A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases
Satellite observations of dry-column methane mixing ratios (XCH4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to quantify methane emissions in service of climate action. The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017, provides gl...
Saved in:
Published in | Atmospheric measurement techniques Vol. 16; no. 16; pp. 3787 - 3807 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
18.08.2023
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Satellite observations of dry-column methane mixing
ratios (XCH4) from shortwave infrared (SWIR) solar backscatter
radiation provide a powerful resource to quantify methane emissions in
service of climate action. The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017,
provides global daily coverage at a 5.5 × 7 km2 (nadir) pixel
resolution, but its methane retrievals can suffer from biases associated with
SWIR surface albedo, scattering from aerosols and cirrus clouds, and
across-track variability (striping). The Greenhouse gases Observing SATellite (GOSAT) instrument, launched in 2009,
has better spectral characteristics and its methane retrieval is much less
subject to biases, but its data density is 250 times sparser than TROPOMI.
Here, we present a blended TROPOMI+GOSAT methane product obtained by
training a machine learning (ML) model to predict the difference between
TROPOMI and GOSAT co-located measurements, using only predictor variables
included in the TROPOMI retrieval, and then applying the correction to the
complete TROPOMI record from April 2018 to present. We find that the largest corrections are associated with coarse aerosol particles, high SWIR surface
albedo, and across-track pixel index. Our blended product corrects a
systematic difference between TROPOMI and GOSAT over water, and it features
corrections exceeding 10 ppb over arid land, persistently cloudy regions,
and high northern latitudes. It reduces the TROPOMI spatially variable bias
over land (referenced to GOSAT data) from 14.3 to 10.4 ppb at a
0.25∘ × 0.3125∘ resolution. Validation
with Total Carbon Column Observing Network (TCCON) ground-based column measurements shows reductions in variable
bias compared with the original TROPOMI data from 4.7 to 4.4 ppb and in
single-retrieval precision from 14.5 to 11.9 ppb. TCCON data are all in
locations with a SWIR surface albedo below 0.4 (where TROPOMI biases tend to be
relatively low), but they confirm the dependence of TROPOMI biases on SWIR
surface albedo and coarse aerosol particles, as well as the reduction of
these biases in the blended product. Fine-scale inspection of the Arabian
Peninsula shows that a number of hotspots in the original TROPOMI data are
removed as artifacts in the blended product. The blended product also
corrects striping and aerosol/cloud biases in single-orbit TROPOMI data,
enabling better detection and quantification of ultra-emitters. Residual
coastal biases can be removed by applying additional filters. The ML method
presented here can be applied more generally to validate and correct data
from any new satellite instrument by reference to a more established
instrument. |
---|---|
AbstractList | Satellite observations of dry-column methane mixing ratios (XCH 4 ) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to quantify methane emissions in service of climate action. The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017, provides global daily coverage at a 5.5 × 7 km 2 (nadir) pixel resolution, but its methane retrievals can suffer from biases associated with SWIR surface albedo, scattering from aerosols and cirrus clouds, and across-track variability (striping). The Greenhouse gases Observing SATellite (GOSAT) instrument, launched in 2009, has better spectral characteristics and its methane retrieval is much less subject to biases, but its data density is 250 times sparser than TROPOMI. Here, we present a blended TROPOMI + GOSAT methane product obtained by training a machine learning (ML) model to predict the difference between TROPOMI and GOSAT co-located measurements, using only predictor variables included in the TROPOMI retrieval, and then applying the correction to the complete TROPOMI record from April 2018 to present. We find that the largest corrections are associated with coarse aerosol particles, high SWIR surface albedo, and across-track pixel index. Our blended product corrects a systematic difference between TROPOMI and GOSAT over water, and it features corrections exceeding 10 ppb over arid land, persistently cloudy regions, and high northern latitudes. It reduces the TROPOMI spatially variable bias over land (referenced to GOSAT data) from 14.3 to 10.4 ppb at a 0.25 ∘ × 0.3125 ∘ resolution. Validation with Total Carbon Column Observing Network (TCCON) ground-based column measurements shows reductions in variable bias compared with the original TROPOMI data from 4.7 to 4.4 ppb and in single-retrieval precision from 14.5 to 11.9 ppb. TCCON data are all in locations with a SWIR surface albedo below 0.4 (where TROPOMI biases tend to be relatively low), but they confirm the dependence of TROPOMI biases on SWIR surface albedo and coarse aerosol particles, as well as the reduction of these biases in the blended product. Fine-scale inspection of the Arabian Peninsula shows that a number of hotspots in the original TROPOMI data are removed as artifacts in the blended product. The blended product also corrects striping and aerosol/cloud biases in single-orbit TROPOMI data, enabling better detection and quantification of ultra-emitters. Residual coastal biases can be removed by applying additional filters. The ML method presented here can be applied more generally to validate and correct data from any new satellite instrument by reference to a more established instrument. Satellite observations of dry-column methane mixing ratios (XCH.sub.4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to quantify methane emissions in service of climate action. The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017, provides global daily coverage at a 5.5 x 7 km.sup.2 (nadir) pixel resolution, but its methane retrievals can suffer from biases associated with SWIR surface albedo, scattering from aerosols and cirrus clouds, and across-track variability (striping). The Greenhouse gases Observing SATellite (GOSAT) instrument, launched in 2009, has better spectral characteristics and its methane retrieval is much less subject to biases, but its data density is 250 times sparser than TROPOMI. Here, we present a blended TROPOMI+GOSAT methane product obtained by training a machine learning (ML) model to predict the difference between TROPOMI and GOSAT co-located measurements, using only predictor variables included in the TROPOMI retrieval, and then applying the correction to the complete TROPOMI record from April 2018 to present. We find that the largest corrections are associated with coarse aerosol particles, high SWIR surface albedo, and across-track pixel index. Our blended product corrects a systematic difference between TROPOMI and GOSAT over water, and it features corrections exceeding 10 ppb over arid land, persistently cloudy regions, and high northern latitudes. It reduces the TROPOMI spatially variable bias over land (referenced to GOSAT data) from 14.3 to 10.4 ppb at a 0.25.sup." x 0.3125.sup." resolution. Validation with Total Carbon Column Observing Network (TCCON) ground-based column measurements shows reductions in variable bias compared with the original TROPOMI data from 4.7 to 4.4 ppb and in single-retrieval precision from 14.5 to 11.9 ppb. TCCON data are all in locations with a SWIR surface albedo below 0.4 (where TROPOMI biases tend to be relatively low), but they confirm the dependence of TROPOMI biases on SWIR surface albedo and coarse aerosol particles, as well as the reduction of these biases in the blended product. Fine-scale inspection of the Arabian Peninsula shows that a number of hotspots in the original TROPOMI data are removed as artifacts in the blended product. The blended product also corrects striping and aerosol/cloud biases in single-orbit TROPOMI data, enabling better detection and quantification of ultra-emitters. Residual coastal biases can be removed by applying additional filters. The ML method presented here can be applied more generally to validate and correct data from any new satellite instrument by reference to a more established instrument. Satellite observations of dry-column methane mixing ratios (XCH4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to quantify methane emissions in service of climate action. The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017, provides global daily coverage at a 5.5 × 7 km2 (nadir) pixel resolution, but its methane retrievals can suffer from biases associated with SWIR surface albedo, scattering from aerosols and cirrus clouds, and across-track variability (striping). The Greenhouse gases Observing SATellite (GOSAT) instrument, launched in 2009, has better spectral characteristics and its methane retrieval is much less subject to biases, but its data density is 250 times sparser than TROPOMI. Here, we present a blended TROPOMI+GOSAT methane product obtained by training a machine learning (ML) model to predict the difference between TROPOMI and GOSAT co-located measurements, using only predictor variables included in the TROPOMI retrieval, and then applying the correction to the complete TROPOMI record from April 2018 to present. We find that the largest corrections are associated with coarse aerosol particles, high SWIR surface albedo, and across-track pixel index. Our blended product corrects a systematic difference between TROPOMI and GOSAT over water, and it features corrections exceeding 10 ppb over arid land, persistently cloudy regions, and high northern latitudes. It reduces the TROPOMI spatially variable bias over land (referenced to GOSAT data) from 14.3 to 10.4 ppb at a 0.25∘ × 0.3125∘ resolution. Validation with Total Carbon Column Observing Network (TCCON) ground-based column measurements shows reductions in variable bias compared with the original TROPOMI data from 4.7 to 4.4 ppb and in single-retrieval precision from 14.5 to 11.9 ppb. TCCON data are all in locations with a SWIR surface albedo below 0.4 (where TROPOMI biases tend to be relatively low), but they confirm the dependence of TROPOMI biases on SWIR surface albedo and coarse aerosol particles, as well as the reduction of these biases in the blended product. Fine-scale inspection of the Arabian Peninsula shows that a number of hotspots in the original TROPOMI data are removed as artifacts in the blended product. The blended product also corrects striping and aerosol/cloud biases in single-orbit TROPOMI data, enabling better detection and quantification of ultra-emitters. Residual coastal biases can be removed by applying additional filters. The ML method presented here can be applied more generally to validate and correct data from any new satellite instrument by reference to a more established instrument. Satellite observations of dry-column methane mixing ratios (XCH4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to quantify methane emissions in service of climate action. The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017, provides global daily coverage at a 5.5 × 7 km2 (nadir) pixel resolution, but its methane retrievals can suffer from biases associated with SWIR surface albedo, scattering from aerosols and cirrus clouds, and across-track variability (striping). The Greenhouse gases Observing SATellite (GOSAT) instrument, launched in 2009, has better spectral characteristics and its methane retrieval is much less subject to biases, but its data density is 250 times sparser than TROPOMI. Here, we present a blended TROPOMI+GOSAT methane product obtained by training a machine learning (ML) model to predict the difference between TROPOMI and GOSAT co-located measurements, using only predictor variables included in the TROPOMI retrieval, and then applying the correction to the complete TROPOMI record from April 2018 to present. We find that the largest corrections are associated with coarse aerosol particles, high SWIR surface albedo, and across-track pixel index. Our blended product corrects a systematic difference between TROPOMI and GOSAT over water, and it features corrections exceeding 10 ppb over arid land, persistently cloudy regions, and high northern latitudes. It reduces the TROPOMI spatially variable bias over land (referenced to GOSAT data) from 14.3 to 10.4 ppb at a 0.25∘ × 0.3125∘ resolution. Validation with Total Carbon Column Observing Network (TCCON) ground-based column measurements shows reductions in variable bias compared with the original TROPOMI data from 4.7 to 4.4 ppb and in single-retrieval precision from 14.5 to 11.9 ppb. TCCON data are all in locations with a SWIR surface albedo below 0.4 (where TROPOMI biases tend to be relatively low), but they confirm the dependence of TROPOMI biases on SWIR surface albedo and coarse aerosol particles, as well as the reduction of these biases in the blended product. Fine-scale inspection of the Arabian Peninsula shows that a number of hotspots in the original TROPOMI data are removed as artifacts in the blended product. The blended product also corrects striping and aerosol/cloud biases in single-orbit TROPOMI data, enabling better detection and quantification of ultra-emitters. Residual coastal biases can be removed by applying additional filters. The ML method presented here can be applied more generally to validate and correct data from any new satellite instrument by reference to a more established instrument. |
Audience | Academic |
Author | Boesch, Hartmut Parker, Robert J. Balasus, Nicholas Maasakkers, Joannes D. Varon, Daniel J. Jacob, Daniel J. Kelp, Makoto M. Chen, Zichong Nesser, Hannah Lorente, Alba |
Author_xml | – sequence: 1 givenname: Nicholas orcidid: 0009-0003-4825-8414 surname: Balasus fullname: Balasus, Nicholas – sequence: 2 givenname: Daniel J. surname: Jacob fullname: Jacob, Daniel J. – sequence: 3 givenname: Alba orcidid: 0000-0002-2287-4687 surname: Lorente fullname: Lorente, Alba – sequence: 4 givenname: Joannes D. orcidid: 0000-0001-8118-0311 surname: Maasakkers fullname: Maasakkers, Joannes D. – sequence: 5 givenname: Robert J. orcidid: 0000-0002-0801-0831 surname: Parker fullname: Parker, Robert J. – sequence: 6 givenname: Hartmut orcidid: 0000-0003-3944-9879 surname: Boesch fullname: Boesch, Hartmut – sequence: 7 givenname: Zichong surname: Chen fullname: Chen, Zichong – sequence: 8 givenname: Makoto M. surname: Kelp fullname: Kelp, Makoto M. – sequence: 9 givenname: Hannah orcidid: 0000-0001-6778-037X surname: Nesser fullname: Nesser, Hannah – sequence: 10 givenname: Daniel J. orcidid: 0000-0002-3207-5731 surname: Varon fullname: Varon, Daniel J. |
BookMark | eNp1klFvFCEUhSemJrbVdx9JfDJm6gAzMPO4abRuUrOmXZ_JBS67bGaGCqyx_17W1egaDSHAzflO4HIuqrM5zFhVL2lz1dGhfQtTrqmouexlzRrGn1TntBey7ru2P_tj_6y6SGnXNKKlkp1XjwuiR5wtWrK-W31afVy-uVndL9YkQcZx9BmJhQzkIQa7N5m4EAnkKaSHLUZvyIR5CzOSffLzhkxgtr6cRoQ4Hwo5EBNixEJGzNHjVxiJ9pAwPa-eOhgTvvi5Xlaf379bX3-ob1c3y-vFbW340PEaYACKjdQoTDdwyUEw7YwTjrHBOk2pbsGCHrDpeGM6qnVvTVeeB8xo1vPLann0tQF26iH6CeKjCuDVj0KIGwUxezOiMj3rQXZMCoet0G4wgIO0lFsuurZlxevV0au048seU1a7sI9zub5ifcdEI8v8rdpAMfWzCzmCmXwyaiEF5f0g2raorv6hKsPi5E35XOdL_QR4fQIUTcZveQP7lNTy_u5UK45aE0NKEZ0yPkP2BYngR0UbdUiNKqlRVKhDatQhNQVs_gJ_dey_yHc_R8X4 |
CitedBy_id | crossref_primary_10_3390_rs17030543 crossref_primary_10_1016_j_scitotenv_2024_178006 crossref_primary_10_1088_1748_9326_ada2b1 crossref_primary_10_3390_cli12120223 crossref_primary_10_5194_amt_17_5147_2024 crossref_primary_10_1088_1748_9326_adad02 crossref_primary_10_1016_j_atmosenv_2024_120665 crossref_primary_10_3390_atmos15030266 crossref_primary_10_3390_atmos16030279 crossref_primary_10_5194_acp_24_5069_2024 crossref_primary_10_1016_j_rse_2024_114039 crossref_primary_10_5194_acp_25_797_2025 crossref_primary_10_62660_bcstu_3_2024_65 crossref_primary_10_3390_su162310400 |
Cites_doi | 10.5194/amt-14-665-2021 10.1038/nbt0908-1011 10.5194/amt-9-2445-2016 10.1080/02664763.2011.578621 10.1016/j.envsoft.2021.105006 10.5194/amt-14-7999-2021 10.1016/j.gloplacha.2006.02.011 10.1016/j.artint.2021.103502 10.5194/acp-16-14371-2016 10.5194/amt-16-1597-2023 10.1038/s41467-022-28989-z 10.1021/acs.estlett.1c00327 10.1029/2019RG000675 10.5194/amt-16-669-2023 10.1029/2021GL094151 10.5194/amt-15-6585-2022 10.1098/rsta.2010.0240 10.1029/2012GL051440 10.5194/acp-21-14159-2021 10.5194/acp-15-7049-2015 10.1021/acs.est.7b01356 10.5194/amt-11-5507-2018 10.5194/acp-21-5117-2021 10.5194/amt-12-5443-2019 10.1016/j.jqsrt.2006.09.013 10.5194/acp-19-7859-2019 10.1029/2002JD002299 10.5194/acp-17-8395-2017 10.1029/2010JD014514 10.5194/amt-12-6771-2019 10.1029/2012JD017549 10.3390/rs12030375 10.1098/rsta.2021.0106 10.5194/essd-12-3383-2020 10.5194/essd-12-1679-2020 10.1038/s42256-019-0138-9 10.1023/A:1010933404324 10.1126/science.1106644 10.5194/acp-22-9617-2022 10.5194/essd-12-1561-2020 10.1029/2011GL047871 10.5194/acp-22-6811-2022 10.1145/2939672.2939785 10.1126/science.abj4351 10.5194/acp-21-4339-2021 10.1016/j.rse.2022.113335 10.1016/j.rse.2013.04.024 10.1016/j.rse.2011.05.030 10.1080/17538940902951401 10.1029/2021MS002881 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 Copernicus GmbH 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 Copernicus GmbH – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.5194/amt-16-3787-2023 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1867-8548 |
EndPage | 3807 |
ExternalDocumentID | oai_doaj_org_article_c828a75276fe46bf9cae97d13d365442 A761389644 10_5194_amt_16_3787_2023 |
GroupedDBID | 23N 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABUWG ACGFO ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z ESX GROUPED_DOAJ H13 HCIFZ IAO IEA ISR ITC K6- KQ8 LK5 M7R OK1 P2P P62 PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC Q2X RKB RNS TR2 TUS BBORY PMFND 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c3953-aa9a1e07be6c59373a62bfcf6f229dfb11b4adab9e0530c51bb8dc5641a2cb283 |
IEDL.DBID | BENPR |
ISSN | 1867-8548 1867-1381 |
IngestDate | Wed Aug 27 01:30:59 EDT 2025 Fri Jul 25 22:55:15 EDT 2025 Tue Jun 17 21:17:49 EDT 2025 Tue Jun 10 21:20:57 EDT 2025 Fri Jun 27 05:51:42 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Tue Jul 01 03:12:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3953-aa9a1e07be6c59373a62bfcf6f229dfb11b4adab9e0530c51bb8dc5641a2cb283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8118-0311 0000-0002-0801-0831 0000-0001-6778-037X 0000-0002-3207-5731 0009-0003-4825-8414 0000-0002-2287-4687 0000-0003-3944-9879 |
OpenAccessLink | https://www.proquest.com/docview/2852607260?pq-origsite=%requestingapplication% |
PQID | 2852607260 |
PQPubID | 105742 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c828a75276fe46bf9cae97d13d365442 proquest_journals_2852607260 gale_infotracmisc_A761389644 gale_infotracacademiconefile_A761389644 gale_incontextgauss_ISR_A761389644 crossref_citationtrail_10_5194_amt_16_3787_2023 crossref_primary_10_5194_amt_16_3787_2023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-18 |
PublicationDateYYYYMMDD | 2023-08-18 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric measurement techniques |
PublicationYear | 2023 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref38 doi: 10.5194/amt-14-665-2021 – ident: ref32 doi: 10.1038/nbt0908-1011 – ident: ref5 – ident: ref66 – ident: ref34 doi: 10.5194/amt-9-2445-2016 – ident: ref20 – ident: ref85 doi: 10.1080/02664763.2011.578621 – ident: ref7 doi: 10.1016/j.envsoft.2021.105006 – ident: ref30 doi: 10.5194/amt-14-7999-2021 – ident: ref64 doi: 10.1016/j.gloplacha.2006.02.011 – ident: ref24 – ident: ref69 – ident: ref76 – ident: ref1 doi: 10.1016/j.artint.2021.103502 – ident: ref27 doi: 10.5194/acp-16-14371-2016 – ident: ref40 doi: 10.5194/amt-16-1597-2023 – ident: ref13 – ident: ref21 doi: 10.1038/s41467-022-28989-z – ident: ref86 – ident: ref36 – ident: ref80 doi: 10.1021/acs.estlett.1c00327 – ident: ref65 – ident: ref44 – ident: ref47 doi: 10.1029/2019RG000675 – ident: ref62 doi: 10.5194/amt-16-669-2023 – ident: ref37 doi: 10.1029/2021GL094151 – ident: ref39 doi: 10.5194/amt-15-6585-2022 – ident: ref82 doi: 10.1098/rsta.2010.0240 – ident: ref23 – ident: ref56 doi: 10.1029/2012GL051440 – ident: ref57 doi: 10.5194/acp-21-14159-2021 – ident: ref26 – ident: ref75 – ident: ref72 doi: 10.5194/acp-15-7049-2015 – ident: ref79 – ident: ref54 – ident: ref71 – ident: ref16 – ident: ref12 – ident: ref33 – ident: ref87 doi: 10.1021/acs.est.7b01356 – ident: ref8 doi: 10.5194/amt-11-5507-2018 – ident: ref3 – ident: ref83 – ident: ref68 – ident: ref45 – ident: ref6 doi: 10.5194/acp-21-5117-2021 – ident: ref9 doi: 10.5194/amt-12-5443-2019 – ident: ref25 – ident: ref74 – ident: ref2 doi: 10.1016/j.jqsrt.2006.09.013 – ident: ref51 – ident: ref48 – ident: ref42 doi: 10.5194/acp-19-7859-2019 – ident: ref58 doi: 10.1029/2002JD002299 – ident: ref78 – ident: ref19 – ident: ref63 doi: 10.5194/acp-17-8395-2017 – ident: ref14 doi: 10.1029/2010JD014514 – ident: ref61 doi: 10.5194/amt-12-6771-2019 – ident: ref70 – ident: ref55 – ident: ref60 doi: 10.1029/2012JD017549 – ident: ref4 – ident: ref29 doi: 10.3390/rs12030375 – ident: ref50 doi: 10.1098/rsta.2021.0106 – ident: ref53 doi: 10.5194/essd-12-3383-2020 – ident: ref84 doi: 10.5194/essd-12-1679-2020 – ident: ref41 doi: 10.1038/s42256-019-0138-9 – ident: ref10 doi: 10.1023/A:1010933404324 – ident: ref22 doi: 10.1126/science.1106644 – ident: ref28 doi: 10.5194/acp-22-9617-2022 – ident: ref59 doi: 10.5194/essd-12-1561-2020 – ident: ref46 – ident: ref52 doi: 10.1029/2011GL047871 – ident: ref81 doi: 10.5194/acp-22-6811-2022 – ident: ref18 doi: 10.1145/2939672.2939785 – ident: ref73 – ident: ref35 doi: 10.1126/science.abj4351 – ident: ref77 – ident: ref43 doi: 10.5194/acp-21-4339-2021 – ident: ref49 doi: 10.1016/j.rse.2022.113335 – ident: ref11 doi: 10.1016/j.rse.2013.04.024 – ident: ref15 doi: 10.1016/j.rse.2011.05.030 – ident: ref17 doi: 10.1080/17538940902951401 – ident: ref31 – ident: ref67 doi: 10.1029/2021MS002881 |
SSID | ssj0064172 |
Score | 2.4880383 |
Snippet | Satellite observations of dry-column methane mixing
ratios (XCH4) from shortwave infrared (SWIR) solar backscatter
radiation provide a powerful resource to... Satellite observations of dry-column methane mixing ratios (XCH.sub.4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource... Satellite observations of dry-column methane mixing ratios (XCH4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to... Satellite observations of dry-column methane mixing ratios (XCH 4 ) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3787 |
SubjectTerms | Aerosol particles Aerosols Air pollution Albedo Albedo (solar) Arid lands Arid zones Atmospheric methane Backscatter Bias Cirrus clouds Climate action Climate change Emissions Emitters Fourier transforms Gases Greenhouse effect Greenhouse gases Ground-based observation Inspection Learning algorithms Machine learning Methane Methane emissions Mixing ratio Monitoring instruments Pixels Quality control Radiation Retrieval Satellite data Satellite instruments Satellite observation Satellite tracking Satellites Short wave radiation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hnrggniLQohVCIISsZNf7iI-horRIIahNpd5Ws-t1FCmxq9g98O-ZWTsVOQAXDj7YHlv2zOzszHr8fYy9Uzl46b3NhPAyUwVA5kGZrNSVkpYKjkTnM_9uzq_Vtxt98xvVF_WE9fDAveLGAUsCsFpaU0VlfFUEiIUtRV7mRiuVoi_Oeftiqo_BRolE20RobYSyJ_oPlJitqDFsu0wYHFg4uog7_GBCSrj9f4rOaco5e8weDbkin_XP-IQ9iPVTNppjmtvs0mo4f89PN2vMOdPeM_Zzxv0mrWnz5eXix2J-8enr4mq25C0k4M0ucuoI5bc9zCvHhJVDt21awhZYB0500lBHTs3wK75NfZaRD8QSK941PBCZB165S0Rc6KXcr3EebJ-z67Mvy9PzbOBWyEJe6DwDKEDEifXRBI0pSg5G-ipUppKyKCuPplNQgi-IOmIStPB-WgaNigUZPOYkL9hR3dTxJeNByEklSwx9RVDCi6kFHfBmeQCIVoURG-8V7MIAPE78FxuHBQiZxKFJnDCOTOLIJCP28f6K2x504y-yn8lm93IEl50OoBO5wYncv5xoxN6SxR0BYtTUcbOCu7Z1F1eXbmYNfcvFtHHEPgxCVYPPH2D4gQG1QBhaB5LHB5I4YsPh6b1juSFitE5ONZaWFrdX_-ONXrOHpB1a_RbTY3bU7e7iCaZPnX-TRsovx4wVqg priority: 102 providerName: Directory of Open Access Journals |
Title | A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases |
URI | https://www.proquest.com/docview/2852607260 https://doaj.org/article/c828a75276fe46bf9cae97d13d365442 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9owELZW-rKXaT81tg5Z07RpmiKw4zjJ00Sr0nYSpaJU6pt1dhKEBISR9GH__e6M6cTD-sAD5IKCz3f-fD6-j7EvKgYrrU0jIayMVA4QWVA6KpJKyZQ2HF7OZ3ytL-_Ur_vkPhTcmtBWuc-JPlEXtaMaeV9mCULvFF8_N78jUo2i09UgoXHEjjEFZ1mHHZ-eX99M97lYK-Hlm4i1jdj2xO6gElGL6sOqjYTGAMMoIw3xg4XJ8_f_L0v7pWf0kr0ImJEPd05-xZ6V69esO0a4W299VZx_5WfLBWJP_-4N-zPkdulr23w2ndxMxlc_Lia3wxlvwBNwtiWnzlC-2dG9cgSuHNpV3RDHwMJxkpWGdcmpKX7OV77fsuRBYGLO25o7EvXAO7dekAtnK7cLXA-bt-xudD47u4yCxkLk4jyJI4AcRDlIbaldglAlBi1t5SpdSZkXlUUXKijA5iQhMXCJsDYrXIIDC9JZxCbvWGddr8v3jDshB5UsMAXmTgkrshQSh18WO4AyVa7L-vsBNi4QkJMOxtLgRoRcYtAlRmhDLjHkki77_njHZke-8YTtKfns0Y5os_0H9XZuQhQah_tLSBOZ6qpU2la5gzJPCxEXsU6Ukl32mTxuiBhjTZ03c3hoGnN1OzXDVNOZLsLHLvsWjKoan99B-CMDjgJxaR1YnhxYYuS6w8v7iWVC5mjMv3n-4enLH9lz-t1U3xbZCeu024fyEwKk1vbYUTa66IVY6Pkyw1_uRxCH |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGOMAF8SkCAyzEhxCKWjuO0xwQKoOuZeuKtk7azdiOU1Vqk9JkQvun-Bt5z02GemC3HXJI8hJZfn4ftp9_P0LeiEgbbkwSMmZ4KFKtQ6OFDLM4FzzBCYen8xkfy-GZ-H4en--QP-1ZGCyrbH2id9RZaXGNvMN7MaTeCVyfV79CZI3C3dWWQmMzLA7d5W-YslWfRl9Bv285H3yb7g_DhlUgtFEaR6HWqWaumxgnbQzBOdKSm9zmMuc8zXIDjRY60yZF0oSujZkxvczGUjDNrYFoDP-9RW6LCCI5nkwfHLSeH0Q8WRRixCG2H9tsi0KOJDp6WYdMgjmDTSNj-VYY9GwB_4sJPtAN7pN7TYZK-5sh9YDsuOIhCcaQXJdrvwZP39H9xRwyXX_3iFz2qVn4lXQ6PZn8mIxHHw8mp_0prbSH-6wdxTpUutqAy1JIk6mul2WFiAZzS5HEWheOYgn-jC59daejDZ3FjNYltUghAl-uPf0X2AY1c4i-1WNydiN9_4TsFmXhnhJqGe_mPAOHm1rBDOslOrbws8hq7RJhA9JpO1jZBu4cWTcWCqY9qBIFKlFMKlSJQpUE5MPVF6sN1Mc1sl9QZ1dyCNLtH5TrmWpsXlmYzeok5onMnZAmT612aZKxKItkLAQPyGvUuEIYjgLrfGb6oqrU6PRE9ROJO8iQrAbkfSOUl9B-q5tjE9ALiNy1Jbm3JQl-wm6_bgeWavxUpf5Z1bPrX78id4bT8ZE6Gh0fPid3sQ9wZZ319shuvb5wLyA1q81Lbw-U_LxpA_wLUOZLfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEFdRGGAhLkIoau04TvOAUHdjZfSirpP25tmOU1Vqm9JkQvtr_DrOcZOhPrC3PeShyUmU-vjc7JPvI-S9CLXhxsQBY4YHItE6MFrIII0ywWMsODydT38gT87Fj4voYof8qb-FwbbK2id6R53mFtfIW7wTQeodw9HKqraI0eHxt9WvABmkcKe1ptPYTJFTd_0byrfia-8QdP2B8-OjycFJUDEMBDZMojDQOtHMtWPjpI0gUIdacpPZTGacJ2lm4A8InWqTIIFC20bMmE5qIymY5tZAZIbn3iO7MVZFDbK7fzQYjes4AEKeOgoR4xDpj202SSFjEi29KAMmwbjBwpG_fCsoeu6A_0UIH_aOH5GHVb5Ku5sJ9pjsuOUT0uxDqp2v_Yo8_UgP5jPIe_2vp-S6S83cr6vTyXg4GvZ7X74Pz7oTWmgP_lk6il2pdLWBmqWQNFNdLvIC8Q1mliKltV46ig35U7rwvZ6OVuQWU1rm1CKhCNy59mRgYCnUzCAWF8_I-Z2M_nPSWOZL94JQy3g74ym438QKZlgn1pGFh4VWaxcL2ySteoCVrcDPkYNjrqAIQpUoUIliUqFKFKqkST7f3LHaAH_cIruPOruRQ8hufyJfT1XlAZSF2lbHEY9l5oQ0WWK1S-KUhWkoIyF4k7xDjSsE5Vji9J7qq6JQvbOx6sYS95MhdW2ST5VQlsP7W119RAGjgDheW5J7W5LgNez25XpiqcprFeqfjb28_fJbch-MT_3sDU5fkQc4BLjMzjp7pFGur9xryNNK86YyCEou79oG_wI--1EQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+blended+TROPOMI%2BGOSAT+satellite+data+product+for+atmospheric+methane+using+machine+learning+to+correct+retrieval+biases&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Balasus%2C+Nicholas&rft.au=Jacob%2C+Daniel+J&rft.au=Lorente%2C+Alba&rft.au=Maasakkers%2C+Joannes+D&rft.date=2023-08-18&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.volume=16&rft.issue=16&rft.spage=3787&rft_id=info:doi/10.5194%2Famt-16-3787-2023&rft.externalDocID=A761389644 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon |