Existence and classification of positive solutions for coupled purely critical Kirchhoff system
We study the nonlinear coupled Kirchhoff system with purely Sobolev critical exponent. By using appropriate transformation, we get one equivalent system involving a critical Schrödinger system and an algebraic system. Through solving the critical Schrödinger system with a corresponding algebraic sys...
Saved in:
Published in | Bulletin of mathematical sciences Vol. 14; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
World Scientific Publishing Company
01.08.2024
World Scientific Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the nonlinear coupled Kirchhoff system with purely Sobolev critical exponent. By using appropriate transformation, we get one equivalent system involving a critical Schrödinger system and an algebraic system. Through solving the critical Schrödinger system with a corresponding algebraic system, under suitable conditions we obtain the existence and classification of positive ground states for the Kirchhoff system in dimensions 3 and 4. Furthermore, for the degenerate case, we give a complete classification of positive ground states for the Kirchhoff system in any dimension. To the best of our knowledge, this paper is the first to give classification results for the ground states of Kirchhoff systems. The results in this paper partially extend and complement the main results established by Lü and Peng [Existence and asymptotic behavior of vector solutions for coupled nonlinear Kirchhoff-type system, J. Differ. Equ. 263 (2017) 8947–8978] considering the linearly coupled Kirchhoff system with subcritical exponent and some partial results established by Chen and Zou [Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal. 205 (2012) 515–551; Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case, Calc. Var. Partial Differ. Equ. 52 (2015) 423–467], where the authors considered the coupled purely critical Schrödinger system. |
---|---|
AbstractList | We study the nonlinear coupled Kirchhoff system with purely Sobolev critical exponent. By using appropriate transformation, we get one equivalent system involving a critical Schrödinger system and an algebraic system. Through solving the critical Schrödinger system with a corresponding algebraic system, under suitable conditions we obtain the existence and classification of positive ground states for the Kirchhoff system in dimensions 3 and 4. Furthermore, for the degenerate case, we give a complete classification of positive ground states for the Kirchhoff system in any dimension. To the best of our knowledge, this paper is the first to give classification results for the ground states of Kirchhoff systems. The results in this paper partially extend and complement the main results established by Lü and Peng [Existence and asymptotic behavior of vector solutions for coupled nonlinear Kirchhoff-type system, J. Differ. Equ. 263 (2017) 8947–8978] considering the linearly coupled Kirchhoff system with subcritical exponent and some partial results established by Chen and Zou [Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal. 205 (2012) 515–551; Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case, Calc. Var. Partial Differ. Equ. 52 (2015) 423–467], where the authors considered the coupled purely critical Schrödinger system. |
Author | Zhen, Maoding Gao, Yahui Luo, Xiao |
Author_xml | – sequence: 1 givenname: Yahui surname: Gao fullname: Gao, Yahui – sequence: 2 givenname: Xiao surname: Luo fullname: Luo, Xiao – sequence: 3 givenname: Maoding surname: Zhen fullname: Zhen, Maoding |
BookMark | eNp9kcFOAyEQhompibX2AbzxAlVYYIGjaao2mnhQzxuWBUtDlw1s1b69bGt6sIknyGS-j5mfSzBqQ2sAuMboBmNa3L7isqSkRLygDCFU0DMwHkozUmI2Ot4RvwDTlNa5BTEuJZdjUC2-XepNqw1UbQO1Vyk567TqXWhhsLALyfXu08AU_HYoJmhDhDpsO28a2G2j8TuoY27SysMnF_VqFayFaZe9mytwbpVPZvp7TsD7_eJt_jh7fnlYzu-eZ5pIlodjQjIpGBc1IsISiQShCBmphJUlzZsZQXmhWckUVzXiGJuGFDUTusgEJxOwPHiboNZVF91GxV0VlKv2hRA_KhXziN5UpMbZazFGlNJC6Bprg5umUEhgzGqRXfjg0jGkFI09-jCqhsCrk8Azw_8w2vX7EPuonP-XRAfyK0TfJO1M2w8_cHz0FPkB_p6UyA |
CitedBy_id | crossref_primary_10_1007_s40314_024_02980_4 crossref_primary_10_1080_17476933_2025_2466045 crossref_primary_10_1177_09217134241308455 crossref_primary_10_3233_ASY_241943 crossref_primary_10_1007_s12215_024_01153_w crossref_primary_10_1080_00036811_2025_2465973 crossref_primary_10_1088_1361_6544_adbc3b crossref_primary_10_1007_s12215_025_01201_z crossref_primary_10_1007_s12220_024_01827_y |
Cites_doi | 10.1016/j.crma.2006.01.024 10.1016/j.aml.2018.08.008 10.1007/s00220-005-1313-x 10.1002/cpa.3160360405 10.1007/s00205-012-0513-8 10.1007/s00526-016-1091-7 10.1016/j.jde.2012.05.023 10.3934/cpaa.2012.11.1003 10.3934/cpaa.2019013 10.1016/j.jde.2014.04.011 10.1007/s00526-015-0894-2 10.1016/j.aml.2018.07.010 10.1007/s00526-014-0717-x 10.1137/22M1521675 10.1007/BF02100605 10.1515/ans-2010-0109 10.1090/tran/7383 10.1016/j.jmaa.2020.124638 10.1007/s00220-006-0179-x 10.1112/jlms/jdl020 10.3934/dcds.2023043 10.1007/s00526-023-02463-0 10.1016/j.jde.2016.03.015 10.1016/j.jde.2017.08.062 10.1006/jfan.1999.3390 10.1007/s00205-012-0598-0 10.1016/j.jde.2023.08.021 |
ContentType | Journal Article |
Copyright | 2024, The Author(s) |
Copyright_xml | – notice: 2024, The Author(s) |
DBID | ADCHV AAYXX CITATION DOA |
DOI | 10.1142/S1664360724500024 |
DatabaseName | World Scientific Open CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1664-3615 |
ExternalDocumentID | oai_doaj_org_article_3b1e9af11044428cb1ce1dd2a08115b8 10_1142_S1664360724500024 S1664360724500024 |
GroupedDBID | -A0 2VQ 4.4 40G 5VS 8FE 8FG AAKKN AAYZH AAYZJ ABEEZ ABJCF ACACY ACGFS ACIPV ACIWK ACULB ADBBV ADCHV ADINQ AENEX AFGXO AFKRA AHBXF AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP BCNDV BENPR BGLVJ C24 C6C CCPQU EBS EJD GROUPED_DOAJ H4N HCIFZ HZ~ IAO ISR ITC J9A KQ8 L6V M7S M~E O9- OK1 PIMPY PROAC PTHSS RSV RWJ SMT SOJ U2A AAYXX CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c3954-3589598578b038f39083400e9a8f964072e8472c565a7ab0711ed32b58c2b0373 |
IEDL.DBID | DOA |
ISSN | 1664-3607 |
IngestDate | Wed Aug 27 01:30:00 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Tue Jul 01 01:39:10 EDT 2025 Mon Nov 25 02:43:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Coupled Kirchhoff system ground states classification critical exponent |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3954-3589598578b038f39083400e9a8f964072e8472c565a7ab0711ed32b58c2b0373 |
OpenAccessLink | https://doaj.org/article/3b1e9af11044428cb1ce1dd2a08115b8 |
ParticipantIDs | worldscientific_primary_S1664360724500024 crossref_primary_10_1142_S1664360724500024 crossref_citationtrail_10_1142_S1664360724500024 doaj_primary_oai_doaj_org_article_3b1e9af11044428cb1ce1dd2a08115b8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240800 2024-08-00 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 20240800 |
PublicationDecade | 2020 |
PublicationTitle | Bulletin of mathematical sciences |
PublicationYear | 2024 |
Publisher | World Scientific Publishing Company World Scientific Publishing |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing |
References | He X. (S1664360724500024BIB010) 2019; 62 S1664360724500024BIB013 S1664360724500024BIB014 S1664360724500024BIB012 S1664360724500024BIB031 S1664360724500024BIB030 S1664360724500024BIB019 S1664360724500024BIB017 S1664360724500024BIB018 Kirchhoff G. (S1664360724500024BIB011) 1883 Lin T. (S1664360724500024BIB015) 2005; 22 Lin T. (S1664360724500024BIB016) 2006; 229 S1664360724500024BIB002 S1664360724500024BIB024 S1664360724500024BIB003 S1664360724500024BIB025 S1664360724500024BIB022 S1664360724500024BIB001 S1664360724500024BIB023 S1664360724500024BIB020 S1664360724500024BIB021 S1664360724500024BIB008 S1664360724500024BIB009 S1664360724500024BIB006 S1664360724500024BIB028 S1664360724500024BIB007 S1664360724500024BIB029 S1664360724500024BIB004 S1664360724500024BIB026 S1664360724500024BIB005 S1664360724500024BIB027 |
References_xml | – ident: S1664360724500024BIB001 doi: 10.1016/j.crma.2006.01.024 – ident: S1664360724500024BIB028 doi: 10.1016/j.aml.2018.08.008 – ident: S1664360724500024BIB014 doi: 10.1007/s00220-005-1313-x – ident: S1664360724500024BIB004 doi: 10.1002/cpa.3160360405 – ident: S1664360724500024BIB006 doi: 10.1007/s00205-012-0513-8 – volume: 22 start-page: 403 year: 2005 ident: S1664360724500024BIB015 publication-title: J. Differ. Equ. – ident: S1664360724500024BIB021 doi: 10.1007/s00526-016-1091-7 – volume-title: Mechanik year: 1883 ident: S1664360724500024BIB011 – ident: S1664360724500024BIB026 doi: 10.1016/j.jde.2012.05.023 – ident: S1664360724500024BIB027 doi: 10.3934/cpaa.2012.11.1003 – ident: S1664360724500024BIB030 doi: 10.3934/cpaa.2019013 – ident: S1664360724500024BIB013 doi: 10.1016/j.jde.2014.04.011 – ident: S1664360724500024BIB009 doi: 10.1007/s00526-015-0894-2 – ident: S1664360724500024BIB012 doi: 10.1016/j.aml.2018.07.010 – ident: S1664360724500024BIB007 doi: 10.1007/s00526-014-0717-x – ident: S1664360724500024BIB005 doi: 10.1137/22M1521675 – ident: S1664360724500024BIB008 doi: 10.1007/BF02100605 – ident: S1664360724500024BIB018 doi: 10.1515/ans-2010-0109 – ident: S1664360724500024BIB023 doi: 10.1090/tran/7383 – ident: S1664360724500024BIB031 doi: 10.1016/j.jmaa.2020.124638 – ident: S1664360724500024BIB024 doi: 10.1007/s00220-006-0179-x – ident: S1664360724500024BIB002 doi: 10.1112/jlms/jdl020 – volume: 229 start-page: 538 year: 2006 ident: S1664360724500024BIB016 publication-title: Ann. Inst. Henri Poincaré C, Anal. Non Linéaire – ident: S1664360724500024BIB020 doi: 10.3934/dcds.2023043 – ident: S1664360724500024BIB017 doi: 10.1007/s00526-023-02463-0 – ident: S1664360724500024BIB025 doi: 10.1016/j.jde.2016.03.015 – ident: S1664360724500024BIB019 doi: 10.1016/j.jde.2017.08.062 – ident: S1664360724500024BIB003 doi: 10.1006/jfan.1999.3390 – ident: S1664360724500024BIB022 doi: 10.1007/s00205-012-0598-0 – ident: S1664360724500024BIB029 doi: 10.1016/j.jde.2023.08.021 – volume: 62 start-page: 853 year: 2019 ident: S1664360724500024BIB010 publication-title: J. Differ. Equ. |
SSID | ssj0000579979 ssib050729703 ssib041538293 ssib059270981 |
Score | 2.3603883 |
Snippet | We study the nonlinear coupled Kirchhoff system with purely Sobolev critical exponent. By using appropriate transformation, we get one equivalent system... |
SourceID | doaj crossref worldscientific |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | classification Coupled Kirchhoff system critical exponent ground states |
Title | Existence and classification of positive solutions for coupled purely critical Kirchhoff system |
URI | http://www.worldscientific.com/doi/abs/10.1142/S1664360724500024 https://doaj.org/article/3b1e9af11044428cb1ce1dd2a08115b8 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA5ipYX4xPNFChuF5W7z2CSlyokoJ4gK1y1JNkFB7g5faONvd2azrqeCNjYpQh5kZsJ8ITPfELIbBbcuyiJz8HzIhJI20yGqTOQicqdkISpMFB6cFyfX4nQoh1OlvjAmLNEDJ8F1ucuDsRG8lBAAlb3LfcirilnwZbl0dZov-LypxxRYksB7POXIJPJjq8__RmmY6pkm4zKxgCtjamK-vChExouear5Ac8G6l9iJfUxg_QAmvjixmut_nizUFKcpjRGjfKbc1PEiWWjwJT1I51oiM2G0TOYHLTnrwwop-y-oW9A2taOKesTPuFStIzqONAVyPQfa2iUFaEv9-GlyFyo6QQ7mV-qbIgn07Bbuys04RppooVfJ9XH_6ugka-osZJ4bCaeV2kij4e66HteRG4BlcLVB7Doa_OhjAXwY84D9rLIOQEkeKs6c1J7BDMXXyOxoPArrhAK8kB75bQorkbveGuu5di6ooK10pkN6H4IrfUNCjrUw7sqUIM3KH7LukP12yiQxcPw2-BC10Q5E8uy6A0yqbEyq_MukOmTvmy7b9X5suPEfG26SOQZrpbjCLTL7eP8UtgHrPLqd2qyhPbvQ0A7e-u91_vKo |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+and+classification+of+positive+solutions+for+coupled+purely+critical+Kirchhoff+system&rft.jtitle=Bulletin+of+mathematical+sciences&rft.au=Yahui+Gao&rft.au=Xiao+Luo&rft.au=Maoding+Zhen&rft.date=2024-08-01&rft.pub=World+Scientific+Publishing&rft.issn=1664-3607&rft.eissn=1664-3615&rft.volume=14&rft.issue=2&rft_id=info:doi/10.1142%2FS1664360724500024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3b1e9af11044428cb1ce1dd2a08115b8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3607&client=summon |