A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases

Satellite observations of dry-column methane mixing ratios (XCH4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to quantify methane emissions in service of climate action. The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017, provides gl...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric measurement techniques Vol. 16; no. 16; pp. 3787 - 3807
Main Authors Balasus, Nicholas, Jacob, Daniel J., Lorente, Alba, Maasakkers, Joannes D., Parker, Robert J., Boesch, Hartmut, Chen, Zichong, Kelp, Makoto M., Nesser, Hannah, Varon, Daniel J.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 18.08.2023
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Satellite observations of dry-column methane mixing ratios (XCH4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to quantify methane emissions in service of climate action. The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017, provides global daily coverage at a 5.5 × 7 km2 (nadir) pixel resolution, but its methane retrievals can suffer from biases associated with SWIR surface albedo, scattering from aerosols and cirrus clouds, and across-track variability (striping). The Greenhouse gases Observing SATellite (GOSAT) instrument, launched in 2009, has better spectral characteristics and its methane retrieval is much less subject to biases, but its data density is 250 times sparser than TROPOMI. Here, we present a blended TROPOMI+GOSAT methane product obtained by training a machine learning (ML) model to predict the difference between TROPOMI and GOSAT co-located measurements, using only predictor variables included in the TROPOMI retrieval, and then applying the correction to the complete TROPOMI record from April 2018 to present. We find that the largest corrections are associated with coarse aerosol particles, high SWIR surface albedo, and across-track pixel index. Our blended product corrects a systematic difference between TROPOMI and GOSAT over water, and it features corrections exceeding 10 ppb over arid land, persistently cloudy regions, and high northern latitudes. It reduces the TROPOMI spatially variable bias over land (referenced to GOSAT data) from 14.3 to 10.4 ppb at a 0.25∘ × 0.3125∘ resolution. Validation with Total Carbon Column Observing Network (TCCON) ground-based column measurements shows reductions in variable bias compared with the original TROPOMI data from 4.7 to 4.4 ppb and in single-retrieval precision from 14.5 to 11.9 ppb. TCCON data are all in locations with a SWIR surface albedo below 0.4 (where TROPOMI biases tend to be relatively low), but they confirm the dependence of TROPOMI biases on SWIR surface albedo and coarse aerosol particles, as well as the reduction of these biases in the blended product. Fine-scale inspection of the Arabian Peninsula shows that a number of hotspots in the original TROPOMI data are removed as artifacts in the blended product. The blended product also corrects striping and aerosol/cloud biases in single-orbit TROPOMI data, enabling better detection and quantification of ultra-emitters. Residual coastal biases can be removed by applying additional filters. The ML method presented here can be applied more generally to validate and correct data from any new satellite instrument by reference to a more established instrument.
AbstractList Satellite observations of dry-column methane mixing ratios (XCH 4 ) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to quantify methane emissions in service of climate action. The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017, provides global daily coverage at a 5.5  ×  7 km 2 (nadir) pixel resolution, but its methane retrievals can suffer from biases associated with SWIR surface albedo, scattering from aerosols and cirrus clouds, and across-track variability (striping). The Greenhouse gases Observing SATellite (GOSAT) instrument, launched in 2009, has better spectral characteristics and its methane retrieval is much less subject to biases, but its data density is 250 times sparser than TROPOMI. Here, we present a blended TROPOMI + GOSAT methane product obtained by training a machine learning (ML) model to predict the difference between TROPOMI and GOSAT co-located measurements, using only predictor variables included in the TROPOMI retrieval, and then applying the correction to the complete TROPOMI record from April 2018 to present. We find that the largest corrections are associated with coarse aerosol particles, high SWIR surface albedo, and across-track pixel index. Our blended product corrects a systematic difference between TROPOMI and GOSAT over water, and it features corrections exceeding 10 ppb over arid land, persistently cloudy regions, and high northern latitudes. It reduces the TROPOMI spatially variable bias over land (referenced to GOSAT data) from 14.3 to 10.4 ppb at a 0.25 ∘   ×  0.3125 ∘ resolution. Validation with Total Carbon Column Observing Network (TCCON) ground-based column measurements shows reductions in variable bias compared with the original TROPOMI data from 4.7 to 4.4 ppb and in single-retrieval precision from 14.5 to 11.9 ppb. TCCON data are all in locations with a SWIR surface albedo below 0.4 (where TROPOMI biases tend to be relatively low), but they confirm the dependence of TROPOMI biases on SWIR surface albedo and coarse aerosol particles, as well as the reduction of these biases in the blended product. Fine-scale inspection of the Arabian Peninsula shows that a number of hotspots in the original TROPOMI data are removed as artifacts in the blended product. The blended product also corrects striping and aerosol/cloud biases in single-orbit TROPOMI data, enabling better detection and quantification of ultra-emitters. Residual coastal biases can be removed by applying additional filters. The ML method presented here can be applied more generally to validate and correct data from any new satellite instrument by reference to a more established instrument.
Satellite observations of dry-column methane mixing ratios (XCH.sub.4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to quantify methane emissions in service of climate action. The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017, provides global daily coverage at a 5.5 x 7 km.sup.2 (nadir) pixel resolution, but its methane retrievals can suffer from biases associated with SWIR surface albedo, scattering from aerosols and cirrus clouds, and across-track variability (striping). The Greenhouse gases Observing SATellite (GOSAT) instrument, launched in 2009, has better spectral characteristics and its methane retrieval is much less subject to biases, but its data density is 250 times sparser than TROPOMI. Here, we present a blended TROPOMI+GOSAT methane product obtained by training a machine learning (ML) model to predict the difference between TROPOMI and GOSAT co-located measurements, using only predictor variables included in the TROPOMI retrieval, and then applying the correction to the complete TROPOMI record from April 2018 to present. We find that the largest corrections are associated with coarse aerosol particles, high SWIR surface albedo, and across-track pixel index. Our blended product corrects a systematic difference between TROPOMI and GOSAT over water, and it features corrections exceeding 10 ppb over arid land, persistently cloudy regions, and high northern latitudes. It reduces the TROPOMI spatially variable bias over land (referenced to GOSAT data) from 14.3 to 10.4 ppb at a 0.25.sup." x 0.3125.sup." resolution. Validation with Total Carbon Column Observing Network (TCCON) ground-based column measurements shows reductions in variable bias compared with the original TROPOMI data from 4.7 to 4.4 ppb and in single-retrieval precision from 14.5 to 11.9 ppb. TCCON data are all in locations with a SWIR surface albedo below 0.4 (where TROPOMI biases tend to be relatively low), but they confirm the dependence of TROPOMI biases on SWIR surface albedo and coarse aerosol particles, as well as the reduction of these biases in the blended product. Fine-scale inspection of the Arabian Peninsula shows that a number of hotspots in the original TROPOMI data are removed as artifacts in the blended product. The blended product also corrects striping and aerosol/cloud biases in single-orbit TROPOMI data, enabling better detection and quantification of ultra-emitters. Residual coastal biases can be removed by applying additional filters. The ML method presented here can be applied more generally to validate and correct data from any new satellite instrument by reference to a more established instrument.
Satellite observations of dry-column methane mixing ratios (XCH4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to quantify methane emissions in service of climate action. The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017, provides global daily coverage at a 5.5 × 7 km2 (nadir) pixel resolution, but its methane retrievals can suffer from biases associated with SWIR surface albedo, scattering from aerosols and cirrus clouds, and across-track variability (striping). The Greenhouse gases Observing SATellite (GOSAT) instrument, launched in 2009, has better spectral characteristics and its methane retrieval is much less subject to biases, but its data density is 250 times sparser than TROPOMI. Here, we present a blended TROPOMI+GOSAT methane product obtained by training a machine learning (ML) model to predict the difference between TROPOMI and GOSAT co-located measurements, using only predictor variables included in the TROPOMI retrieval, and then applying the correction to the complete TROPOMI record from April 2018 to present. We find that the largest corrections are associated with coarse aerosol particles, high SWIR surface albedo, and across-track pixel index. Our blended product corrects a systematic difference between TROPOMI and GOSAT over water, and it features corrections exceeding 10 ppb over arid land, persistently cloudy regions, and high northern latitudes. It reduces the TROPOMI spatially variable bias over land (referenced to GOSAT data) from 14.3 to 10.4 ppb at a 0.25∘ × 0.3125∘ resolution. Validation with Total Carbon Column Observing Network (TCCON) ground-based column measurements shows reductions in variable bias compared with the original TROPOMI data from 4.7 to 4.4 ppb and in single-retrieval precision from 14.5 to 11.9 ppb. TCCON data are all in locations with a SWIR surface albedo below 0.4 (where TROPOMI biases tend to be relatively low), but they confirm the dependence of TROPOMI biases on SWIR surface albedo and coarse aerosol particles, as well as the reduction of these biases in the blended product. Fine-scale inspection of the Arabian Peninsula shows that a number of hotspots in the original TROPOMI data are removed as artifacts in the blended product. The blended product also corrects striping and aerosol/cloud biases in single-orbit TROPOMI data, enabling better detection and quantification of ultra-emitters. Residual coastal biases can be removed by applying additional filters. The ML method presented here can be applied more generally to validate and correct data from any new satellite instrument by reference to a more established instrument.
Satellite observations of dry-column methane mixing ratios (XCH4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to quantify methane emissions in service of climate action. The TROPOspheric Monitoring Instrument (TROPOMI), launched in October 2017, provides global daily coverage at a 5.5 × 7 km2 (nadir) pixel resolution, but its methane retrievals can suffer from biases associated with SWIR surface albedo, scattering from aerosols and cirrus clouds, and across-track variability (striping). The Greenhouse gases Observing SATellite (GOSAT) instrument, launched in 2009, has better spectral characteristics and its methane retrieval is much less subject to biases, but its data density is 250 times sparser than TROPOMI. Here, we present a blended TROPOMI+GOSAT methane product obtained by training a machine learning (ML) model to predict the difference between TROPOMI and GOSAT co-located measurements, using only predictor variables included in the TROPOMI retrieval, and then applying the correction to the complete TROPOMI record from April 2018 to present. We find that the largest corrections are associated with coarse aerosol particles, high SWIR surface albedo, and across-track pixel index. Our blended product corrects a systematic difference between TROPOMI and GOSAT over water, and it features corrections exceeding 10 ppb over arid land, persistently cloudy regions, and high northern latitudes. It reduces the TROPOMI spatially variable bias over land (referenced to GOSAT data) from 14.3 to 10.4 ppb at a 0.25∘ × 0.3125∘ resolution. Validation with Total Carbon Column Observing Network (TCCON) ground-based column measurements shows reductions in variable bias compared with the original TROPOMI data from 4.7 to 4.4 ppb and in single-retrieval precision from 14.5 to 11.9 ppb. TCCON data are all in locations with a SWIR surface albedo below 0.4 (where TROPOMI biases tend to be relatively low), but they confirm the dependence of TROPOMI biases on SWIR surface albedo and coarse aerosol particles, as well as the reduction of these biases in the blended product. Fine-scale inspection of the Arabian Peninsula shows that a number of hotspots in the original TROPOMI data are removed as artifacts in the blended product. The blended product also corrects striping and aerosol/cloud biases in single-orbit TROPOMI data, enabling better detection and quantification of ultra-emitters. Residual coastal biases can be removed by applying additional filters. The ML method presented here can be applied more generally to validate and correct data from any new satellite instrument by reference to a more established instrument.
Audience Academic
Author Boesch, Hartmut
Parker, Robert J.
Balasus, Nicholas
Maasakkers, Joannes D.
Varon, Daniel J.
Jacob, Daniel J.
Kelp, Makoto M.
Chen, Zichong
Nesser, Hannah
Lorente, Alba
Author_xml – sequence: 1
  givenname: Nicholas
  orcidid: 0009-0003-4825-8414
  surname: Balasus
  fullname: Balasus, Nicholas
– sequence: 2
  givenname: Daniel J.
  surname: Jacob
  fullname: Jacob, Daniel J.
– sequence: 3
  givenname: Alba
  orcidid: 0000-0002-2287-4687
  surname: Lorente
  fullname: Lorente, Alba
– sequence: 4
  givenname: Joannes D.
  orcidid: 0000-0001-8118-0311
  surname: Maasakkers
  fullname: Maasakkers, Joannes D.
– sequence: 5
  givenname: Robert J.
  orcidid: 0000-0002-0801-0831
  surname: Parker
  fullname: Parker, Robert J.
– sequence: 6
  givenname: Hartmut
  orcidid: 0000-0003-3944-9879
  surname: Boesch
  fullname: Boesch, Hartmut
– sequence: 7
  givenname: Zichong
  surname: Chen
  fullname: Chen, Zichong
– sequence: 8
  givenname: Makoto M.
  surname: Kelp
  fullname: Kelp, Makoto M.
– sequence: 9
  givenname: Hannah
  orcidid: 0000-0001-6778-037X
  surname: Nesser
  fullname: Nesser, Hannah
– sequence: 10
  givenname: Daniel J.
  orcidid: 0000-0002-3207-5731
  surname: Varon
  fullname: Varon, Daniel J.
BookMark eNp1klFvFCEUhSemJrbVdx9JfDJm6gAzMPO4abRuUrOmXZ_JBS67bGaGCqyx_17W1egaDSHAzflO4HIuqrM5zFhVL2lz1dGhfQtTrqmouexlzRrGn1TntBey7ru2P_tj_6y6SGnXNKKlkp1XjwuiR5wtWrK-W31afVy-uVndL9YkQcZx9BmJhQzkIQa7N5m4EAnkKaSHLUZvyIR5CzOSffLzhkxgtr6cRoQ4Hwo5EBNixEJGzNHjVxiJ9pAwPa-eOhgTvvi5Xlaf379bX3-ob1c3y-vFbW340PEaYACKjdQoTDdwyUEw7YwTjrHBOk2pbsGCHrDpeGM6qnVvTVeeB8xo1vPLann0tQF26iH6CeKjCuDVj0KIGwUxezOiMj3rQXZMCoet0G4wgIO0lFsuurZlxevV0au048seU1a7sI9zub5ifcdEI8v8rdpAMfWzCzmCmXwyaiEF5f0g2raorv6hKsPi5E35XOdL_QR4fQIUTcZveQP7lNTy_u5UK45aE0NKEZ0yPkP2BYngR0UbdUiNKqlRVKhDatQhNQVs_gJ_dey_yHc_R8X4
CitedBy_id crossref_primary_10_3390_rs17030543
crossref_primary_10_1016_j_scitotenv_2024_178006
crossref_primary_10_1088_1748_9326_ada2b1
crossref_primary_10_3390_cli12120223
crossref_primary_10_5194_amt_17_5147_2024
crossref_primary_10_1088_1748_9326_adad02
crossref_primary_10_1016_j_atmosenv_2024_120665
crossref_primary_10_3390_atmos15030266
crossref_primary_10_3390_atmos16030279
crossref_primary_10_5194_acp_24_5069_2024
crossref_primary_10_1016_j_rse_2024_114039
crossref_primary_10_5194_acp_25_797_2025
crossref_primary_10_62660_bcstu_3_2024_65
crossref_primary_10_3390_su162310400
Cites_doi 10.5194/amt-14-665-2021
10.1038/nbt0908-1011
10.5194/amt-9-2445-2016
10.1080/02664763.2011.578621
10.1016/j.envsoft.2021.105006
10.5194/amt-14-7999-2021
10.1016/j.gloplacha.2006.02.011
10.1016/j.artint.2021.103502
10.5194/acp-16-14371-2016
10.5194/amt-16-1597-2023
10.1038/s41467-022-28989-z
10.1021/acs.estlett.1c00327
10.1029/2019RG000675
10.5194/amt-16-669-2023
10.1029/2021GL094151
10.5194/amt-15-6585-2022
10.1098/rsta.2010.0240
10.1029/2012GL051440
10.5194/acp-21-14159-2021
10.5194/acp-15-7049-2015
10.1021/acs.est.7b01356
10.5194/amt-11-5507-2018
10.5194/acp-21-5117-2021
10.5194/amt-12-5443-2019
10.1016/j.jqsrt.2006.09.013
10.5194/acp-19-7859-2019
10.1029/2002JD002299
10.5194/acp-17-8395-2017
10.1029/2010JD014514
10.5194/amt-12-6771-2019
10.1029/2012JD017549
10.3390/rs12030375
10.1098/rsta.2021.0106
10.5194/essd-12-3383-2020
10.5194/essd-12-1679-2020
10.1038/s42256-019-0138-9
10.1023/A:1010933404324
10.1126/science.1106644
10.5194/acp-22-9617-2022
10.5194/essd-12-1561-2020
10.1029/2011GL047871
10.5194/acp-22-6811-2022
10.1145/2939672.2939785
10.1126/science.abj4351
10.5194/acp-21-4339-2021
10.1016/j.rse.2022.113335
10.1016/j.rse.2013.04.024
10.1016/j.rse.2011.05.030
10.1080/17538940902951401
10.1029/2021MS002881
ContentType Journal Article
Copyright COPYRIGHT 2023 Copernicus GmbH
2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 Copernicus GmbH
– notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.5194/amt-16-3787-2023
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1867-8548
EndPage 3807
ExternalDocumentID oai_doaj_org_article_c828a75276fe46bf9cae97d13d365442
A761389644
10_5194_amt_16_3787_2023
GroupedDBID 23N
5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ACGFO
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
ISR
ITC
K6-
KQ8
LK5
M7R
OK1
P2P
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
Q2X
RKB
RNS
TR2
TUS
BBORY
PMFND
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c3953-aa9a1e07be6c59373a62bfcf6f229dfb11b4adab9e0530c51bb8dc5641a2cb283
IEDL.DBID BENPR
ISSN 1867-8548
1867-1381
IngestDate Wed Aug 27 01:30:59 EDT 2025
Fri Jul 25 22:55:15 EDT 2025
Tue Jun 17 21:17:49 EDT 2025
Tue Jun 10 21:20:57 EDT 2025
Fri Jun 27 05:51:42 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Tue Jul 01 03:12:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3953-aa9a1e07be6c59373a62bfcf6f229dfb11b4adab9e0530c51bb8dc5641a2cb283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8118-0311
0000-0002-0801-0831
0000-0001-6778-037X
0000-0002-3207-5731
0009-0003-4825-8414
0000-0002-2287-4687
0000-0003-3944-9879
OpenAccessLink https://www.proquest.com/docview/2852607260?pq-origsite=%requestingapplication%
PQID 2852607260
PQPubID 105742
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_c828a75276fe46bf9cae97d13d365442
proquest_journals_2852607260
gale_infotracmisc_A761389644
gale_infotracacademiconefile_A761389644
gale_incontextgauss_ISR_A761389644
crossref_citationtrail_10_5194_amt_16_3787_2023
crossref_primary_10_5194_amt_16_3787_2023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-18
PublicationDateYYYYMMDD 2023-08-18
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-18
  day: 18
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric measurement techniques
PublicationYear 2023
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref38
  doi: 10.5194/amt-14-665-2021
– ident: ref32
  doi: 10.1038/nbt0908-1011
– ident: ref5
– ident: ref66
– ident: ref34
  doi: 10.5194/amt-9-2445-2016
– ident: ref20
– ident: ref85
  doi: 10.1080/02664763.2011.578621
– ident: ref7
  doi: 10.1016/j.envsoft.2021.105006
– ident: ref30
  doi: 10.5194/amt-14-7999-2021
– ident: ref64
  doi: 10.1016/j.gloplacha.2006.02.011
– ident: ref24
– ident: ref69
– ident: ref76
– ident: ref1
  doi: 10.1016/j.artint.2021.103502
– ident: ref27
  doi: 10.5194/acp-16-14371-2016
– ident: ref40
  doi: 10.5194/amt-16-1597-2023
– ident: ref13
– ident: ref21
  doi: 10.1038/s41467-022-28989-z
– ident: ref86
– ident: ref36
– ident: ref80
  doi: 10.1021/acs.estlett.1c00327
– ident: ref65
– ident: ref44
– ident: ref47
  doi: 10.1029/2019RG000675
– ident: ref62
  doi: 10.5194/amt-16-669-2023
– ident: ref37
  doi: 10.1029/2021GL094151
– ident: ref39
  doi: 10.5194/amt-15-6585-2022
– ident: ref82
  doi: 10.1098/rsta.2010.0240
– ident: ref23
– ident: ref56
  doi: 10.1029/2012GL051440
– ident: ref57
  doi: 10.5194/acp-21-14159-2021
– ident: ref26
– ident: ref75
– ident: ref72
  doi: 10.5194/acp-15-7049-2015
– ident: ref79
– ident: ref54
– ident: ref71
– ident: ref16
– ident: ref12
– ident: ref33
– ident: ref87
  doi: 10.1021/acs.est.7b01356
– ident: ref8
  doi: 10.5194/amt-11-5507-2018
– ident: ref3
– ident: ref83
– ident: ref68
– ident: ref45
– ident: ref6
  doi: 10.5194/acp-21-5117-2021
– ident: ref9
  doi: 10.5194/amt-12-5443-2019
– ident: ref25
– ident: ref74
– ident: ref2
  doi: 10.1016/j.jqsrt.2006.09.013
– ident: ref51
– ident: ref48
– ident: ref42
  doi: 10.5194/acp-19-7859-2019
– ident: ref58
  doi: 10.1029/2002JD002299
– ident: ref78
– ident: ref19
– ident: ref63
  doi: 10.5194/acp-17-8395-2017
– ident: ref14
  doi: 10.1029/2010JD014514
– ident: ref61
  doi: 10.5194/amt-12-6771-2019
– ident: ref70
– ident: ref55
– ident: ref60
  doi: 10.1029/2012JD017549
– ident: ref4
– ident: ref29
  doi: 10.3390/rs12030375
– ident: ref50
  doi: 10.1098/rsta.2021.0106
– ident: ref53
  doi: 10.5194/essd-12-3383-2020
– ident: ref84
  doi: 10.5194/essd-12-1679-2020
– ident: ref41
  doi: 10.1038/s42256-019-0138-9
– ident: ref10
  doi: 10.1023/A:1010933404324
– ident: ref22
  doi: 10.1126/science.1106644
– ident: ref28
  doi: 10.5194/acp-22-9617-2022
– ident: ref59
  doi: 10.5194/essd-12-1561-2020
– ident: ref46
– ident: ref52
  doi: 10.1029/2011GL047871
– ident: ref81
  doi: 10.5194/acp-22-6811-2022
– ident: ref18
  doi: 10.1145/2939672.2939785
– ident: ref73
– ident: ref35
  doi: 10.1126/science.abj4351
– ident: ref77
– ident: ref43
  doi: 10.5194/acp-21-4339-2021
– ident: ref49
  doi: 10.1016/j.rse.2022.113335
– ident: ref11
  doi: 10.1016/j.rse.2013.04.024
– ident: ref15
  doi: 10.1016/j.rse.2011.05.030
– ident: ref17
  doi: 10.1080/17538940902951401
– ident: ref31
– ident: ref67
  doi: 10.1029/2021MS002881
SSID ssj0064172
Score 2.4880383
Snippet Satellite observations of dry-column methane mixing ratios (XCH4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to...
Satellite observations of dry-column methane mixing ratios (XCH.sub.4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource...
Satellite observations of dry-column methane mixing ratios (XCH4) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to...
Satellite observations of dry-column methane mixing ratios (XCH 4 ) from shortwave infrared (SWIR) solar backscatter radiation provide a powerful resource to...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3787
SubjectTerms Aerosol particles
Aerosols
Air pollution
Albedo
Albedo (solar)
Arid lands
Arid zones
Atmospheric methane
Backscatter
Bias
Cirrus clouds
Climate action
Climate change
Emissions
Emitters
Fourier transforms
Gases
Greenhouse effect
Greenhouse gases
Ground-based observation
Inspection
Learning algorithms
Machine learning
Methane
Methane emissions
Mixing ratio
Monitoring instruments
Pixels
Quality control
Radiation
Retrieval
Satellite data
Satellite instruments
Satellite observation
Satellite tracking
Satellites
Short wave radiation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hnrggniLQohVCIISsZNf7iI-horRIIahNpd5Ws-t1FCmxq9g98O-ZWTsVOQAXDj7YHlv2zOzszHr8fYy9Uzl46b3NhPAyUwVA5kGZrNSVkpYKjkTnM_9uzq_Vtxt98xvVF_WE9fDAveLGAUsCsFpaU0VlfFUEiIUtRV7mRiuVoi_Oeftiqo_BRolE20RobYSyJ_oPlJitqDFsu0wYHFg4uog7_GBCSrj9f4rOaco5e8weDbkin_XP-IQ9iPVTNppjmtvs0mo4f89PN2vMOdPeM_Zzxv0mrWnz5eXix2J-8enr4mq25C0k4M0ucuoI5bc9zCvHhJVDt21awhZYB0500lBHTs3wK75NfZaRD8QSK941PBCZB165S0Rc6KXcr3EebJ-z67Mvy9PzbOBWyEJe6DwDKEDEifXRBI0pSg5G-ipUppKyKCuPplNQgi-IOmIStPB-WgaNigUZPOYkL9hR3dTxJeNByEklSwx9RVDCi6kFHfBmeQCIVoURG-8V7MIAPE78FxuHBQiZxKFJnDCOTOLIJCP28f6K2x504y-yn8lm93IEl50OoBO5wYncv5xoxN6SxR0BYtTUcbOCu7Z1F1eXbmYNfcvFtHHEPgxCVYPPH2D4gQG1QBhaB5LHB5I4YsPh6b1juSFitE5ONZaWFrdX_-ONXrOHpB1a_RbTY3bU7e7iCaZPnX-TRsovx4wVqg
  priority: 102
  providerName: Directory of Open Access Journals
Title A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases
URI https://www.proquest.com/docview/2852607260
https://doaj.org/article/c828a75276fe46bf9cae97d13d365442
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9owELZW-rKXaT81tg5Z07RpmiKw4zjJ00Sr0nYSpaJU6pt1dhKEBISR9GH__e6M6cTD-sAD5IKCz3f-fD6-j7EvKgYrrU0jIayMVA4QWVA6KpJKyZQ2HF7OZ3ytL-_Ur_vkPhTcmtBWuc-JPlEXtaMaeV9mCULvFF8_N78jUo2i09UgoXHEjjEFZ1mHHZ-eX99M97lYK-Hlm4i1jdj2xO6gElGL6sOqjYTGAMMoIw3xg4XJ8_f_L0v7pWf0kr0ImJEPd05-xZ6V69esO0a4W299VZx_5WfLBWJP_-4N-zPkdulr23w2ndxMxlc_Lia3wxlvwBNwtiWnzlC-2dG9cgSuHNpV3RDHwMJxkpWGdcmpKX7OV77fsuRBYGLO25o7EvXAO7dekAtnK7cLXA-bt-xudD47u4yCxkLk4jyJI4AcRDlIbaldglAlBi1t5SpdSZkXlUUXKijA5iQhMXCJsDYrXIIDC9JZxCbvWGddr8v3jDshB5UsMAXmTgkrshQSh18WO4AyVa7L-vsBNi4QkJMOxtLgRoRcYtAlRmhDLjHkki77_njHZke-8YTtKfns0Y5os_0H9XZuQhQah_tLSBOZ6qpU2la5gzJPCxEXsU6Ukl32mTxuiBhjTZ03c3hoGnN1OzXDVNOZLsLHLvsWjKoan99B-CMDjgJxaR1YnhxYYuS6w8v7iWVC5mjMv3n-4enLH9lz-t1U3xbZCeu024fyEwKk1vbYUTa66IVY6Pkyw1_uRxCH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGOMAF8SkCAyzEhxCKWjuO0xwQKoOuZeuKtk7azdiOU1Vqk9JkQvun-Bt5z02GemC3HXJI8hJZfn4ftp9_P0LeiEgbbkwSMmZ4KFKtQ6OFDLM4FzzBCYen8xkfy-GZ-H4en--QP-1ZGCyrbH2id9RZaXGNvMN7MaTeCVyfV79CZI3C3dWWQmMzLA7d5W-YslWfRl9Bv285H3yb7g_DhlUgtFEaR6HWqWaumxgnbQzBOdKSm9zmMuc8zXIDjRY60yZF0oSujZkxvczGUjDNrYFoDP-9RW6LCCI5nkwfHLSeH0Q8WRRixCG2H9tsi0KOJDp6WYdMgjmDTSNj-VYY9GwB_4sJPtAN7pN7TYZK-5sh9YDsuOIhCcaQXJdrvwZP39H9xRwyXX_3iFz2qVn4lXQ6PZn8mIxHHw8mp_0prbSH-6wdxTpUutqAy1JIk6mul2WFiAZzS5HEWheOYgn-jC59daejDZ3FjNYltUghAl-uPf0X2AY1c4i-1WNydiN9_4TsFmXhnhJqGe_mPAOHm1rBDOslOrbws8hq7RJhA9JpO1jZBu4cWTcWCqY9qBIFKlFMKlSJQpUE5MPVF6sN1Mc1sl9QZ1dyCNLtH5TrmWpsXlmYzeok5onMnZAmT612aZKxKItkLAQPyGvUuEIYjgLrfGb6oqrU6PRE9ROJO8iQrAbkfSOUl9B-q5tjE9ALiNy1Jbm3JQl-wm6_bgeWavxUpf5Z1bPrX78id4bT8ZE6Gh0fPid3sQ9wZZ319shuvb5wLyA1q81Lbw-U_LxpA_wLUOZLfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEFdRGGAhLkIoau04TvOAUHdjZfSirpP25tmOU1Vqm9JkQvtr_DrOcZOhPrC3PeShyUmU-vjc7JPvI-S9CLXhxsQBY4YHItE6MFrIII0ywWMsODydT38gT87Fj4voYof8qb-FwbbK2id6R53mFtfIW7wTQeodw9HKqraI0eHxt9WvABmkcKe1ptPYTJFTd_0byrfia-8QdP2B8-OjycFJUDEMBDZMojDQOtHMtWPjpI0gUIdacpPZTGacJ2lm4A8InWqTIIFC20bMmE5qIymY5tZAZIbn3iO7MVZFDbK7fzQYjes4AEKeOgoR4xDpj202SSFjEi29KAMmwbjBwpG_fCsoeu6A_0UIH_aOH5GHVb5Ku5sJ9pjsuOUT0uxDqp2v_Yo8_UgP5jPIe_2vp-S6S83cr6vTyXg4GvZ7X74Pz7oTWmgP_lk6il2pdLWBmqWQNFNdLvIC8Q1mliKltV46ig35U7rwvZ6OVuQWU1rm1CKhCNy59mRgYCnUzCAWF8_I-Z2M_nPSWOZL94JQy3g74ym438QKZlgn1pGFh4VWaxcL2ySteoCVrcDPkYNjrqAIQpUoUIliUqFKFKqkST7f3LHaAH_cIruPOruRQ8hufyJfT1XlAZSF2lbHEY9l5oQ0WWK1S-KUhWkoIyF4k7xDjSsE5Vji9J7qq6JQvbOx6sYS95MhdW2ST5VQlsP7W119RAGjgDheW5J7W5LgNez25XpiqcprFeqfjb28_fJbch-MT_3sDU5fkQc4BLjMzjp7pFGur9xryNNK86YyCEou79oG_wI--1EQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+blended+TROPOMI%2BGOSAT+satellite+data+product+for+atmospheric+methane+using+machine+learning+to+correct+retrieval+biases&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Balasus%2C+Nicholas&rft.au=Jacob%2C+Daniel+J&rft.au=Lorente%2C+Alba&rft.au=Maasakkers%2C+Joannes+D&rft.date=2023-08-18&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.volume=16&rft.issue=16&rft.spage=3787&rft_id=info:doi/10.5194%2Famt-16-3787-2023&rft.externalDocID=A761389644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon