What we use is not what we know: environmental predictors in plant distribution models
Aims: The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as highlighted in multiple earlier studies. Because variable selection is directly related to a model's capacit...
Saved in:
Published in | Journal of vegetation science Vol. 27; no. 6; pp. 1308 - 1322 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.11.2016
John Wiley & Sons Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims: The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as highlighted in multiple earlier studies. Because variable selection is directly related to a model's capacity to capture important species' environmental requirements, one would expect an explicit prior consideration of all ecophysiologically meaningful variables. For plants, these include temperature, water, soil nutrients, light, and in some cases, disturbances and biotic interactions. However, the set of predictors used in published correlative plant SDM studies varies considerably. No comprehensive review exists of what environmental predictors are meaningful, available (or missing) and used in practice to predict plant distributions. Contributing to answer these questions is the aim of this review. Methods: We carried out an extensive, systematic review of recently published plant SDM studies (years 2010-2015; n = 200) to determine the predictors used (and not used) in the models. We additionally conducted an in-depth review of SDM studies in selected journals to identify temporal trends in the use of predictors (years 2000-2015; n = 40). Results: A large majority of plant SDM studies neglected several ecophysiologically meaningful environmental variables, and the number of relevant predictors used in models has stagnated or even declined over the last 15 yr. Conclusions: Neglecting ecophysiologically meaningful predictors can result in incomplete niche quantification and can thus limit the predictive power of plant SDMs. Some of these missing predictors are already available spatially or may soon become available (e.g. soil moisture). However, others are not yet easily obtainable across whole study extents (e.g. soil pH and nutrients), and their development should receive increased attention. We conclude that more effort should be made to build ecologically more sound plant SDMs. This requires a more thorough rationale for the choice of environmental predictors needed to meet the study goal, and the development of missing ones. The latter calls for increased collaborative effort between ecological and geo-environmental sciences. |
---|---|
AbstractList | AIMS: The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as highlighted in multiple earlier studies. Because variable selection is directly related to a model's capacity to capture important species' environmental requirements, one would expect an explicit prior consideration of all ecophysiologically meaningful variables. For plants, these include temperature, water, soil nutrients, light, and in some cases, disturbances and biotic interactions. However, the set of predictors used in published correlative plant SDM studies varies considerably. No comprehensive review exists of what environmental predictors are meaningful, available (or missing) and used in practice to predict plant distributions. Contributing to answer these questions is the aim of this review. METHODS: We carried out an extensive, systematic review of recently published plant SDM studies (years 2010–2015; n = 200) to determine the predictors used (and not used) in the models. We additionally conducted an in‐depth review of SDM studies in selected journals to identify temporal trends in the use of predictors (years 2000–2015; n = 40). RESULTS: A large majority of plant SDM studies neglected several ecophysiologically meaningful environmental variables, and the number of relevant predictors used in models has stagnated or even declined over the last 15 yr. CONCLUSIONS: Neglecting ecophysiologically meaningful predictors can result in incomplete niche quantification and can thus limit the predictive power of plant SDMs. Some of these missing predictors are already available spatially or may soon become available (e.g. soil moisture). However, others are not yet easily obtainable across whole study extents (e.g. soil pH and nutrients), and their development should receive increased attention. We conclude that more effort should be made to build ecologically more sound plant SDMs. This requires a more thorough rationale for the choice of environmental predictors needed to meet the study goal, and the development of missing ones. The latter calls for increased collaborative effort between ecological and geo‐environmental sciences. Aims The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as highlighted in multiple earlier studies. Because variable selection is directly related to a model's capacity to capture important species' environmental requirements, one would expect an explicit prior consideration of all ecophysiologically meaningful variables. For plants, these include temperature, water, soil nutrients, light, and in some cases, disturbances and biotic interactions. However, the set of predictors used in published correlative plant SDM studies varies considerably. No comprehensive review exists of what environmental predictors are meaningful, available (or missing) and used in practice to predict plant distributions. Contributing to answer these questions is the aim of this review. Methods We carried out an extensive, systematic review of recently published plant SDM studies (years 2010–2015; n = 200) to determine the predictors used (and not used) in the models. We additionally conducted an in‐depth review of SDM studies in selected journals to identify temporal trends in the use of predictors (years 2000–2015; n = 40). Results A large majority of plant SDM studies neglected several ecophysiologically meaningful environmental variables, and the number of relevant predictors used in models has stagnated or even declined over the last 15 yr. Conclusions Neglecting ecophysiologically meaningful predictors can result in incomplete niche quantification and can thus limit the predictive power of plant SDMs. Some of these missing predictors are already available spatially or may soon become available (e.g. soil moisture). However, others are not yet easily obtainable across whole study extents (e.g. soil pH and nutrients), and their development should receive increased attention. We conclude that more effort should be made to build ecologically more sound plant SDMs. This requires a more thorough rationale for the choice of environmental predictors needed to meet the study goal, and the development of missing ones. The latter calls for increased collaborative effort between ecological and geo‐environmental sciences. Predictors included in species distribution models (SDMs) vary greatly between studies. This review identifies the predictors omitted in plant SDMs and reasons for their omission. We conclude that effort is needed to develop more ecologically sound predictors and related SDMs. This requires increased collaboration between ecological and geo‐environmental sciences and a more theoretically solid basis for the selection of predictors. Aims The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as highlighted in multiple earlier studies. Because variable selection is directly related to a model's capacity to capture important species' environmental requirements, one would expect an explicit prior consideration of all ecophysiologically meaningful variables. For plants, these include temperature, water, soil nutrients, light, and in some cases, disturbances and biotic interactions. However, the set of predictors used in published correlative plant SDM studies varies considerably. No comprehensive review exists of what environmental predictors are meaningful, available (or missing) and used in practice to predict plant distributions. Contributing to answer these questions is the aim of this review. Methods We carried out an extensive, systematic review of recently published plant SDM studies (years 2010-2015; n = 200) to determine the predictors used (and not used) in the models. We additionally conducted an in-depth review of SDM studies in selected journals to identify temporal trends in the use of predictors (years 2000-2015; n = 40). Results A large majority of plant SDM studies neglected several ecophysiologically meaningful environmental variables, and the number of relevant predictors used in models has stagnated or even declined over the last 15 yr. Conclusions Neglecting ecophysiologically meaningful predictors can result in incomplete niche quantification and can thus limit the predictive power of plant SDMs. Some of these missing predictors are already available spatially or may soon become available (e.g. soil moisture). However, others are not yet easily obtainable across whole study extents (e.g. soil pH and nutrients), and their development should receive increased attention. We conclude that more effort should be made to build ecologically more sound plant SDMs. This requires a more thorough rationale for the choice of environmental predictors needed to meet the study goal, and the development of missing ones. The latter calls for increased collaborative effort between ecological and geo-environmental sciences. Predictors included in species distribution models (SDMs) vary greatly between studies. This review identifies the predictors omitted in plant SDMs and reasons for their omission. We conclude that effort is needed to develop more ecologically sound predictors and related SDMs. This requires increased collaboration between ecological and geo-environmental sciences and a more theoretically solid basis for the selection of predictors. |
Author | Scherrer, Daniel Mod, Heidi K. Luoto, Miska Guisan, Antoine |
Author_xml | – sequence: 1 givenname: Heidi K. surname: Mod fullname: Mod, Heidi K. email: heidi.mod@helsinki.fi, heidi.mod@helsinki.fi organization: Department of Geosciences and Geography, University of Helsinki, PO Box 64 (Gustaf Hällstöminkatu 2a), FI-00014, Helsinki, Finland – sequence: 2 givenname: Daniel surname: Scherrer fullname: Scherrer, Daniel email: daniel.scherrer@unil.ch organization: Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015, Lausanne, Switzerland – sequence: 3 givenname: Miska surname: Luoto fullname: Luoto, Miska email: miska.luoto@helsinki.fi organization: Department of Geosciences and Geography, University of Helsinki, PO Box 64 (Gustaf Hällstöminkatu 2a), FI-00014, Helsinki, Finland – sequence: 4 givenname: Antoine surname: Guisan fullname: Guisan, Antoine email: antoine.guisan@unil.ch organization: Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015, Lausanne, Switzerland |
BookMark | eNqFkU9PGzEQxS1EpfKnh34AJB_pYcFje-M1N4QKLaByoCW9Wd7dieqwsVPbIeXb1yGBQwWqL_b4_d5o_LxLtn3wSMhHYEdQ1vH0IR0Bl1JukR0Y1bICYGK7nIGxSnMh3pPdlKaMgdIj2CF341820yXSRULqEvWhVJurex-WJxT9g4vBz9BnO9B5xN51OcREnafzwfpMe5dydO0iu-DpLPQ4pH3ybmKHhB82-x75cf75-9mX6vrm4uvZ6XXVCV2GE51C4CCtBWgBG6ERoZ3YCRNKY891z5XWWHd1QXrZ65a3QrY1oFK8s0LskcN133kMvxeYspm51OFQ5sKwSIYzzhrdMPl_FJpRI4QCWKHHa7SLIaWIE9O5bFfPy9G6wQAzq7BNCds8hV0cn_5xzKOb2fj4KrvpvnQDPr4Nmsu722fHwdoxTSX5F4eUILgCVfRqrZePwD8vuo33ZqSEqs3424URwM6b8U8wV-IvEaqpkw |
CitedBy_id | crossref_primary_10_1002_ece3_8272 crossref_primary_10_1111_geb_13315 crossref_primary_10_3390_e21060571 crossref_primary_10_1016_j_scitotenv_2022_153697 crossref_primary_10_1007_s10531_023_02608_9 crossref_primary_10_1016_j_biocon_2022_109742 crossref_primary_10_1111_1365_2745_13625 crossref_primary_10_1111_ddi_13779 crossref_primary_10_1016_j_ecolind_2020_106889 crossref_primary_10_1088_1748_9326_11_12_124028 crossref_primary_10_3390_biology10030203 crossref_primary_10_1002_ece3_5969 crossref_primary_10_1016_j_agrformet_2024_110361 crossref_primary_10_1111_ecog_06022 crossref_primary_10_1111_csp2_13179 crossref_primary_10_1002_ecm_1433 crossref_primary_10_1007_s10530_024_03490_4 crossref_primary_10_1177_0309133317738162 crossref_primary_10_1016_j_crsust_2021_100092 crossref_primary_10_1111_gcb_15330 crossref_primary_10_53463_ecopers_20240253 crossref_primary_10_1002_joc_7497 crossref_primary_10_1002_rse2_255 crossref_primary_10_1016_j_atech_2024_100508 crossref_primary_10_1111_ele_12794 crossref_primary_10_1093_aob_mcad029 crossref_primary_10_1111_ddi_13787 crossref_primary_10_3389_fpls_2023_1125019 crossref_primary_10_3390_land12071433 crossref_primary_10_1111_gcb_15569 crossref_primary_10_1016_j_geodrs_2021_e00437 crossref_primary_10_3389_fmicb_2019_00656 crossref_primary_10_1088_1748_9326_ab80ee crossref_primary_10_1111_mec_17646 crossref_primary_10_1002_ece3_3436 crossref_primary_10_1111_oik_05764 crossref_primary_10_1007_s00267_020_01282_9 crossref_primary_10_1016_j_baae_2021_04_002 crossref_primary_10_1111_1365_2745_13451 crossref_primary_10_1111_2041_210X_13565 crossref_primary_10_1111_jbi_14382 crossref_primary_10_3390_rs13101892 crossref_primary_10_7717_peerj_9839 crossref_primary_10_1016_j_jnc_2019_04_001 crossref_primary_10_1016_j_scitotenv_2022_157959 crossref_primary_10_1111_geb_12967 crossref_primary_10_3390_su15129271 crossref_primary_10_1111_ddi_13275 crossref_primary_10_1002_ece3_10986 crossref_primary_10_1111_ddi_12868 crossref_primary_10_1177_03091333221143643 crossref_primary_10_3389_fpls_2022_934959 crossref_primary_10_1038_s41598_022_16046_0 crossref_primary_10_1007_s11104_019_04016_x crossref_primary_10_1016_j_foreco_2018_11_040 crossref_primary_10_1016_j_sajb_2022_04_036 crossref_primary_10_1111_ecog_05117 crossref_primary_10_1111_ecog_04421 crossref_primary_10_1111_ecog_06721 crossref_primary_10_1111_oik_09998 crossref_primary_10_3390_su12229608 crossref_primary_10_1016_j_foreco_2022_120249 crossref_primary_10_1093_femsec_fiaa051 crossref_primary_10_3390_atmos12050543 crossref_primary_10_1088_1748_9326_abda6e crossref_primary_10_1016_j_scitotenv_2024_173719 crossref_primary_10_1371_journal_pone_0186025 crossref_primary_10_2478_eko_2022_0024 crossref_primary_10_1016_j_ecoinf_2023_102080 crossref_primary_10_1007_s10531_023_02700_0 crossref_primary_10_1371_journal_pone_0244494 crossref_primary_10_1111_ddi_13207 crossref_primary_10_1016_j_kjs_2023_02_027 crossref_primary_10_1073_pnas_2001254117 crossref_primary_10_1111_jbi_13434 crossref_primary_10_1007_s00382_020_05319_x crossref_primary_10_1016_j_foreco_2022_120356 crossref_primary_10_1111_oik_09507 crossref_primary_10_1016_j_ecoinf_2023_102110 crossref_primary_10_1111_ecog_07086 crossref_primary_10_3389_fcosc_2022_870041 crossref_primary_10_1007_s10531_023_02546_6 crossref_primary_10_1111_cobi_13518 crossref_primary_10_1111_geb_13639 crossref_primary_10_1016_j_scitotenv_2021_146680 crossref_primary_10_1080_00103624_2023_2265409 crossref_primary_10_1111_nph_19601 crossref_primary_10_3832_ifor2588_011 crossref_primary_10_3390_rs13081588 crossref_primary_10_1007_s10530_022_02838_y crossref_primary_10_1016_j_ecolmodel_2019_108817 crossref_primary_10_1111_ddi_12889 crossref_primary_10_3389_ffgc_2019_00092 crossref_primary_10_1016_j_ecoinf_2021_101358 crossref_primary_10_1016_j_heliyon_2023_e20199 crossref_primary_10_1111_ecog_04960 crossref_primary_10_1111_1365_2745_14233 crossref_primary_10_1111_jbi_13787 crossref_primary_10_1007_s11273_021_09799_4 crossref_primary_10_3390_agronomy10010034 crossref_primary_10_1016_j_foreco_2020_118428 crossref_primary_10_1016_j_rse_2019_111626 crossref_primary_10_1111_tgis_13067 crossref_primary_10_1038_s41598_019_39133_1 crossref_primary_10_1016_j_biocon_2017_06_019 crossref_primary_10_5194_gh_76_385_2021 crossref_primary_10_1111_ddi_13468 crossref_primary_10_3389_fevo_2022_952439 crossref_primary_10_1186_s12862_024_02310_6 crossref_primary_10_1111_ddi_13749 crossref_primary_10_3390_f15010130 crossref_primary_10_1111_ddi_13906 crossref_primary_10_1038_s41467_023_39573_4 crossref_primary_10_1038_s41598_019_52293_4 crossref_primary_10_1002_rse2_298 crossref_primary_10_1111_jbi_13803 crossref_primary_10_1111_ecog_06852 crossref_primary_10_1111_jbi_14344 crossref_primary_10_1111_2041_210X_13488 crossref_primary_10_1016_j_earscirev_2025_105075 crossref_primary_10_1002_ecs2_4305 crossref_primary_10_1016_j_jenvman_2022_116428 crossref_primary_10_1016_j_cub_2021_08_035 crossref_primary_10_1016_j_scitotenv_2024_171741 crossref_primary_10_3390_f12030330 crossref_primary_10_1088_1755_1315_743_1_012014 crossref_primary_10_1038_s41558_018_0311_x crossref_primary_10_1016_j_actao_2021_103764 crossref_primary_10_1177_1940082919864269 crossref_primary_10_1007_s00477_021_02062_5 crossref_primary_10_1071_BT24064 crossref_primary_10_1002_ece3_70528 crossref_primary_10_1111_ddi_12548 crossref_primary_10_1111_jbi_14608 crossref_primary_10_1111_jvs_13093 crossref_primary_10_1111_ecog_05317 crossref_primary_10_2139_ssrn_3973754 crossref_primary_10_3390_plants11060731 crossref_primary_10_1111_mec_14567 crossref_primary_10_1002_ecy_2891 crossref_primary_10_1111_ddi_12939 crossref_primary_10_3389_fevo_2023_1106197 crossref_primary_10_1111_1365_2664_14183 crossref_primary_10_3897_alpento_6_83730 crossref_primary_10_1007_s10531_024_02973_z crossref_primary_10_1007_s10113_019_01554_z crossref_primary_10_1002_met_2166 crossref_primary_10_1371_journal_pone_0225936 crossref_primary_10_3390_plants13131810 crossref_primary_10_1111_gcb_15946 crossref_primary_10_1111_geb_13447 crossref_primary_10_1007_s00442_022_05110_1 crossref_primary_10_1016_j_ecoinf_2019_100987 crossref_primary_10_1111_1365_2745_13434 crossref_primary_10_1111_ecog_07328 crossref_primary_10_1111_1365_2745_14403 crossref_primary_10_1016_j_gecco_2022_e02286 crossref_primary_10_1111_jbi_14689 crossref_primary_10_1016_j_biocon_2025_111103 crossref_primary_10_1016_j_ecolmodel_2018_05_006 crossref_primary_10_1111_jbi_13755 crossref_primary_10_1371_journal_pone_0232078 crossref_primary_10_1002_pei3_10031 crossref_primary_10_1016_j_ecolmodel_2021_109693 crossref_primary_10_1016_j_gecco_2022_e02167 crossref_primary_10_1371_journal_pone_0285115 crossref_primary_10_1071_BT21124 crossref_primary_10_1111_ecog_06072 crossref_primary_10_1111_geb_13200 crossref_primary_10_1371_journal_pone_0208823 crossref_primary_10_1016_j_heliyon_2024_e32696 crossref_primary_10_1111_gcb_17560 crossref_primary_10_31590_ejosat_848961 crossref_primary_10_3390_plants13081109 |
Cites_doi | 10.1111/j.1365-2699.2011.02663.x 10.1007/s11258-012-0098-1 10.1371/journal.pone.0063708 10.1111/1365-2664.12230 10.1111/j.1654-1103.2007.tb02566.x 10.1016/j.rse.2009.11.016 10.1098/rsbl.2014.0347 10.1111/j.1365-2699.2011.02550.x 10.1111/1365-2745.12149 10.1002/rse2.7 10.1177/0309133313512667 10.1111/j.1365-2699.2005.01443.x 10.2307/4072271 10.1016/j.baae.2006.11.001 10.1111/gcb.12051 10.1111/j.1469-8137.1976.tb01532.x 10.1111/jvs.12059 10.1111/j.1600-0587.2012.07922.x 10.1111/geb.12012 10.2307/3546481 10.1890/12-1482.1 10.1111/j.1365-2699.2010.02415.x 10.1111/j.1600-0587.2011.07103.x 10.1007/s00704-011-0556-z 10.1007/s00484-013-0690-7 10.1111/j.1365-2664.2007.01348.x 10.1111/j.1654-1103.2010.01244.x 10.1657/1938-4246-45.4.429 10.1657/1938-4246-41.3.347 10.1111/j.1600-0587.2010.06953.x 10.1101/SQB.1957.022.01.039 10.1111/j.1365-2699.2006.01535.x 10.1111/j.1469-8137.2006.01886.x 10.23943/princeton/9780691136868.001.0001 10.1111/j.1600-0587.2010.06386.x 10.1111/j.1365-2486.2005.001018.x 10.1007/978-3-642-96281-3 10.1177/030913339501900403 10.1111/jfr3.12037 10.1007/978-3-642-54435-4_27 10.1890/13-0924.1 10.1046/j.0305-0270.2003.00991.x 10.1073/pnas.0901643106 10.1186/2192-1709-2-30 10.1146/annurev-ecolsys-102209-144647 10.1111/2041-210X.12203 10.1111/j.1365-2699.2010.02405.x 10.1111/j.1461-0248.2011.01610.x 10.1111/j.1461-0248.2005.00792.x 10.1007/s11258-010-9880-0 10.1127/0941-2948/2013/0399 10.1017/CBO9780511810602 10.1007/s11258-005-9031-1 10.1111/j.1654-1103.2011.01274.x 10.1111/brv.12222 10.1111/j.1654-1103.2009.01098.x 10.1002/joc.1276 10.1023/A:1008985925162 10.1111/j.1756-1051.2013.00082.x 10.1111/j.1365-2486.2009.02122.x 10.1111/j.1365-2699.2010.02416.x 10.1111/ddi.12216 10.1016/j.rse.2010.06.009 10.1890/02-3114 10.1111/j.1600-0587.2010.06229.x 10.1111/ddi.12229 10.1111/ddi.12144 10.1111/j.1365-2664.2006.01164.x 10.1890/06-0539 10.1007/978-0-387-78341-3_5 10.1007/s00035-014-0124-0 10.1111/gcb.12257 10.1111/j.1472-4642.2008.00482.x 10.1371/journal.pone.0107037 10.1016/j.ecolmodel.2006.07.005 10.1126/science.1215933 10.1111/j.1365-2699.2006.01466.x 10.1111/j.1469-185X.2012.00235.x 10.1111/ele.12189 10.1080/136588197242266 10.1155/2013/424178 10.1038/nature09492 10.1111/j.1365-2699.2010.02407.x 10.1007/s00382-012-1590-y 10.1016/j.ecolmodel.2012.06.019 10.1111/j.1461-0248.2005.00829.x 10.1111/2041-210X.12355 10.1111/j.1466-8238.2007.00359.x 10.1016/j.tree.2006.02.002 10.1007/s00300-010-0945-2 10.1016/j.biocon.2006.10.044 10.1111/gcb.12286 10.17161/bi.v2i0.4 10.1007/s10530-011-9963-4 10.1098/rsbl.2008.0254 10.1111/j.1600-0587.2011.06948.x 10.1046/j.1466-822X.2003.00042.x 10.1371/journal.pone.0086487 10.1126/science.1188528 10.1111/1365-2664.12482 10.1007/s10531-013-0509-1 10.1111/j.1600-0587.2012.07348.x 10.1111/j.1365-2486.2012.02679.x 10.1146/annurev.ecolsys.110308.120159 10.1111/2041-210X.12180 10.1111/1365-2745.12239 10.1111/j.1654-1103.2002.tb02087.x 10.1007/BF00031679 10.1111/jvs.12002 10.1111/j.1365-2486.2011.02584.x 10.1073/pnas.1400069111 10.1086/283244 10.1111/j.1365-2699.2006.01584.x 10.1111/jvs.12148 10.1007/BF00048865 |
ContentType | Journal Article |
Copyright | Copyright © 2017 International Association for Vegetation Science 2016 International Association for Vegetation Science |
Copyright_xml | – notice: Copyright © 2017 International Association for Vegetation Science – notice: 2016 International Association for Vegetation Science |
DBID | BSCLL AAYXX CITATION 7SN 7ST C1K SOI 7S9 L.6 |
DOI | 10.1111/jvs.12444 |
DatabaseName | Istex CrossRef Ecology Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Ecology Abstracts Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Ecology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1654-1103 |
Editor | Scheiner, Sam |
Editor_xml | – sequence: 5 givenname: Sam surname: Scheiner fullname: Scheiner, Sam |
EndPage | 1322 |
ExternalDocumentID | 10_1111_jvs_12444 JVS12444 44132717 ark_67375_WNG_310F8WX1_K |
Genre | article |
GrantInformation_xml | – fundername: Academy of Finland funderid: 286950 – fundername: Research Foundation of the University of Helsinki – fundername: Swiss National Science Foundation funderid: 31003A‐152866/1 – fundername: Kordelin Foundation |
GroupedDBID | -JH .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29L 2~F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AANLZ AAONW AAPSS AASGY AAXRX AAXTN AAZKR ABBHK ABCQN ABCUV ABDBF ABEML ABJNI ABPLY ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADACV ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEJZ AEEZP AEIGN AEIMD AENEX AEPYG AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFFIJ AFFPM AFGKR AFNWH AFPWT AFRAH AGUYK AHBTC AHXOZ AI. AICQM AITYG AIURR AIWBW AJBDE AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CBGCD COF CS3 D-E D-F DATOO DC7 DCZOG DOOOF DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EQZMY ESX F00 F01 F04 FEDTE G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HGLYW HTVGU HVGLF HZ~ IAG IAO IEP IHR IPSME ITC J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PQ0 Q.N Q11 Q5J QB0 R.K RBO ROL RWI RX1 SA0 SUPJJ TEORI TUS UB1 VH1 VOH W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~02 ~8M ~IA ~KM ~WT AAHQN AAMMB AAMNL AAYCA ACHIC ACUHS ACYXJ AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AANHP ACRPL ADNMO AAYXX CITATION 7SN 7ST C1K SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3954-3c7e1214aa11b1e839ee1bfaf0379ed29d2799e5c54aad4d9b2b34b51e772ca33 |
IEDL.DBID | DR2 |
ISSN | 1100-9233 |
IngestDate | Fri Jul 11 18:24:16 EDT 2025 Fri Jul 11 02:06:26 EDT 2025 Thu Apr 24 23:06:54 EDT 2025 Thu Jul 03 08:44:10 EDT 2025 Wed Jan 22 16:18:09 EST 2025 Thu Jul 03 22:16:54 EDT 2025 Wed Oct 30 10:00:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3954-3c7e1214aa11b1e839ee1bfaf0379ed29d2799e5c54aad4d9b2b34b51e772ca33 |
Notes | Kordelin Foundation istex:EEDED045A510C903A7A86A56D1BAE32FDBF91834 ark:/67375/WNG-310F8WX1-K Research Foundation of the University of Helsinki Swiss National Science Foundation - No. 31003A-152866/1 ArticleID:JVS12444 Appendix S1. Ecophysiological meaning of different categories of variables for plant species. Appendix S2. Journals and numbers of studies included in the paper. Appendix S3. Variables included in the different classes and categories. Academy of Finland - No. 286950 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1868337113 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2020898043 proquest_miscellaneous_1868337113 crossref_citationtrail_10_1111_jvs_12444 crossref_primary_10_1111_jvs_12444 wiley_primary_10_1111_jvs_12444_JVS12444 jstor_primary_44132717 istex_primary_ark_67375_WNG_310F8WX1_K |
PublicationCentury | 2000 |
PublicationDate | 2016-11 20161101 November 2016 2016-11-00 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11 |
PublicationDecade | 2010 |
PublicationTitle | Journal of vegetation science |
PublicationTitleAlternate | J Veg Sci |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd |
References | Austin, M.P. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200: 1-19. Aalto, J., le Roux, P.C. & Luoto, M. 2014. The meso-scale drivers of temperature extremes in high-latitude Fennoscandia. Climate Dynamics 42: 237-252. Grinnell, J. 1917. The niche-relationships of the California thrasher. The Auk 34: 427-433. Coudun, C., Gégout, J.-C., Piedallu, C. & Rameau, J.-C. 2006. Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (l.) in France. Journal of Biogeography 33: 1750-1763. McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178-185. Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., (...) & Lautenbach, S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27-46. Scherber, C., Eisenhauer, N., Weisser, W.W., Schmid, B., Voigt, W., Fischer, M., Schulze, E.-D., Roscher, C., Weigelt, A., (...) & Tscharntke, T. 2010. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468: 553-556. Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., (...) & O'Hara, R.B. 2012. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography 39: 2163-2178. Gunton, R.M., Polce, C. & Kunin, W.E. 2015. Predicting ground temperatures across European landscapes. Methods in Ecology and Evolution 6: 532-542. Lakshmi, V. 2013. Remote sensing of soil moisture. ISRN Soil Science 33: 1-33. Fukami, T., Martijn Bezemer, T., Mortimer, S.R. & van der Putten, W.H. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecology Letters 8: 1283-1290. Callaway, R.M., Brooker, R.W., Choler, P., Kikvidze, Z., Lortie, C.J., Michalet, R., Paolini, L., Pugnaire, F.I., Newingham, B., (...) & Cook, B.J. 2002. Positive interactions among alpine plants increase with stress. Nature 417: 844-848. le Roux, P.C., Virtanen, R. & Luoto, M. 2013a. Geomorphological disturbance is necessary for predicting fine-scale species distributions. Ecography 36: 800-808. Mod, H.K., le Roux, P.C. & Luoto, M. 2014. Outcomes of biotic interactions are dependent on multiple environmental variables. Journal of Vegetation Science 25: 1024-1032. Slavich, E., Warton, D.I., Ashcroft, M.B., Gollan, J.R. & Ramp, D. 2014. Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections? Diversity and Distributions 20: 952-963. Körner, C. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist 172: 393-411. le Roux, P.C. & Luoto, M. 2014. Earth surface processes drive the richness, composition and occurrence of plant species in an arctic-alpine environment. Journal of Vegetation Science 25: 45-54. Franklin, J. 2009. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, UK. Aalto, J., le Roux, P.C. & Luoto, M. 2013. Vegetation mediates soil temperature and moisture in arctic-alpine environments. Arctic, Antarctic, and Alpine Research 45: 429-439. Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M. & Araújo, M.B. 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton, NJ, US. McCune, B. & Keon, D. 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science 13: 603-606. Crimmins, S.M., Dobrowski, S.Z., Mynsberge, A.R. & Safford, H.D. 2013. Can fire atlas data improve species distribution model projections? Ecological Applications 24: 1057-1069. Dubuis, A., Giovanettina, S., Pellissier, L., Pottier, J., Vittoz, P. & Guisan, A. 2013. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. Journal of Vegetation Science 24: 593-606. Soberón, J. & Peterson, A.T. 2005. Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiversity Informatics 2: 1-10. Aerts, R., Cornelissen, J.H.C. & Dorrepaal, E. 2006. Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology 182: 65-77. Mellert, K.H., Fensterer, V., Kuechenhoff, H., Reger, B., Koelling, C., Klemmt, H.J. & Ewald, J. 2011. Hypothesis-driven species distribution models for tree species in the Bavarian Alps. Journal of Vegetation Science 22: 635-646. Parviainen, M., Zimmermann, N., Heikkinen, R. & Luoto, M. 2013. Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species. Biodiversity and Conservation 22: 1731-1754. Aguiar, L.J.G., Fischer, G.R., Ladle, R.J., Malhado, A.C.M., Justino, F.B., Aguiar, R.G. & Costa, J.M.N. 2012. Modeling the photosynthetically active radiation in South West Amazonia under all sky conditions. Theoretical and Applied Climatology 108: 631-640. Hutchinson, G.E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415-427. Moeslund, J.E., Arge, L., Bøcher, P.K., Dalgaard, T. & Svenning, J.-C. 2013. Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic Journal of Botany 31: 129-144. Pradervand, J.-N., Dubuis, A., Pellissier, L., Guisan, A. & Randin, C. 2014. Very high resolution environmental predictors in species distribution models: moving beyond topography? Progress in Physical Geography 38: 79-96. Senan, A.S., Tomasetto, F., Farcomeni, A., Somashekar, R.K. & Attorre, F. 2012. Determinants of plant species invasions in an arid island: evidence from Socotra Island (Yemen). Plant Ecology 213: 1381-1392. Zimmermann, N.E., Yoccoz, N.G., Edwards, T.C., Meier, E.S., Thuiller, W., Guisan, A., Schmatz, D.R. & Pearman, P.B. 2009. Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences of the United States of America 106(Suppl 2): 19723-19728. Araújo, M.B. & Luoto, M. 2007. The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography 16: 743-753. Dingman, J.R., Sweet, L.C., McCullough, I., Davis, F.W., Flint, A., Franklin, J. & Flint, L.E. 2013. Cross-scale modeling of surface temperature and tree seedling establishment in mountain landscapes. Ecological Processes 2: 1-15. Thibaud, E., Petitpierre, B., Broennimann, O., Davison, A.C. & Guisan, A. 2014. Measuring the relative effect of factors affecting species distribution model predictions. Methods in Ecology and Evolution 5: 947-955. Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. 2011. Climate change threatens European conservation areas. Ecology Letters 14: 484-492. Guisan, A., Lehmann, A., Ferrier, S., Austin, M., Overton, J.M.C., Aspinall, R. & Hastie, T. 2006. Making better biogeographical predictions of species' distributions. Journal of Applied Ecology 43: 386-392. Moretti, M., Conedera, M., Moresi, R. & Guisan, A. 2006. Modelling the influence of change in fire regime on the local distribution of a mediterranean pyrophytic plant species (Cistus salviifolius) at its northern range limit. Journal of Biogeography 33: 1492-1502. Elith, J. & Leathwick, J.R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677-697. Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dormann, C.F., Forchhammer, M.C., Grytnes, J.A., (...) & Svenning, J.C. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews 88: 15-30. Jiménez-Valverde, A., Peterson, A.T., Soberón, J., Overton, J.M., Aragón, P. & Lobo, J.M. 2011. Use of niche models in invasive species risk assessments. Biological Invasions 13: 2785-2797. Kumar, L., Skidmore, A.K. & Knowles, E. 1997. Modelling topographic variation in solar radiation in a GIS environment. International Journal of Geographical Information Science 11: 475-497. Mac Nally, R. 2000. Regression and model-building in conservation biology, biogeography and ecology: the distinction between - and reconciliation of - 'predictive' and 'explanatory' models. Biodiversity & Conservation 9: 655-671. Von Holle, B. & Motzkin, G. 2007. Historical land use and environmental determinants of nonnative plant distribution in coastal southern New England. Biological Conservation 136: 33-43. Estes, L.D., Reillo, P.R., Mwangi, A.G., Okin, G.S. & Shugart, H.H. 2010. Remote sensing of structural complexity indices for habitat and species distribution modeling. Remote Sensing of Environment 114: 792-804. Austin, M.P. 1980. Searching for a model for use in vegetation analysis. Vegetatio 42: 11-21. Pearson, R.G. & Dawson, T.P. 2003. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361-371. Zimmermann, N.E., Edwards, T.C., Graham, C.H., Pearman, P.B. & Svenning, J.C. 2010. New trends in species distribution modelling. Ecography 33: 985-989. Brooker, R.W. & Callaghan, T.V. 1998. The balance between positive and negative plant interactions and its relationship to environmental gradients: a model. Oikos 81: 196-207. Pottier, J., Malenovský, Z., Psomas, A., Homolová, L., Schaepman, M.E., Choler, P., Thuiller, W., Guisan, A. & Zimmermann, N.E. 2014. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy. Biology Letters 10 2010; 16 2012; 244 2013; 2 1980; 42 2000; 135 2010; 468 2006; 33 2002; 157 2013c; 19 2002; 13 1975 2014; 25 2012; 18 1998; 81 2006; 172 2013; 8 1978 2014; 20 2004; 31 2006; 21 2010; 114 2007; 8 2014; 10 2014; 124 2007; 18 2010; 33 2007; 200 2013; 88 2010; 328 2013a; 36 2015; 52 2013; 101 2012; 39 1992 2002; 417 2012; 35 2012; 108 2014; 42 2007; 16 2006; 43 2011b; 38 2005; 8 2014; 38 2006; 182 2005; 2 1977; 111 2005; 11 2009; 106 2015; 37 1989; 83 2009; 40 2013; 22 2013; 24 2009a; 41 2013b; 94 2000; 9 2011; 13 2011; 14 2008; 4 2011a; 38 2005; 25 2003; 12 2013; 19 2007; 136 2014; 5 2013; 16 1917; 34 1997; 11 2011; 22 2014; 58 2014; 9 2012; 213 2014; 51 2012; 335 2014; 7 2003; 84 2009b; 20 2015; 1 2011; 212 2015; 6 2011 2010 2013; 45 2009 2008; 14 2008 2005 2011; 34 1995; 19 2002 2011; 38 2014; 111 1957; 22 2013; 36 2013; 33 2013; 31 2011; 42 2014 2007; 44 2014; 102 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 Aerts R. (e_1_2_8_4_1) 2006; 182 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 Körner C. (e_1_2_8_64_1) 2014 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_114_1 e_1_2_8_18_1 Nieto‐Lugilde D. (e_1_2_8_82_1) 2015; 37 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 Fitter A.H. (e_1_2_8_38_1) 2002 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 Huston M.A. (e_1_2_8_56_1) 2002 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 Epstein E. (e_1_2_8_36_1) 2005 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Hutchinson G.E. (e_1_2_8_58_1) 1978 e_1_2_8_80_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_92_1 Schulze E. (e_1_2_8_108_1) 2005 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – reference: Thuiller, W., Araújo, M.B. & Lavorel, S. 2004. Do we need land-cover data to model species distributions in Europe? Journal of Biogeography 31: 353-361. – reference: Grinnell, J. 1917. The niche-relationships of the California thrasher. The Auk 34: 427-433. – reference: McGill, B.J. 2010. Matters of scale. Science 328: 575-576. – reference: Mod, H.K., le Roux, P.C. & Luoto, M. 2014. Outcomes of biotic interactions are dependent on multiple environmental variables. Journal of Vegetation Science 25: 1024-1032. – reference: Randin, C.F., Dirnböck, T., Dullinger, S., Zimmermann, N.E., Zappa, M. & Guisan, A. 2006. Are niche-based species distribution models transferable in space? Journal of Biogeography 33: 1689-1703. – reference: le Roux, P.C., Lenoir, J., Pellissier, L., Wisz, M.S. & Luoto, M. 2013b. Horizontal, but not vertical, biotic interactions affect fine-scale plant distribution patterns in a low energy system. Ecology 94: 671-682. – reference: Austin, M.P. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling 157: 101-118. – reference: Guisan, A., Lehmann, A., Ferrier, S., Austin, M., Overton, J.M.C., Aspinall, R. & Hastie, T. 2006. Making better biogeographical predictions of species' distributions. Journal of Applied Ecology 43: 386-392. – reference: Dormann, C. 2007. Promising the future? Global change projections of species distributions. Basic and Applied Ecology 8: 387-397. – reference: Mellert, K.H., Fensterer, V., Kuechenhoff, H., Reger, B., Koelling, C., Klemmt, H.J. & Ewald, J. 2011. Hypothesis-driven species distribution models for tree species in the Bavarian Alps. Journal of Vegetation Science 22: 635-646. – reference: Meier, E.S., Edwards, T.C. Jr, Kienast, F., Dobbertin, M. & Zimmermann, N.E. 2011. Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica l. Journal of Biogeography 38: 371-382. – reference: Hutchinson, G.E. 1978. An introduction to population ecology. Yale University Press, New Haven, CT, US. – reference: Larcher, W. 1975. Physiological plant ecology, 2nd edn. Springer, London, UK. – reference: Lakshmi, V. 2013. Remote sensing of soil moisture. ISRN Soil Science 33: 1-33. – reference: Ohmann, J.L., Gregory, M.J., Henderson, E.B. & Roberts, H.M. 2011. Mapping gradients of community composition with nearest-neighbour imputation: extending plot data for landscape analysis. Journal of Vegetation Science 22: 660-676. – reference: Pearson, R.G. & Dawson, T.P. 2003. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361-371. – reference: Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. 2011. Climate change threatens European conservation areas. Ecology Letters 14: 484-492. – reference: Callaway, R.M., Brooker, R.W., Choler, P., Kikvidze, Z., Lortie, C.J., Michalet, R., Paolini, L., Pugnaire, F.I., Newingham, B., (...) & Cook, B.J. 2002. Positive interactions among alpine plants increase with stress. Nature 417: 844-848. – reference: Coudun, C. & Gégout, J.-C. 2007. Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. Journal of Vegetation Science 18: 517-524. – reference: le Roux, P.C., Aalto, J. & Luoto, M. 2013c. Soil moisture's underestimated role in climate change impact modelling in low-energy systems. Global Change Biology 19: 2965-2975. – reference: Dubuis, A., Giovanettina, S., Pellissier, L., Pottier, J., Vittoz, P. & Guisan, A. 2013. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. Journal of Vegetation Science 24: 593-606. – reference: Pellissier, L., Bråthen, K.A., Pottier, J., Randin, C.F., Vittoz, P., Dubuis, A., Yoccoz, N.G., Alm, T., Zimmermann, N.E. & Guisan, A. 2010. Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography 33: 1004-1014. – reference: Scherber, C., Eisenhauer, N., Weisser, W.W., Schmid, B., Voigt, W., Fischer, M., Schulze, E.-D., Roscher, C., Weigelt, A., (...) & Tscharntke, T. 2010. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468: 553-556. – reference: McCune, B. & Keon, D. 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science 13: 603-606. – reference: Zimmermann, N.E., Edwards, T.C., Graham, C.H., Pearman, P.B. & Svenning, J.C. 2010. New trends in species distribution modelling. Ecography 33: 985-989. – reference: Soberón, J. & Peterson, A.T. 2005. Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiversity Informatics 2: 1-10. – reference: Hutchinson, G.E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415-427. – reference: Elith, J. & Leathwick, J.R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677-697. – reference: Wang, L., Gong, W., Ma, Y., Hu, B. & Zhang, M. 2014. Photosynthetically active radiation and its relationship with global solar radiation in Central China. International Journal of Biometeorology 58: 1265-1277. – reference: Aerts, R., Cornelissen, J.H.C. & Dorrepaal, E. 2006. Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology 182: 65-77. – reference: Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., Regan, T.J., Brotons, L., McDonald-Madden, E., (...) & Buckley, Y.M. 2013. Predicting species distributions for conservation decisions. Ecology Letters 16: 1424-1435. – reference: Thuiller, W., Richardson, D.M., Pysek, P., Midgley, G.F., Hughes, G.O. & Rouget, M. 2005. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology 11: 2234-2250. – reference: Slavich, E., Warton, D.I., Ashcroft, M.B., Gollan, J.R. & Ramp, D. 2014. Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections? Diversity and Distributions 20: 952-963. – reference: Thibaud, E., Petitpierre, B., Broennimann, O., Davison, A.C. & Guisan, A. 2014. Measuring the relative effect of factors affecting species distribution model predictions. Methods in Ecology and Evolution 5: 947-955. – reference: Randin, C.F., Jaccard, H., Vittoz, P., Yoccoz, N.G. & Guisan, A. 2009b. Land use improves spatial predictions of mountain plant abundance but not presence-absence. Journal of Vegetation Science 20: 996-1008. – reference: le Roux, P.C., Virtanen, R. & Luoto, M. 2013a. Geomorphological disturbance is necessary for predicting fine-scale species distributions. Ecography 36: 800-808. – reference: Araújo, M.B. & Guisan, A. 2006. Five (or so) challenges for species distribution modelling. Journal of Biogeography 33: 1677-1688. – reference: Paulsen, J. & Körner, C. 2014. A climate-based model to predict potential treeline position around the globe. Alpine Botany 124: 1-12. – reference: Potter, K.A., Woods, H.A. & Pincebourde, S. 2013. Microclimatic challenges in global change biology. Global Change Biology 19: 2932-2939. – reference: Lambers, H., Chapin, F.S. III & Pons, T.L. 2008. Plant water relations. Springer, New York, NY, US. – reference: Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335: 1344-1348. – reference: Scherrer, D. & Körner, C. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography 38: 406-416. – reference: Araújo, M.B. & Luoto, M. 2007. The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography 16: 743-753. – reference: Moeslund, J.E., Arge, L., Bøcher, P.K., Dalgaard, T. & Svenning, J.-C. 2013. Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic Journal of Botany 31: 129-144. – reference: Gunton, R.M., Polce, C. & Kunin, W.E. 2015. Predicting ground temperatures across European landscapes. Methods in Ecology and Evolution 6: 532-542. – reference: Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., (...) & O'Hara, R.B. 2012. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography 39: 2163-2178. – reference: Scherrer, D. & Körner, C. 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology 16: 2602-2613. – reference: Elbialy, S., Mahmoud, A., Pradhan, B. & Buchroithner, M. 2014. Application of spaceborne synthetic aperture radar data for extraction of soil moisture and its use in hydrological modelling at Gottleuba catchment, Saxony, Germany. Journal of Flood Risk Management 7: 159-175. – reference: Barbet-Massin, M. & Jetz, W. 2014. A 40-year, continent-wide, multispecies assessment of relevant climate predictors for species distribution modelling. Diversity and Distributions 20: 1285-1295. – reference: Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dormann, C.F., Forchhammer, M.C., Grytnes, J.A., (...) & Svenning, J.C. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews 88: 15-30. – reference: He, K.S., Bradley, B.A., Cord, A.F., Rocchini, D., Tuanmu, M.-N., Schmidtlein, S., Turner, W., Wegmann, M. & Pettorelli, N. 2015. Will remote sensing shape the next generation of species distribution models? Remote Sensing in Ecology and Conservation 1: 4-18. – reference: Inauen, N., Körner, C. & Hiltbrunner, E. 2012. No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Global Change Biology 18: 985-999. – reference: Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-Saldaña, J., de Rosnay, P., Jann, A., (...) & Rubel, F. 2013. The Ascat soil moisture product: a review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift 22: 5-33. – reference: Schulze, E., Beck, E. & Muller-Hohenstein, K. 2005. Plant ecology, 1st edn. Springer-Verlag, Berlin. – reference: Austin, M.P. & Van Niel, K.P. 2011b. Impact of landscape predictors on climate change modelling of species distributions: a case study with Eucalyptus fastigata in southern New South Wales, Australia. Journal of Biogeography 38: 9-19. – reference: Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., (...) & Lautenbach, S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27-46. – reference: Franklin, J., Davis, F.W., Ikegami, M., Syphard, A.D., Flint, L.E., Flint, A.L. & Hannah, L. 2013. Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Global Change Biology 19: 473-483. – reference: Brooker, R.W. & Callaghan, T.V. 1998. The balance between positive and negative plant interactions and its relationship to environmental gradients: a model. Oikos 81: 196-207. – reference: Godsoe, W. & Harmon, L.J. 2012. How do species interactions affect species distribution models? Ecography 35: 811-820. – reference: Grime, J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111: 1169-1194. – reference: Guisan, A. & Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993-1009. – reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. – reference: Kumar, L., Skidmore, A.K. & Knowles, E. 1997. Modelling topographic variation in solar radiation in a GIS environment. International Journal of Geographical Information Science 11: 475-497. – reference: Dingman, J.R., Sweet, L.C., McCullough, I., Davis, F.W., Flint, A., Franklin, J. & Flint, L.E. 2013. Cross-scale modeling of surface temperature and tree seedling establishment in mountain landscapes. Ecological Processes 2: 1-15. – reference: Randin, C.F., Vuissoz, G., Liston, G.E., Vittoz, P. & Guisan, A. 2009a. Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the western Swiss Alps. Arctic, Antarctic and Alpine Research 41: 347-361. – reference: Estes, L.D., Reillo, P.R., Mwangi, A.G., Okin, G.S. & Shugart, H.H. 2010. Remote sensing of structural complexity indices for habitat and species distribution modeling. Remote Sensing of Environment 114: 792-804. – reference: Aguiar, L.J.G., Fischer, G.R., Ladle, R.J., Malhado, A.C.M., Justino, F.B., Aguiar, R.G. & Costa, J.M.N. 2012. Modeling the photosynthetically active radiation in South West Amazonia under all sky conditions. Theoretical and Applied Climatology 108: 631-640. – reference: Pollock, L.J., Tingley, R., Morris, W.K., Golding, N., O'Hara, R.B., Parris, K.M., Vesk, P.A. & McCarthy, M.A. 2014. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution 5: 397-406. – reference: Zimmermann, N.E., Edwards, T.C., Moisen, G.G., Frescino, T.S. & Blackard, J.A. 2007. Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. The Journal of Applied Ecology 44: 1057-1067. – reference: Parviainen, M., Zimmermann, N., Heikkinen, R. & Luoto, M. 2013. Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species. Biodiversity and Conservation 22: 1731-1754. – reference: Fukami, T., Martijn Bezemer, T., Mortimer, S.R. & van der Putten, W.H. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecology Letters 8: 1283-1290. – reference: Körner, C. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist 172: 393-411. – reference: Booth, T.H., Nix, H.A., Busby, J.R. & Hutchinson, M.F. 2014. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Diversity and Distributions 20: 1-9. – reference: Sormunen, H., Virtanen, R. & Luoto, M. 2011. Inclusion of local environmental conditions alters high-latitude vegetation change predictions based on bioclimatic models. Polar Biology 34: 883-897. – reference: Pradervand, J.-N., Dubuis, A., Pellissier, L., Guisan, A. & Randin, C. 2014. Very high resolution environmental predictors in species distribution models: moving beyond topography? Progress in Physical Geography 38: 79-96. – reference: le Roux, P.C., Pellissier, L., Wisz, M.S. & Luoto, M. 2014. Incorporating dominant species as proxies for biotic interactions strengthens plant community models. Journal of Ecology 102: 767-775. – reference: Nieto-Lugilde, D., Lenoir, J., Abdulhak, S., Aeschimann, D., Dullinger, S., Gégout, J.-C., Guisan, A., Pauli, H., Renaud, J., (...) & Svenning, J.-C. 2015. Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps. Ecography 37: 1-12. – reference: D'Amen, M., Rahbek, C., Zimmermann, N.E. & Guisan, A. in press. Spatial predictions at the community level: from current approaches to future frameworks. Biological Reviews 10.1111/brv.12222. – reference: le Roux, P.C. & Luoto, M. 2014. Earth surface processes drive the richness, composition and occurrence of plant species in an arctic-alpine environment. Journal of Vegetation Science 25: 45-54. – reference: Crimmins, S.M., Dobrowski, S.Z., Mynsberge, A.R. & Safford, H.D. 2013. Can fire atlas data improve species distribution model projections? Ecological Applications 24: 1057-1069. – reference: Kouba, Y., Alados, C.L. & Bueno, C.G. 2011. Effects of abiotic and anthropogenic factors on the spatial distribution of Quercus faginea in the Spanish central Pyrenees. Plant Ecology 212: 999-1007. – reference: Franklin, J. 1995. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography 19: 474-499. – reference: Bader, M.K.F., Leuzinger, S., Keel, S.G., Siegwolf, R.T.W., Hagedorn, F., Schleppi, P. & Körner, C. 2013. Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. Journal of Ecology 101: 1509-1519. – reference: Senan, A.S., Tomasetto, F., Farcomeni, A., Somashekar, R.K. & Attorre, F. 2012. Determinants of plant species invasions in an arid island: evidence from Socotra Island (Yemen). Plant Ecology 213: 1381-1392. – reference: Austin, M.P. 1980. Searching for a model for use in vegetation analysis. Vegetatio 42: 11-21. – reference: Epstein, E. & Bloom, A.J. 2005. Mineral nutrition of plants: principles and perspectives, 2 edn. Sinauer Associates, Sunderland, MA, US. – reference: Ikeda, D.H., Grady, K.C., Shuster, S.M. & Whitham, T.G. 2014. Incorporating climate change and exotic species into forecasts of riparian forest distribution. PLoS ONE 9: e107037. – reference: Fitter, A.H. & Hay, R.K.M. 2002. Environmental physiology of plants, 3rd edn. Academic Press, London, UK. – reference: Guisan, A. & Rahbek, C. 2011. SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography 38: 1433-1444. – reference: Tucker, C.M., Rebelo, A.G. & Manne, L.L. 2012. Contribution of disturbance to distribution and abundance in a fire-adapted system. Ecography 35: 348-355. – reference: McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178-185. – reference: Moretti, M., Conedera, M., Moresi, R. & Guisan, A. 2006. Modelling the influence of change in fire regime on the local distribution of a mediterranean pyrophytic plant species (Cistus salviifolius) at its northern range limit. Journal of Biogeography 33: 1492-1502. – reference: Broennimann, O. & Guisan, A. 2008. Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters 4: 585-589. – reference: Bertrand, R., Perez, V. & Gegout, J.C. 2012. Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of Quercus pubescens in France. Global Change Biology 18: 2648-2660. – reference: Brocca, L., Melone, F., Moramarco, T., Wagner, W. & Hasenauer, S. 2010. Ascat soil wetness index validation through in situ and modeled soil moisture data in central italy. Remote Sensing of Environment 114: 2745-2755. – reference: Austin, M.P. & Smith, T.M. 1989. A new model for the continuum concept. Vegetatio 83: 35-47. – reference: Pottier, J., Malenovský, Z., Psomas, A., Homolová, L., Schaepman, M.E., Choler, P., Thuiller, W., Guisan, A. & Zimmermann, N.E. 2014. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy. Biology Letters 10: 20140347. – reference: Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A., Eveillard, D., Faure, D., Garnier, E., Gimenez, O., (...) & Loreau, M. 2015. Predictive ecology in a changing world. Journal of Applied Ecology 52: 1293-1310. – reference: Mac Nally, R. 2000. Regression and model-building in conservation biology, biogeography and ecology: the distinction between - and reconciliation of - 'predictive' and 'explanatory' models. Biodiversity & Conservation 9: 655-671. – reference: Wisz, M.S., Hijmans, R., Li, J., Peterson, A.T., Graham, C.H. & Guisan, A. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions 14: 763-773. – reference: Austin, M.P. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200: 1-19. – reference: Piedallu, C., Gegout, J.-C., Perez, V. & Lebourgeois, F. 2013. Soil water balance performs better than climatic water variables in tree species distribution modelling. Global Ecology and Biogeography 22: 470-482. – reference: Aguirre-Gutiérrez, J., Carvalheiro, L.G., Polce, C., van Loon, E.E., Raes, N., Reemer, M. & Biesmeijer, J.C. 2013. Fit-for-purpose: species distribution model performance depends on evaluation criteria - Dutch hoverflies as a case study. PLoS ONE 8: e63708. – reference: Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M. & Araújo, M.B. 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton, NJ, US. – reference: Harwood, T.D., Mokany, K. & Paini, D.R. 2014. Microclimate is integral to the modeling of plant responses to macroclimate. Proceedings of the National Academy of Sciences of the United States of America 111: E1164-E1165. – reference: Riordan, E.C. & Rundel, P.W. 2014. Land use compounds habitat losses under projected climate change in a threatened California ecosystem. PLoS ONE 9: e86487. – reference: Norby, R.J. & Zak, D.R. 2011. Ecological lessons from free-air CO2 enrichment (face) experiments. Annual Review of Ecology, Evolution, and Systematics 42: 181. – reference: Von Holle, B. & Motzkin, G. 2007. Historical land use and environmental determinants of nonnative plant distribution in coastal southern New England. Biological Conservation 136: 33-43. – reference: Meier, E.S., Kienast, F., Pearman, P.B., Svenning, J.-C., Thuiller, W., Araújo, M.B., Guisan, A. & Zimmermann, N.E. 2010. Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography 33: 1038-1048. – reference: Aalto, J., le Roux, P.C. & Luoto, M. 2013. Vegetation mediates soil temperature and moisture in arctic-alpine environments. Arctic, Antarctic, and Alpine Research 45: 429-439. – reference: Austin, M.P. & Van Niel, K.P. 2011a. Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography 38: 1-8. – reference: Aalto, J., le Roux, P.C. & Luoto, M. 2014. The meso-scale drivers of temperature extremes in high-latitude Fennoscandia. Climate Dynamics 42: 237-252. – reference: Jiménez-Valverde, A., Peterson, A.T., Soberón, J., Overton, J.M., Aragón, P. & Lobo, J.M. 2011. Use of niche models in invasive species risk assessments. Biological Invasions 13: 2785-2797. – reference: Graham, M.H. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 2809-2815. – reference: Alagador, D., Cerdeira, J.O. & Araújo, M.B. 2014. Shifting protected areas: scheduling spatial priorities under climate change. Journal of Applied Ecology 51: 703-713. – reference: Bradley, B.A., Olsson, A.D., Wang, O., Dickson, B.G., Pelech, L., Sesnie, S.E. & Zachmann, L.J. 2012. Species detection vs. habitat suitability: are we biasing habitat suitability models with remotely sensed data? Ecological Modelling 244: 57-64. – reference: Guisan, A. & Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147-186. – reference: Coudun, C., Gégout, J.-C., Piedallu, C. & Rameau, J.-C. 2006. Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (l.) in France. Journal of Biogeography 33: 1750-1763. – reference: Zimmermann, N.E., Yoccoz, N.G., Edwards, T.C., Meier, E.S., Thuiller, W., Guisan, A., Schmatz, D.R. & Pearman, P.B. 2009. Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences of the United States of America 106(Suppl 2): 19723-19728. – reference: Franklin, J. 2009. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, UK. – year: 2011 – volume: 13 start-page: 603 year: 2002 end-page: 606 article-title: Equations for potential annual direct incident radiation and heat load publication-title: Journal of Vegetation Science – year: 2005 – volume: 6 start-page: 532 year: 2015 end-page: 542 article-title: Predicting ground temperatures across European landscapes publication-title: Methods in Ecology and Evolution – volume: 8 start-page: 387 year: 2007 end-page: 397 article-title: Promising the future? Global change projections of species distributions publication-title: Basic and Applied Ecology – volume: 16 start-page: 1424 year: 2013 end-page: 1435 article-title: Predicting species distributions for conservation decisions publication-title: Ecology Letters – volume: 13 start-page: 2785 year: 2011 end-page: 2797 article-title: Use of niche models in invasive species risk assessments publication-title: Biological Invasions – volume: 4 start-page: 585 year: 2008 end-page: 589 article-title: Predicting current and future biological invasions: both native and invaded ranges matter publication-title: Biology Letters – year: 1975 – volume: 83 start-page: 35 year: 1989 end-page: 47 article-title: A new model for the continuum concept publication-title: Vegetatio – volume: 38 start-page: 1433 year: 2011 end-page: 1444 article-title: SESAM – a new framework integrating macroecological and species distribution models for predicting spatio‐temporal patterns of species assemblages publication-title: Journal of Biogeography – volume: 44 start-page: 1057 year: 2007 end-page: 1067 article-title: Remote sensing‐based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah publication-title: The Journal of Applied Ecology – volume: 244 start-page: 57 year: 2012 end-page: 64 article-title: Species detection vs. habitat suitability: are we biasing habitat suitability models with remotely sensed data? publication-title: Ecological Modelling – volume: 5 start-page: 947 year: 2014 end-page: 955 article-title: Measuring the relative effect of factors affecting species distribution model predictions publication-title: Methods in Ecology and Evolution – volume: 33 start-page: 1038 year: 2010 end-page: 1048 article-title: Biotic and abiotic variables show little redundancy in explaining tree species distributions publication-title: Ecography – volume: 19 start-page: 473 year: 2013 end-page: 483 article-title: Modeling plant species distributions under future climates: how fine scale do climate projections need to be? publication-title: Global Change Biology – volume: 31 start-page: 353 year: 2004 end-page: 361 article-title: Do we need land‐cover data to model species distributions in Europe? publication-title: Journal of Biogeography – volume: 41 start-page: 347 year: 2009a end-page: 361 article-title: Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the western Swiss Alps publication-title: Arctic, Antarctic and Alpine Research – year: 2008 – volume: 200 start-page: 1 year: 2007 end-page: 19 article-title: Species distribution models and ecological theory: a critical assessment and some possible new approaches publication-title: Ecological Modelling – volume: 14 start-page: 763 year: 2008 end-page: 773 article-title: Effects of sample size on the performance of species distribution models publication-title: Diversity and Distributions – volume: 84 start-page: 2809 year: 2003 end-page: 2815 article-title: Confronting multicollinearity in ecological multiple regression publication-title: Ecology – volume: 36 start-page: 800 year: 2013a end-page: 808 article-title: Geomorphological disturbance is necessary for predicting fine‐scale species distributions publication-title: Ecography – volume: 14 start-page: 484 year: 2011 end-page: 492 article-title: Climate change threatens European conservation areas publication-title: Ecology Letters – volume: 19 start-page: 2965 year: 2013c end-page: 2975 article-title: Soil moisture's underestimated role in climate change impact modelling in low‐energy systems publication-title: Global Change Biology – volume: 18 start-page: 2648 year: 2012 end-page: 2660 article-title: Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of in France publication-title: Global Change Biology – volume: 5 start-page: 397 year: 2014 end-page: 406 article-title: Understanding co‐occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM) publication-title: Methods in Ecology and Evolution – volume: 20 start-page: 1285 year: 2014 end-page: 1295 article-title: A 40‐year, continent‐wide, multispecies assessment of relevant climate predictors for species distribution modelling publication-title: Diversity and Distributions – volume: 9 start-page: e107037 year: 2014 article-title: Incorporating climate change and exotic species into forecasts of riparian forest distribution publication-title: PLoS ONE – volume: 38 start-page: 1 year: 2011a end-page: 8 article-title: Improving species distribution models for climate change studies: variable selection and scale publication-title: Journal of Biogeography – volume: 1 start-page: 4 year: 2015 end-page: 18 article-title: Will remote sensing shape the next generation of species distribution models? publication-title: Remote Sensing in Ecology and Conservation – volume: 7 start-page: 159 year: 2014 end-page: 175 article-title: Application of spaceborne synthetic aperture radar data for extraction of soil moisture and its use in hydrological modelling at Gottleuba catchment, Saxony, Germany publication-title: Journal of Flood Risk Management – volume: 18 start-page: 517 year: 2007 end-page: 524 article-title: Quantitative prediction of the distribution and abundance of with climatic and edaphic factors publication-title: Journal of Vegetation Science – volume: 33 start-page: 1689 year: 2006 end-page: 1703 article-title: Are niche‐based species distribution models transferable in space? publication-title: Journal of Biogeography – volume: 417 start-page: 844 year: 2002 end-page: 848 article-title: Positive interactions among alpine plants increase with stress publication-title: Nature – volume: 40 start-page: 677 year: 2009 end-page: 697 article-title: Species distribution models: ecological explanation and prediction across space and time publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 22 start-page: 470 year: 2013 end-page: 482 article-title: Soil water balance performs better than climatic water variables in tree species distribution modelling publication-title: Global Ecology and Biogeography – volume: 38 start-page: 371 year: 2011 end-page: 382 article-title: Co‐occurrence patterns of trees along macro‐climatic gradients and their potential influence on the present and future distribution of l publication-title: Journal of Biogeography – volume: 42 start-page: 11 year: 1980 end-page: 21 article-title: Searching for a model for use in vegetation analysis publication-title: Vegetatio – volume: 12 start-page: 361 year: 2003 end-page: 371 article-title: Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? publication-title: Global Ecology and Biogeography – volume: 35 start-page: 348 year: 2012 end-page: 355 article-title: Contribution of disturbance to distribution and abundance in a fire‐adapted system publication-title: Ecography – volume: 51 start-page: 703 year: 2014 end-page: 713 article-title: Shifting protected areas: scheduling spatial priorities under climate change publication-title: Journal of Applied Ecology – volume: 39 start-page: 2163 year: 2012 end-page: 2178 article-title: Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents publication-title: Journal of Biogeography – volume: 16 start-page: 2602 year: 2010 end-page: 2613 article-title: Infra‐red thermometry of alpine landscapes challenges climatic warming projections publication-title: Global Change Biology – volume: 45 start-page: 429 year: 2013 end-page: 439 article-title: Vegetation mediates soil temperature and moisture in arctic‐alpine environments publication-title: Arctic, Antarctic, and Alpine Research – volume: 8 start-page: 1283 year: 2005 end-page: 1290 article-title: Species divergence and trait convergence in experimental plant community assembly publication-title: Ecology Letters – volume: 114 start-page: 792 year: 2010 end-page: 804 article-title: Remote sensing of structural complexity indices for habitat and species distribution modeling publication-title: Remote Sensing of Environment – volume: 42 start-page: 181 year: 2011 article-title: Ecological lessons from free‐air CO enrichment (face) experiments publication-title: Annual Review of Ecology, Evolution, and Systematics – year: 1992 – year: 2010 – volume: 135 start-page: 147 year: 2000 end-page: 186 article-title: Predictive habitat distribution models in ecology publication-title: Ecological Modelling – volume: 8 start-page: 993 year: 2005 end-page: 1009 article-title: Predicting species distribution: offering more than simple habitat models publication-title: Ecology Letters – start-page: 759 year: 2014 end-page: 810 – year: 2002 – volume: 111 start-page: 1169 year: 1977 end-page: 1194 article-title: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory publication-title: The American Naturalist – volume: 33 start-page: 1750 year: 2006 end-page: 1763 article-title: Soil nutritional factors improve models of plant species distribution: an illustration with (l.) in France publication-title: Journal of Biogeography – volume: 20 start-page: 1 year: 2014 end-page: 9 article-title: BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies publication-title: Diversity and Distributions – volume: 21 start-page: 178 year: 2006 end-page: 185 article-title: Rebuilding community ecology from functional traits publication-title: Trends in Ecology & Evolution – volume: 18 start-page: 985 year: 2012 end-page: 999 article-title: No growth stimulation by CO enrichment in alpine glacier forefield plants publication-title: Global Change Biology – volume: 172 start-page: 393 year: 2006 end-page: 411 article-title: Plant CO responses: an issue of definition, time and resource supply publication-title: New Phytologist – volume: 468 start-page: 553 year: 2010 end-page: 556 article-title: Bottom‐up effects of plant diversity on multitrophic interactions in a biodiversity experiment publication-title: Nature – volume: 22 start-page: 5 year: 2013 end-page: 33 article-title: The Ascat soil moisture product: a review of its specifications, validation results, and emerging applications publication-title: Meteorologische Zeitschrift – volume: 182 start-page: 65 year: 2006 end-page: 77 article-title: Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events publication-title: Plant Ecology – volume: 33 start-page: 1677 year: 2006 end-page: 1688 article-title: Five (or so) challenges for species distribution modelling publication-title: Journal of Biogeography – volume: 24 start-page: 1057 year: 2013 end-page: 1069 article-title: Can fire atlas data improve species distribution model projections? publication-title: Ecological Applications – volume: 22 start-page: 1731 year: 2013 end-page: 1754 article-title: Using unclassified continuous remote sensing data to improve distribution models of red‐listed plant species publication-title: Biodiversity and Conservation – year: 1978 – volume: 38 start-page: 79 year: 2014 end-page: 96 article-title: Very high resolution environmental predictors in species distribution models: moving beyond topography? publication-title: Progress in Physical Geography – volume: 136 start-page: 33 year: 2007 end-page: 43 article-title: Historical land use and environmental determinants of nonnative plant distribution in coastal southern New England publication-title: Biological Conservation – volume: 42 start-page: 237 year: 2014 end-page: 252 article-title: The meso‐scale drivers of temperature extremes in high‐latitude Fennoscandia publication-title: Climate Dynamics – volume: 52 start-page: 1293 year: 2015 end-page: 1310 article-title: Predictive ecology in a changing world publication-title: Journal of Applied Ecology – volume: 20 start-page: 952 year: 2014 end-page: 963 article-title: Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections? publication-title: Diversity and Distributions – volume: 212 start-page: 999 year: 2011 end-page: 1007 article-title: Effects of abiotic and anthropogenic factors on the spatial distribution of in the Spanish central Pyrenees publication-title: Plant Ecology – year: 2009 – volume: 11 start-page: 475 year: 1997 end-page: 497 article-title: Modelling topographic variation in solar radiation in a GIS environment publication-title: International Journal of Geographical Information Science – volume: 37 start-page: 1 year: 2015 end-page: 12 article-title: Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps publication-title: Ecography – volume: 94 start-page: 671 year: 2013b end-page: 682 article-title: Horizontal, but not vertical, biotic interactions affect fine‐scale plant distribution patterns in a low energy system publication-title: Ecology – volume: 108 start-page: 631 year: 2012 end-page: 640 article-title: Modeling the photosynthetically active radiation in South West Amazonia under all sky conditions publication-title: Theoretical and Applied Climatology – volume: 2 start-page: 1 year: 2013 end-page: 15 article-title: Cross‐scale modeling of surface temperature and tree seedling establishment in mountain landscapes publication-title: Ecological Processes – volume: 81 start-page: 196 year: 1998 end-page: 207 article-title: The balance between positive and negative plant interactions and its relationship to environmental gradients: a model publication-title: Oikos – volume: 111 start-page: E1164 year: 2014 end-page: E1165 article-title: Microclimate is integral to the modeling of plant responses to macroclimate publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 2 start-page: 1 year: 2005 end-page: 10 article-title: Interpretation of models of fundamental ecological niches and species’ distributional areas publication-title: Biodiversity Informatics – start-page: 7 year: 2002 end-page: 21 – volume: 33 start-page: 985 year: 2010 end-page: 989 article-title: New trends in species distribution modelling publication-title: Ecography – volume: 101 start-page: 1509 year: 2013 end-page: 1519 article-title: Central European hardwood trees in a high‐CO future: synthesis of an 8‐year forest canopy CO enrichment project publication-title: Journal of Ecology – volume: 20 start-page: 996 year: 2009b end-page: 1008 article-title: Land use improves spatial predictions of mountain plant abundance but not presence–absence publication-title: Journal of Vegetation Science – volume: 25 start-page: 1024 year: 2014 end-page: 1032 article-title: Outcomes of biotic interactions are dependent on multiple environmental variables publication-title: Journal of Vegetation Science – volume: 16 start-page: 743 year: 2007 end-page: 753 article-title: The importance of biotic interactions for modelling species distributions under climate change publication-title: Global Ecology and Biogeography – volume: 157 start-page: 101 year: 2002 end-page: 118 article-title: Spatial prediction of species distribution: an interface between ecological theory and statistical modelling publication-title: Ecological Modelling – volume: 33 start-page: 1 year: 2013 end-page: 33 article-title: Remote sensing of soil moisture publication-title: ISRN Soil Science – volume: 11 start-page: 2234 year: 2005 end-page: 2250 article-title: Niche‐based modelling as a tool for predicting the risk of alien plant invasions at a global scale publication-title: Global Change Biology – volume: 38 start-page: 9 year: 2011b end-page: 19 article-title: Impact of landscape predictors on climate change modelling of species distributions: a case study with in southern New South Wales, Australia publication-title: Journal of Biogeography – volume: 34 start-page: 427 year: 1917 end-page: 433 article-title: The niche‐relationships of the California thrasher publication-title: The Auk – volume: 36 start-page: 27 year: 2013 end-page: 46 article-title: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance publication-title: Ecography – volume: 22 start-page: 415 year: 1957 end-page: 427 article-title: Concluding remarks publication-title: Cold Spring Harbor Symposia on Quantitative Biology – volume: 34 start-page: 883 year: 2011 end-page: 897 article-title: Inclusion of local environmental conditions alters high‐latitude vegetation change predictions based on bioclimatic models publication-title: Polar Biology – volume: 9 start-page: e86487 year: 2014 article-title: Land use compounds habitat losses under projected climate change in a threatened California ecosystem publication-title: PLoS ONE – article-title: Spatial predictions at the community level: from current approaches to future frameworks publication-title: Biological Reviews – volume: 88 start-page: 15 year: 2013 end-page: 30 article-title: The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling publication-title: Biological Reviews – volume: 114 start-page: 2745 year: 2010 end-page: 2755 article-title: Ascat soil wetness index validation through in situ and modeled soil moisture data in central italy publication-title: Remote Sensing of Environment – volume: 19 start-page: 474 year: 1995 end-page: 499 article-title: Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients publication-title: Progress in Physical Geography – volume: 22 start-page: 635 year: 2011 end-page: 646 article-title: Hypothesis‐driven species distribution models for tree species in the Bavarian Alps publication-title: Journal of Vegetation Science – volume: 213 start-page: 1381 year: 2012 end-page: 1392 article-title: Determinants of plant species invasions in an arid island: evidence from Socotra Island (Yemen) publication-title: Plant Ecology – volume: 106 start-page: 19723 issue: Suppl 2 year: 2009 end-page: 19728 article-title: Climatic extremes improve predictions of spatial patterns of tree species publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 19 start-page: 2932 year: 2013 end-page: 2939 article-title: Microclimatic challenges in global change biology publication-title: Global Change Biology – volume: 38 start-page: 406 year: 2011 end-page: 416 article-title: Topographically controlled thermal‐habitat differentiation buffers alpine plant diversity against climate warming publication-title: Journal of Biogeography – volume: 35 start-page: 811 year: 2012 end-page: 820 article-title: How do species interactions affect species distribution models? publication-title: Ecography – volume: 124 start-page: 1 year: 2014 end-page: 12 article-title: A climate‐based model to predict potential treeline position around the globe publication-title: Alpine Botany – volume: 10 start-page: 20140347 year: 2014 article-title: Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy publication-title: Biology Letters – volume: 8 start-page: e63708 year: 2013 article-title: Fit‐for‐purpose: species distribution model performance depends on evaluation criteria – Dutch hoverflies as a case study publication-title: PLoS ONE – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 22 start-page: 660 year: 2011 end-page: 676 article-title: Mapping gradients of community composition with nearest‐neighbour imputation: extending plot data for landscape analysis publication-title: Journal of Vegetation Science – volume: 24 start-page: 593 year: 2013 end-page: 606 article-title: Improving the prediction of plant species distribution and community composition by adding edaphic to topo‐climatic variables publication-title: Journal of Vegetation Science – volume: 9 start-page: 655 year: 2000 end-page: 671 article-title: Regression and model‐building in conservation biology, biogeography and ecology: the distinction between – and reconciliation of – ‘predictive’ and ‘explanatory’ models publication-title: Biodiversity & Conservation – volume: 33 start-page: 1004 year: 2010 end-page: 1014 article-title: Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants publication-title: Ecography – volume: 31 start-page: 129 year: 2013 end-page: 144 article-title: Topography as a driver of local terrestrial vascular plant diversity patterns publication-title: Nordic Journal of Botany – volume: 25 start-page: 45 year: 2014 end-page: 54 article-title: Earth surface processes drive the richness, composition and occurrence of plant species in an arctic–alpine environment publication-title: Journal of Vegetation Science – volume: 328 start-page: 575 year: 2010 end-page: 576 article-title: Matters of scale publication-title: Science – volume: 335 start-page: 1344 year: 2012 end-page: 1348 article-title: Climatic niche shifts are rare among terrestrial plant invaders publication-title: Science – volume: 102 start-page: 767 year: 2014 end-page: 775 article-title: Incorporating dominant species as proxies for biotic interactions strengthens plant community models publication-title: Journal of Ecology – volume: 43 start-page: 386 year: 2006 end-page: 392 article-title: Making better biogeographical predictions of species’ distributions publication-title: Journal of Applied Ecology – volume: 58 start-page: 1265 year: 2014 end-page: 1277 article-title: Photosynthetically active radiation and its relationship with global solar radiation in Central China publication-title: International Journal of Biometeorology – volume: 33 start-page: 1492 year: 2006 end-page: 1502 article-title: Modelling the influence of change in fire regime on the local distribution of a mediterranean pyrophytic plant species ( ) at its northern range limit publication-title: Journal of Biogeography – ident: e_1_2_8_62_1 doi: 10.1111/j.1365-2699.2011.02663.x – ident: e_1_2_8_109_1 doi: 10.1007/s11258-012-0098-1 – volume-title: Mineral nutrition of plants: principles and perspectives year: 2005 ident: e_1_2_8_36_1 – ident: e_1_2_8_6_1 doi: 10.1371/journal.pone.0063708 – ident: e_1_2_8_7_1 doi: 10.1111/1365-2664.12230 – ident: e_1_2_8_26_1 doi: 10.1111/j.1654-1103.2007.tb02566.x – volume-title: An introduction to population ecology year: 1978 ident: e_1_2_8_58_1 – ident: e_1_2_8_37_1 doi: 10.1016/j.rse.2009.11.016 – ident: e_1_2_8_94_1 doi: 10.1098/rsbl.2014.0347 – ident: e_1_2_8_47_1 doi: 10.1111/j.1365-2699.2011.02550.x – start-page: 7 volume-title: Predicting species occurrences: issues of accuracy and scale year: 2002 ident: e_1_2_8_56_1 – ident: e_1_2_8_67_1 – ident: e_1_2_8_17_1 doi: 10.1111/1365-2745.12149 – ident: e_1_2_8_54_1 doi: 10.1002/rse2.7 – ident: e_1_2_8_95_1 doi: 10.1177/0309133313512667 – ident: e_1_2_8_27_1 doi: 10.1111/j.1365-2699.2005.01443.x – ident: e_1_2_8_46_1 doi: 10.2307/4072271 – ident: e_1_2_8_31_1 doi: 10.1016/j.baae.2006.11.001 – ident: e_1_2_8_41_1 doi: 10.1111/gcb.12051 – ident: e_1_2_8_25_1 doi: 10.1111/j.1469-8137.1976.tb01532.x – ident: e_1_2_8_100_1 doi: 10.1111/jvs.12059 – ident: e_1_2_8_101_1 doi: 10.1111/j.1600-0587.2012.07922.x – ident: e_1_2_8_91_1 doi: 10.1111/geb.12012 – ident: e_1_2_8_24_1 doi: 10.2307/3546481 – ident: e_1_2_8_102_1 doi: 10.1890/12-1482.1 – ident: e_1_2_8_16_1 doi: 10.1111/j.1365-2699.2010.02415.x – ident: e_1_2_8_43_1 doi: 10.1111/j.1600-0587.2011.07103.x – ident: e_1_2_8_5_1 doi: 10.1007/s00704-011-0556-z – ident: e_1_2_8_120_1 doi: 10.1007/s00484-013-0690-7 – ident: e_1_2_8_123_1 doi: 10.1111/j.1365-2664.2007.01348.x – ident: e_1_2_8_84_1 doi: 10.1111/j.1654-1103.2010.01244.x – ident: e_1_2_8_2_1 doi: 10.1657/1938-4246-45.4.429 – ident: e_1_2_8_97_1 doi: 10.1657/1938-4246-41.3.347 – ident: e_1_2_8_125_1 doi: 10.1111/j.1600-0587.2010.06953.x – ident: e_1_2_8_57_1 doi: 10.1101/SQB.1957.022.01.039 – ident: e_1_2_8_80_1 doi: 10.1111/j.1365-2699.2006.01535.x – volume-title: Plant ecology year: 2005 ident: e_1_2_8_108_1 – ident: e_1_2_8_63_1 doi: 10.1111/j.1469-8137.2006.01886.x – ident: e_1_2_8_89_1 doi: 10.23943/princeton/9780691136868.001.0001 – ident: e_1_2_8_88_1 doi: 10.1111/j.1600-0587.2010.06386.x – ident: e_1_2_8_115_1 doi: 10.1111/j.1365-2486.2005.001018.x – ident: e_1_2_8_70_1 doi: 10.1007/978-3-642-96281-3 – ident: e_1_2_8_39_1 doi: 10.1177/030913339501900403 – ident: e_1_2_8_34_1 doi: 10.1111/jfr3.12037 – volume: 37 start-page: 1 year: 2015 ident: e_1_2_8_82_1 article-title: Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps publication-title: Ecography – start-page: 759 volume-title: Strasburger ‐ lehrbuch der pflanzenwissenschaften year: 2014 ident: e_1_2_8_64_1 doi: 10.1007/978-3-642-54435-4_27 – ident: e_1_2_8_28_1 doi: 10.1890/13-0924.1 – ident: e_1_2_8_114_1 doi: 10.1046/j.0305-0270.2003.00991.x – ident: e_1_2_8_124_1 doi: 10.1073/pnas.0901643106 – ident: e_1_2_8_30_1 doi: 10.1186/2192-1709-2-30 – ident: e_1_2_8_83_1 doi: 10.1146/annurev-ecolsys-102209-144647 – ident: e_1_2_8_113_1 doi: 10.1111/2041-210X.12203 – ident: e_1_2_8_76_1 doi: 10.1111/j.1365-2699.2010.02405.x – ident: e_1_2_8_10_1 doi: 10.1111/j.1461-0248.2011.01610.x – ident: e_1_2_8_48_1 doi: 10.1111/j.1461-0248.2005.00792.x – ident: e_1_2_8_65_1 doi: 10.1007/s11258-010-9880-0 – ident: e_1_2_8_119_1 doi: 10.1127/0941-2948/2013/0399 – ident: e_1_2_8_40_1 doi: 10.1017/CBO9780511810602 – volume: 182 start-page: 65 year: 2006 ident: e_1_2_8_4_1 article-title: Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events publication-title: Plant Ecology doi: 10.1007/s11258-005-9031-1 – ident: e_1_2_8_77_1 doi: 10.1111/j.1654-1103.2011.01274.x – ident: e_1_2_8_29_1 doi: 10.1111/brv.12222 – ident: e_1_2_8_98_1 doi: 10.1111/j.1654-1103.2009.01098.x – ident: e_1_2_8_55_1 doi: 10.1002/joc.1276 – ident: e_1_2_8_71_1 doi: 10.1023/A:1008985925162 – ident: e_1_2_8_79_1 doi: 10.1111/j.1756-1051.2013.00082.x – ident: e_1_2_8_106_1 doi: 10.1111/j.1365-2486.2009.02122.x – ident: e_1_2_8_15_1 doi: 10.1111/j.1365-2699.2010.02416.x – ident: e_1_2_8_110_1 doi: 10.1111/ddi.12216 – ident: e_1_2_8_22_1 doi: 10.1016/j.rse.2010.06.009 – ident: e_1_2_8_44_1 doi: 10.1890/02-3114 – ident: e_1_2_8_75_1 doi: 10.1111/j.1600-0587.2010.06229.x – ident: e_1_2_8_18_1 doi: 10.1111/ddi.12229 – ident: e_1_2_8_20_1 doi: 10.1111/ddi.12144 – ident: e_1_2_8_12_1 doi: 10.1111/j.1365-2664.2006.01164.x – ident: e_1_2_8_49_1 doi: 10.1890/06-0539 – ident: e_1_2_8_69_1 doi: 10.1007/978-0-387-78341-3_5 – ident: e_1_2_8_86_1 doi: 10.1007/s00035-014-0124-0 – ident: e_1_2_8_93_1 doi: 10.1111/gcb.12257 – ident: e_1_2_8_121_1 doi: 10.1111/j.1472-4642.2008.00482.x – ident: e_1_2_8_59_1 doi: 10.1371/journal.pone.0107037 – ident: e_1_2_8_13_1 doi: 10.1016/j.ecolmodel.2006.07.005 – ident: e_1_2_8_90_1 doi: 10.1126/science.1215933 – ident: e_1_2_8_116_1 – ident: e_1_2_8_96_1 doi: 10.1111/j.1365-2699.2006.01466.x – ident: e_1_2_8_122_1 doi: 10.1111/j.1469-185X.2012.00235.x – ident: e_1_2_8_51_1 doi: 10.1111/ele.12189 – ident: e_1_2_8_66_1 doi: 10.1080/136588197242266 – ident: e_1_2_8_68_1 doi: 10.1155/2013/424178 – ident: e_1_2_8_50_1 doi: 10.1111/j.1365-2664.2006.01164.x – ident: e_1_2_8_105_1 doi: 10.1038/nature09492 – ident: e_1_2_8_107_1 doi: 10.1111/j.1365-2699.2010.02407.x – ident: e_1_2_8_3_1 doi: 10.1007/s00382-012-1590-y – ident: e_1_2_8_21_1 doi: 10.1016/j.ecolmodel.2012.06.019 – ident: e_1_2_8_42_1 doi: 10.1111/j.1461-0248.2005.00829.x – ident: e_1_2_8_52_1 doi: 10.1111/2041-210X.12355 – ident: e_1_2_8_9_1 doi: 10.1111/j.1466-8238.2007.00359.x – ident: e_1_2_8_74_1 doi: 10.1016/j.tree.2006.02.002 – ident: e_1_2_8_112_1 doi: 10.1007/s00300-010-0945-2 – ident: e_1_2_8_118_1 doi: 10.1016/j.biocon.2006.10.044 – ident: e_1_2_8_103_1 doi: 10.1111/gcb.12286 – ident: e_1_2_8_111_1 doi: 10.17161/bi.v2i0.4 – ident: e_1_2_8_61_1 doi: 10.1007/s10530-011-9963-4 – ident: e_1_2_8_23_1 doi: 10.1098/rsbl.2008.0254 – ident: e_1_2_8_117_1 doi: 10.1111/j.1600-0587.2011.06948.x – ident: e_1_2_8_87_1 doi: 10.1046/j.1466-822X.2003.00042.x – ident: e_1_2_8_99_1 doi: 10.1371/journal.pone.0086487 – volume-title: Environmental physiology of plants year: 2002 ident: e_1_2_8_38_1 – ident: e_1_2_8_73_1 doi: 10.1126/science.1188528 – ident: e_1_2_8_81_1 doi: 10.1111/1365-2664.12482 – ident: e_1_2_8_85_1 doi: 10.1007/s10531-013-0509-1 – ident: e_1_2_8_32_1 doi: 10.1111/j.1600-0587.2012.07348.x – ident: e_1_2_8_19_1 doi: 10.1111/j.1365-2486.2012.02679.x – ident: e_1_2_8_35_1 doi: 10.1146/annurev.ecolsys.110308.120159 – ident: e_1_2_8_92_1 doi: 10.1111/2041-210X.12180 – ident: e_1_2_8_104_1 doi: 10.1111/1365-2745.12239 – ident: e_1_2_8_72_1 doi: 10.1111/j.1654-1103.2002.tb02087.x – ident: e_1_2_8_14_1 doi: 10.1007/BF00031679 – ident: e_1_2_8_33_1 doi: 10.1111/jvs.12002 – ident: e_1_2_8_60_1 doi: 10.1111/j.1365-2486.2011.02584.x – ident: e_1_2_8_53_1 doi: 10.1073/pnas.1400069111 – ident: e_1_2_8_45_1 doi: 10.1086/283244 – ident: e_1_2_8_8_1 doi: 10.1111/j.1365-2699.2006.01584.x – ident: e_1_2_8_78_1 doi: 10.1111/jvs.12148 – ident: e_1_2_8_11_1 doi: 10.1007/BF00048865 |
SSID | ssj0017961 |
Score | 2.5635674 |
Snippet | Aims: The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive... Aims The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive... Aims The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive... AIMS: The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive... |
SourceID | proquest crossref wiley jstor istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1308 |
SubjectTerms | biocenosis Covariate Environment environmental factors Habitat suitability Independent variable Niche nutrients Plant population distribution Predictor soil nutrients soil pH soil water Species distribution SYNTHESIS systematic review temperature |
Title | What we use is not what we know: environmental predictors in plant distribution models |
URI | https://api.istex.fr/ark:/67375/WNG-310F8WX1-K/fulltext.pdf https://www.jstor.org/stable/44132717 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjvs.12444 https://www.proquest.com/docview/1868337113 https://www.proquest.com/docview/2020898043 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEN8Q5MEXRZR4AmY1xvDSS_er7coTEE6CkQcVuAeTZne7TQikd7negfLXM7P9yGEkMb61zbTd7sx0f7s78xtCPihWsFLKMlKliiNZJjay3LhIWWa4AwxhOGYjfz1Njs_kyViNV8helwvT8EP0C27oGeF_jQ5ubL3s5Df1EAcn5ALFWC0ERN966iiws4YrlcVxBCBGtKxCIYqnu_PBWPQEu_VXF5b4AHAuw9Yw7oyek59di5twk6vhYm6H7u4PMsf__KR18qzFo3S_MaAXZMVXG2TtYAKY8fdLco7M3vTW00Xt6WVNqwmctZdwNe4TXUqUg8dMZ7jvgwV86GVFp9egNlogNW9bVYuGwjv1K3I2OvpxeBy1lRgiJ7SSkXCpZ5xJYxizzAOo8p7Z0pSxSLUvuC54qrVXToFIIQttuRXSKuYBvDsjxCZZrSaVf02osyYtkkQzVShpTWm1sWAY3HhfJpxnA7Lb6SR3LU05Vsu4zvvpyk2dh14akPe96LTh5vib0Meg2F7CzK4wmC1V-cXp5xzQ7Si7GLP8y4BsBs33ggAUBYfZ7oC860whB9_DDRVT-ckCXpAlmRApY-JxGY5VUHUWS5DZDcp_vK35yfn3cPDm30W3yFPAcEmTHrlNVuezhd8BnDS3b4ND3APOVA6Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWiTYlGfV4WkQoG4yih07iZFYAGWYdtpZQB-zS-3EkapWmdFkpqX9pv4K_8S189AUUYlNF-yS6Cpx7HPtY_v6XIC3gmY05zz3RC58j-eh9jRTqSc0VSxFDqGYPY28Owz7-3x7JEZLcNWchan0IdoFN-sZrr-2Dm4XpBe9_Kzs2tGJ1yGVA3NxjhO28uPWJrbuO8Z6X_e-9L06p4CXBlJwL0gjQxnlSlGqqUF6YAzVucr9IJImYzJjkZRGpAJNMp5JzXTAtaAGaWiq7PIndvgrNoO4Verf_N6KVSGyK3VW6vse0qag1jFycUNNUa-Nfiu2IX82gZDXKO4iUXYjXe8-_GrqqApwOenOZ7qbXv4hH_m_VOIDWK0pN_lU-chDWDLFI7jzeYy0-OIxHFjxcnJuyLw05LgkxRjv6kd2wfEDWTgLiK-ZTO3Wls1RRI4LMjlFZJLMqg_XicOIyy1UPoH9W_mnNVguxoVZB5JqFWVhKKnIBNcq11JpxD5TxuQhY3EHNhoQJGmtxG4Tgpwm7YzsrExcq3TgTWs6qeRH_mb03iGptVDTExuvF4nkcPgtQQLfiw9HNBl0YM1BrTVELhwwnNB34HWDvQS7F7tnpAoznuMH4jAOgojS4GYbZhO9ytjnaLPh0HZzWZPtgx_u4um_m76Cu_293Z1kZ2s4eAb3kLKG1WnQ57A8m87NC6SFM_3SeSOBo9tG7m-TT21t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWoTYQHlUHaBgEKBuMoodO4krsQCGoe3ACAFtZxfsxJGqVpnRZKYPfqm_0o_i2nloiqjEpgt2SXSVOPa59rF9fS7AK0EzmnOeeyIXvsfzUHuaqdQTmiqWIodQzJ5G_jIMt_f47kiMluCiOQtT6UO0C27WM1x_bR18kuWLTn5Sdu3gxOuIyoE5P8X5Wvl2p4eN-5qx_scfH7a9OqWAlwZScC9II0MZ5UpRqqlBdmAM1bnK_SCSJmMyY5GURqQCTTKeSc10wLWgBlloquzqJ_b3Kzz0pc0T0fvWalUhsCtxVur7HrKmoJYxcmFDTVGvDH4rth3PmjjIKwx3kSe7ga5_Dy6bKqriW46685nupr_-UI_8T-pwFe7WhJu8qzzkPiyZ4gHcej9GUnz-EPatdDk5NWReGnJYkmKMd_Uju9y4RRZOAuJrJlO7sWUzFJHDgkyOEZcks9rDddow4jILlY9g70b-aQ2Wi3Fh1oGkWkVZGEoqMsG1yrVUGpHPlDF5yFjcgc0GA0la67DbdCDHSTsfOykT1yodeNmaTirxkb8ZvXFAai3U9MhG60UiORh-SpC-9-ODEU0GHVhzSGsNkQkHDKfzHXjRQC_BzsXuGKnCjOf4gTiMgyCiNLjehtk0rzL2OdpsOrBdX9Zkd_-7u3j876bP4fbXXj_5vDMcPIE7yFfD6ijoU1ieTedmAznhTD9zvkjg500D9zfN42wc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+we+use+is+not+what+we+know%3A+environmental+predictors+in+plant+distribution+models&rft.jtitle=Journal+of+vegetation+science&rft.au=Mod%2C+Heidi+K.&rft.au=Scherrer%2C+Daniel&rft.au=Luoto%2C+Miska&rft.au=Guisan%2C+Antoine&rft.date=2016-11-01&rft.issn=1100-9233&rft.eissn=1654-1103&rft.volume=27&rft.issue=6&rft.spage=1308&rft.epage=1322&rft_id=info:doi/10.1111%2Fjvs.12444&rft.externalDBID=10.1111%252Fjvs.12444&rft.externalDocID=JVS12444 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1100-9233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1100-9233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1100-9233&client=summon |