Existence and classification of positive solutions for coupled purely critical Kirchhoff system

We study the nonlinear coupled Kirchhoff system with purely Sobolev critical exponent. By using appropriate transformation, we get one equivalent system involving a critical Schrödinger system and an algebraic system. Through solving the critical Schrödinger system with a corresponding algebraic sys...

Full description

Saved in:
Bibliographic Details
Published inBulletin of mathematical sciences Vol. 14; no. 2
Main Authors Gao, Yahui, Luo, Xiao, Zhen, Maoding
Format Journal Article
LanguageEnglish
Published World Scientific Publishing Company 01.08.2024
World Scientific Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the nonlinear coupled Kirchhoff system with purely Sobolev critical exponent. By using appropriate transformation, we get one equivalent system involving a critical Schrödinger system and an algebraic system. Through solving the critical Schrödinger system with a corresponding algebraic system, under suitable conditions we obtain the existence and classification of positive ground states for the Kirchhoff system in dimensions 3 and 4. Furthermore, for the degenerate case, we give a complete classification of positive ground states for the Kirchhoff system in any dimension. To the best of our knowledge, this paper is the first to give classification results for the ground states of Kirchhoff systems. The results in this paper partially extend and complement the main results established by Lü and Peng [Existence and asymptotic behavior of vector solutions for coupled nonlinear Kirchhoff-type system, J. Differ. Equ. 263 (2017) 8947–8978] considering the linearly coupled Kirchhoff system with subcritical exponent and some partial results established by Chen and Zou [Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal. 205 (2012) 515–551; Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case, Calc. Var. Partial Differ. Equ. 52 (2015) 423–467], where the authors considered the coupled purely critical Schrödinger system.
AbstractList We study the nonlinear coupled Kirchhoff system with purely Sobolev critical exponent. By using appropriate transformation, we get one equivalent system involving a critical Schrödinger system and an algebraic system. Through solving the critical Schrödinger system with a corresponding algebraic system, under suitable conditions we obtain the existence and classification of positive ground states for the Kirchhoff system in dimensions 3 and 4. Furthermore, for the degenerate case, we give a complete classification of positive ground states for the Kirchhoff system in any dimension. To the best of our knowledge, this paper is the first to give classification results for the ground states of Kirchhoff systems. The results in this paper partially extend and complement the main results established by Lü and Peng [Existence and asymptotic behavior of vector solutions for coupled nonlinear Kirchhoff-type system, J. Differ. Equ. 263 (2017) 8947–8978] considering the linearly coupled Kirchhoff system with subcritical exponent and some partial results established by Chen and Zou [Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal. 205 (2012) 515–551; Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case, Calc. Var. Partial Differ. Equ. 52 (2015) 423–467], where the authors considered the coupled purely critical Schrödinger system.
Author Zhen, Maoding
Gao, Yahui
Luo, Xiao
Author_xml – sequence: 1
  givenname: Yahui
  surname: Gao
  fullname: Gao, Yahui
– sequence: 2
  givenname: Xiao
  surname: Luo
  fullname: Luo, Xiao
– sequence: 3
  givenname: Maoding
  surname: Zhen
  fullname: Zhen, Maoding
BookMark eNp9kcFOAyEQhompibX2AbzxAlVYYIGjaao2mnhQzxuWBUtDlw1s1b69bGt6sIknyGS-j5mfSzBqQ2sAuMboBmNa3L7isqSkRLygDCFU0DMwHkozUmI2Ot4RvwDTlNa5BTEuJZdjUC2-XepNqw1UbQO1Vyk567TqXWhhsLALyfXu08AU_HYoJmhDhDpsO28a2G2j8TuoY27SysMnF_VqFayFaZe9mytwbpVPZvp7TsD7_eJt_jh7fnlYzu-eZ5pIlodjQjIpGBc1IsISiQShCBmphJUlzZsZQXmhWckUVzXiGJuGFDUTusgEJxOwPHiboNZVF91GxV0VlKv2hRA_KhXziN5UpMbZazFGlNJC6Bprg5umUEhgzGqRXfjg0jGkFI09-jCqhsCrk8Azw_8w2vX7EPuonP-XRAfyK0TfJO1M2w8_cHz0FPkB_p6UyA
CitedBy_id crossref_primary_10_1007_s40314_024_02980_4
crossref_primary_10_1080_17476933_2025_2466045
crossref_primary_10_1177_09217134241308455
crossref_primary_10_3233_ASY_241943
crossref_primary_10_1007_s12215_024_01153_w
crossref_primary_10_1080_00036811_2025_2465973
crossref_primary_10_1088_1361_6544_adbc3b
crossref_primary_10_1007_s12215_025_01201_z
crossref_primary_10_1007_s12220_024_01827_y
Cites_doi 10.1016/j.crma.2006.01.024
10.1016/j.aml.2018.08.008
10.1007/s00220-005-1313-x
10.1002/cpa.3160360405
10.1007/s00205-012-0513-8
10.1007/s00526-016-1091-7
10.1016/j.jde.2012.05.023
10.3934/cpaa.2012.11.1003
10.3934/cpaa.2019013
10.1016/j.jde.2014.04.011
10.1007/s00526-015-0894-2
10.1016/j.aml.2018.07.010
10.1007/s00526-014-0717-x
10.1137/22M1521675
10.1007/BF02100605
10.1515/ans-2010-0109
10.1090/tran/7383
10.1016/j.jmaa.2020.124638
10.1007/s00220-006-0179-x
10.1112/jlms/jdl020
10.3934/dcds.2023043
10.1007/s00526-023-02463-0
10.1016/j.jde.2016.03.015
10.1016/j.jde.2017.08.062
10.1006/jfan.1999.3390
10.1007/s00205-012-0598-0
10.1016/j.jde.2023.08.021
ContentType Journal Article
Copyright 2024, The Author(s)
Copyright_xml – notice: 2024, The Author(s)
DBID ADCHV
AAYXX
CITATION
DOA
DOI 10.1142/S1664360724500024
DatabaseName World Scientific Open
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1664-3615
ExternalDocumentID oai_doaj_org_article_3b1e9af11044428cb1ce1dd2a08115b8
10_1142_S1664360724500024
S1664360724500024
GroupedDBID -A0
2VQ
4.4
40G
5VS
8FE
8FG
AAKKN
AAYZH
AAYZJ
ABEEZ
ABJCF
ACACY
ACGFS
ACIPV
ACIWK
ACULB
ADBBV
ADCHV
ADINQ
AENEX
AFGXO
AFKRA
AHBXF
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
EBS
EJD
GROUPED_DOAJ
H4N
HCIFZ
HZ~
IAO
ISR
ITC
J9A
KQ8
L6V
M7S
M~E
O9-
OK1
PIMPY
PROAC
PTHSS
RSV
RWJ
SMT
SOJ
U2A
AAYXX
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c3954-3589598578b038f39083400e9a8f964072e8472c565a7ab0711ed32b58c2b0373
IEDL.DBID DOA
ISSN 1664-3607
IngestDate Wed Aug 27 01:30:00 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Tue Jul 01 01:39:10 EDT 2025
Mon Nov 25 02:43:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Coupled Kirchhoff system
ground states
classification
critical exponent
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3954-3589598578b038f39083400e9a8f964072e8472c565a7ab0711ed32b58c2b0373
OpenAccessLink https://doaj.org/article/3b1e9af11044428cb1ce1dd2a08115b8
ParticipantIDs worldscientific_primary_S1664360724500024
crossref_primary_10_1142_S1664360724500024
crossref_citationtrail_10_1142_S1664360724500024
doaj_primary_oai_doaj_org_article_3b1e9af11044428cb1ce1dd2a08115b8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationTitle Bulletin of mathematical sciences
PublicationYear 2024
Publisher World Scientific Publishing Company
World Scientific Publishing
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing
References He X. (S1664360724500024BIB010) 2019; 62
S1664360724500024BIB013
S1664360724500024BIB014
S1664360724500024BIB012
S1664360724500024BIB031
S1664360724500024BIB030
S1664360724500024BIB019
S1664360724500024BIB017
S1664360724500024BIB018
Kirchhoff G. (S1664360724500024BIB011) 1883
Lin T. (S1664360724500024BIB015) 2005; 22
Lin T. (S1664360724500024BIB016) 2006; 229
S1664360724500024BIB002
S1664360724500024BIB024
S1664360724500024BIB003
S1664360724500024BIB025
S1664360724500024BIB022
S1664360724500024BIB001
S1664360724500024BIB023
S1664360724500024BIB020
S1664360724500024BIB021
S1664360724500024BIB008
S1664360724500024BIB009
S1664360724500024BIB006
S1664360724500024BIB028
S1664360724500024BIB007
S1664360724500024BIB029
S1664360724500024BIB004
S1664360724500024BIB026
S1664360724500024BIB005
S1664360724500024BIB027
References_xml – ident: S1664360724500024BIB001
  doi: 10.1016/j.crma.2006.01.024
– ident: S1664360724500024BIB028
  doi: 10.1016/j.aml.2018.08.008
– ident: S1664360724500024BIB014
  doi: 10.1007/s00220-005-1313-x
– ident: S1664360724500024BIB004
  doi: 10.1002/cpa.3160360405
– ident: S1664360724500024BIB006
  doi: 10.1007/s00205-012-0513-8
– volume: 22
  start-page: 403
  year: 2005
  ident: S1664360724500024BIB015
  publication-title: J. Differ. Equ.
– ident: S1664360724500024BIB021
  doi: 10.1007/s00526-016-1091-7
– volume-title: Mechanik
  year: 1883
  ident: S1664360724500024BIB011
– ident: S1664360724500024BIB026
  doi: 10.1016/j.jde.2012.05.023
– ident: S1664360724500024BIB027
  doi: 10.3934/cpaa.2012.11.1003
– ident: S1664360724500024BIB030
  doi: 10.3934/cpaa.2019013
– ident: S1664360724500024BIB013
  doi: 10.1016/j.jde.2014.04.011
– ident: S1664360724500024BIB009
  doi: 10.1007/s00526-015-0894-2
– ident: S1664360724500024BIB012
  doi: 10.1016/j.aml.2018.07.010
– ident: S1664360724500024BIB007
  doi: 10.1007/s00526-014-0717-x
– ident: S1664360724500024BIB005
  doi: 10.1137/22M1521675
– ident: S1664360724500024BIB008
  doi: 10.1007/BF02100605
– ident: S1664360724500024BIB018
  doi: 10.1515/ans-2010-0109
– ident: S1664360724500024BIB023
  doi: 10.1090/tran/7383
– ident: S1664360724500024BIB031
  doi: 10.1016/j.jmaa.2020.124638
– ident: S1664360724500024BIB024
  doi: 10.1007/s00220-006-0179-x
– ident: S1664360724500024BIB002
  doi: 10.1112/jlms/jdl020
– volume: 229
  start-page: 538
  year: 2006
  ident: S1664360724500024BIB016
  publication-title: Ann. Inst. Henri Poincaré C, Anal. Non Linéaire
– ident: S1664360724500024BIB020
  doi: 10.3934/dcds.2023043
– ident: S1664360724500024BIB017
  doi: 10.1007/s00526-023-02463-0
– ident: S1664360724500024BIB025
  doi: 10.1016/j.jde.2016.03.015
– ident: S1664360724500024BIB019
  doi: 10.1016/j.jde.2017.08.062
– ident: S1664360724500024BIB003
  doi: 10.1006/jfan.1999.3390
– ident: S1664360724500024BIB022
  doi: 10.1007/s00205-012-0598-0
– ident: S1664360724500024BIB029
  doi: 10.1016/j.jde.2023.08.021
– volume: 62
  start-page: 853
  year: 2019
  ident: S1664360724500024BIB010
  publication-title: J. Differ. Equ.
SSID ssj0000579979
ssib050729703
ssib041538293
ssib059270981
Score 2.3603883
Snippet We study the nonlinear coupled Kirchhoff system with purely Sobolev critical exponent. By using appropriate transformation, we get one equivalent system...
SourceID doaj
crossref
worldscientific
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms classification
Coupled Kirchhoff system
critical exponent
ground states
Title Existence and classification of positive solutions for coupled purely critical Kirchhoff system
URI http://www.worldscientific.com/doi/abs/10.1142/S1664360724500024
https://doaj.org/article/3b1e9af11044428cb1ce1dd2a08115b8
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA5ipYX4xPNFChuF5W7z2CSlyokoJ4gK1y1JNkFB7g5faONvd2azrqeCNjYpQh5kZsJ8ITPfELIbBbcuyiJz8HzIhJI20yGqTOQicqdkISpMFB6cFyfX4nQoh1OlvjAmLNEDJ8F1ucuDsRG8lBAAlb3LfcirilnwZbl0dZov-LypxxRYksB7POXIJPJjq8__RmmY6pkm4zKxgCtjamK-vChExouear5Ac8G6l9iJfUxg_QAmvjixmut_nizUFKcpjRGjfKbc1PEiWWjwJT1I51oiM2G0TOYHLTnrwwop-y-oW9A2taOKesTPuFStIzqONAVyPQfa2iUFaEv9-GlyFyo6QQ7mV-qbIgn07Bbuys04RppooVfJ9XH_6ugka-osZJ4bCaeV2kij4e66HteRG4BlcLVB7Doa_OhjAXwY84D9rLIOQEkeKs6c1J7BDMXXyOxoPArrhAK8kB75bQorkbveGuu5di6ooK10pkN6H4IrfUNCjrUw7sqUIM3KH7LukP12yiQxcPw2-BC10Q5E8uy6A0yqbEyq_MukOmTvmy7b9X5suPEfG26SOQZrpbjCLTL7eP8UtgHrPLqd2qyhPbvQ0A7e-u91_vKo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+and+classification+of+positive+solutions+for+coupled+purely+critical+Kirchhoff+system&rft.jtitle=Bulletin+of+mathematical+sciences&rft.au=Yahui+Gao&rft.au=Xiao+Luo&rft.au=Maoding+Zhen&rft.date=2024-08-01&rft.pub=World+Scientific+Publishing&rft.issn=1664-3607&rft.eissn=1664-3615&rft.volume=14&rft.issue=2&rft_id=info:doi/10.1142%2FS1664360724500024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3b1e9af11044428cb1ce1dd2a08115b8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3607&client=summon