Metabolic engineering of bacteria for ethanol production

Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost‐effective process remains a challenge. Our work has focused primarily on the genetic engineering of enteric bacteria using a portable eth...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 58; no. 2-3; pp. 204 - 214
Main Authors Ingram, L. O., Gomez, P. F., Lai, X., Moniruzzaman, M., Wood, B. E., Yomano, L. P., York, S. W.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 20.04.1998
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost‐effective process remains a challenge. Our work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose‐derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism (pH 5.0–5.5) is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with Gram‐positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes. These include the development of enzyme‐based systems which eliminate the need for dilute acid hydrolysis or other pretreatments, improvements in existing pretreatments for enzymatic hydrolysis, process improvements to increase the effective use of cellulase and hemicellulase enzymes, improvements in rates of ethanol production, decreased nutrient costs, increases in ethanol concentrations achieved in biomass beers, increased resistance of the biocatalysts to lignocellulosic‐derived toxins, etc. To be useful, each of these improvements must result in a decrease in the cost for ethanol production. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:204–214, 1998.
AbstractList Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost‐effective process remains a challenge. Our work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose‐derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism (pH 5.0–5.5) is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with Gram‐positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes. These include the development of enzyme‐based systems which eliminate the need for dilute acid hydrolysis or other pretreatments, improvements in existing pretreatments for enzymatic hydrolysis, process improvements to increase the effective use of cellulase and hemicellulase enzymes, improvements in rates of ethanol production, decreased nutrient costs, increases in ethanol concentrations achieved in biomass beers, increased resistance of the biocatalysts to lignocellulosic‐derived toxins, etc. To be useful, each of these improvements must result in a decrease in the cost for ethanol production. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:204–214, 1998.
Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost-effective process remains a challenge. Our work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose-derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism (pH 5.0-5.5) is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with Gram-positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes. These include the development of enzyme-based systems which eliminate the need for dilute acid hydrolysis or other pretreatments, improvements in existing pretreatments for enzymatic hydrolysis, process improvements to increase the effective use of cellulase and hemicellulase enzymes, improvements in rates of ethanol production, decreased nutrient costs, increases in ethanol concentrations achieved in biomass beers, increased resistance of the biocatalysts to lignocellulosic-derived toxins, etc. To be useful, each of these improvements must result in a decrease in the cost for ethanol production.
Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost-effective process remains a challenge. Our work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose-derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism (pH 5.0-5.5) is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with Gram-positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes. These include the development of enzyme-based systems which eliminate the need for dilute acid hydrolysis or other pretreatments, improvements in existing pretreatments for enzymatic hydrolysis, process improvements to increase the effective use of cellulase and hemicellulase enzymes, improvements in rates of ethanol production, decreased nutrient costs, increases in ethanol concentrations achieved in biomass beers, increased resistance of the biocatalysts to lignocellulosic-derived toxins, etc. To be useful, each of these improvements must result in a decrease in the cost for ethanol production. Copyright 1998 John Wiley & Sons, Inc.
Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost-effective process remains a challenge. Our work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose-derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism (pH 5.0-5.5) is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with Gram-positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes. These include the development of enzyme-based systems which eliminate the need for dilute acid hydrolysis or other pretreatments, improvements in existing pretreatments for enzymatic hydrolysis, process improvements to increase the effective use of cellulase and hemicellulase enzymes, improvements in rates of ethanol production, decreased nutrient costs, increases in ethanol concentrations achieved in biomass beers, increased resistance of the biocatalysts to lignocellulosic-derived toxins, etc. To be useful, each of these improvements must result in a decrease in the cost for ethanol production. Copyright 1998 John Wiley & Sons, Inc.
Author Gomez, P. F.
Moniruzzaman, M.
Lai, X.
Ingram, L. O.
Wood, B. E.
York, S. W.
Yomano, L. P.
Author_xml – sequence: 1
  givenname: L. O.
  surname: Ingram
  fullname: Ingram, L. O.
  email: lingram@micro.ifas.ufl.edu
  organization: Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
– sequence: 2
  givenname: P. F.
  surname: Gomez
  fullname: Gomez, P. F.
  organization: Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
– sequence: 3
  givenname: X.
  surname: Lai
  fullname: Lai, X.
  organization: Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
– sequence: 4
  givenname: M.
  surname: Moniruzzaman
  fullname: Moniruzzaman, M.
  organization: Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
– sequence: 5
  givenname: B. E.
  surname: Wood
  fullname: Wood, B. E.
  organization: Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
– sequence: 6
  givenname: L. P.
  surname: Yomano
  fullname: Yomano, L. P.
  organization: Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
– sequence: 7
  givenname: S. W.
  surname: York
  fullname: York, S. W.
  organization: Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10191391$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS3Uim4LfwHlhLaHbMd2nNgLQloCLZHK7oFFFb2Mktguodm4xFlB_329TamQQIiTNePP743nHZK9znWGkAWFGQVgJ9NPRV4cU1BZDEzBlColIWFwLOScnfDXDJL5fFG8i98Wa8rf8BnM8tUrFudPyOTx1R6ZAEAac6HYATn0_lsoM5mmT8kBBaooV3RC5EczlJVrmzoy3VXTGdM33VXkbFSV9RCKMrKuj8zwtexcG930Tm_roXHdM7Jvy9ab5w_nEfl8-n6df4jPV2dFvjiPa64Ej1NZWW11BqmtEqs1KMasBaWYVppnvLKiZsbqiic8hcAaoawRtTQ6_FpIfkSmo26w_r41fsBN42vTtmVn3NYjlUJxYAnlAX35bzRNRDARAfwygnXvvO-NxZu-2ZT9LVLAXQKIuwRwt0vc7RJ_JYBCIkOOIQHEkADeJxAagPkq3ORB-8XDENtqY_RvyuPKA3A5Aj-a1tz-4fwfxn_zHRtBPB7FGz-Yn4_iZX-NacYzgRfLM5SXy2SdsCVe8DuwAbLL
Cites_doi 10.1002/bit.260400107
10.1093/nar/15.4.1753
10.1002/bit.260440213
10.1007/BF01573206
10.1128/AEM.54.2.397-404.1988
10.1007/BF01569920
10.1021/bp970027v
10.1007/BF00130766
10.1128/jb.169.3.1024-1028.1987
10.1007/BF01583716
10.1128/JB.113.1.512-514.1973
10.1007/BF00410966
10.1002/bit.260380311
10.1021/bk-1994-0566.ch016
10.1021/bp00023a013
10.1128/AEM.55.8.1943-1948.1989
10.1007/BF01570119
10.1016/0960-8524(94)90214-3
10.1021/bk-1997-0666.ch003
10.1128/jb.173.19.5975-5982.1991
10.1002/(SICI)1097-0290(19970805)55:3<547::AID-BIT12>3.0.CO;2-D
10.1021/bk-1994-0566.ch001
10.1128/AEM.57.10.2810-2815.1991
10.1007/BF00154635
10.1128/AEM.58.4.1128-1133.1992
10.1007/BF00170625
10.1038/nbt0596-620
10.1002/bit.260410903
10.1126/science.267.5195.240
10.1021/bk-1994-0566.ch009
10.1128/AEM.53.10.2420-2425.1987
10.1128/jb.169.3.949-954.1987
10.1126/science.251.4999.1318
10.1128/AEM.63.2.355-363.1997
10.1016/0032-9592(94)85017-8
10.1128/jb.179.6.1880-1886.1997
10.1128/AEM.53.9.2033-2038.1987
10.1021/bp00036a003
10.1128/AEM.56.2.463-465.1990
10.1128/AEM.57.4.893-900.1991
10.1016/S0167-7799(87)80008-2
10.1128/jb.169.6.2591-2597.1987
10.1021/bk-1994-0566.ch015
10.1111/j.1574-6976.1995.tb00170.x
10.1016/0960-8524(94)00094-H
10.1128/AEM.58.7.2103-2110.1992
10.1021/bk-1994-0566.ch021
10.1016/0141-0229(94)90003-5
10.1128/AEM.53.9.2039-2044.1987
10.1128/jb.172.5.2491-2497.1990
10.1128/jb.170.7.3310-3313.1988
ContentType Journal Article
Copyright Copyright © 1998 John Wiley & Sons, Inc.
Copyright_xml – notice: Copyright © 1998 John Wiley & Sons, Inc.
DBID BSCLL
NPM
AAYXX
CITATION
7QL
7QO
8FD
C1K
FR3
P64
7X8
DOI 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C
DatabaseName Istex
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 214
ExternalDocumentID 10_1002__SICI_1097_0290_19980420_58_2_3_204__AID_BIT13_3_0_CO_2_C
10191391
BIT13
ark_67375_WNG_8ZN4T42N_W
Genre article
Journal Article
GrantInformation_xml – fundername: U.S. Dept. of Energy, Office of Basic Energy Science
  funderid: DE‐FG02‐96ER20222
– fundername: Florida Agriculture Experimental Station
  funderid: R‐05396
– fundername: U.S. Dept. of Agriculture, National Research Initiative
  funderid: 95‐37308‐1843
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RNS
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZZTAW
~02
~IA
~KM
~WT
NPM
AAYXX
CITATION
7QL
7QO
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c3953-68bfdfd706fb4fdd0922ff0992d9d373bf5c2efdb34360bfde59fe5c8ed199583
IEDL.DBID DR2
ISSN 0006-3592
IngestDate Fri Aug 16 08:23:25 EDT 2024
Fri Aug 16 03:47:05 EDT 2024
Fri Aug 23 00:44:22 EDT 2024
Sat Sep 28 07:34:06 EDT 2024
Sat Aug 24 01:04:36 EDT 2024
Wed Oct 30 09:49:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2-3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3953-68bfdfd706fb4fdd0922ff0992d9d373bf5c2efdb34360bfde59fe5c8ed199583
Notes U.S. Dept. of Agriculture, National Research Initiative - No. 95-37308-1843
Florida Agriculture Experimental Station - No. R-05396
ark:/67375/WNG-8ZN4T42N-W
ArticleID:BIT13
U.S. Dept. of Energy, Office of Basic Energy Science - No. DE-FG02-96ER20222
istex:7E24108B1A2D84890EF7837B9C822414C28CD75E
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 10191391
PQID 16453605
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1859302413
proquest_miscellaneous_16453605
crossref_primary_10_1002__SICI_1097_0290_19980420_58_2_3_204__AID_BIT13_3_0_CO_2_C
pubmed_primary_10191391
wiley_primary_10_1002_SICI_1097_0290_19980420_58_2_3_204_AID_BIT13_3_0_CO_2_C_BIT13
istex_primary_ark_67375_WNG_8ZN4T42N_W
PublicationCentury 1900
PublicationDate 20 April 1998
PublicationDateYYYYMMDD 1998-04-20
PublicationDate_xml – month: 04
  year: 1998
  text: 20 April 1998
  day: 20
PublicationDecade 1990
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 1998
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References York, S. W., Ingram, L. O. 1996a. Ethanol production by recombinant Escherichia coli KO11 using crude yeast autolysate as a nutrient supplement. Biotechnol. Lett. 18: 683-688.
Beall, D. S., Ohta, K., Ingram, L. O. 1991. Parametric studies of ethanol production from xylose and other sugars by recombinant Escherichia coli. Biotechnol. Bioeng. 38: 296-303.
Lynd, L. R., Cushman, J. H., Nichols, R. J., Wyman, C. E. 1991. Fuel ethanol from cellulosic biomass. Science 251: 1318-1323.
Saier, M. H., Jr., Bromberg, F. G., Roseman, S. 1973. Characterization of constitutive galactose permease mutants in Salmonella typhimurium. J. Bacteriol. 113: 512-514.
Buchholz, S. E., Dooley, M. M., Eveleigh, D. E. 1987. Zymomonas-An alcoholic enigma. Trends in Biotechnol. 5: 199-204.
Ohta, K., Alterthum, F., Ingram, L. O. 1990. Effects of environmental conditions on xylose fermentation by recombinant Escherichia coli. Appl. Environ. Microbiol. 56: 463-465.
Keshav, K. F., Yomano, L. P., An, H., Ingram, L. O. 1990. Cloning of the Zymomonas mobilis alcohol dehydrogenase I (adhA): Sequence comparison and expression in Escherichia col. J. Bacteriol. 172: 2491-2497.
Wood, B. E., Ingram, L. O. 1992. Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomomas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl. Environ. Microbiol. 58: 2103-2110.
von Sivers, M., Zacchi, G. 1995. A techno-economical comparison of three processes for the production of ethanol from pine. Bio-resource Technol. 51: 43-52.
Wyman, C. E. 1994. Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresource Technol. 50: 3-16.
Doran, J. B., Aldrich, H. C., Ingram, L. O. 1994. Saccharification and fermentation of sugar cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway. Biotechnol. Bioeng. 44: 240-247.
Doran, J. B., Ingram, L. O. 1993. Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes. Biotechnol. Prog. 9: 533-538.
Ingram, L. O., Conway, T. 1988. Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl. Environ. Microbiol. 54: 397-404.
Guimaraes, W. V., Dudey, G. L., Ingram, L. O. 1992. Fermentation of sweet whey by ethanologenic Escherichia coli. Biotechnol. Bioeng. 40: 41-45.
Ingram, L. O., Doran, J. B. 1995. Conversion of cellulosic materials to ethanol. FEMS Microbiol. Rev. 16: 235-241.
Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., Preston, J. F. 1987. Genetic engineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. 53: 2420-2425.
Neale, A. D., Scopes, R. K., Wettenhall, R. E. H., Hoogenraad, N. J. 1987b. Pyruvate decarboxylase of Zymomonas mobilis: Isolation, properties and genetic expression in Escherichia coli. J. Bacteriol. 169: 1024-1028.
An, H., Scopes, R. K., Rodriguez, M., Ingram, L. O. 1991. Gel electrophoretic analysis of Zymomonas mobilis enzymes: Identification of alcohol dehydrogenase II as a stress protein. J. Bacteriol. 173: 5975-5982.
Conway, T. C., Sewell, G. W., Osman, Y. A., Ingram, L. O. 1987b. Cloning and nucleotide sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis. J. Bacteriol. 169: 2591-2597.
Wood, B. E., Aldrich, H. C., Ingram, L. O. 1997a. Ultrasound stimulates ethanol production during the simultaneous saccharification and fermentation of mixed waste office paper. Biotechnol. Prog. 13: 232-237.
Alterthum, F., Ingram, L. O. 1989. Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl. Eviron. Microbiol. 55: 1943-1948.
York, S. W., Ingram, L. O. 1996b. Soy-based medium for ethanol production by Escherichia coli KO11. J. Indust. Microbiol. 16: 374-376.
Neale, A. D., Scopes, R. K., Wettenhall, R. E. H., Hoogenraad, N. J. 1987a. Nucleotide sequence of the pyruvate decarboxylase gene from Zymomomonas mobilis. Nucleic Acid Res. 15: 1753-1761.
Zang, M., Eddy, C., Deanda, K., Finkelstein, M., Picataggio, S. 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267: 240-243.
Brooks, T. A., Ingram, L. O. 1995. Conversion of mixed waste office paper to ethanol by genetically engineered Klebsiella oxytoca strain P2. Biotechnol. Prog. 11: 619-625.
Tolan, J. S., Finn, R. K., 1987a. Fermentation of D-xylose and L-arabinose to ethanol by Erwinia chyrsanthemi. Appl. Environ. Microbiol. 53: 2033-2038.
Emert, G. H., Katzen, R., Fredrickson, R. E., Kampish, K. F., Yeats, C. E. 1983. Update on the 50 T/D cellulose to ethanol-plant. J. Appl. Poly. Sci. 37: 787-795.
Flores, N., Xiao, J., Berry, A., Bolivar, F., Valle, F. 1996. Pathway engineering for the production of aromatic compounds in Escherichia coli. Nature Biotech. 14: 620-623.
Moniruzzaman, M., Dien, B. S., Ferrer, B., Hespell, R. B., Dale, B. E., Ingram, L. O., Bothast, R. J. 1996. Ethanol production from AFEX pretreated corn fiber by recombinant bacteria. Biotechnol. Lett. 18: 955-990.
Tolan, J. S., Finn, R. K. 1987b. Fermentation of D-xylose to ethanol by genetically modified Klebsiella planticola. Appl. Environ. Microbiol. 53: 2039-2044.
du Preez, C. 1994. Process parameters and environmental factors affecting D-xylose fermentation by yeasts. Enzyme Microb. Technol. 16: 944-956.
Moniruzzaman, M., Lai, X., York, S. W., Ingram, L. O. 1997a. Extracellular melibiose and fructose are intermediates in raffinose catabolism during fermentation to ethanol by engineered enteric bacteria. J. Bacteriol. 179: 1880-1886.
Burchhardt, G., Ingram, L. O. 1992. Conversion of xylan to ethanol by ethanologenic strains of Escherichia coli and Klebsiella oxytoca. Appl. Environ. Microbiol. 58: 1128-1133.
Beall, D. S., Ingram, L. O. 1993. Genetic engineering of soft-rot bacteria for ethanol production from lignocellulose. J. Indust. Microbiol. 11: 151-155.
Barbosa, M. de F. S., Ingram, L. O. 1994. Expression of the Zymomonas mobilis alcohol dehydrogenase II (adhB) and pyruvate decarboxylase (pdc) genes in Bacillus. Curr. Microbiol. 28: 279-282.
Asghari, A., Bothast, R. J., Doran, J. B., Ingram, L. O. 1996. Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11. J. Indust. Microbiol. 16: 42-47.
Reynen, M., Sahm, H. 1988. Comparison of the structural genes for pyruvate decarboxylase in different strains of Zymomonas mobilis. J. Bacteriol. 170: 3310-3313.
Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., Ingram, L. O. 1991b. Metabolic engineering of Klebsiella oxytoca strain M5A1 for ethanol production from xylose and glucose. Appl. Environ. Microbiol. 57: 2810-2815.
Philippidis, G. P., Smith, T. K., Wyman, C. E. 1992. Study of enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol. Bioeng. 41: 846-853.
Conway, T., Osman, Y. A., Konnan, J. I., Hoffmann, E. M., Ingram, L. O. 1987a. Promoter and nucleotide sequences of the pyruvate decarboxylase gene from Zymomonas mobilis. J. Bacteriol. 169: 949-954.
Lai, X., Davis, F. C., Hespell, R. B., Ingram, L. O. 1997. Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: Functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides. Appl. Environ. Microbiol. 63: 355-363.
Wood, B. F., Beall, D. S., Ingram, L. O. 1997b. Production of recombinant bacterial endoglucanase as a co-product with ethanol during fermentation using derivatives of Escherichia coli KO11. Biotechnol. Bioengin. 55: 547-555.
Brett, C., Waldron, K. 1996. Physiology and Biochemistry of Plant Cell Walls, 2nd edition, pp. 1-255. Chapman & Hall, New York.
Brau, B., Sahm, H. 1986. Cloning and expression of the structural gene for pyruvate decarboxylase of Zymomonas mobilis in Escherichia coli. Arch. Microbiol. 144: 296-301.
Jones, A. M., Ingledew, W. M. 1994. Fuel ethanol production: Appraisal of nitrogeneous yeast foods for very high gravity wheat mash fermentation. Process Biochem. 29: 483-488.
Lindsay, S. E., Bothast, R. J., Ingram, L. O. 1995. Improved strains of recombinant Escherichia coli for ethanol production from sugar substrates. Appl. Microbiol. Biotechnol. 43: 70-75.
Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., Ingram, L. O. 1991a. Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. 57: 893-900.
1993; 9
1990; 56
1987; 5
1976
1997b
1992; 58
1994; 29
1994; 28
1987b; 169
1973; 113
1987a; 15
1986; 144
1987a; 169
1994b
1994a
1992; 40
1990; 172
1992; 41
1991; 251
1995; 51
1996b; 16
1991; 173
1991; 38
1987; 53
1996; 18
1991a; 57
1995; 16
1997a; 179
1988; 170
1987b; 53
1997; 63
1995; 11
1997a; 13
1988; 54
1994; 44
1997
1996
1995
1991b; 57
1994
1993
1991
1996; 14
1987a; 53
1996; 16
1983; 37
1997b; 55
1989; 55
1993; 11
1995; 43
1994; 16
1995; 267
1994; 50
1996a; 18
Beall (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB5) 1993; 11
Lynd (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB34) 1991; 251
Ohta (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB42) 1990; 56
du Preez (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB16) 1994; 16
Lindsay (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB33) 1995; 43
Wood (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB55) 1997a; 13
Asghari (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB3) 1996; 16
Tolan (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB52) 1987a; 53
Sivers (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB54) 1995; 51
Wyman (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB59) 1994; 50
Ingram (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB29) 1997
Ingram (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB28) 1995; 16
Moniruzzaman (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB37) 1996; 18
Zang (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB62) 1995; 267
Saier (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB50) 1973; 113
Jones (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB30) 1994; 29
Alterthum (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB1) 1989; 55
10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB19
Lai (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB32) 1997; 63
Tolan (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB53) 1987b; 53
Wood (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB57) 1992; 58
Reynen (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB49) 1988; 170
Conway (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB12) 1987a; 169
Philippidis (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB45) 1994
McMillan (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB35) 1994a
Philippidis (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB46) 1992; 41
Guimaraes (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB21) 1992; 40
Moniruzzaman (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB38) 1997a; 179
Doran (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB15) 1993; 9
Hahn-Hagerdal (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB22) 1993
Emert (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB17) 1983; 37
10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB23
Ingram (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB26) 1988; 54
Beall (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB6) 1991; 38
10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB25
10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB24
Buchholz (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB10) 1987; 5
York (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB60) 1996a; 18
Sheehan (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB51) 1994
Brau (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB7) 1986; 144
Doran (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB14) 1994; 44
Keshav (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB31) 1990; 172
Ohta (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB43) 1991a; 57
Neale (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB40) 1987a; 15
Burchhardt (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB11) 1992; 58
Wyman (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB58) 1995
Neale (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB41) 1987b; 169
Grohmann (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB20) 1993
Wood (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB56) 1997b; 55
An (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB2) 1991; 173
Barbosa (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB4) 1994; 28
Brett (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB8) 1996
Ramos (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB48) 1994
Conway (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB13) 1987b; 169
McMillan (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB36) 1994b
Flores (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB18) 1996; 14
Brooks (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB9) 1995; 11
Ohta (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB44) 1991b; 57
Postma (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB47) 1996
York (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB61) 1996b; 16
Ingram (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB27) 1987; 53
Moniruzzaman (10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB39) 1997b
References_xml – volume: 63
  start-page: 355
  year: 1997
  end-page: 363
  article-title: Cloning of cellobiose phosphoenolpyruvate‐dependent phosphotransferase genes: Functional expression in recombinant and identification of a putative binding region for disaccharides
  publication-title: Appl. Environ. Microbiol.
– volume: 113
  start-page: 512
  year: 1973
  end-page: 514
  article-title: Characterization of constitutive galactose permease mutants in
  publication-title: J. Bacteriol.
– volume: 18
  start-page: 683
  year: 1996a
  end-page: 688
  article-title: Ethanol production by recombinant KO11 using crude yeast autolysate as a nutrient supplement
  publication-title: Biotechnol. Lett.
– start-page: 325
  year: 1994
  end-page: 341
– volume: 13
  start-page: 232
  year: 1997a
  end-page: 237
  article-title: Ultrasound stimulates ethanol production during the simultaneous saccharification and fermentation of mixed waste office paper
  publication-title: Biotechnol. Prog.
– volume: 37
  start-page: 787
  year: 1983
  end-page: 795
  article-title: Update on the 50 T/D cellulose to ethanol‐plant
  publication-title: J. Appl. Poly. Sci.
– volume: 57
  start-page: 2810
  year: 1991b
  end-page: 2815
  article-title: Metabolic engineering of strain M5A1 for ethanol production from xylose and glucose
  publication-title: Appl. Environ. Microbiol.
– volume: 15
  start-page: 1753
  year: 1987a
  end-page: 1761
  article-title: Nucleotide sequence of the pyruvate decarboxylase gene from
  publication-title: Nucleic Acid Res.
– volume: 44
  start-page: 240
  year: 1994
  end-page: 247
  article-title: Saccharification and fermentation of sugar cane bagasse by P2 containing chromosomally integrated genes encoding the ethanol pathway
  publication-title: Biotechnol. Bioeng.
– start-page: 1149
  year: 1996
  end-page: 1174
– volume: 43
  start-page: 70
  year: 1995
  end-page: 75
  article-title: Improved strains of recombinant for ethanol production from sugar substrates
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 169
  start-page: 2591
  year: 1987b
  end-page: 2597
  article-title: Cloning and nucleotide sequencing of the alcohol dehydrogenase II gene from
  publication-title: J. Bacteriol.
– year: 1997b
– start-page: 1
  year: 1994
  end-page: 53
– volume: 53
  start-page: 2039
  year: 1987b
  end-page: 2044
  article-title: Fermentation of D‐xylose to ethanol by genetically modified
  publication-title: Appl. Environ. Microbiol.
– volume: 50
  start-page: 3
  year: 1994
  end-page: 16
  article-title: Ethanol from lignocellulosic biomass: Technology, economics, and opportunities
  publication-title: Bioresource Technol.
– volume: 173
  start-page: 5975
  year: 1991
  end-page: 5982
  article-title: Gel electrophoretic analysis of enzymes: Identification of alcohol dehydrogenase II as a stress protein
  publication-title: J. Bacteriol.
– start-page: 272
  year: 1995
  end-page: 290
– volume: 18
  start-page: 955
  year: 1996
  end-page: 990
  article-title: Ethanol production from AFEX pretreated corn fiber by recombinant bacteria
  publication-title: Biotechnol. Lett.
– volume: 11
  start-page: 151
  year: 1993
  end-page: 155
  article-title: Genetic engineering of soft‐rot bacteria for ethanol production from lignocellulose
  publication-title: J. Indust. Microbiol.
– start-page: 411
  year: 1994a
  end-page: 437
– volume: 58
  start-page: 2103
  year: 1992
  end-page: 2110
  article-title: Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant containing chromosomally integrated genes for ethanol production and plasmids expressing thermostable cellulase genes from
  publication-title: Appl. Environ. Microbiol.
– volume: 169
  start-page: 949
  year: 1987a
  end-page: 954
  article-title: Promoter and nucleotide sequences of the pyruvate decarboxylase gene from
  publication-title: J. Bacteriol.
– volume: 170
  start-page: 3310
  year: 1988
  end-page: 3313
  article-title: Comparison of the structural genes for pyruvate decarboxylase in different strains of
  publication-title: J. Bacteriol.
– volume: 55
  start-page: 547
  year: 1997b
  end-page: 555
  article-title: Production of recombinant bacterial endoglucanase as a co‐product with ethanol during fermentation using derivatives of KO11
  publication-title: Biotechnol. Bioengin.
– volume: 41
  start-page: 846
  year: 1992
  end-page: 853
  article-title: Study of enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process
  publication-title: Biotechnol. Bioeng.
– volume: 169
  start-page: 1024
  year: 1987b
  end-page: 1028
  article-title: Pyruvate decarboxylase of Isolation, properties and genetic expression in
  publication-title: J. Bacteriol.
– volume: 56
  start-page: 463
  year: 1990
  end-page: 465
  article-title: Effects of environmental conditions on xylose fermentation by recombinant
  publication-title: Appl. Environ. Microbiol.
– year: 1976
– volume: 144
  start-page: 296
  year: 1986
  end-page: 301
  article-title: Cloning and expression of the structural gene for pyruvate decarboxylase of in
  publication-title: Arch. Microbiol.
– volume: 51
  start-page: 43
  year: 1995
  end-page: 52
  article-title: A techno‐economical comparison of three processes for the production of ethanol from pine
  publication-title: Bio‐resource Technol.
– volume: 55
  start-page: 1943
  year: 1989
  end-page: 1948
  article-title: Efficient ethanol production from glucose, lactose, and xylose by recombinant
  publication-title: Appl. Eviron. Microbiol.
– volume: 9
  start-page: 533
  year: 1993
  end-page: 538
  article-title: Fermentation of crystalline cellulose to ethanol by containing chromosomally integrated genes
  publication-title: Biotechnol. Prog.
– start-page: 292
  year: 1994b
  end-page: 324
– start-page: 1
  year: 1996
  end-page: 255
– volume: 38
  start-page: 296
  year: 1991
  end-page: 303
  article-title: Parametric studies of ethanol production from xylose and other sugars by recombinant
  publication-title: Biotechnol. Bioeng.
– volume: 179
  start-page: 1880
  year: 1997a
  end-page: 1886
  article-title: Extracellular melibiose and fructose are intermediates in raffinose catabolism during fermentation to ethanol by engineered enteric bacteria
  publication-title: J. Bacteriol.
– volume: 172
  start-page: 2491
  year: 1990
  end-page: 2497
  article-title: Cloning of the alcohol dehydrogenase I ( ): Sequence comparison and expression in
  publication-title: J. Bacteriol.
– volume: 267
  start-page: 240
  year: 1995
  end-page: 243
  article-title: Metabolic engineering of a pentose metabolism pathway in ethanologenic
  publication-title: Science
– volume: 5
  start-page: 199
  year: 1987
  end-page: 204
  article-title: Zymomonas–An alcoholic enigma
  publication-title: Trends in Biotechnol.
– volume: 58
  start-page: 1128
  year: 1992
  end-page: 1133
  article-title: Conversion of xylan to ethanol by ethanologenic strains of and
  publication-title: Appl. Environ. Microbiol.
– volume: 53
  start-page: 2033
  year: 1987a
  end-page: 2038
  article-title: Fermentation of D‐xylose and L‐arabinose to ethanol by
  publication-title: Appl. Environ. Microbiol.
– volume: 16
  start-page: 944
  year: 1994
  end-page: 956
  article-title: Process parameters and environmental factors affecting D‐xylose fermentation by yeasts
  publication-title: Enzyme Microb. Technol.
– volume: 28
  start-page: 279
  year: 1994
  end-page: 282
  article-title: Expression of the alcohol dehydrogenase II ( ) and pyruvate decarboxylase ( ) genes in
  publication-title: Curr. Microbiol.
– volume: 29
  start-page: 483
  year: 1994
  end-page: 488
  article-title: Fuel ethanol production: Appraisal of nitrogeneous yeast foods for very high gravity wheat mash fermentation
  publication-title: Process Biochem.
– start-page: 188
  year: 1994
  end-page: 217
– volume: 14
  start-page: 620
  year: 1996
  end-page: 623
  article-title: Pathway engineering for the production of aromatic compounds in
  publication-title: Nature Biotech.
– volume: 57
  start-page: 893
  year: 1991a
  end-page: 900
  article-title: Genetic improvement of for ethanol production: Chromosomal integration of genes encoding pyruvate decarboxylase and alcohol dehydrogenase II
  publication-title: Appl. Environ. Microbiol.
– start-page: 183
  year: 1993
  end-page: 209
– volume: 53
  start-page: 2420
  year: 1987
  end-page: 2425
  article-title: Genetic engineering of ethanol production in
  publication-title: Appl. Environ. Microbiol.
– volume: 40
  start-page: 41
  year: 1992
  end-page: 45
  article-title: Fermentation of sweet whey by ethanologenic
  publication-title: Biotechnol. Bioeng.
– volume: 11
  start-page: 619
  year: 1995
  end-page: 625
  article-title: Conversion of mixed waste office paper to ethanol by genetically engineered strain P2
  publication-title: Biotechnol. Prog.
– volume: 54
  start-page: 397
  year: 1988
  end-page: 404
  article-title: Expression of different levels of ethanologenic enzymes from in recombinant strains of
  publication-title: Appl. Environ. Microbiol.
– volume: 16
  start-page: 374
  year: 1996b
  end-page: 376
  article-title: Soy‐based medium for ethanol production by KO11
  publication-title: J. Indust. Microbiol.
– start-page: 57
  year: 1997
  end-page: 73
– year: 1995
– volume: 251
  start-page: 1318
  year: 1991
  end-page: 1323
  article-title: Fuel ethanol from cellulosic biomass
  publication-title: Science
– year: 1991
– volume: 16
  start-page: 235
  year: 1995
  end-page: 241
  article-title: Conversion of cellulosic materials to ethanol
  publication-title: FEMS Microbiol. Rev.
– volume: 16
  start-page: 42
  year: 1996
  end-page: 47
  article-title: Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered strain KO11
  publication-title: J. Indust. Microbiol.
– start-page: 231
  year: 1993
  end-page: 290
– volume: 40
  start-page: 41
  year: 1992
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB21
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260400107
  contributor:
    fullname: Guimaraes
– volume: 15
  start-page: 1753
  year: 1987a
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB40
  publication-title: Nucleic Acid Res.
  doi: 10.1093/nar/15.4.1753
  contributor:
    fullname: Neale
– volume: 44
  start-page: 240
  year: 1994
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB14
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260440213
  contributor:
    fullname: Doran
– volume: 28
  start-page: 279
  year: 1994
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB4
  publication-title: Curr. Microbiol.
  doi: 10.1007/BF01573206
  contributor:
    fullname: Barbosa
– volume: 54
  start-page: 397
  year: 1988
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB26
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.54.2.397-404.1988
  contributor:
    fullname: Ingram
– volume: 16
  start-page: 42
  year: 1996
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB3
  publication-title: J. Indust. Microbiol.
  doi: 10.1007/BF01569920
  contributor:
    fullname: Asghari
– volume: 13
  start-page: 232
  year: 1997a
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB55
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp970027v
  contributor:
    fullname: Wood
– ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB24
– volume: 18
  start-page: 683
  year: 1996a
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB60
  publication-title: Biotechnol. Lett.
  doi: 10.1007/BF00130766
  contributor:
    fullname: York
– volume: 169
  start-page: 1024
  year: 1987b
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB41
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.169.3.1024-1028.1987
  contributor:
    fullname: Neale
– volume: 11
  start-page: 151
  year: 1993
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB5
  publication-title: J. Indust. Microbiol.
  doi: 10.1007/BF01583716
  contributor:
    fullname: Beall
– volume: 113
  start-page: 512
  year: 1973
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB50
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.113.1.512-514.1973
  contributor:
    fullname: Saier
– start-page: 1
  volume-title: Physiology and Biochemistry of Plant Cell Walls
  year: 1996
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB8
  contributor:
    fullname: Brett
– volume: 144
  start-page: 296
  year: 1986
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB7
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00410966
  contributor:
    fullname: Brau
– volume: 38
  start-page: 296
  year: 1991
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB6
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260380311
  contributor:
    fullname: Beall
– start-page: 325
  volume-title: Enzymatic conversion of biomass for fuels production
  year: 1994
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB48
  doi: 10.1021/bk-1994-0566.ch016
  contributor:
    fullname: Ramos
– volume: 9
  start-page: 533
  year: 1993
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB15
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp00023a013
  contributor:
    fullname: Doran
– volume: 55
  start-page: 1943
  year: 1989
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB1
  publication-title: Appl. Eviron. Microbiol.
  doi: 10.1128/AEM.55.8.1943-1948.1989
  contributor:
    fullname: Alterthum
– volume: 16
  start-page: 374
  year: 1996b
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB61
  publication-title: J. Indust. Microbiol.
  doi: 10.1007/BF01570119
  contributor:
    fullname: York
– volume: 50
  start-page: 3
  year: 1994
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB59
  publication-title: Bioresource Technol.
  doi: 10.1016/0960-8524(94)90214-3
  contributor:
    fullname: Wyman
– start-page: 57
  volume-title: Fuels and chemicals from biomass
  year: 1997
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB29
  doi: 10.1021/bk-1997-0666.ch003
  contributor:
    fullname: Ingram
– volume: 173
  start-page: 5975
  year: 1991
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB2
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.173.19.5975-5982.1991
  contributor:
    fullname: An
– volume: 55
  start-page: 547
  year: 1997b
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB56
  publication-title: Biotechnol. Bioengin.
  doi: 10.1002/(SICI)1097-0290(19970805)55:3<547::AID-BIT12>3.0.CO;2-D
  contributor:
    fullname: Wood
– start-page: 1
  volume-title: Enzymatic conversion of biomass for fuels production
  year: 1994
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB51
  doi: 10.1021/bk-1994-0566.ch001
  contributor:
    fullname: Sheehan
– volume: 57
  start-page: 2810
  year: 1991b
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB44
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.57.10.2810-2815.1991
  contributor:
    fullname: Ohta
– ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB23
– volume: 18
  start-page: 955
  year: 1996
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB37
  publication-title: Biotechnol. Lett.
  doi: 10.1007/BF00154635
  contributor:
    fullname: Moniruzzaman
– volume: 58
  start-page: 1128
  year: 1992
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB11
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.58.4.1128-1133.1992
  contributor:
    fullname: Burchhardt
– start-page: 231
  volume-title: Bioconversion of forest and agricultural residues
  year: 1993
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB22
  contributor:
    fullname: Hahn-Hagerdal
– start-page: 272
  volume-title: Enzymatic degradation of insoluble carbohydrates
  year: 1995
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB58
  contributor:
    fullname: Wyman
– volume: 43
  start-page: 70
  year: 1995
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB33
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00170625
  contributor:
    fullname: Lindsay
– start-page: 183
  volume-title: Bioconversion of forest and agricultural residues
  year: 1993
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB20
  contributor:
    fullname: Grohmann
– volume: 14
  start-page: 620
  year: 1996
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB18
  publication-title: Nature Biotech.
  doi: 10.1038/nbt0596-620
  contributor:
    fullname: Flores
– volume: 41
  start-page: 846
  year: 1992
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB46
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260410903
  contributor:
    fullname: Philippidis
– volume: 267
  start-page: 240
  year: 1995
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB62
  publication-title: Science
  doi: 10.1126/science.267.5195.240
  contributor:
    fullname: Zang
– start-page: 188
  volume-title: Enzymatic conversion of biomass for fuels production
  year: 1994
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB45
  doi: 10.1021/bk-1994-0566.ch009
  contributor:
    fullname: Philippidis
– volume: 53
  start-page: 2420
  year: 1987
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB27
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.53.10.2420-2425.1987
  contributor:
    fullname: Ingram
– volume: 169
  start-page: 949
  year: 1987a
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB12
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.169.3.949-954.1987
  contributor:
    fullname: Conway
– volume: 251
  start-page: 1318
  year: 1991
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB34
  publication-title: Science
  doi: 10.1126/science.251.4999.1318
  contributor:
    fullname: Lynd
– volume: 63
  start-page: 355
  year: 1997
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB32
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.63.2.355-363.1997
  contributor:
    fullname: Lai
– volume: 29
  start-page: 483
  year: 1994
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB30
  publication-title: Process Biochem.
  doi: 10.1016/0032-9592(94)85017-8
  contributor:
    fullname: Jones
– volume: 179
  start-page: 1880
  year: 1997a
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB38
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.179.6.1880-1886.1997
  contributor:
    fullname: Moniruzzaman
– volume: 53
  start-page: 2033
  year: 1987a
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB52
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.53.9.2033-2038.1987
  contributor:
    fullname: Tolan
– volume: 11
  start-page: 619
  year: 1995
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB9
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp00036a003
  contributor:
    fullname: Brooks
– volume: 56
  start-page: 463
  year: 1990
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB42
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.56.2.463-465.1990
  contributor:
    fullname: Ohta
– volume: 57
  start-page: 893
  year: 1991a
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB43
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.57.4.893-900.1991
  contributor:
    fullname: Ohta
– volume: 5
  start-page: 199
  year: 1987
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB10
  publication-title: Trends in Biotechnol.
  doi: 10.1016/S0167-7799(87)80008-2
  contributor:
    fullname: Buchholz
– volume: 169
  start-page: 2591
  year: 1987b
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB13
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.169.6.2591-2597.1987
  contributor:
    fullname: Conway
– start-page: 1149
  volume-title: Escherichia coli and Salmonella
  year: 1996
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB47
  contributor:
    fullname: Postma
– ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB25
– start-page: 292
  volume-title: Enzymatic conversion of biomass for fuels production
  year: 1994b
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB36
  doi: 10.1021/bk-1994-0566.ch015
  contributor:
    fullname: McMillan
– volume: 16
  start-page: 235
  year: 1995
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB28
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.1995.tb00170.x
  contributor:
    fullname: Ingram
– ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB19
– volume: 51
  start-page: 43
  year: 1995
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB54
  publication-title: Bio-resource Technol.
  doi: 10.1016/0960-8524(94)00094-H
  contributor:
    fullname: Sivers
– volume: 58
  start-page: 2103
  year: 1992
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB57
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.58.7.2103-2110.1992
  contributor:
    fullname: Wood
– start-page: 411
  volume-title: Enzymatic conversion of biomass for fuels production
  year: 1994a
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB35
  doi: 10.1021/bk-1994-0566.ch021
  contributor:
    fullname: McMillan
– volume: 16
  start-page: 944
  year: 1994
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB16
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/0141-0229(94)90003-5
  contributor:
    fullname: du Preez
– volume: 37
  start-page: 787
  year: 1983
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB17
  publication-title: J. Appl. Poly. Sci.
  contributor:
    fullname: Emert
– volume: 53
  start-page: 2039
  year: 1987b
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB53
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.53.9.2039-2044.1987
  contributor:
    fullname: Tolan
– year: 1997b
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB39
  contributor:
    fullname: Moniruzzaman
– volume: 172
  start-page: 2491
  year: 1990
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB31
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.172.5.2491-2497.1990
  contributor:
    fullname: Keshav
– volume: 170
  start-page: 3310
  year: 1988
  ident: 10.1002/(SICI)1097-0290(19980420)58:2/3<204::AID-BIT13>3.0.CO;2-C-BIB49
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.170.7.3310-3313.1988
  contributor:
    fullname: Reynen
SSID ssj0007866
Score 2.0095785
SecondaryResourceType review_article
Snippet Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 204
SubjectTerms ethanol
fermentation
lignocellulose
Title Metabolic engineering of bacteria for ethanol production
URI https://api.istex.fr/ark:/67375/WNG-8ZN4T42N-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F%28SICI%291097-0290%2819980420%2958%3A2%2F3%3C204%3A%3AAID-BIT13%3E3.0.CO%3B2-C
https://www.ncbi.nlm.nih.gov/pubmed/10191391
https://search.proquest.com/docview/16453605
https://search.proquest.com/docview/1859302413
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3dT9swED8hpn097KNsLPvMpIHgIa1rx4nTTZPaAKOTKBIUgfZixYktIViKoJW2ve1f2V-6c9y0sDFpL9OkPqSum-v9fHbueuefAd5kOiQZV2FADcYmYZSbQLGwwCgFv9COtTDVYRM7g2j7IPx4xI8W4Hu9F8bxQ8z-cLMzo1qv7QTP1EVrThqKDth-P-1jwGyTqAGhCbHURhg-oB3iZcIFDrLtyVZYSkmI7_DV7W8Evf6wjY2brEma6e4K69EgxVW8zWJbFLaxNyegioXLdtq4m_GE3oLu9Be01qz09ZnstVryOhcd2mLvUGKnM5P23sl6i5KuPAFv2MH8cp17e9Vbrh53W_fhRw2Uq3I5aU7Gqpl_-4VD8r8i-QDuTZ1pv-us_yEs6LIBS90yG48-f_VX_aq8tcobNOBmr766ndaH3DXg7iU-xiUQO3qMk-L0OPf1vN0fGV85UuvMRx_f1zbdMDr1zxxbLlr2IzjY2hym28H0aIkgZwlnQSSUKUwRk8io0BQFSSg1Br1lWiQFi5kyPKfaFGi3LCLYV_PEaJ4LXdg97YI9hsVyVOon4CNQeZFFIcnRVcpVJOIsUZRrTjIdJTz3YK8ebnnmGESk44qmUlrcp0UAiLqsMZdcSCqZRKylRJxlhTM2EJnu4iepB6uV4czumJ2f2BK9mMvDwQcpPg3CYUgH8tCDV7VlSYTWZoOyUo8mFxLjZI66cQ9e_6mH5cIjNvHqwbIzyksatC2hbNuD_cq0flPtLzS7TjHX8PSf3PUZ3HE7SnFlIs9hcXw-0S_QpRyrl9Ws_wn2slAO
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1bb9MwFD4am2DwwKXjEm4LEpu2h7SuHSdOQUhtttHC2klbp028WLnYEtpIp9FKwCN_hT_Kcdy0GwyJF4TUh9RxcnI-Hzvn5NifAV4myicJT32PaoxN_CDTXsr8HKMUvKAZKqHLzSb6g6B76L875scL8L1aC2P5IWYf3EzPKMdr08HNB-nGnDUUPbCDXtzDiNlkUT1CI2K4jTB-QEPEw4gLbGVTk62xmBIf_-Gv3dvyOr1hEwu3WZ3U47011qFefA2WcNBgZheErf05BVUobL7TRN6MR_QGtKeP0Ngw4jdnwjcq0ZtctGiDvUaRrdZM3Bsr7BWKuvQOXDLN-eUqB_eyv1y-8HbuwI8KKjvP5aQ-Gaf17NsvLJL_F8u7cHvqT7tt2wHuwYIqarDSLpLx6NNXd90tZ7iWqYMaXO9UR8txtc9dDW5doGRcAdFXY-wXpx8zV83L3ZF2U8trnbjo5rvKZBxGp-6ZJcxF474Phzvbw7jrTXeX8DIWceYFItW5zkMS6NTXeU4iSrVGh5nmUc5ClmqeUaVzNF0WEKyreKQVz4TKzbJ2wR7AYjEq1CNwEagsTwKfZOgtZWkgwiRKKVecJCqIeObAftXe8sySiEhLF02lNLhP5wEg6rLCXHIhqWQSsZYScZYlzlhAZLyHZ2IH1kvLmd0xOT8xs_RCLo8Gb6X4MPCHPh3IIwdWK9OSCK1JCCWFGk0-SwyVOerGHXjxpxqGDo-Y3KsDD61VXtCgaThlmw4clLb1m2p_odlVitmCx__krquw3B32d-Vub_D-Cdy0C0xxoCJPYXF8PlHP0MMcp8_LIeAnHJpUKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1LbxMxEB6VVhQ48EhpWV5dJFq1h00cP_YREFKyaWiApqhN1YqLtQ9bQi1JVBIJuPFX-KWM19mkhSJxQUg5bBxnJ_N57J3JjD8DPE8UJ4lIuUc1xibcz7SXMp5jlIJfqAcq1MVhE3s9f_eIvzkRJwvwvdwLY_khZn-4mZlRrNdmgo9yXZuThqIDdtiNuxgwmySqR2hEDLURhg9oh3gZiRAH2fRkGyymhOM7fDW7ba_V7dexcYdVSTXe32At6sXXYIn7jJiqsPbBnIEqCG260wTeTER0GZrTn1DbMuK3Z8K3StHbImzQGnuJIhuNmbhXVtgLFHXpEbhkRvPLVf7tZXe5eN517sCPEilb5nJanYzTavbtFxLJ_wrlXbg99abdpjX_e7CgBhVYaQ6S8fDTV3fTLepbi8RBBa63yqsbcXnKXQVuXSBkXIFwT41xVpx9zFw1b3eH2k0tq3XiopPvKpNvGJ65I0uXi6Z9H446O_1415ueLeFlLBLM88NU5zoPiK9TrvOcRJRqje4yzaOcBSzVIqNK52i4zCfYV4lIK5GFKjeb2kO2CouD4UA9ABeByvLE5yRDXylL_TBIopQKJUii_EhkDhyUwy1HlkJEWrJoKqXBfVoFgKjLEnMpQkklk4i1lIizLHDGBiLjffwkdmCzMJzZHZPzU1OjFwh53Hstww893ue0J48dWC8tSyK0Jh2UDNRw8llioCxQN-HAsz_1MGR4xGReHVizRnlBg7phlK07cFiY1m-q_YVmVylmGx7-k7uuw_L7dke-6_bePoKbdncprlLkMSyOzyfqCbqX4_RpsQD8BJvmUtc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+engineering+of+bacteria+for+ethanol+production&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Ingram%2C+L.+O.&rft.au=Gomez%2C+P.+F.&rft.au=Lai%2C+X.&rft.au=Moniruzzaman%2C+M.&rft.date=1998-04-20&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=58&rft.issue=2-3&rft.spage=204&rft.epage=214&rft_id=info:doi/10.1002%2F%28SICI%291097-0290%2819980420%2958%3A2%2F3%3C204%3A%3AAID-BIT13%3E3.0.CO%3B2-C&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_8ZN4T42N_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon