The three-dimensional structure of fronts in mid-latitude weather systems in numerical weather prediction models
Atmospheric fronts are a widely used conceptual model in meteorology, most encountered as two-dimensional (2-D) front lines on surface analysis charts. The three-dimensional (3-D) dynamical structure of fronts has been studied in the literature by means of “standard” 2-D maps and cross-sections and...
Saved in:
Published in | Geoscientific Model Development Vol. 16; no. 15; pp. 4427 - 4450 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
02.08.2023
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X |
DOI | 10.5194/gmd-16-4427-2023 |
Cover
Loading…
Abstract | Atmospheric fronts are a widely used conceptual model in
meteorology, most encountered as two-dimensional (2-D) front lines on
surface analysis charts. The three-dimensional (3-D) dynamical structure of
fronts has been studied in the literature by means of “standard” 2-D maps
and cross-sections and is commonly sketched in 3-D illustrations of
idealized weather systems in atmospheric science textbooks. However, only
recently has the feasibility of the objective detection and visual analysis of 3-D
frontal structures and their dynamics within numerical weather prediction
(NWP) data been proposed, and such approaches are not yet widely known
in the atmospheric science community. In this article, we investigate the
benefit of objective 3-D front detection for case studies of extra-tropical
cyclones and for comparison of frontal structures between different NWP
models. We build on a recent gradient-based detection approach, combined
with modern 3-D interactive visual analysis techniques, and adapt it to
handle data from state-of-the-art NWP models including those run at
convection-permitting kilometre-scale resolution. The parameters of the
detection method (including data smoothing and threshold parameters) are
evaluated to yield physically meaningful structures. We illustrate the
benefit of the method by presenting two case studies of frontal dynamics
within mid-latitude cyclones. Examples include joint interactive visual
analysis of 3-D fronts and warm conveyor belt (WCB) trajectories, as well as
identification of the 3-D frontal structures characterizing the different
stages of a Shapiro–Keyser cyclogenesis event. The 3-D frontal structures
show agreement with 2-D fronts from surface analysis charts and augment the
surface charts by providing additional pertinent information in the vertical
dimension. A second application illustrates the relation between convection
and 3-D cold-front structure by comparing data from simulations with
parameterized and explicit convection. Finally, we consider “secondary
fronts” that commonly appear in UK Met Office surface analysis charts.
Examination of a case study shows that for this event the secondary front is
not a temperature-dominated but a humidity-dominated feature. We argue that
the presented approach has great potential to be beneficial for more complex
studies of atmospheric dynamics and for operational weather forecasting. |
---|---|
AbstractList | Atmospheric fronts are a widely used conceptual model in meteorology, most encountered as two-dimensional (2-D) front lines on surface analysis charts. The three-dimensional (3-D) dynamical structure of fronts has been studied in the literature by means of "standard" 2-D maps and cross-sections and is commonly sketched in 3-D illustrations of idealized weather systems in atmospheric science textbooks. However, only recently has the feasibility of the objective detection and visual analysis of 3-D frontal structures and their dynamics within numerical weather prediction (NWP) data been proposed, and such approaches are not yet widely known in the atmospheric science community. In this article, we investigate the benefit of objective 3-D front detection for case studies of extra-tropical cyclones and for comparison of frontal structures between different NWP models. We build on a recent gradient-based detection approach, combined with modern 3-D interactive visual analysis techniques, and adapt it to handle data from state-of-the-art NWP models including those run at convection-permitting kilometre-scale resolution. The parameters of the detection method (including data smoothing and threshold parameters) are evaluated to yield physically meaningful structures. We illustrate the benefit of the method by presenting two case studies of frontal dynamics within mid-latitude cyclones. Examples include joint interactive visual analysis of 3-D fronts and warm conveyor belt (WCB) trajectories, as well as identification of the 3-D frontal structures characterizing the different stages of a Shapiro-Keyser cyclogenesis event. The 3-D frontal structures show agreement with 2-D fronts from surface analysis charts and augment the surface charts by providing additional pertinent information in the vertical dimension. A second application illustrates the relation between convection and 3-D cold-front structure by comparing data from simulations with parameterized and explicit convection. Finally, we consider "secondary fronts" that commonly appear in UK Met Office surface analysis charts. Examination of a case study shows that for this event the secondary front is not a temperature-dominated but a humidity-dominated feature. We argue that the presented approach has great potential to be beneficial for more complex studies of atmospheric dynamics and for operational weather forecasting. Atmospheric fronts are a widely used conceptual model in meteorology, most encountered as two-dimensional (2-D) front lines on surface analysis charts. The three-dimensional (3-D) dynamical structure of fronts has been studied in the literature by means of “standard” 2-D maps and cross-sections and is commonly sketched in 3-D illustrations of idealized weather systems in atmospheric science textbooks. However, only recently has the feasibility of the objective detection and visual analysis of 3-D frontal structures and their dynamics within numerical weather prediction (NWP) data been proposed, and such approaches are not yet widely known in the atmospheric science community. In this article, we investigate the benefit of objective 3-D front detection for case studies of extra-tropical cyclones and for comparison of frontal structures between different NWP models. We build on a recent gradient-based detection approach, combined with modern 3-D interactive visual analysis techniques, and adapt it to handle data from state-of-the-art NWP models including those run at convection-permitting kilometre-scale resolution. The parameters of the detection method (including data smoothing and threshold parameters) are evaluated to yield physically meaningful structures. We illustrate the benefit of the method by presenting two case studies of frontal dynamics within mid-latitude cyclones. Examples include joint interactive visual analysis of 3-D fronts and warm conveyor belt (WCB) trajectories, as well as identification of the 3-D frontal structures characterizing the different stages of a Shapiro–Keyser cyclogenesis event. The 3-D frontal structures show agreement with 2-D fronts from surface analysis charts and augment the surface charts by providing additional pertinent information in the vertical dimension. A second application illustrates the relation between convection and 3-D cold-front structure by comparing data from simulations with parameterized and explicit convection. Finally, we consider “secondary fronts” that commonly appear in UK Met Office surface analysis charts. Examination of a case study shows that for this event the secondary front is not a temperature-dominated but a humidity-dominated feature. We argue that the presented approach has great potential to be beneficial for more complex studies of atmospheric dynamics and for operational weather forecasting. |
Audience | Academic |
Author | Eisenstein, Lea Hewson, Tim Beckert, Andreas A. Rautenhaus, Marc Oertel, Annika Craig, George C. |
Author_xml | – sequence: 1 givenname: Andreas A. orcidid: 0000-0002-5753-1019 surname: Beckert fullname: Beckert, Andreas A. – sequence: 2 givenname: Lea orcidid: 0000-0001-9977-0176 surname: Eisenstein fullname: Eisenstein, Lea – sequence: 3 givenname: Annika orcidid: 0000-0002-3196-2304 surname: Oertel fullname: Oertel, Annika – sequence: 4 givenname: Tim orcidid: 0000-0002-3266-8828 surname: Hewson fullname: Hewson, Tim – sequence: 5 givenname: George C. surname: Craig fullname: Craig, George C. – sequence: 6 givenname: Marc orcidid: 0000-0002-2715-2165 surname: Rautenhaus fullname: Rautenhaus, Marc |
BookMark | eNp1kktv1DAUhSNUJNrCnmUkVixSch07jpdVxWOkSkhQ1pYf1zMeJfFgO4L--zodXoPAXti695xPfpyL6mwOM1bVS2ivGAj6ZjvZBvqGUsIb0pLuSXUOQkAj-rY7-2P_rLpIad-2veA9P68Odzus8y4iNtZPOCcfZjXWKcfF5CViHVztYphzqv1cT942o8o-Lxbrb6jyDmOd7lPG6bE_LxNGbwrgZ_MQ0XqTC7WegsUxPa-eOjUmfPFjvay-vHt7d_Ohuf34fnNzfduYTrCuIZpZ7RwgF1p3SukBBDoKFgfgzBDOrLK6tQqYBmAMFFc9R84QNGXGdpfV5si1Qe3lIfpJxXsZlJePhRC3UsXszYiydTgYJIzojlBuhSagywCkTOihX1mvjqxDDF8XTFnuwxLLOyVJBkoZ5wPpfqu2qkD97EKOykw-GXnNmeh6CgKK6uofqjItTt6UP3W-1E8Mr08MRZPxe96qJSW5-fzpVNsetSaGlCK6XxeHVq4xkSUmEnq5xkSuMSmW_i-L8VmtH1bO5cf_Gx8AgFbEww |
CitedBy_id | crossref_primary_10_5194_gmd_16_4427_2023 crossref_primary_10_5194_gmd_16_4617_2023 crossref_primary_10_5194_gmd_18_1017_2025 crossref_primary_10_1002_qj_4866 |
Cites_doi | 10.1002/qj.3803 10.1256/qj.04.157 10.1007/BF01032457 10.1145/37401.37422 10.1109/TVCG.2018.2864806 10.1002/met.204 10.1175/1520-0493(1919)47<95:OTSOMC>2.0.CO;2 10.1175/MWR-D-10-05013.1 10.1002/met.142 10.1029/2010GL046451 10.5194/wcd-3-1199-2022 10.1175/JCLI-D-12-00720.1 10.1002/qj.3666 10.1256/smsqj.51602 10.1175/2010BAMS3057.1 10.1002/qj.3500 10.1175/1520-0493(1998)126<1767:TEOLSF>2.0.CO;2 10.1175/MWR-D-16-0112.1 10.1175/MWR-D-18-0289.1 10.5194/wcd-2-867-2021 10.1109/DICTA.2010.30 10.5194/wcd-1-617-2020 10.1007/978-1-944970-33-8_10 10.5194/wcd-1-127-2020 10.1175/MWR3056.1 10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2 10.1175/1520-0493(1993)121<2177:TLCOAE>2.0.CO;2 10.1002/2015GL063988 10.1175/MWR-D-13-00348.1 10.1109/TVCG.2019.2934310 10.1175/BAMS-D-18-0137.1 10.1109/TVCG.2017.2743989 10.1175/BAMS-D-17-0003.1 10.1175/1520-0493(1940)068<0243:RBEPTA>2.0.CO;2 10.1175/BAMS-D-16-0261.1 10.1175/1520-0493(1965)093<0547:EINOFA>2.3.CO;2 10.1017/S1350482798000553 10.1175/1520-0477(1995)076<0505:ACFDSA>2.0.CO;2 10.1175/BAMS-D-15-00073.1 10.5194/wcd-3-113-2022 10.5194/gmd-16-4427-2023 10.5194/gmd-15-1079-2022 10.1256/smsqj.45608 10.5194/gmd-8-2329-2015 10.5194/gmd-8-2355-2015 10.5194/gmd-15-4447-2022 10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2 10.1109/TVCG.2017.2779501 10.1256/smsqj.53605 10.5194/gmd-6-1989-2013 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 Copernicus GmbH 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 Copernicus GmbH – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.5194/gmd-16-4427-2023 |
DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1991-9603 1991-962X |
EndPage | 4450 |
ExternalDocumentID | oai_doaj_org_article_0fe8ce252b3247d9b21bbbb1e459b86d A759364191 10_5194_gmd_16_4427_2023 |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GroupedDBID | 5VS 8R4 8R5 AAFWJ AAYXX ABDBF ACUHS ADBBV AENEX AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION ESX GROUPED_DOAJ H13 IAO IEA IEP ISR ITC KQ8 OK1 P2P Q2X RKB RNS TR2 TUS BBORY 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M LK5 M7R M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS |
ID | FETCH-LOGICAL-c3953-2b5dbff1e79bb3aab819ef41de8175c275dadb0da15b11551a7a67e75e1b45cd3 |
IEDL.DBID | 8FG |
ISSN | 1991-9603 1991-959X 1991-962X |
IngestDate | Wed Aug 27 01:29:22 EDT 2025 Fri Jul 25 18:57:24 EDT 2025 Wed Mar 19 01:52:34 EDT 2025 Tue Jun 10 21:21:49 EDT 2025 Fri Jun 27 06:04:58 EDT 2025 Tue Jul 01 03:33:21 EDT 2025 Thu Apr 24 22:54:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3953-2b5dbff1e79bb3aab819ef41de8175c275dadb0da15b11551a7a67e75e1b45cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2715-2165 0000-0002-5753-1019 0000-0001-9977-0176 0000-0002-3196-2304 0000-0002-3266-8828 |
OpenAccessLink | https://www.proquest.com/docview/2844577823?pq-origsite=%requestingapplication% |
PQID | 2844577823 |
PQPubID | 105726 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0fe8ce252b3247d9b21bbbb1e459b86d proquest_journals_2844577823 gale_infotracmisc_A759364191 gale_infotracacademiconefile_A759364191 gale_incontextgauss_ISR_A759364191 crossref_primary_10_5194_gmd_16_4427_2023 crossref_citationtrail_10_5194_gmd_16_4427_2023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-02 |
PublicationDateYYYYMMDD | 2023-08-02 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Geoscientific Model Development |
PublicationYear | 2023 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref62 – ident: ref26 doi: 10.1002/qj.3803 – ident: ref36 doi: 10.1256/qj.04.157 – ident: ref29 doi: 10.1007/BF01032457 – ident: ref37 doi: 10.1145/37401.37422 – ident: ref32 doi: 10.1109/TVCG.2018.2864806 – ident: ref24 – ident: ref28 doi: 10.1002/met.204 – ident: ref12 doi: 10.1175/1520-0493(1919)47<95:OTSOMC>2.0.CO;2 – ident: ref4 doi: 10.1175/MWR-D-10-05013.1 – ident: ref9 – ident: ref30 doi: 10.1002/met.142 – ident: ref10 doi: 10.1029/2010GL046451 – ident: ref17 doi: 10.5194/wcd-3-1199-2022 – ident: ref38 doi: 10.1175/JCLI-D-12-00720.1 – ident: ref21 doi: 10.1002/qj.3666 – ident: ref2 – ident: ref35 doi: 10.1256/smsqj.51602 – ident: ref65 – ident: ref6 – ident: ref59 doi: 10.1175/2010BAMS3057.1 – ident: ref40 – ident: ref47 doi: 10.1002/qj.3500 – ident: ref60 doi: 10.1175/1520-0493(1998)126<1767:TEOLSF>2.0.CO;2 – ident: ref51 doi: 10.1175/MWR-D-16-0112.1 – ident: ref63 doi: 10.1175/MWR-D-18-0289.1 – ident: ref43 doi: 10.5194/wcd-2-867-2021 – ident: ref34 doi: 10.1109/DICTA.2010.30 – ident: ref13 doi: 10.5194/wcd-1-617-2020 – ident: ref61 doi: 10.1007/978-1-944970-33-8_10 – ident: ref48 doi: 10.5194/wcd-1-127-2020 – ident: ref25 doi: 10.1175/MWR3056.1 – ident: ref33 doi: 10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2 – ident: ref7 – ident: ref45 doi: 10.1175/1520-0493(1993)121<2177:TLCOAE>2.0.CO;2 – ident: ref1 doi: 10.1002/2015GL063988 – ident: ref39 doi: 10.1175/MWR-D-13-00348.1 – ident: ref41 – ident: ref22 – ident: ref3 doi: 10.1109/TVCG.2019.2934310 – ident: ref64 doi: 10.1175/BAMS-D-18-0137.1 – ident: ref31 doi: 10.1109/TVCG.2017.2743989 – ident: ref57 doi: 10.1175/BAMS-D-17-0003.1 – ident: ref19 – ident: ref11 doi: 10.1175/1520-0493(1940)068<0243:RBEPTA>2.0.CO;2 – ident: ref58 doi: 10.1175/BAMS-D-16-0261.1 – ident: ref55 doi: 10.1175/1520-0493(1965)093<0547:EINOFA>2.3.CO;2 – ident: ref27 doi: 10.1017/S1350482798000553 – ident: ref56 doi: 10.1175/1520-0477(1995)076<0505:ACFDSA>2.0.CO;2 – ident: ref50 doi: 10.1175/BAMS-D-15-00073.1 – ident: ref46 doi: 10.5194/wcd-3-113-2022 – ident: ref5 doi: 10.5194/gmd-16-4427-2023 – ident: ref14 doi: 10.5194/gmd-15-1079-2022 – ident: ref15 doi: 10.1256/smsqj.45608 – ident: ref52 doi: 10.5194/gmd-8-2329-2015 – ident: ref53 doi: 10.5194/gmd-8-2355-2015 – ident: ref42 – ident: ref23 doi: 10.5194/gmd-15-4447-2022 – ident: ref49 – ident: ref20 doi: 10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2 – ident: ref54 doi: 10.1109/TVCG.2017.2779501 – ident: ref16 doi: 10.1256/smsqj.53605 – ident: ref44 doi: 10.5194/gmd-6-1989-2013 – ident: ref8 – ident: ref18 |
SSID | ssj0069767 ssj0069768 |
Score | 2.3193665 |
Snippet | Atmospheric fronts are a widely used conceptual model in
meteorology, most encountered as two-dimensional (2-D) front lines on
surface analysis charts. The... Atmospheric fronts are a widely used conceptual model in meteorology, most encountered as two-dimensional (2-D) front lines on surface analysis charts. The... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4427 |
SubjectTerms | 3-D graphics Air currents Algorithms Analysis Atmospheric dynamics Atmospheric fronts Atmospheric models Atmospheric sciences Belt conveyors Case studies Charts Cold fronts Convection Cyclogenesis Cyclones Data smoothing Detection Dynamic meteorology Extratropical cyclones Frontal dynamics Fronts Hurricanes Illustrations Latitude Meteorology Modelling Numerical prediction Numerical weather forecasting Parameters Prediction models Simulation Software Structures Surface analysis (chemical) Textbooks Three dimensional analysis Tropical cyclones Two dimensional analysis Visualization Warm air Weather Weather forecasting |
SummonAdditionalLinks | – databaseName: Acceso a contenido Full Text - Doaj dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwR6weerRJEEB_CbXaTzeaxirX64INauLeQyUcptHtHr4f433cm2Tu8B_XFfdzMQvY3k5kJmfyGsTcRF7MCLYVRQQmyEAFKZdE3sWljAGJYp2qLr_3Zufqy0IvfWn1RTVilB67AzZuchpBa3QKGfhMttBLwkUlpC0Mfyfs2ttlupqoP7jHIlrYqVNdjtV3UA0rMVtT84joK2QulWiOod_heQCq8_X_yziXknD5iD6dckZ_UOR6ye2l8zO5_Kr14fz1hK1Qxv0VdJBGJo7_ya_DKCLu5SXyZeSZ-gjW_HPn1ZRTl2somJv6zJn688jiX8XFTz26udoOrGzrEIcXx0i9n_ZSdn3788eFMTA0UROis7kQLOkLOMhkL0HkPGP5TVjKmAbOG0BodfYQmeqlBUu7kje9NMjpJUDrE7hk7GJdjes64bbPxOQQIGTfTMlqVbFCpG7QfAGKasfkWRRcmdnFqcnHlcJdBuDvE3cneEe6OcJ-xd7svVpVZ4y-y70kxOznixC4v0FLcZCnuX5YyY69JrY5YL0Yqq7nwm_Xaff7-zZ0YamyocO86Y28nobzE-Qc_3VJAFIgoa0_yeE8Sl2XYH95aj5vcwtphLqC0waSse_E__uiIPSB0Sj1ie8wO0L7SS8yRbuFVWQ53IPEP3A priority: 102 providerName: Directory of Open Access Journals |
Title | The three-dimensional structure of fronts in mid-latitude weather systems in numerical weather prediction models |
URI | https://www.proquest.com/docview/2844577823 https://doaj.org/article/0fe8ce252b3247d9b21bbbb1e459b86d |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY58sWxfEGIw9iES2ZNlPI-madnsoo1shb0KfodA6Wdww9t_vTlay5mHNi4nvDPbd6e4knX5HyAcPg1lYyZkSTjC0EGaFiKwa-3HhnUWEday2OK_OLsW3uZznBbcul1VufWJy1H7pcI18BG5USAXxrPy8-sWwaxTuruYWGg_JIYdIg3Zez063nriCUKvu_knn4rDUp6mKeb9nCQmMGC1uPOMVE6JQDNuJ78WoBOX_P4edotDsKXmS00c66fX9jDwI7XPy6DS15_3zgqxA6_QW1BOYR9j-HnKD9iCxm3Wgy0gjQhZ09KqlN1eepZMsGx_o7z4XpD20c6K3m34753pHXK1xXwd1SVMLne4luZyd_Dw-Y7mnAnNlI0tWWOltjDyoxtrSGAsZQYiC-1BDIuEKJb3xduwNl5ZjOmWUqVRQMnArpPPlK3LQLtvwmtCmiMpE56yLML_mvhGhcSKUtTS1tT4MyGgrRe0y4Dj2vbjWMPFAuWuQu-aVRrlrlPuAfNo9serBNu7hnaJidnwIk51uLNcLnUedHsdQu1DIwkLeqHxjC27hx4OQja0rPyDvUa0agTBarLRZmE3X6a8_LvREYa9DAdPZAfmYmeIS3t-ZfHABpIDYWXucR3ucMFLdPnlrPTp7ik7_s-s395Pfksf43an4sDgiB2A54R0kRLd2mKx-SA4n0y_TGVynJ-ffL4ZpeeEvMx4Nag |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgQXxFOEFrAQCHGwEnvtdfaAUAstCS0RKq2Um1m_okrtJs02qvqn-I3M7COQA701t8STKBrPy-uZ7yPkrQdnllZxpqWTDC2EWSkjS_u-L7yziLCO3RbjdHgiv03UZIP8bmdhsK2yjYlVoPYzh8_IexBGpdKQz5JP8wuGrFF4u9pSaNRmcRCur-DIVn4cfYH9fSfE_t7x5yFrWAWYSzKVMGGVtzHyoDNrkzy3kBNDlNyHAaRSJ7Tyubd9n3NlORYUuc5THbQK3ErlfAK_e4dsSpxo7ZDN3b3xj6M29qeQ3PW_b6pJPGwuylIxqW9JoWSSvem5ZzxlUgrNkMB8LStW5AH_SxFV3tt_SB40BSvdqS3sEdkIxWNy92tFCHz9hMzBzuglGERgHokCapAPWsPSLheBziKNCJJQ0tOCnp96Vs3OLH2gV3X1SWsw6Wq9WNYXSGerxfkCb5LQemhF2lM-JSe3ou9npFPMivCc0ExEnUfnrItwouc-kyFzMiQDlQ-s9aFLeq0WjWsgzpFp48zAUQf1bkDvhqcG9W5Q713yYfWNeQ3vcYPsLm7MSg6BuasPZoupafzc9GMYuCCUsFCpap9ZwS28eJAqs4PUd8kb3FaD0BsF9vZM82VZmtHPI7OjkV1RwgG6S943QnEG_9_lzagEaAHRutYkt9ckITa49eXWekwTm0rz15Ne3Lz8mtwbHn8_NIej8cEWuY86qFofxTbpgBWFl1COXdpXjQ9Q8uu23e4PVxVJIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYgL4ikCBSwEQhysxF57vXtAqFDShqIKAZV6c9evqFK7CdlGVf8av44Z724gB3prboknUTSe53r8fYS89uDM0irOtHSSoYUwK2Vk-ciPhHcWEdZx2uIg3zuUX47U0Qb53d-FwbHKPiamQO1nDp-RDyGMSqUhn2XD2I1FfNsZf5j_YsgghSetPZ1GayL74fIC2rfm_WQH9vqNEOPPPz_tsY5hgLmsVBkTVnkbIw-6tDarKgv5MUTJfSggrTqhla-8HfmKK8uxuKh0leugVeBWKucz-N0b5KbOdImNXzHe7bNADmle__sm3cnDMaMyF0fteSkUT3I4PfOM50xKoRlSma_lx0Qj8L9kkTLg-B6525WudLu1tftkI9QPyK3dRA18-ZDMweLoOZhGYB4pA1q4D9oC1C4Xgc4ijQiX0NCTmp6deJZu0Sx9oBdtHUpbWOm0Xi_bo6TT1eJ8gWdKaEc00fc0j8jhtWj7MdmsZ3V4Qmgpoq6ic9ZF6O25L2UonQxZoarCWh8GZNhr0bgO7Bw5N04NND2odwN6Nzw3qHeDeh-Qd6tvzFugjytkP-LGrOQQojt9MFtMTefxZhRD4YJQwkLNqn1pBbfw4kGq0ha5H5BXuK0GQThqNOdptWwaM_nx3Wxr5FmU0EoPyNtOKM7g_7uquzQBWkDcrjXJrTVJiBJufbm3HtNFqcb89amnVy-_JLfB2czXycH-M3IHVZBmIMUW2QQjCs-hLju3L5IDUHJ83R73B_fuS_I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+three-dimensional+structure+of+fronts+in+mid-latitude+weather+systems+in+numerical+weather+prediction+models&rft.jtitle=Geoscientific+model+development&rft.au=Beckert%2C+Andreas+A&rft.au=Eisenstein%2C+Lea&rft.au=Oertel%2C+Annika&rft.au=Hewson%2C+Tim&rft.date=2023-08-02&rft.pub=Copernicus+GmbH&rft.issn=1991-959X&rft.volume=16&rft.issue=15&rft.spage=4427&rft_id=info:doi/10.5194%2Fgmd-16-4427-2023&rft.externalDocID=A759364191 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon |