024-1032.
Slavich, E., Warton, D.I., Ashcroft, M.B., Gollan, J.R. & Ramp, D. 2014. Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections? Diversity and Distributions 20: 952-963.
Körner, C. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist 172: 393-411.
le Roux, P.C. & Luoto, M. 2014. Earth surface processes drive the richness, composition and occurrence of plant species in an arctic-alpine environment. Journal of Vegetation Science 25: 45-54.
Franklin, J. 2009. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, UK.
Aalto, J., le Roux, P.C. & Luoto, M. 2013. Vegetation mediates soil temperature and moisture in arctic-alpine environments. Arctic, Antarctic, and Alpine Research 45: 429-439.
Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M. & Araújo, M.B. 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton, NJ, US.
McCune, B. & Keon, D. 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science 13: 603-606.
Crimmins, S.M., Dobrowski, S.Z., Mynsberge, A.R. & Safford, H.D. 2013. Can fire atlas data improve species distribution model projections? Ecological Applications 24: 1057-1069.
Dubuis, A., Giovanettina, S., Pellissier, L., Pottier, J., Vittoz, P. & Guisan, A. 2013. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. Journal of Vegetation Science 24: 593-606.
Soberón, J. & Peterson, A.T. 2005. Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiversity Informatics 2: 1-10.
Aerts, R., Cornelissen, J.H.C. & Dorrepaal, E. 2006. Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology 182: 65-77.
Mellert, K.H., Fensterer, V., Kuechenhoff, H., Reger, B., Koelling, C., Klemmt, H.J. & Ewald, J. 2011. Hypothesis-driven species distribution models for tree species in the Bavarian Alps. Journal of Vegetation Science 22: 635-646.
Parviainen, M., Zimmermann, N., Heikkinen, R. & Luoto, M. 2013. Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species. Biodiversity and Conservation 22: 1731-1754.
Aguiar, L.J.G., Fischer, G.R., Ladle, R.J., Malhado, A.C.M., Justino, F.B., Aguiar, R.G. & Costa, J.M.N. 2012. Modeling the photosynthetically active radiation in South West Amazonia under all sky conditions. Theoretical and Applied Climatology 108: 631-640.
Hutchinson, G.E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415-427.
Moeslund, J.E., Arge, L., Bøcher, P.K., Dalgaard, T. & Svenning, J.-C. 2013. Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic Journal of Botany 31: 129-144.
Pradervand, J.-N., Dubuis, A., Pellissier, L., Guisan, A. & Randin, C. 2014. Very high resolution environmental predictors in species distribution models: moving beyond topography? Progress in Physical Geography 38: 79-96.
Senan, A.S., Tomasetto, F., Farcomeni, A., Somashekar, R.K. & Attorre, F. 2012. Determinants of plant species invasions in an arid island: evidence from Socotra Island (Yemen). Plant Ecology 213: 1381-1392.
Zimmermann, N.E., Yoccoz, N.G., Edwards, T.C., Meier, E.S., Thuiller, W., Guisan, A., Schmatz, D.R. & Pearman, P.B. 2009. Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences of the United States of America 106(Suppl 2): 19723-19728.
Araújo, M.B. & Luoto, M. 2007. The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography 16: 743-753.
Dingman, J.R., Sweet, L.C., McCullough, I., Davis, F.W., Flint, A., Franklin, J. & Flint, L.E. 2013. Cross-scale modeling of surface temperature and tree seedling establishment in mountain landscapes. Ecological Processes 2: 1-15.
Thibaud, E., Petitpierre, B., Broennimann, O., Davison, A.C. & Guisan, A. 2014. Measuring the relative effect of factors affecting species distribution model predictions. Methods in Ecology and Evolution 5: 947-955.
Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. 2011. Climate change threatens European conservation areas. Ecology Letters 14: 484-492.
Guisan, A., Lehmann, A., Ferrier, S., Austin, M., Overton, J.M.C., Aspinall, R. & Hastie, T. 2006. Making better biogeographical predictions of species' distributions. Journal of Applied Ecology 43: 386-392.
Moretti, M., Conedera, M., Moresi, R. & Guisan, A. 2006. Modelling the influence of change in fire regime on the local distribution of a mediterranean pyrophytic plant species (Cistus salviifolius) at its northern range limit. Journal of Biogeography 33: 1492-1502.
Elith, J. & Leathwick, J.R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677-697.
Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dormann, C.F., Forchhammer, M.C., Grytnes, J.A., (...) & Svenning, J.C. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews 88: 15-30.
Jiménez-Valverde, A., Peterson, A.T., Soberón, J., Overton, J.M., Aragón, P. & Lobo, J.M. 2011. Use of niche models in invasive species risk assessments. Biological Invasions 13: 2785-2797.
Kumar, L., Skidmore, A.K. & Knowles, E. 1997. Modelling topographic variation in solar radiation in a GIS environment. International Journal of Geographical Information Science 11: 475-497.
Mac Nally, R. 2000. Regression and model-building in conservation biology, biogeography and ecology: the distinction between - and reconciliation of - 'predictive' and 'explanatory' models. Biodiversity & Conservation 9: 655-671.
Von Holle, B. & Motzkin, G. 2007. Historical land use and environmental determinants of nonnative plant distribution in coastal southern New England. Biological Conservation 136: 33-43.
Estes, L.D., Reillo, P.R., Mwangi, A.G., Okin, G.S. & Shugart, H.H. 2010. Remote sensing of structural complexity indices for habitat and species distribution modeling. Remote Sensing of Environment 114: 792-804.
Austin, M.P. 1980. Searching for a model for use in vegetation analysis. Vegetatio 42: 11-21.
Pearson, R.G. & Dawson, T.P. 2003. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361-371.
Zimmermann, N.E., Edwards, T.C., Graham, C.H., Pearman, P.B. & Svenning, J.C. 2010. New trends in species distribution modelling. Ecography 33: 985-989.
Brooker, R.W. & Callaghan, T.V. 1998. The balance between positive and negative plant interactions and its relationship to environmental gradients: a model. Oikos 81: 196-207.
Pottier, J., Malenovský, Z., Psomas, A., Homolová, L., Schaepman, M.E., Choler, P., Thuiller, W., Guisan, A. & Zimmermann, N.E. 2014. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy. Biology Letters 10
2010; 16
2012; 244
2013; 2
1980; 42
2000; 135
2010; 468
2006; 33
2002; 157
2013c; 19
2002; 13
1975
2014; 25
2012; 18
1998; 81
2006; 172
2013; 8
1978
2014; 20
2004; 31
2006; 21
2010; 114
2007; 8
2014; 10
2014; 124
2007; 18
2010; 33
2007; 200
2013; 88
2010; 328
2013a; 36
2015; 52
2013; 101
2012; 39
1992
2002; 417
2012; 35
2012; 108
2014; 42
2007; 16
2006; 43
2011b; 38
2005; 8
2014; 38
2006; 182
2005; 2
1977; 111
2005; 11
2009; 106
2015; 37
1989; 83
2009; 40
2013; 22
2013; 24
2009a; 41
2013b; 94
2000; 9
2011; 13
2011; 14
2008; 4
2011a; 38
2005; 25
2003; 12
2013; 19
2007; 136
2014; 5
2013; 16
1917; 34
1997; 11
2011; 22
2014; 58
2014; 9
2012; 213
2014; 51
2012; 335
2014; 7
2003; 84
2009b; 20
2015; 1
2011; 212
2015; 6
2011
2010
2013; 45
2009
2008; 14
2008
2005
2011; 34
1995; 19
2002
2011; 38
2014; 111
1957; 22
2013; 36
2013; 33
2013; 31
2011; 42
2014
2007; 44
2014; 102
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
Aerts R. (e_1_2_8_4_1) 2006; 182
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
Körner C. (e_1_2_8_64_1) 2014
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_114_1
e_1_2_8_18_1
Nieto‐Lugilde D. (e_1_2_8_82_1) 2015; 37
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
Fitter A.H. (e_1_2_8_38_1) 2002
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
Huston M.A. (e_1_2_8_56_1) 2002
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
Epstein E. (e_1_2_8_36_1) 2005
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Hutchinson G.E. (e_1_2_8_58_1) 1978
e_1_2_8_80_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_92_1
Schulze E. (e_1_2_8_108_1) 2005
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – reference: Thuiller, W., Araújo, M.B. & Lavorel, S. 2004. Do we need land-cover data to model species distributions in Europe? Journal of Biogeography 31: 353-361.
– reference: Grinnell, J. 1917. The niche-relationships of the California thrasher. The Auk 34: 427-433.
– reference: McGill, B.J. 2010. Matters of scale. Science 328: 575-576.
– reference: Mod, H.K., le Roux, P.C. & Luoto, M. 2014. Outcomes of biotic interactions are dependent on multiple environmental variables. Journal of Vegetation Science 25: 1024-1032.
– reference: Randin, C.F., Dirnböck, T., Dullinger, S., Zimmermann, N.E., Zappa, M. & Guisan, A. 2006. Are niche-based species distribution models transferable in space? Journal of Biogeography 33: 1689-1703.
– reference: le Roux, P.C., Lenoir, J., Pellissier, L., Wisz, M.S. & Luoto, M. 2013b. Horizontal, but not vertical, biotic interactions affect fine-scale plant distribution patterns in a low energy system. Ecology 94: 671-682.
– reference: Austin, M.P. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling 157: 101-118.
– reference: Guisan, A., Lehmann, A., Ferrier, S., Austin, M., Overton, J.M.C., Aspinall, R. & Hastie, T. 2006. Making better biogeographical predictions of species' distributions. Journal of Applied Ecology 43: 386-392.
– reference: Dormann, C. 2007. Promising the future? Global change projections of species distributions. Basic and Applied Ecology 8: 387-397.
– reference: Mellert, K.H., Fensterer, V., Kuechenhoff, H., Reger, B., Koelling, C., Klemmt, H.J. & Ewald, J. 2011. Hypothesis-driven species distribution models for tree species in the Bavarian Alps. Journal of Vegetation Science 22: 635-646.
– reference: Meier, E.S., Edwards, T.C. Jr, Kienast, F., Dobbertin, M. & Zimmermann, N.E. 2011. Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica l. Journal of Biogeography 38: 371-382.
– reference: Hutchinson, G.E. 1978. An introduction to population ecology. Yale University Press, New Haven, CT, US.
– reference: Larcher, W. 1975. Physiological plant ecology, 2nd edn. Springer, London, UK.
– reference: Lakshmi, V. 2013. Remote sensing of soil moisture. ISRN Soil Science 33: 1-33.
– reference: Ohmann, J.L., Gregory, M.J., Henderson, E.B. & Roberts, H.M. 2011. Mapping gradients of community composition with nearest-neighbour imputation: extending plot data for landscape analysis. Journal of Vegetation Science 22: 660-676.
– reference: Pearson, R.G. & Dawson, T.P. 2003. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361-371.
– reference: Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. 2011. Climate change threatens European conservation areas. Ecology Letters 14: 484-492.
– reference: Callaway, R.M., Brooker, R.W., Choler, P., Kikvidze, Z., Lortie, C.J., Michalet, R., Paolini, L., Pugnaire, F.I., Newingham, B., (...) & Cook, B.J. 2002. Positive interactions among alpine plants increase with stress. Nature 417: 844-848.
– reference: Coudun, C. & Gégout, J.-C. 2007. Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. Journal of Vegetation Science 18: 517-524.
– reference: le Roux, P.C., Aalto, J. & Luoto, M. 2013c. Soil moisture's underestimated role in climate change impact modelling in low-energy systems. Global Change Biology 19: 2965-2975.
– reference: Dubuis, A., Giovanettina, S., Pellissier, L., Pottier, J., Vittoz, P. & Guisan, A. 2013. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. Journal of Vegetation Science 24: 593-606.
– reference: Pellissier, L., Bråthen, K.A., Pottier, J., Randin, C.F., Vittoz, P., Dubuis, A., Yoccoz, N.G., Alm, T., Zimmermann, N.E. & Guisan, A. 2010. Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography 33: 1004-1014.
– reference: Scherber, C., Eisenhauer, N., Weisser, W.W., Schmid, B., Voigt, W., Fischer, M., Schulze, E.-D., Roscher, C., Weigelt, A., (...) & Tscharntke, T. 2010. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468: 553-556.
– reference: McCune, B. & Keon, D. 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science 13: 603-606.
– reference: Zimmermann, N.E., Edwards, T.C., Graham, C.H., Pearman, P.B. & Svenning, J.C. 2010. New trends in species distribution modelling. Ecography 33: 985-989.
– reference: Soberón, J. & Peterson, A.T. 2005. Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiversity Informatics 2: 1-10.
– reference: Hutchinson, G.E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415-427.
– reference: Elith, J. & Leathwick, J.R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677-697.
– reference: Wang, L., Gong, W., Ma, Y., Hu, B. & Zhang, M. 2014. Photosynthetically active radiation and its relationship with global solar radiation in Central China. International Journal of Biometeorology 58: 1265-1277.
– reference: Aerts, R., Cornelissen, J.H.C. & Dorrepaal, E. 2006. Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology 182: 65-77.
– reference: Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., Regan, T.J., Brotons, L., McDonald-Madden, E., (...) & Buckley, Y.M. 2013. Predicting species distributions for conservation decisions. Ecology Letters 16: 1424-1435.
– reference: Thuiller, W., Richardson, D.M., Pysek, P., Midgley, G.F., Hughes, G.O. & Rouget, M. 2005. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology 11: 2234-2250.
– reference: Slavich, E., Warton, D.I., Ashcroft, M.B., Gollan, J.R. & Ramp, D. 2014. Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections? Diversity and Distributions 20: 952-963.
– reference: Thibaud, E., Petitpierre, B., Broennimann, O., Davison, A.C. & Guisan, A. 2014. Measuring the relative effect of factors affecting species distribution model predictions. Methods in Ecology and Evolution 5: 947-955.
– reference: Randin, C.F., Jaccard, H., Vittoz, P., Yoccoz, N.G. & Guisan, A. 2009b. Land use improves spatial predictions of mountain plant abundance but not presence-absence. Journal of Vegetation Science 20: 996-1008.
– reference: le Roux, P.C., Virtanen, R. & Luoto, M. 2013a. Geomorphological disturbance is necessary for predicting fine-scale species distributions. Ecography 36: 800-808.
– reference: Araújo, M.B. & Guisan, A. 2006. Five (or so) challenges for species distribution modelling. Journal of Biogeography 33: 1677-1688.
– reference: Paulsen, J. & Körner, C. 2014. A climate-based model to predict potential treeline position around the globe. Alpine Botany 124: 1-12.
– reference: Potter, K.A., Woods, H.A. & Pincebourde, S. 2013. Microclimatic challenges in global change biology. Global Change Biology 19: 2932-2939.
– reference: Lambers, H., Chapin, F.S. III & Pons, T.L. 2008. Plant water relations. Springer, New York, NY, US.
– reference: Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335: 1344-1348.
– reference: Scherrer, D. & Körner, C. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography 38: 406-416.
– reference: Araújo, M.B. & Luoto, M. 2007. The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography 16: 743-753.
– reference: Moeslund, J.E., Arge, L., Bøcher, P.K., Dalgaard, T. & Svenning, J.-C. 2013. Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic Journal of Botany 31: 129-144.
– reference: Gunton, R.M., Polce, C. & Kunin, W.E. 2015. Predicting ground temperatures across European landscapes. Methods in Ecology and Evolution 6: 532-542.
– reference: Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., (...) & O'Hara, R.B. 2012. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography 39: 2163-2178.
– reference: Scherrer, D. & Körner, C. 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology 16: 2602-2613.
– reference: Elbialy, S., Mahmoud, A., Pradhan, B. & Buchroithner, M. 2014. Application of spaceborne synthetic aperture radar data for extraction of soil moisture and its use in hydrological modelling at Gottleuba catchment, Saxony, Germany. Journal of Flood Risk Management 7: 159-175.
– reference: Barbet-Massin, M. & Jetz, W. 2014. A 40-year, continent-wide, multispecies assessment of relevant climate predictors for species distribution modelling. Diversity and Distributions 20: 1285-1295.
– reference: Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dormann, C.F., Forchhammer, M.C., Grytnes, J.A., (...) & Svenning, J.C. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews 88: 15-30.
– reference: He, K.S., Bradley, B.A., Cord, A.F., Rocchini, D., Tuanmu, M.-N., Schmidtlein, S., Turner, W., Wegmann, M. & Pettorelli, N. 2015. Will remote sensing shape the next generation of species distribution models? Remote Sensing in Ecology and Conservation 1: 4-18.
– reference: Inauen, N., Körner, C. & Hiltbrunner, E. 2012. No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Global Change Biology 18: 985-999.
– reference: Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-Saldaña, J., de Rosnay, P., Jann, A., (...) & Rubel, F. 2013. The Ascat soil moisture product: a review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift 22: 5-33.
– reference: Schulze, E., Beck, E. & Muller-Hohenstein, K. 2005. Plant ecology, 1st edn. Springer-Verlag, Berlin.
– reference: Austin, M.P. & Van Niel, K.P. 2011b. Impact of landscape predictors on climate change modelling of species distributions: a case study with Eucalyptus fastigata in southern New South Wales, Australia. Journal of Biogeography 38: 9-19.
– reference: Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., (...) & Lautenbach, S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27-46.
– reference: Franklin, J., Davis, F.W., Ikegami, M., Syphard, A.D., Flint, L.E., Flint, A.L. & Hannah, L. 2013. Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Global Change Biology 19: 473-483.
– reference: Brooker, R.W. & Callaghan, T.V. 1998. The balance between positive and negative plant interactions and its relationship to environmental gradients: a model. Oikos 81: 196-207.
– reference: Godsoe, W. & Harmon, L.J. 2012. How do species interactions affect species distribution models? Ecography 35: 811-820.
– reference: Grime, J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111: 1169-1194.
– reference: Guisan, A. & Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993-1009.
– reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.
– reference: Kumar, L., Skidmore, A.K. & Knowles, E. 1997. Modelling topographic variation in solar radiation in a GIS environment. International Journal of Geographical Information Science 11: 475-497.
– reference: Dingman, J.R., Sweet, L.C., McCullough, I., Davis, F.W., Flint, A., Franklin, J. & Flint, L.E. 2013. Cross-scale modeling of surface temperature and tree seedling establishment in mountain landscapes. Ecological Processes 2: 1-15.
– reference: Randin, C.F., Vuissoz, G., Liston, G.E., Vittoz, P. & Guisan, A. 2009a. Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the western Swiss Alps. Arctic, Antarctic and Alpine Research 41: 347-361.
– reference: Estes, L.D., Reillo, P.R., Mwangi, A.G., Okin, G.S. & Shugart, H.H. 2010. Remote sensing of structural complexity indices for habitat and species distribution modeling. Remote Sensing of Environment 114: 792-804.
– reference: Aguiar, L.J.G., Fischer, G.R., Ladle, R.J., Malhado, A.C.M., Justino, F.B., Aguiar, R.G. & Costa, J.M.N. 2012. Modeling the photosynthetically active radiation in South West Amazonia under all sky conditions. Theoretical and Applied Climatology 108: 631-640.
– reference: Pollock, L.J., Tingley, R., Morris, W.K., Golding, N., O'Hara, R.B., Parris, K.M., Vesk, P.A. & McCarthy, M.A. 2014. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution 5: 397-406.
– reference: Zimmermann, N.E., Edwards, T.C., Moisen, G.G., Frescino, T.S. & Blackard, J.A. 2007. Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. The Journal of Applied Ecology 44: 1057-1067.
– reference: Parviainen, M., Zimmermann, N., Heikkinen, R. & Luoto, M. 2013. Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species. Biodiversity and Conservation 22: 1731-1754.
– reference: Fukami, T., Martijn Bezemer, T., Mortimer, S.R. & van der Putten, W.H. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecology Letters 8: 1283-1290.
– reference: Körner, C. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist 172: 393-411.
– reference: Booth, T.H., Nix, H.A., Busby, J.R. & Hutchinson, M.F. 2014. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Diversity and Distributions 20: 1-9.
– reference: Sormunen, H., Virtanen, R. & Luoto, M. 2011. Inclusion of local environmental conditions alters high-latitude vegetation change predictions based on bioclimatic models. Polar Biology 34: 883-897.
– reference: Pradervand, J.-N., Dubuis, A., Pellissier, L., Guisan, A. & Randin, C. 2014. Very high resolution environmental predictors in species distribution models: moving beyond topography? Progress in Physical Geography 38: 79-96.
– reference: le Roux, P.C., Pellissier, L., Wisz, M.S. & Luoto, M. 2014. Incorporating dominant species as proxies for biotic interactions strengthens plant community models. Journal of Ecology 102: 767-775.
– reference: Nieto-Lugilde, D., Lenoir, J., Abdulhak, S., Aeschimann, D., Dullinger, S., Gégout, J.-C., Guisan, A., Pauli, H., Renaud, J., (...) & Svenning, J.-C. 2015. Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps. Ecography 37: 1-12.
– reference: D'Amen, M., Rahbek, C., Zimmermann, N.E. & Guisan, A. in press. Spatial predictions at the community level: from current approaches to future frameworks. Biological Reviews 10.1111/brv.12222.
– reference: le Roux, P.C. & Luoto, M. 2014. Earth surface processes drive the richness, composition and occurrence of plant species in an arctic-alpine environment. Journal of Vegetation Science 25: 45-54.
– reference: Crimmins, S.M., Dobrowski, S.Z., Mynsberge, A.R. & Safford, H.D. 2013. Can fire atlas data improve species distribution model projections? Ecological Applications 24: 1057-1069.
– reference: Kouba, Y., Alados, C.L. & Bueno, C.G. 2011. Effects of abiotic and anthropogenic factors on the spatial distribution of Quercus faginea in the Spanish central Pyrenees. Plant Ecology 212: 999-1007.
– reference: Franklin, J. 1995. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography 19: 474-499.
– reference: Bader, M.K.F., Leuzinger, S., Keel, S.G., Siegwolf, R.T.W., Hagedorn, F., Schleppi, P. & Körner, C. 2013. Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. Journal of Ecology 101: 1509-1519.
– reference: Senan, A.S., Tomasetto, F., Farcomeni, A., Somashekar, R.K. & Attorre, F. 2012. Determinants of plant species invasions in an arid island: evidence from Socotra Island (Yemen). Plant Ecology 213: 1381-1392.
– reference: Austin, M.P. 1980. Searching for a model for use in vegetation analysis. Vegetatio 42: 11-21.
– reference: Epstein, E. & Bloom, A.J. 2005. Mineral nutrition of plants: principles and perspectives, 2 edn. Sinauer Associates, Sunderland, MA, US.
– reference: Ikeda, D.H., Grady, K.C., Shuster, S.M. & Whitham, T.G. 2014. Incorporating climate change and exotic species into forecasts of riparian forest distribution. PLoS ONE 9: e107037.
– reference: Fitter, A.H. & Hay, R.K.M. 2002. Environmental physiology of plants, 3rd edn. Academic Press, London, UK.
– reference: Guisan, A. & Rahbek, C. 2011. SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography 38: 1433-1444.
– reference: Tucker, C.M., Rebelo, A.G. & Manne, L.L. 2012. Contribution of disturbance to distribution and abundance in a fire-adapted system. Ecography 35: 348-355.
– reference: McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178-185.
– reference: Moretti, M., Conedera, M., Moresi, R. & Guisan, A. 2006. Modelling the influence of change in fire regime on the local distribution of a mediterranean pyrophytic plant species (Cistus salviifolius) at its northern range limit. Journal of Biogeography 33: 1492-1502.
– reference: Broennimann, O. & Guisan, A. 2008. Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters 4: 585-589.
– reference: Bertrand, R., Perez, V. & Gegout, J.C. 2012. Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of Quercus pubescens in France. Global Change Biology 18: 2648-2660.
– reference: Brocca, L., Melone, F., Moramarco, T., Wagner, W. & Hasenauer, S. 2010. Ascat soil wetness index validation through in situ and modeled soil moisture data in central italy. Remote Sensing of Environment 114: 2745-2755.
– reference: Austin, M.P. & Smith, T.M. 1989. A new model for the continuum concept. Vegetatio 83: 35-47.
– reference: Pottier, J., Malenovský, Z., Psomas, A., Homolová, L., Schaepman, M.E., Choler, P., Thuiller, W., Guisan, A. & Zimmermann, N.E. 2014. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy. Biology Letters 10: 20140347.
– reference: Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A., Eveillard, D., Faure, D., Garnier, E., Gimenez, O., (...) & Loreau, M. 2015. Predictive ecology in a changing world. Journal of Applied Ecology 52: 1293-1310.
– reference: Mac Nally, R. 2000. Regression and model-building in conservation biology, biogeography and ecology: the distinction between - and reconciliation of - 'predictive' and 'explanatory' models. Biodiversity & Conservation 9: 655-671.
– reference: Wisz, M.S., Hijmans, R., Li, J., Peterson, A.T., Graham, C.H. & Guisan, A. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions 14: 763-773.
– reference: Austin, M.P. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200: 1-19.
– reference: Piedallu, C., Gegout, J.-C., Perez, V. & Lebourgeois, F. 2013. Soil water balance performs better than climatic water variables in tree species distribution modelling. Global Ecology and Biogeography 22: 470-482.
– reference: Aguirre-Gutiérrez, J., Carvalheiro, L.G., Polce, C., van Loon, E.E., Raes, N., Reemer, M. & Biesmeijer, J.C. 2013. Fit-for-purpose: species distribution model performance depends on evaluation criteria - Dutch hoverflies as a case study. PLoS ONE 8: e63708.
– reference: Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M. & Araújo, M.B. 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton, NJ, US.
– reference: Harwood, T.D., Mokany, K. & Paini, D.R. 2014. Microclimate is integral to the modeling of plant responses to macroclimate. Proceedings of the National Academy of Sciences of the United States of America 111: E1164-E1165.
– reference: Riordan, E.C. & Rundel, P.W. 2014. Land use compounds habitat losses under projected climate change in a threatened California ecosystem. PLoS ONE 9: e86487.
– reference: Norby, R.J. & Zak, D.R. 2011. Ecological lessons from free-air CO2 enrichment (face) experiments. Annual Review of Ecology, Evolution, and Systematics 42: 181.
– reference: Von Holle, B. & Motzkin, G. 2007. Historical land use and environmental determinants of nonnative plant distribution in coastal southern New England. Biological Conservation 136: 33-43.
– reference: Meier, E.S., Kienast, F., Pearman, P.B., Svenning, J.-C., Thuiller, W., Araújo, M.B., Guisan, A. & Zimmermann, N.E. 2010. Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography 33: 1038-1048.
– reference: Aalto, J., le Roux, P.C. & Luoto, M. 2013. Vegetation mediates soil temperature and moisture in arctic-alpine environments. Arctic, Antarctic, and Alpine Research 45: 429-439.
– reference: Austin, M.P. & Van Niel, K.P. 2011a. Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography 38: 1-8.
– reference: Aalto, J., le Roux, P.C. & Luoto, M. 2014. The meso-scale drivers of temperature extremes in high-latitude Fennoscandia. Climate Dynamics 42: 237-252.
– reference: Jiménez-Valverde, A., Peterson, A.T., Soberón, J., Overton, J.M., Aragón, P. & Lobo, J.M. 2011. Use of niche models in invasive species risk assessments. Biological Invasions 13: 2785-2797.
– reference: Graham, M.H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 2809-2815.
– reference: Alagador, D., Cerdeira, J.O. & Araújo, M.B. 2014. Shifting protected areas: scheduling spatial priorities under climate change. Journal of Applied Ecology 51: 703-713.
– reference: Bradley, B.A., Olsson, A.D., Wang, O., Dickson, B.G., Pelech, L., Sesnie, S.E. & Zachmann, L.J. 2012. Species detection vs. habitat suitability: are we biasing habitat suitability models with remotely sensed data? Ecological Modelling 244: 57-64.
– reference: Guisan, A. & Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147-186.
– reference: Coudun, C., Gégout, J.-C., Piedallu, C. & Rameau, J.-C. 2006. Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (l.) in France. Journal of Biogeography 33: 1750-1763.
– reference: Zimmermann, N.E., Yoccoz, N.G., Edwards, T.C., Meier, E.S., Thuiller, W., Guisan, A., Schmatz, D.R. & Pearman, P.B. 2009. Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences of the United States of America 106(Suppl 2): 19723-19728.
– reference: Franklin, J. 2009. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, UK.
– year: 2011
– volume: 13
  start-page: 603
  year: 2002
  end-page: 606
  article-title: Equations for potential annual direct incident radiation and heat load
  publication-title: Journal of Vegetation Science
– year: 2005
– volume: 6
  start-page: 532
  year: 2015
  end-page: 542
  article-title: Predicting ground temperatures across European landscapes
  publication-title: Methods in Ecology and Evolution
– volume: 8
  start-page: 387
  year: 2007
  end-page: 397
  article-title: Promising the future? Global change projections of species distributions
  publication-title: Basic and Applied Ecology
– volume: 16
  start-page: 1424
  year: 2013
  end-page: 1435
  article-title: Predicting species distributions for conservation decisions
  publication-title: Ecology Letters
– volume: 13
  start-page: 2785
  year: 2011
  end-page: 2797
  article-title: Use of niche models in invasive species risk assessments
  publication-title: Biological Invasions
– volume: 4
  start-page: 585
  year: 2008
  end-page: 589
  article-title: Predicting current and future biological invasions: both native and invaded ranges matter
  publication-title: Biology Letters
– year: 1975
– volume: 83
  start-page: 35
  year: 1989
  end-page: 47
  article-title: A new model for the continuum concept
  publication-title: Vegetatio
– volume: 38
  start-page: 1433
  year: 2011
  end-page: 1444
  article-title: SESAM – a new framework integrating macroecological and species distribution models for predicting spatio‐temporal patterns of species assemblages
  publication-title: Journal of Biogeography
– volume: 44
  start-page: 1057
  year: 2007
  end-page: 1067
  article-title: Remote sensing‐based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah
  publication-title: The Journal of Applied Ecology
– volume: 244
  start-page: 57
  year: 2012
  end-page: 64
  article-title: Species detection vs. habitat suitability: are we biasing habitat suitability models with remotely sensed data?
  publication-title: Ecological Modelling
– volume: 5
  start-page: 947
  year: 2014
  end-page: 955
  article-title: Measuring the relative effect of factors affecting species distribution model predictions
  publication-title: Methods in Ecology and Evolution
– volume: 33
  start-page: 1038
  year: 2010
  end-page: 1048
  article-title: Biotic and abiotic variables show little redundancy in explaining tree species distributions
  publication-title: Ecography
– volume: 19
  start-page: 473
  year: 2013
  end-page: 483
  article-title: Modeling plant species distributions under future climates: how fine scale do climate projections need to be?
  publication-title: Global Change Biology
– volume: 31
  start-page: 353
  year: 2004
  end-page: 361
  article-title: Do we need land‐cover data to model species distributions in Europe?
  publication-title: Journal of Biogeography
– volume: 41
  start-page: 347
  year: 2009a
  end-page: 361
  article-title: Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the western Swiss Alps
  publication-title: Arctic, Antarctic and Alpine Research
– year: 2008
– volume: 200
  start-page: 1
  year: 2007
  end-page: 19
  article-title: Species distribution models and ecological theory: a critical assessment and some possible new approaches
  publication-title: Ecological Modelling
– volume: 14
  start-page: 763
  year: 2008
  end-page: 773
  article-title: Effects of sample size on the performance of species distribution models
  publication-title: Diversity and Distributions
– volume: 84
  start-page: 2809
  year: 2003
  end-page: 2815
  article-title: Confronting multicollinearity in ecological multiple regression
  publication-title: Ecology
– volume: 36
  start-page: 800
  year: 2013a
  end-page: 808
  article-title: Geomorphological disturbance is necessary for predicting fine‐scale species distributions
  publication-title: Ecography
– volume: 14
  start-page: 484
  year: 2011
  end-page: 492
  article-title: Climate change threatens European conservation areas
  publication-title: Ecology Letters
– volume: 19
  start-page: 2965
  year: 2013c
  end-page: 2975
  article-title: Soil moisture's underestimated role in climate change impact modelling in low‐energy systems
  publication-title: Global Change Biology
– volume: 18
  start-page: 2648
  year: 2012
  end-page: 2660
  article-title: Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of in France
  publication-title: Global Change Biology
– volume: 5
  start-page: 397
  year: 2014
  end-page: 406
  article-title: Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM)
  publication-title: Methods in Ecology and Evolution
– volume: 20
  start-page: 1285
  year: 2014
  end-page: 1295
  article-title: A 40‐year, continent‐wide, multispecies assessment of relevant climate predictors for species distribution modelling
  publication-title: Diversity and Distributions
– volume: 9
  start-page: e107037
  year: 2014
  article-title: Incorporating climate change and exotic species into forecasts of riparian forest distribution
  publication-title: PLoS ONE
– volume: 38
  start-page: 1
  year: 2011a
  end-page: 8
  article-title: Improving species distribution models for climate change studies: variable selection and scale
  publication-title: Journal of Biogeography
– volume: 1
  start-page: 4
  year: 2015
  end-page: 18
  article-title: Will remote sensing shape the next generation of species distribution models?
  publication-title: Remote Sensing in Ecology and Conservation
– volume: 7
  start-page: 159
  year: 2014
  end-page: 175
  article-title: Application of spaceborne synthetic aperture radar data for extraction of soil moisture and its use in hydrological modelling at Gottleuba catchment, Saxony, Germany
  publication-title: Journal of Flood Risk Management
– volume: 18
  start-page: 517
  year: 2007
  end-page: 524
  article-title: Quantitative prediction of the distribution and abundance of with climatic and edaphic factors
  publication-title: Journal of Vegetation Science
– volume: 33
  start-page: 1689
  year: 2006
  end-page: 1703
  article-title: Are niche‐based species distribution models transferable in space?
  publication-title: Journal of Biogeography
– volume: 417
  start-page: 844
  year: 2002
  end-page: 848
  article-title: Positive interactions among alpine plants increase with stress
  publication-title: Nature
– volume: 40
  start-page: 677
  year: 2009
  end-page: 697
  article-title: Species distribution models: ecological explanation and prediction across space and time
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 22
  start-page: 470
  year: 2013
  end-page: 482
  article-title: Soil water balance performs better than climatic water variables in tree species distribution modelling
  publication-title: Global Ecology and Biogeography
– volume: 38
  start-page: 371
  year: 2011
  end-page: 382
  article-title: Co‐occurrence patterns of trees along macro‐climatic gradients and their potential influence on the present and future distribution of l
  publication-title: Journal of Biogeography
– volume: 42
  start-page: 11
  year: 1980
  end-page: 21
  article-title: Searching for a model for use in vegetation analysis
  publication-title: Vegetatio
– volume: 12
  start-page: 361
  year: 2003
  end-page: 371
  article-title: Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?
  publication-title: Global Ecology and Biogeography
– volume: 35
  start-page: 348
  year: 2012
  end-page: 355
  article-title: Contribution of disturbance to distribution and abundance in a fire‐adapted system
  publication-title: Ecography
– volume: 51
  start-page: 703
  year: 2014
  end-page: 713
  article-title: Shifting protected areas: scheduling spatial priorities under climate change
  publication-title: Journal of Applied Ecology
– volume: 39
  start-page: 2163
  year: 2012
  end-page: 2178
  article-title: Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents
  publication-title: Journal of Biogeography
– volume: 16
  start-page: 2602
  year: 2010
  end-page: 2613
  article-title: Infra‐red thermometry of alpine landscapes challenges climatic warming projections
  publication-title: Global Change Biology
– volume: 45
  start-page: 429
  year: 2013
  end-page: 439
  article-title: Vegetation mediates soil temperature and moisture in arctic‐alpine environments
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 8
  start-page: 1283
  year: 2005
  end-page: 1290
  article-title: Species divergence and trait convergence in experimental plant community assembly
  publication-title: Ecology Letters
– volume: 114
  start-page: 792
  year: 2010
  end-page: 804
  article-title: Remote sensing of structural complexity indices for habitat and species distribution modeling
  publication-title: Remote Sensing of Environment
– volume: 42
  start-page: 181
  year: 2011
  article-title: Ecological lessons from free‐air CO enrichment (face) experiments
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– year: 1992
– year: 2010
– volume: 135
  start-page: 147
  year: 2000
  end-page: 186
  article-title: Predictive habitat distribution models in ecology
  publication-title: Ecological Modelling
– volume: 8
  start-page: 993
  year: 2005
  end-page: 1009
  article-title: Predicting species distribution: offering more than simple habitat models
  publication-title: Ecology Letters
– start-page: 759
  year: 2014
  end-page: 810
– year: 2002
– volume: 111
  start-page: 1169
  year: 1977
  end-page: 1194
  article-title: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory
  publication-title: The American Naturalist
– volume: 33
  start-page: 1750
  year: 2006
  end-page: 1763
  article-title: Soil nutritional factors improve models of plant species distribution: an illustration with (l.) in France
  publication-title: Journal of Biogeography
– volume: 20
  start-page: 1
  year: 2014
  end-page: 9
  article-title: BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies
  publication-title: Diversity and Distributions
– volume: 21
  start-page: 178
  year: 2006
  end-page: 185
  article-title: Rebuilding community ecology from functional traits
  publication-title: Trends in Ecology & Evolution
– volume: 18
  start-page: 985
  year: 2012
  end-page: 999
  article-title: No growth stimulation by CO enrichment in alpine glacier forefield plants
  publication-title: Global Change Biology
– volume: 172
  start-page: 393
  year: 2006
  end-page: 411
  article-title: Plant CO responses: an issue of definition, time and resource supply
  publication-title: New Phytologist
– volume: 468
  start-page: 553
  year: 2010
  end-page: 556
  article-title: Bottom‐up effects of plant diversity on multitrophic interactions in a biodiversity experiment
  publication-title: Nature
– volume: 22
  start-page: 5
  year: 2013
  end-page: 33
  article-title: The Ascat soil moisture product: a review of its specifications, validation results, and emerging applications
  publication-title: Meteorologische Zeitschrift
– volume: 182
  start-page: 65
  year: 2006
  end-page: 77
  article-title: Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events
  publication-title: Plant Ecology
– volume: 33
  start-page: 1677
  year: 2006
  end-page: 1688
  article-title: Five (or so) challenges for species distribution modelling
  publication-title: Journal of Biogeography
– volume: 24
  start-page: 1057
  year: 2013
  end-page: 1069
  article-title: Can fire atlas data improve species distribution model projections?
  publication-title: Ecological Applications
– volume: 22
  start-page: 1731
  year: 2013
  end-page: 1754
  article-title: Using unclassified continuous remote sensing data to improve distribution models of red‐listed plant species
  publication-title: Biodiversity and Conservation
– year: 1978
– volume: 38
  start-page: 79
  year: 2014
  end-page: 96
  article-title: Very high resolution environmental predictors in species distribution models: moving beyond topography?
  publication-title: Progress in Physical Geography
– volume: 136
  start-page: 33
  year: 2007
  end-page: 43
  article-title: Historical land use and environmental determinants of nonnative plant distribution in coastal southern New England
  publication-title: Biological Conservation
– volume: 42
  start-page: 237
  year: 2014
  end-page: 252
  article-title: The meso‐scale drivers of temperature extremes in high‐latitude Fennoscandia
  publication-title: Climate Dynamics
– volume: 52
  start-page: 1293
  year: 2015
  end-page: 1310
  article-title: Predictive ecology in a changing world
  publication-title: Journal of Applied Ecology
– volume: 20
  start-page: 952
  year: 2014
  end-page: 963
  article-title: Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections?
  publication-title: Diversity and Distributions
– volume: 212
  start-page: 999
  year: 2011
  end-page: 1007
  article-title: Effects of abiotic and anthropogenic factors on the spatial distribution of in the Spanish central Pyrenees
  publication-title: Plant Ecology
– year: 2009
– volume: 11
  start-page: 475
  year: 1997
  end-page: 497
  article-title: Modelling topographic variation in solar radiation in a GIS environment
  publication-title: International Journal of Geographical Information Science
– volume: 37
  start-page: 1
  year: 2015
  end-page: 12
  article-title: Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps
  publication-title: Ecography
– volume: 94
  start-page: 671
  year: 2013b
  end-page: 682
  article-title: Horizontal, but not vertical, biotic interactions affect fine‐scale plant distribution patterns in a low energy system
  publication-title: Ecology
– volume: 108
  start-page: 631
  year: 2012
  end-page: 640
  article-title: Modeling the photosynthetically active radiation in South West Amazonia under all sky conditions
  publication-title: Theoretical and Applied Climatology
– volume: 2
  start-page: 1
  year: 2013
  end-page: 15
  article-title: Cross‐scale modeling of surface temperature and tree seedling establishment in mountain landscapes
  publication-title: Ecological Processes
– volume: 81
  start-page: 196
  year: 1998
  end-page: 207
  article-title: The balance between positive and negative plant interactions and its relationship to environmental gradients: a model
  publication-title: Oikos
– volume: 111
  start-page: E1164
  year: 2014
  end-page: E1165
  article-title: Microclimate is integral to the modeling of plant responses to macroclimate
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 2
  start-page: 1
  year: 2005
  end-page: 10
  article-title: Interpretation of models of fundamental ecological niches and species’ distributional areas
  publication-title: Biodiversity Informatics
– start-page: 7
  year: 2002
  end-page: 21
– volume: 33
  start-page: 985
  year: 2010
  end-page: 989
  article-title: New trends in species distribution modelling
  publication-title: Ecography
– volume: 101
  start-page: 1509
  year: 2013
  end-page: 1519
  article-title: Central European hardwood trees in a high‐CO future: synthesis of an 8‐year forest canopy CO enrichment project
  publication-title: Journal of Ecology
– volume: 20
  start-page: 996
  year: 2009b
  end-page: 1008
  article-title: Land use improves spatial predictions of mountain plant abundance but not presence–absence
  publication-title: Journal of Vegetation Science
– volume: 25
  start-page: 1024
  year: 2014
  end-page: 1032
  article-title: Outcomes of biotic interactions are dependent on multiple environmental variables
  publication-title: Journal of Vegetation Science
– volume: 16
  start-page: 743
  year: 2007
  end-page: 753
  article-title: The importance of biotic interactions for modelling species distributions under climate change
  publication-title: Global Ecology and Biogeography
– volume: 157
  start-page: 101
  year: 2002
  end-page: 118
  article-title: Spatial prediction of species distribution: an interface between ecological theory and statistical modelling
  publication-title: Ecological Modelling
– volume: 33
  start-page: 1
  year: 2013
  end-page: 33
  article-title: Remote sensing of soil moisture
  publication-title: ISRN Soil Science
– volume: 11
  start-page: 2234
  year: 2005
  end-page: 2250
  article-title: Niche‐based modelling as a tool for predicting the risk of alien plant invasions at a global scale
  publication-title: Global Change Biology
– volume: 38
  start-page: 9
  year: 2011b
  end-page: 19
  article-title: Impact of landscape predictors on climate change modelling of species distributions: a case study with in southern New South Wales, Australia
  publication-title: Journal of Biogeography
– volume: 34
  start-page: 427
  year: 1917
  end-page: 433
  article-title: The niche‐relationships of the California thrasher
  publication-title: The Auk
– volume: 36
  start-page: 27
  year: 2013
  end-page: 46
  article-title: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
  publication-title: Ecography
– volume: 22
  start-page: 415
  year: 1957
  end-page: 427
  article-title: Concluding remarks
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
– volume: 34
  start-page: 883
  year: 2011
  end-page: 897
  article-title: Inclusion of local environmental conditions alters high‐latitude vegetation change predictions based on bioclimatic models
  publication-title: Polar Biology
– volume: 9
  start-page: e86487
  year: 2014
  article-title: Land use compounds habitat losses under projected climate change in a threatened California ecosystem
  publication-title: PLoS ONE
– article-title: Spatial predictions at the community level: from current approaches to future frameworks
  publication-title: Biological Reviews
– volume: 88
  start-page: 15
  year: 2013
  end-page: 30
  article-title: The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling
  publication-title: Biological Reviews
– volume: 114
  start-page: 2745
  year: 2010
  end-page: 2755
  article-title: Ascat soil wetness index validation through in situ and modeled soil moisture data in central italy
  publication-title: Remote Sensing of Environment
– volume: 19
  start-page: 474
  year: 1995
  end-page: 499
  article-title: Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients
  publication-title: Progress in Physical Geography
– volume: 22
  start-page: 635
  year: 2011
  end-page: 646
  article-title: Hypothesis‐driven species distribution models for tree species in the Bavarian Alps
  publication-title: Journal of Vegetation Science
– volume: 213
  start-page: 1381
  year: 2012
  end-page: 1392
  article-title: Determinants of plant species invasions in an arid island: evidence from Socotra Island (Yemen)
  publication-title: Plant Ecology
– volume: 106
  start-page: 19723
  issue: Suppl 2
  year: 2009
  end-page: 19728
  article-title: Climatic extremes improve predictions of spatial patterns of tree species
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 19
  start-page: 2932
  year: 2013
  end-page: 2939
  article-title: Microclimatic challenges in global change biology
  publication-title: Global Change Biology
– volume: 38
  start-page: 406
  year: 2011
  end-page: 416
  article-title: Topographically controlled thermal‐habitat differentiation buffers alpine plant diversity against climate warming
  publication-title: Journal of Biogeography
– volume: 35
  start-page: 811
  year: 2012
  end-page: 820
  article-title: How do species interactions affect species distribution models?
  publication-title: Ecography
– volume: 124
  start-page: 1
  year: 2014
  end-page: 12
  article-title: A climate‐based model to predict potential treeline position around the globe
  publication-title: Alpine Botany
– volume: 10
  start-page: 20140347
  year: 2014
  article-title: Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy
  publication-title: Biology Letters
– volume: 8
  start-page: e63708
  year: 2013
  article-title: Fit‐for‐purpose: species distribution model performance depends on evaluation criteria – Dutch hoverflies as a case study
  publication-title: PLoS ONE
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 22
  start-page: 660
  year: 2011
  end-page: 676
  article-title: Mapping gradients of community composition with nearest‐neighbour imputation: extending plot data for landscape analysis
  publication-title: Journal of Vegetation Science
– volume: 24
  start-page: 593
  year: 2013
  end-page: 606
  article-title: Improving the prediction of plant species distribution and community composition by adding edaphic to topo‐climatic variables
  publication-title: Journal of Vegetation Science
– volume: 9
  start-page: 655
  year: 2000
  end-page: 671
  article-title: Regression and model‐building in conservation biology, biogeography and ecology: the distinction between – and reconciliation of – ‘predictive’ and ‘explanatory’ models
  publication-title: Biodiversity & Conservation
– volume: 33
  start-page: 1004
  year: 2010
  end-page: 1014
  article-title: Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants
  publication-title: Ecography
– volume: 31
  start-page: 129
  year: 2013
  end-page: 144
  article-title: Topography as a driver of local terrestrial vascular plant diversity patterns
  publication-title: Nordic Journal of Botany
– volume: 25
  start-page: 45
  year: 2014
  end-page: 54
  article-title: Earth surface processes drive the richness, composition and occurrence of plant species in an arctic–alpine environment
  publication-title: Journal of Vegetation Science
– volume: 328
  start-page: 575
  year: 2010
  end-page: 576
  article-title: Matters of scale
  publication-title: Science
– volume: 335
  start-page: 1344
  year: 2012
  end-page: 1348
  article-title: Climatic niche shifts are rare among terrestrial plant invaders
  publication-title: Science
– volume: 102
  start-page: 767
  year: 2014
  end-page: 775
  article-title: Incorporating dominant species as proxies for biotic interactions strengthens plant community models
  publication-title: Journal of Ecology
– volume: 43
  start-page: 386
  year: 2006
  end-page: 392
  article-title: Making better biogeographical predictions of species’ distributions
  publication-title: Journal of Applied Ecology
– volume: 58
  start-page: 1265
  year: 2014
  end-page: 1277
  article-title: Photosynthetically active radiation and its relationship with global solar radiation in Central China
  publication-title: International Journal of Biometeorology
– volume: 33
  start-page: 1492
  year: 2006
  end-page: 1502
  article-title: Modelling the influence of change in fire regime on the local distribution of a mediterranean pyrophytic plant species ( ) at its northern range limit
  publication-title: Journal of Biogeography
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1365-2699.2011.02663.x
– ident: e_1_2_8_109_1
  doi: 10.1007/s11258-012-0098-1
– volume-title: Mineral nutrition of plants: principles and perspectives
  year: 2005
  ident: e_1_2_8_36_1
– ident: e_1_2_8_6_1
  doi: 10.1371/journal.pone.0063708
– ident: e_1_2_8_7_1
  doi: 10.1111/1365-2664.12230
– ident: e_1_2_8_26_1
  doi: 10.1111/j.1654-1103.2007.tb02566.x
– volume-title: An introduction to population ecology
  year: 1978
  ident: e_1_2_8_58_1
– ident: e_1_2_8_37_1
  doi: 10.1016/j.rse.2009.11.016
– ident: e_1_2_8_94_1
  doi: 10.1098/rsbl.2014.0347
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1365-2699.2011.02550.x
– start-page: 7
  volume-title: Predicting species occurrences: issues of accuracy and scale
  year: 2002
  ident: e_1_2_8_56_1
– ident: e_1_2_8_67_1
– ident: e_1_2_8_17_1
  doi: 10.1111/1365-2745.12149
– ident: e_1_2_8_54_1
  doi: 10.1002/rse2.7
– ident: e_1_2_8_95_1
  doi: 10.1177/0309133313512667
– ident: e_1_2_8_27_1
  doi: 10.1111/j.1365-2699.2005.01443.x
– ident: e_1_2_8_46_1
  doi: 10.2307/4072271
– ident: e_1_2_8_31_1
  doi: 10.1016/j.baae.2006.11.001
– ident: e_1_2_8_41_1
  doi: 10.1111/gcb.12051
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1469-8137.1976.tb01532.x
– ident: e_1_2_8_100_1
  doi: 10.1111/jvs.12059
– ident: e_1_2_8_101_1
  doi: 10.1111/j.1600-0587.2012.07922.x
– ident: e_1_2_8_91_1
  doi: 10.1111/geb.12012
– ident: e_1_2_8_24_1
  doi: 10.2307/3546481
– ident: e_1_2_8_102_1
  doi: 10.1890/12-1482.1
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1365-2699.2010.02415.x
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1600-0587.2011.07103.x
– ident: e_1_2_8_5_1
  doi: 10.1007/s00704-011-0556-z
– ident: e_1_2_8_120_1
  doi: 10.1007/s00484-013-0690-7
– ident: e_1_2_8_123_1
  doi: 10.1111/j.1365-2664.2007.01348.x
– ident: e_1_2_8_84_1
  doi: 10.1111/j.1654-1103.2010.01244.x
– ident: e_1_2_8_2_1
  doi: 10.1657/1938-4246-45.4.429
– ident: e_1_2_8_97_1
  doi: 10.1657/1938-4246-41.3.347
– ident: e_1_2_8_125_1
  doi: 10.1111/j.1600-0587.2010.06953.x
– ident: e_1_2_8_57_1
  doi: 10.1101/SQB.1957.022.01.039
– ident: e_1_2_8_80_1
  doi: 10.1111/j.1365-2699.2006.01535.x
– volume-title: Plant ecology
  year: 2005
  ident: e_1_2_8_108_1
– ident: e_1_2_8_63_1
  doi: 10.1111/j.1469-8137.2006.01886.x
– ident: e_1_2_8_89_1
  doi: 10.23943/princeton/9780691136868.001.0001
– ident: e_1_2_8_88_1
  doi: 10.1111/j.1600-0587.2010.06386.x
– ident: e_1_2_8_115_1
  doi: 10.1111/j.1365-2486.2005.001018.x
– ident: e_1_2_8_70_1
  doi: 10.1007/978-3-642-96281-3
– ident: e_1_2_8_39_1
  doi: 10.1177/030913339501900403
– ident: e_1_2_8_34_1
  doi: 10.1111/jfr3.12037
– volume: 37
  start-page: 1
  year: 2015
  ident: e_1_2_8_82_1
  article-title: Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps
  publication-title: Ecography
– start-page: 759
  volume-title: Strasburger ‐ lehrbuch der pflanzenwissenschaften
  year: 2014
  ident: e_1_2_8_64_1
  doi: 10.1007/978-3-642-54435-4_27
– ident: e_1_2_8_28_1
  doi: 10.1890/13-0924.1
– ident: e_1_2_8_114_1
  doi: 10.1046/j.0305-0270.2003.00991.x
– ident: e_1_2_8_124_1
  doi: 10.1073/pnas.0901643106
– ident: e_1_2_8_30_1
  doi: 10.1186/2192-1709-2-30
– ident: e_1_2_8_83_1
  doi: 10.1146/annurev-ecolsys-102209-144647
– ident: e_1_2_8_113_1
  doi: 10.1111/2041-210X.12203
– ident: e_1_2_8_76_1
  doi: 10.1111/j.1365-2699.2010.02405.x
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1461-0248.2011.01610.x
– ident: e_1_2_8_48_1
  doi: 10.1111/j.1461-0248.2005.00792.x
– ident: e_1_2_8_65_1
  doi: 10.1007/s11258-010-9880-0
– ident: e_1_2_8_119_1
  doi: 10.1127/0941-2948/2013/0399
– ident: e_1_2_8_40_1
  doi: 10.1017/CBO9780511810602
– volume: 182
  start-page: 65
  year: 2006
  ident: e_1_2_8_4_1
  article-title: Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events
  publication-title: Plant Ecology
  doi: 10.1007/s11258-005-9031-1
– ident: e_1_2_8_77_1
  doi: 10.1111/j.1654-1103.2011.01274.x
– ident: e_1_2_8_29_1
  doi: 10.1111/brv.12222
– ident: e_1_2_8_98_1
  doi: 10.1111/j.1654-1103.2009.01098.x
– ident: e_1_2_8_55_1
  doi: 10.1002/joc.1276
– ident: e_1_2_8_71_1
  doi: 10.1023/A:1008985925162
– ident: e_1_2_8_79_1
  doi: 10.1111/j.1756-1051.2013.00082.x
– ident: e_1_2_8_106_1
  doi: 10.1111/j.1365-2486.2009.02122.x
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1365-2699.2010.02416.x
– ident: e_1_2_8_110_1
  doi: 10.1111/ddi.12216
– ident: e_1_2_8_22_1
  doi: 10.1016/j.rse.2010.06.009
– ident: e_1_2_8_44_1
  doi: 10.1890/02-3114
– ident: e_1_2_8_75_1
  doi: 10.1111/j.1600-0587.2010.06229.x
– ident: e_1_2_8_18_1
  doi: 10.1111/ddi.12229
– ident: e_1_2_8_20_1
  doi: 10.1111/ddi.12144
– ident: e_1_2_8_12_1
  doi: 10.1111/j.1365-2664.2006.01164.x
– ident: e_1_2_8_49_1
  doi: 10.1890/06-0539
– ident: e_1_2_8_69_1
  doi: 10.1007/978-0-387-78341-3_5
– ident: e_1_2_8_86_1
  doi: 10.1007/s00035-014-0124-0
– ident: e_1_2_8_93_1
  doi: 10.1111/gcb.12257
– ident: e_1_2_8_121_1
  doi: 10.1111/j.1472-4642.2008.00482.x
– ident: e_1_2_8_59_1
  doi: 10.1371/journal.pone.0107037
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ecolmodel.2006.07.005
– ident: e_1_2_8_90_1
  doi: 10.1126/science.1215933
– ident: e_1_2_8_116_1
– ident: e_1_2_8_96_1
  doi: 10.1111/j.1365-2699.2006.01466.x
– ident: e_1_2_8_122_1
  doi: 10.1111/j.1469-185X.2012.00235.x
– ident: e_1_2_8_51_1
  doi: 10.1111/ele.12189
– ident: e_1_2_8_66_1
  doi: 10.1080/136588197242266
– ident: e_1_2_8_68_1
  doi: 10.1155/2013/424178
– ident: e_1_2_8_50_1
  doi: 10.1111/j.1365-2664.2006.01164.x
– ident: e_1_2_8_105_1
  doi: 10.1038/nature09492
– ident: e_1_2_8_107_1
  doi: 10.1111/j.1365-2699.2010.02407.x
– ident: e_1_2_8_3_1
  doi: 10.1007/s00382-012-1590-y
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ecolmodel.2012.06.019
– ident: e_1_2_8_42_1
  doi: 10.1111/j.1461-0248.2005.00829.x
– ident: e_1_2_8_52_1
  doi: 10.1111/2041-210X.12355
– ident: e_1_2_8_9_1
  doi: 10.1111/j.1466-8238.2007.00359.x
– ident: e_1_2_8_74_1
  doi: 10.1016/j.tree.2006.02.002
– ident: e_1_2_8_112_1
  doi: 10.1007/s00300-010-0945-2
– ident: e_1_2_8_118_1
  doi: 10.1016/j.biocon.2006.10.044
– ident: e_1_2_8_103_1
  doi: 10.1111/gcb.12286
– ident: e_1_2_8_111_1
  doi: 10.17161/bi.v2i0.4
– ident: e_1_2_8_61_1
  doi: 10.1007/s10530-011-9963-4
– ident: e_1_2_8_23_1
  doi: 10.1098/rsbl.2008.0254
– ident: e_1_2_8_117_1
  doi: 10.1111/j.1600-0587.2011.06948.x
– ident: e_1_2_8_87_1
  doi: 10.1046/j.1466-822X.2003.00042.x
– ident: e_1_2_8_99_1
  doi: 10.1371/journal.pone.0086487
– volume-title: Environmental physiology of plants
  year: 2002
  ident: e_1_2_8_38_1
– ident: e_1_2_8_73_1
  doi: 10.1126/science.1188528
– ident: e_1_2_8_81_1
  doi: 10.1111/1365-2664.12482
– ident: e_1_2_8_85_1
  doi: 10.1007/s10531-013-0509-1
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1600-0587.2012.07348.x
– ident: e_1_2_8_19_1
  doi: 10.1111/j.1365-2486.2012.02679.x
– ident: e_1_2_8_35_1
  doi: 10.1146/annurev.ecolsys.110308.120159
– ident: e_1_2_8_92_1
  doi: 10.1111/2041-210X.12180
– ident: e_1_2_8_104_1
  doi: 10.1111/1365-2745.12239
– ident: e_1_2_8_72_1
  doi: 10.1111/j.1654-1103.2002.tb02087.x
– ident: e_1_2_8_14_1
  doi: 10.1007/BF00031679
– ident: e_1_2_8_33_1
  doi: 10.1111/jvs.12002
– ident: e_1_2_8_60_1
  doi: 10.1111/j.1365-2486.2011.02584.x
– ident: e_1_2_8_53_1
  doi: 10.1073/pnas.1400069111
– ident: e_1_2_8_45_1
  doi: 10.1086/283244
– ident: e_1_2_8_8_1
  doi: 10.1111/j.1365-2699.2006.01584.x
– ident: e_1_2_8_78_1
  doi: 10.1111/jvs.12148
– ident: e_1_2_8_11_1
  doi: 10.1007/BF00048865
SSID ssj0017961
Score 2.5635674
Snippet Aims: The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive...
Aims The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive...
Aims The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive...
AIMS: The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1308
SubjectTerms biocenosis
Covariate
Environment
environmental factors
Habitat suitability
Independent variable
Niche
nutrients
Plant
population distribution
Predictor
soil nutrients
soil pH
soil water
Species distribution
SYNTHESIS
systematic review
temperature
Title What we use is not what we know: environmental predictors in plant distribution models
URI https://api.istex.fr/ark:/67375/WNG-310F8WX1-K/fulltext.pdf
https://www.jstor.org/stable/44132717
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjvs.12444
https://www.proquest.com/docview/1868337113
https://www.proquest.com/docview/2020898043
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEN8Q5MEXRZR4AmY1xvDSS_er7coTEE6CkQcVuAeTZne7TQikd7negfLXM7P9yGEkMb61zbTd7sx0f7s78xtCPihWsFLKMlKliiNZJjay3LhIWWa4AwxhOGYjfz1Njs_kyViNV8helwvT8EP0C27oGeF_jQ5ubL3s5Df1EAcn5ALFWC0ERN966iiws4YrlcVxBCBGtKxCIYqnu_PBWPQEu_VXF5b4AHAuw9Yw7oyek59di5twk6vhYm6H7u4PMsf__KR18qzFo3S_MaAXZMVXG2TtYAKY8fdLco7M3vTW00Xt6WVNqwmctZdwNe4TXUqUg8dMZ7jvgwV86GVFp9egNlogNW9bVYuGwjv1K3I2OvpxeBy1lRgiJ7SSkXCpZ5xJYxizzAOo8p7Z0pSxSLUvuC54qrVXToFIIQttuRXSKuYBvDsjxCZZrSaVf02osyYtkkQzVShpTWm1sWAY3HhfJpxnA7Lb6SR3LU05Vsu4zvvpyk2dh14akPe96LTh5vib0Meg2F7CzK4wmC1V-cXp5xzQ7Si7GLP8y4BsBs33ggAUBYfZ7oC860whB9_DDRVT-ckCXpAlmRApY-JxGY5VUHUWS5DZDcp_vK35yfn3cPDm30W3yFPAcEmTHrlNVuezhd8BnDS3b4ND3APOVA6Y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWiTYlGfV4WkQoG4yih07iZFYAGWYdtpZQB-zS-3EkapWmdFkpqX9pv4K_8S189AUUYlNF-yS6Cpx7HPtY_v6XIC3gmY05zz3RC58j-eh9jRTqSc0VSxFDqGYPY28Owz7-3x7JEZLcNWchan0IdoFN-sZrr-2Dm4XpBe9_Kzs2tGJ1yGVA3NxjhO28uPWJrbuO8Z6X_e-9L06p4CXBlJwL0gjQxnlSlGqqUF6YAzVucr9IJImYzJjkZRGpAJNMp5JzXTAtaAGaWiq7PIndvgrNoO4Verf_N6KVSGyK3VW6vse0qag1jFycUNNUa-Nfiu2IX82gZDXKO4iUXYjXe8-_GrqqApwOenOZ7qbXv4hH_m_VOIDWK0pN_lU-chDWDLFI7jzeYy0-OIxHFjxcnJuyLw05LgkxRjv6kd2wfEDWTgLiK-ZTO3Wls1RRI4LMjlFZJLMqg_XicOIyy1UPoH9W_mnNVguxoVZB5JqFWVhKKnIBNcq11JpxD5TxuQhY3EHNhoQJGmtxG4Tgpwm7YzsrExcq3TgTWs6qeRH_mb03iGptVDTExuvF4nkcPgtQQLfiw9HNBl0YM1BrTVELhwwnNB34HWDvQS7F7tnpAoznuMH4jAOgojS4GYbZhO9ytjnaLPh0HZzWZPtgx_u4um_m76Cu_293Z1kZ2s4eAb3kLKG1WnQ57A8m87NC6SFM_3SeSOBo9tG7m-TT21t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWoTYQHlUHaBgEKBuMoodO4krsQCGoe3ACAFtZxfsxJGqVpnRZKYPfqm_0o_i2nloiqjEpgt2SXSVOPa59rF9fS7AK0EzmnOeeyIXvsfzUHuaqdQTmiqWIodQzJ5G_jIMt_f47kiMluCiOQtT6UO0C27WM1x_bR18kuWLTn5Sdu3gxOuIyoE5P8X5Wvl2p4eN-5qx_scfH7a9OqWAlwZScC9II0MZ5UpRqqlBdmAM1bnK_SCSJmMyY5GURqQCTTKeSc10wLWgBlloquzqJ_b3Kzz0pc0T0fvWalUhsCtxVur7HrKmoJYxcmFDTVGvDH4rth3PmjjIKwx3kSe7ga5_Dy6bKqriW46685nupr_-UI_8T-pwFe7WhJu8qzzkPiyZ4gHcej9GUnz-EPatdDk5NWReGnJYkmKMd_Uju9y4RRZOAuJrJlO7sWUzFJHDgkyOEZcks9rDddow4jILlY9g70b-aQ2Wi3Fh1oGkWkVZGEoqMsG1yrVUGpHPlDF5yFjcgc0GA0la67DbdCDHSTsfOykT1yodeNmaTirxkb8ZvXFAai3U9MhG60UiORh-SpC-9-ODEU0GHVhzSGsNkQkHDKfzHXjRQC_BzsXuGKnCjOf4gTiMgyCiNLjehtk0rzL2OdpsOrBdX9Zkd_-7u3j876bP4fbXXj_5vDMcPIE7yFfD6ijoU1ieTedmAznhTD9zvkjg500D9zfN42wc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+we+use+is+not+what+we+know%3A+environmental+predictors+in+plant+distribution+models&rft.jtitle=Journal+of+vegetation+science&rft.au=Mod%2C+Heidi+K.&rft.au=Scherrer%2C+Daniel&rft.au=Luoto%2C+Miska&rft.au=Guisan%2C+Antoine&rft.date=2016-11-01&rft.issn=1100-9233&rft.eissn=1654-1103&rft.volume=27&rft.issue=6&rft.spage=1308&rft.epage=1322&rft_id=info:doi/10.1111%2Fjvs.12444&rft.externalDBID=10.1111%252Fjvs.12444&rft.externalDocID=JVS12444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1100-9233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1100-9233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1100-9233&client=summon