p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage
The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we repor...
Saved in:
Published in | Cell research Vol. 25; no. 3; pp. 351 - 369 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ
113p53
expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ
113p53
M/M
mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes
rad51
,
lig4
and
rad52
by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ
133p53
expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy. |
---|---|
AbstractList | The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy. The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ 113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ 113p53 M/M mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51 , lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ 133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy. The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy. |
Author | Ye, Shengfan Gong, Lu Chen, Jun Liu, Cong Ou, Zhao Chang, Changqing Yang, Lina Yin, Le Zhang, Zhenhai Gong, Hongjian Pan, Xiao Peng, Jinrong Tao, Ting Lane, David P |
Author_xml | – sequence: 1 givenname: Lu surname: Gong fullname: Gong, Lu organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences – sequence: 2 givenname: Hongjian surname: Gong fullname: Gong, Hongjian organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences – sequence: 3 givenname: Xiao surname: Pan fullname: Pan, Xiao organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences – sequence: 4 givenname: Changqing surname: Chang fullname: Chang, Changqing organization: College of Natural Resources and Environment, South China Agricultural University – sequence: 5 givenname: Zhao surname: Ou fullname: Ou, Zhao organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences – sequence: 6 givenname: Shengfan surname: Ye fullname: Ye, Shengfan organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences – sequence: 7 givenname: Le surname: Yin fullname: Yin, Le organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences – sequence: 8 givenname: Lina surname: Yang fullname: Yang, Lina organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences – sequence: 9 givenname: Ting surname: Tao fullname: Tao, Ting organization: College of Animal Sciences, Zhejiang University – sequence: 10 givenname: Zhenhai surname: Zhang fullname: Zhang, Zhenhai organization: and Division of Nephrology, National Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University – sequence: 11 givenname: Cong surname: Liu fullname: Liu, Cong organization: Developmental and Stem Cell Institute, West China Second University Hospital, Sichuan University – sequence: 12 givenname: David P surname: Lane fullname: Lane, David P organization: Biomedical Research Council, Agency for Science and Technology Research – sequence: 13 givenname: Jinrong surname: Peng fullname: Peng, Jinrong email: pengjr@zju.edu.cn organization: College of Animal Sciences, Zhejiang University – sequence: 14 givenname: Jun surname: Chen fullname: Chen, Jun email: chenjun2009@zju.edu.cn organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25698579$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdtuFSEUhompsQe98QEMl8ZmdoGBGebGpGk9NGn0Rq8Jw6zZpc7ACIyJj-B9n8tnKrjbRk0TElbg-_91OkR7zjtA6CUlG0pqeWLChhEqNow9QQe05bJqZS33ckwIrUhD2D46jPGaECa4oM_QPhNNJ0XbHaBfi6ixjX70Yca_byit88NJDuoS4CX42SeI-PzTKR782k9QxRS0G3AfQH_DARZtA06-oAlMwgamCY9ZhwfQ6QoXNoKDaMAZwNZlTVy8i1BUf3z1rLfwHD0d9RThxd19hL6-f_fl7GN1-fnDxdnpZWXqTrCKcy2JaaQRwDQQowfKBj2AEY3UNetHGAfdtboztKUyT4AbaAwfG8Lb3gCrj9Dbne-y9jMMuarcz6SWYGcdfiqvrfr3x9krtfU_FK95xwTNBq_vDIL_vkJMaraxdK0d-DUq2jQkH0a6jL76O9dDkvv5Z4DsABN8jAFGZWzSyfqS2k6KElVWrExQZcWKlfrf_Ce5d30UPt7BMUNuC0Fd-zW4PN_H6FtVwLcx |
CitedBy_id | crossref_primary_10_1080_15384101_2021_1909260 crossref_primary_10_3390_fishes8040191 crossref_primary_10_3390_jcdd10060246 crossref_primary_10_1631_jzus_B1900167 crossref_primary_10_1038_s41419_021_03438_9 crossref_primary_10_1093_jmcb_mjv069 crossref_primary_10_1016_j_neuroscience_2022_06_004 crossref_primary_10_1038_s41418_018_0085_8 crossref_primary_10_1038_s41419_019_1861_1 crossref_primary_10_1136_jitc_2020_001846 crossref_primary_10_3389_fncel_2017_00326 crossref_primary_10_1002_cbin_11181 crossref_primary_10_1155_2019_4260309 crossref_primary_10_2144_fsoa_2020_0085 crossref_primary_10_1016_j_envres_2024_120504 crossref_primary_10_1093_jmcb_mjy068 crossref_primary_10_3390_ijms17121982 crossref_primary_10_1038_s41388_017_0117_8 crossref_primary_10_1080_23723556_2015_1033587 crossref_primary_10_1007_s00335_018_9758_3 crossref_primary_10_1016_j_pharmthera_2020_107492 crossref_primary_10_1093_carcin_bgaa071 crossref_primary_10_7554_eLife_61389 crossref_primary_10_1038_s41419_021_03954_8 crossref_primary_10_1101_cshperspect_a026039 crossref_primary_10_1038_s41419_023_05731_1 crossref_primary_10_1093_nar_gkz105 crossref_primary_10_3390_cancers15112918 crossref_primary_10_1371_journal_pone_0284327 crossref_primary_10_1038_s41375_024_02367_8 crossref_primary_10_1038_s41388_017_0101_3 crossref_primary_10_1038_srep37281 crossref_primary_10_1186_s12979_024_00437_0 crossref_primary_10_1038_s41419_024_06783_7 crossref_primary_10_1080_14737159_2019_1563484 crossref_primary_10_1186_s43141_022_00388_3 crossref_primary_10_1016_j_bbcan_2023_188882 crossref_primary_10_1016_j_biochi_2022_09_013 crossref_primary_10_1002_mabi_201800205 crossref_primary_10_1007_s11033_021_06314_z crossref_primary_10_1016_j_nano_2018_09_003 crossref_primary_10_1038_cdd_2017_48 crossref_primary_10_18632_oncotarget_27521 crossref_primary_10_1038_s41419_020_02781_7 crossref_primary_10_1016_j_pathol_2024_02_003 crossref_primary_10_1038_s41467_017_02408_0 crossref_primary_10_18632_oncotarget_4371 crossref_primary_10_3390_cancers13122885 crossref_primary_10_1371_journal_pone_0172125 crossref_primary_10_4331_wjbc_v10_i3_44 crossref_primary_10_1016_j_jgg_2021_06_011 crossref_primary_10_7554_eLife_74611 crossref_primary_10_1096_fba_1028 crossref_primary_10_3390_cancers14133145 crossref_primary_10_15252_embr_202153085 crossref_primary_10_2174_1570180820666230227114821 crossref_primary_10_1007_s11033_019_05127_5 crossref_primary_10_1096_fj_201801973R crossref_primary_10_3892_mmr_2017_6162 crossref_primary_10_1016_j_molcel_2024_10_006 crossref_primary_10_3390_ijms20236023 crossref_primary_10_1073_pnas_2317735121 crossref_primary_10_1016_j_ecoenv_2023_115911 crossref_primary_10_1371_journal_pone_0256938 crossref_primary_10_2147_CMAR_S263559 crossref_primary_10_3390_cancers10090288 crossref_primary_10_1038_s41418_019_0445_z crossref_primary_10_3390_ijms252212108 crossref_primary_10_1186_s13619_020_00049_1 crossref_primary_10_1002_path_5111 crossref_primary_10_1016_j_celrep_2019_11_032 crossref_primary_10_14336_AD_2016_0910 crossref_primary_10_12688_f1000research_12682_1 crossref_primary_10_3390_cancers12113422 crossref_primary_10_3390_ijms18091952 crossref_primary_10_1038_cdd_2016_37 crossref_primary_10_1152_ajpheart_00160_2018 crossref_primary_10_1038_s41419_024_06769_5 crossref_primary_10_1038_s41467_024_46578_0 crossref_primary_10_3390_ijms20246257 |
Cites_doi | 10.1073/pnas.0504614102 10.1038/nm0302-282 10.1073/pnas.132268899 10.1016/j.molcel.2006.05.022 10.1016/j.cell.2009.04.037 10.1038/sj.onc.1203809 10.1038/cdd.2010.91 10.1016/j.dnarep.2010.09.018 10.1101/gad.1761609 10.1038/sj.onc.1201143 10.1038/nrc2716 10.1073/pnas.0813088106 10.1074/jbc.R300027200 10.1038/emboj.2008.15 10.1093/carcin/bgs370 10.1038/onc.2012.242 10.1002/jcb.21091 10.1093/carcin/bgp117 10.1038/sj.cdd.4401903 10.1038/sj.onc.1203142 10.1016/j.jgg.2014.01.001 10.1038/nrc2587 10.1101/gad.1339905 10.1089/zeb.2009.0598 10.1101/gad.1366405 10.1038/ncb1928 10.1016/j.jgg.2012.07.009 10.1074/jbc.M411176200 10.1016/j.jmb.2003.12.050 10.1038/cdd.2011.120 10.1016/j.canlet.2010.12.006 10.1093/nar/25.19.3868 10.1038/onc.2010.26 10.1016/j.jgg.2012.07.004 10.1038/nrc2723 10.1038/nm.2546 10.1016/j.suronc.2011.12.002 10.1128/MCB.22.17.6306-6317.2002 10.1038/sj.onc.1207982 10.1038/sj.embor.7400587 10.1101/gad.1204304 10.1073/pnas.0406252102 10.1038/cr.2013.16 10.1016/j.mrrev.2003.07.001 10.1126/science.1218351 10.1016/j.molcel.2010.09.019 10.1038/sj.onc.1206632 10.1093/genetics/142.3.693 |
ContentType | Journal Article |
Copyright | Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2015 Copyright © 2015 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2015 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
Copyright_xml | – notice: Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2015 – notice: Copyright © 2015 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2015 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1038/cr.2015.22 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Δ113p53/Δ133p53 promotes DNA double-strand break repair |
EISSN | 1748-7838 |
EndPage | 369 |
ExternalDocumentID | PMC4349251 25698579 10_1038_cr_2015_22 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -01 -0A -Q- -SA -S~ 0R~ 29B 2WC 36B 39C 3V. 4.4 406 53G 5GY 5VR 5XA 5XB 6J9 70F 7X7 88E 8FE 8FH 8FI 8FJ 92E 92I 92M 9D9 9DA AACDK AAHBH AANZL AASML AATNV AAXDM AAYZH AAZLF ABAKF ABAWZ ABJNI ABUWG ABZZP ACAOD ACGFO ACGFS ACIWK ACKTT ACMJI ACPRK ACRQY ACZOJ ADBBV ADFRT ADHDB AEFQL AEJRE AEMSY AENEX AESKC AEUYN AEVLU AEXYK AFBBN AFKRA AFRAH AFSHS AFUIB AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF AOIJS AXYYD BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C1A CAG CAJEA CCEZO CCPQU CCVFK CHBEP COF CS3 CW9 DIK DNIVK DPUIP DU5 E3Z EBLON EBS EE. EIOEI EJD EMB EMOBN F5P FA0 FDQFY FERAY FIGPU FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HYE HZ~ IWAJR JSO JUIAU JZLTJ KQ8 LGEZI LK8 LOTEE M1P M7P NADUK NAO NQJWS NXXTH O9- OK1 P2P PQQKQ PROAC PSQYO Q-- Q-0 R-A RNS RNT RNTTT ROL RPM RT1 S.. SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT T8Q TAOOD TBHMF TCJ TDRGL TGP TR2 U1F U1G U5A U5K UKHRP WFFXF XSB ~88 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7X8 PPXIY PQGLB 5PM ABRTQ PJZUB |
ID | FETCH-LOGICAL-c3952-44a80c68c5e2ae0cad12dadec568a32bfefda97a9c17181004ce6c4f6047bce23 |
ISSN | 1001-0602 1748-7838 |
IngestDate | Thu Aug 21 18:32:25 EDT 2025 Fri Jul 11 02:10:52 EDT 2025 Wed Feb 19 02:31:42 EST 2025 Tue Jul 01 03:41:33 EDT 2025 Thu Apr 24 23:02:36 EDT 2025 Fri Feb 21 02:38:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | SSA senescence Δ113p53/Δ133p53 cell death p53 isoform HR NHEJ |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3952-44a80c68c5e2ae0cad12dadec568a32bfefda97a9c17181004ce6c4f6047bce23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/cr201522.pdf |
PMID | 25698579 |
PQID | 1660660209 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4349251 proquest_miscellaneous_1660660209 pubmed_primary_25698579 crossref_citationtrail_10_1038_cr_2015_22 crossref_primary_10_1038_cr_2015_22 springer_journals_10_1038_cr_2015_22 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150300 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 3 year: 2015 text: 20150300 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cell research |
PublicationTitleAbbrev | Cell Res |
PublicationTitleAlternate | Cell Res |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Dudas, Chovanec (CR1) 2004; 566 Huang, Zhu, Lin, Zhang (CR50) 2012; 39 Sung, Krejci, Van, Sehorn (CR38) 2003; 278 Hakem (CR2) 2008; 27 Henriquez-Hernandez, Bordon, Pinar (CR46) 2012; 21 Mayer, Popanda, Greve (CR47) 2011; 302 Ou, Yin, Chang, Peng, Chen (CR43) 2014; 41 Xia, Sheng, Nakanishi (CR33) 2006; 22 Boehden, Akyuz, Roemer, Wiesmuller (CR17) 2003; 22 Chen, Ng, Chang (CR26) 2009; 23 Yoon, Wang, Stapleford, Wiesmuller, Chen (CR35) 2004; 336 Keimling, Wiesmuller (CR14) 2009; 30 Hoh, Jin, Parrado (CR5) 2002; 99 Willers, McCarthy, Wu (CR15) 2000; 19 Buchhop, Gibson, Wang (CR18) 1997; 25 Zoric, Horvat, Slade (CR44) 2013; 34 Berghmans, Murphey, Wienholds (CR32) 2005; 102 Bykov, Issaeva, Shilov (CR41) 2002; 8 Marcel, Vijayakumar, Fernandez-Cuesta (CR27) 2010; 29 Aoubala, Murray-Zmijewski, Khoury (CR28) 2011; 18 Marcel, Dichtel-Danjoy, Sagne (CR42) 2011; 18 Purvis, Karhohs, Mock (CR21) 2012; 336 Hiom (CR3) 2010; 9 Helton, Chen (CR10) 2007; 100 Zhang, Liu, Cheng, Wang (CR22) 2009; 106 Romanova, Willers, Blagosklonny, Powell (CR19) 2004; 23 Liu, Gong, Chang (CR31) 2012; 39 Bernard, Garmy-Susini, Ainaoui (CR30) 2013; 32 Vrekoussis, Chaniotis, Navrozoglou (CR48) 2009; 29 Fujita, Mondal, Horikawa (CR29) 2009; 11 Mekeel, Tang, Kachnic (CR12) 1997; 14 Ivanov, Sugawara, Fishman-Lobell, Haber (CR40) 1996; 142 Ciccia, Elledge (CR4) 2010; 40 Bochkareva, Kaustov, Ayed (CR36) 2005; 102 Meek (CR9) 2009; 9 Chen, Ruan, Ng (CR24) 2005; 19 Friedler, Veprintsev, Rutherford, von Glos, Fersht (CR37) 2005; 280 Susse, Janz, Janus, Deppert, Wiesmuller (CR34) 2000; 19 Chen, Peng (CR25) 2009; 6 Linke, Sengupta, Khabie (CR16) 2003; 63 Vousden, Prives (CR8) 2009; 137 Arias-Lopez, Lazaro-Trueba, Kerr (CR20) 2006; 7 Barnett, West, Dunning (CR45) 2009; 9 Tao, Shi, Guan (CR49) 2013; 23 Akyuz, Boehden, Susse (CR13) 2002; 22 Mills, Ferguson, Essers (CR39) 2004; 18 Levine, Oren (CR7) 2009; 9 Gatz, Wiesmuller (CR11) 2006; 13 Amson, Pece, Lespagnol (CR6) 2012; 18 Bourdon, Fernandes, Murray-Zmijewski (CR23) 2005; 19 D Yoon (BFcr201522_CR35) 2004; 336 P Sung (BFcr201522_CR38) 2003; 278 J Chen (BFcr201522_CR26) 2009; 23 T Tao (BFcr201522_CR49) 2013; 23 A Friedler (BFcr201522_CR37) 2005; 280 R Hakem (BFcr201522_CR2) 2008; 27 P Huang (BFcr201522_CR50) 2012; 39 R Amson (BFcr201522_CR6) 2012; 18 V Marcel (BFcr201522_CR27) 2010; 29 M Aoubala (BFcr201522_CR28) 2011; 18 GC Barnett (BFcr201522_CR45) 2009; 9 J Liu (BFcr201522_CR31) 2012; 39 K Hiom (BFcr201522_CR3) 2010; 9 DW Meek (BFcr201522_CR9) 2009; 9 KL Mekeel (BFcr201522_CR12) 1997; 14 S Berghmans (BFcr201522_CR32) 2005; 102 E Bochkareva (BFcr201522_CR36) 2005; 102 J Chen (BFcr201522_CR24) 2005; 19 KH Vousden (BFcr201522_CR8) 2009; 137 LY Romanova (BFcr201522_CR19) 2004; 23 SP Linke (BFcr201522_CR16) 2003; 63 S Buchhop (BFcr201522_CR18) 1997; 25 J Chen (BFcr201522_CR25) 2009; 6 JC Bourdon (BFcr201522_CR23) 2005; 19 K Fujita (BFcr201522_CR29) 2009; 11 ES Helton (BFcr201522_CR10) 2007; 100 H Willers (BFcr201522_CR15) 2000; 19 A Ciccia (BFcr201522_CR4) 2010; 40 AJ Levine (BFcr201522_CR7) 2009; 9 XP Zhang (BFcr201522_CR22) 2009; 106 V Marcel (BFcr201522_CR42) 2011; 18 VJ Bykov (BFcr201522_CR41) 2002; 8 C Arias-Lopez (BFcr201522_CR20) 2006; 7 KD Mills (BFcr201522_CR39) 2004; 18 Z Ou (BFcr201522_CR43) 2014; 41 SA Gatz (BFcr201522_CR11) 2006; 13 N Akyuz (BFcr201522_CR13) 2002; 22 M Keimling (BFcr201522_CR14) 2009; 30 JE Purvis (BFcr201522_CR21) 2012; 336 B Xia (BFcr201522_CR33) 2006; 22 EL Ivanov (BFcr201522_CR40) 1996; 142 GS Boehden (BFcr201522_CR17) 2003; 22 T Vrekoussis (BFcr201522_CR48) 2009; 29 LA Henriquez-Hernandez (BFcr201522_CR46) 2012; 21 J Hoh (BFcr201522_CR5) 2002; 99 C Mayer (BFcr201522_CR47) 2011; 302 S Susse (BFcr201522_CR34) 2000; 19 A Zoric (BFcr201522_CR44) 2013; 34 A Dudas (BFcr201522_CR1) 2004; 566 H Bernard (BFcr201522_CR30) 2013; 32 |
References_xml | – volume: 102 start-page: 15412 year: 2005 end-page: 15417 ident: CR36 article-title: Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504614102 – volume: 8 start-page: 282 year: 2002 end-page: 288 ident: CR41 article-title: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound publication-title: Nat Med doi: 10.1038/nm0302-282 – volume: 99 start-page: 8467 year: 2002 end-page: 8472 ident: CR5 article-title: The p53MH algorithm and its application in detecting p53-responsive genes publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.132268899 – volume: 22 start-page: 719 year: 2006 end-page: 729 ident: CR33 article-title: Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2 publication-title: Mol Cell doi: 10.1016/j.molcel.2006.05.022 – volume: 137 start-page: 413 year: 2009 end-page: 431 ident: CR8 article-title: Blinded by the light: the growing complexity of p53 publication-title: Cell doi: 10.1016/j.cell.2009.04.037 – volume: 19 start-page: 4500 year: 2000 end-page: 4512 ident: CR34 article-title: Role of heteroduplex joints in the functional interactions between human Rad51 and wild-type p53 publication-title: Oncogene doi: 10.1038/sj.onc.1203809 – volume: 18 start-page: 248 year: 2011 end-page: 258 ident: CR28 article-title: p53 directly transactivates Delta133p53alpha, regulating cell fate outcome in response to DNA damage publication-title: Cell Death Differ doi: 10.1038/cdd.2010.91 – volume: 9 start-page: 1256 year: 2010 end-page: 1263 ident: CR3 article-title: Coping with DNA double strand breaks publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2010.09.018 – volume: 23 start-page: 278 year: 2009 end-page: 290 ident: CR26 article-title: p53 isoform delta113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish publication-title: Genes Dev doi: 10.1101/gad.1761609 – volume: 63 start-page: 2596 year: 2003 end-page: 2605 ident: CR16 article-title: p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination publication-title: Cancer Res – volume: 14 start-page: 1847 year: 1997 end-page: 1857 ident: CR12 article-title: Inactivation of p53 results in high rates of homologous recombination publication-title: Oncogene doi: 10.1038/sj.onc.1201143 – volume: 9 start-page: 714 year: 2009 end-page: 723 ident: CR9 article-title: Tumour suppression by p53: a role for the DNA damage response? publication-title: Nat Rev Cancer doi: 10.1038/nrc2716 – volume: 106 start-page: 12245 year: 2009 end-page: 12250 ident: CR22 article-title: Cell fate decision mediated by p53 pulses publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0813088106 – volume: 278 start-page: 42729 year: 2003 end-page: 42732 ident: CR38 article-title: Rad51 recombinase and recombination mediators publication-title: J Biol Chem doi: 10.1074/jbc.R300027200 – volume: 27 start-page: 589 year: 2008 end-page: 605 ident: CR2 article-title: DNA damage repair; the good, the bad, and the ugly publication-title: EMBO J doi: 10.1038/emboj.2008.15 – volume: 34 start-page: 522 year: 2013 end-page: 529 ident: CR44 article-title: Differential effects of diverse p53 isoforms on TAp73 transcriptional activity and apoptosis publication-title: Carcinogenesis doi: 10.1093/carcin/bgs370 – volume: 32 start-page: 2150 year: 2013 end-page: 2160 ident: CR30 article-title: The p53 isoform, delta133p53alpha, stimulates angiogenesis and tumour progression publication-title: Oncogene doi: 10.1038/onc.2012.242 – volume: 100 start-page: 883 year: 2007 end-page: 896 ident: CR10 article-title: p53 modulation of the DNA damage response publication-title: J Cell Biochem doi: 10.1002/jcb.21091 – volume: 30 start-page: 1260 year: 2009 end-page: 1268 ident: CR14 article-title: DNA double-strand break repair activities in mammary epithelial cells ― influence of endogenous p53 variants publication-title: Carcinogenesis doi: 10.1093/carcin/bgp117 – volume: 13 start-page: 1003 year: 2006 end-page: 1016 ident: CR11 article-title: p53 in recombination and repair publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4401903 – volume: 19 start-page: 632 year: 2000 end-page: 639 ident: CR15 article-title: Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control publication-title: Oncogene doi: 10.1038/sj.onc.1203142 – volume: 41 start-page: 53 year: 2014 end-page: 62 ident: CR43 article-title: Protein interaction between p53 and delta113p53 is required for the anti-apoptotic function of delta113p53 publication-title: J Genet Genomics doi: 10.1016/j.jgg.2014.01.001 – volume: 142 start-page: 693 year: 1996 end-page: 704 ident: CR40 article-title: Genetic requirements for the single-strand annealing pathway of double-strand break repair in publication-title: Genetics – volume: 9 start-page: 134 year: 2009 end-page: 142 ident: CR45 article-title: Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype publication-title: Nat Rev Cancer doi: 10.1038/nrc2587 – volume: 19 start-page: 2122 year: 2005 end-page: 2137 ident: CR23 article-title: p53 isoforms can regulate p53 transcriptional activity publication-title: Genes Dev doi: 10.1101/gad.1339905 – volume: 6 start-page: 389 year: 2009 end-page: 395 ident: CR25 article-title: p53 isoform delta113p53 in zebrafish publication-title: Zebrafish doi: 10.1089/zeb.2009.0598 – volume: 19 start-page: 2900 year: 2005 end-page: 2911 ident: CR24 article-title: Loss of function of def selectively upregulates {Delta}113p53 expression to arrest expansion growth of digestive organs in zebrafish publication-title: Genes Dev doi: 10.1101/gad.1366405 – volume: 11 start-page: 1135 year: 2009 end-page: 1142 ident: CR29 article-title: p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence publication-title: Nat Cell Biol doi: 10.1038/ncb1928 – volume: 39 start-page: 489 year: 2012 end-page: 502 ident: CR31 article-title: Development of novel visual-plus quantitative analysis systems for studying DNA double-strand break repairs in zebrafish publication-title: J Genet Genomics doi: 10.1016/j.jgg.2012.07.009 – volume: 280 start-page: 8051 year: 2005 end-page: 8059 ident: CR37 article-title: Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic binding site in p53 publication-title: J Biol Chem doi: 10.1074/jbc.M411176200 – volume: 336 start-page: 639 year: 2004 end-page: 654 ident: CR35 article-title: P53 inhibits strand exchange and replication fork regression promoted by human Rad51 publication-title: J Mol Biol doi: 10.1016/j.jmb.2003.12.050 – volume: 18 start-page: 1815 year: 2011 end-page: 1824 ident: CR42 article-title: Biological functions of p53 isoforms through evolution: lessons from animal and cellular models publication-title: Cell Death Differ doi: 10.1038/cdd.2011.120 – volume: 302 start-page: 20 year: 2011 end-page: 28 ident: CR47 article-title: A radiation-induced gene expression signature as a tool to predict acute radiotherapy-induced adverse side effects publication-title: Cancer Lett doi: 10.1016/j.canlet.2010.12.006 – volume: 25 start-page: 3868 year: 1997 end-page: 3874 ident: CR18 article-title: Interaction of p53 with the human Rad51 protein publication-title: Nucleic Acids Res doi: 10.1093/nar/25.19.3868 – volume: 29 start-page: 2691 year: 2010 end-page: 2700 ident: CR27 article-title: p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter publication-title: Oncogene doi: 10.1038/onc.2010.26 – volume: 39 start-page: 421 year: 2012 end-page: 433 ident: CR50 article-title: Reverse genetic approaches in zebrafish publication-title: J Genet Genomics doi: 10.1016/j.jgg.2012.07.004 – volume: 9 start-page: 749 year: 2009 end-page: 758 ident: CR7 article-title: The first 30 years of p53: growing ever more complex publication-title: Nat Rev Cancer doi: 10.1038/nrc2723 – volume: 18 start-page: 91 year: 2012 end-page: 99 ident: CR6 article-title: Reciprocal repression between P53 and TCTP publication-title: Nat Med doi: 10.1038/nm.2546 – volume: 29 start-page: 4995 year: 2009 end-page: 4998 ident: CR48 article-title: Image analysis of breast cancer immunohistochemistry-stained sections using imageJ: an RGB-based model publication-title: Anticancer Res – volume: 21 start-page: 201 year: 2012 end-page: 206 ident: CR46 article-title: Prediction of normal tissue toxicity as part of the individualized treatment with radiotherapy in oncology patients publication-title: Surg Oncol doi: 10.1016/j.suronc.2011.12.002 – volume: 22 start-page: 6306 year: 2002 end-page: 6317 ident: CR13 article-title: DNA substrate dependence of p53-mediated regulation of double-strand break repair publication-title: Mol Cell Biol doi: 10.1128/MCB.22.17.6306-6317.2002 – volume: 23 start-page: 9025 year: 2004 end-page: 9033 ident: CR19 article-title: The interaction of p53 with replication protein A mediates suppression of homologous recombination publication-title: Oncogene doi: 10.1038/sj.onc.1207982 – volume: 7 start-page: 219 year: 2006 end-page: 224 ident: CR20 article-title: p53 modulates homologous recombination by transcriptional regulation of the gene publication-title: EMBO Rep doi: 10.1038/sj.embor.7400587 – volume: 18 start-page: 1283 year: 2004 end-page: 1292 ident: CR39 article-title: Rad54 and DNA ligase IV cooperate to maintain mammalian chromatid stability publication-title: Genes Dev doi: 10.1101/gad.1204304 – volume: 102 start-page: 407 year: 2005 end-page: 412 ident: CR32 article-title: mutant zebrafish develop malignant peripheral nerve sheath tumors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0406252102 – volume: 23 start-page: 620 year: 2013 end-page: 634 ident: CR49 article-title: Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation publication-title: Cell Res doi: 10.1038/cr.2013.16 – volume: 566 start-page: 131 year: 2004 end-page: 167 ident: CR1 article-title: DNA double-strand break repair by homologous recombination publication-title: Mutat Res doi: 10.1016/j.mrrev.2003.07.001 – volume: 336 start-page: 1440 year: 2012 end-page: 1444 ident: CR21 article-title: p53 dynamics control cell fate publication-title: Science doi: 10.1126/science.1218351 – volume: 40 start-page: 179 year: 2010 end-page: 204 ident: CR4 article-title: The DNA damage response: making it safe to play with knives publication-title: Mol Cell doi: 10.1016/j.molcel.2010.09.019 – volume: 22 start-page: 4111 year: 2003 end-page: 4117 ident: CR17 article-title: p53 mutated in the transactivation domain retains regulatory functions in homology-directed double-strand break repair publication-title: Oncogene doi: 10.1038/sj.onc.1206632 – volume: 29 start-page: 2691 year: 2010 ident: BFcr201522_CR27 publication-title: Oncogene doi: 10.1038/onc.2010.26 – volume: 22 start-page: 6306 year: 2002 ident: BFcr201522_CR13 publication-title: Mol Cell Biol doi: 10.1128/MCB.22.17.6306-6317.2002 – volume: 21 start-page: 201 year: 2012 ident: BFcr201522_CR46 publication-title: Surg Oncol doi: 10.1016/j.suronc.2011.12.002 – volume: 11 start-page: 1135 year: 2009 ident: BFcr201522_CR29 publication-title: Nat Cell Biol doi: 10.1038/ncb1928 – volume: 18 start-page: 1815 year: 2011 ident: BFcr201522_CR42 publication-title: Cell Death Differ doi: 10.1038/cdd.2011.120 – volume: 18 start-page: 1283 year: 2004 ident: BFcr201522_CR39 publication-title: Genes Dev doi: 10.1101/gad.1204304 – volume: 6 start-page: 389 year: 2009 ident: BFcr201522_CR25 publication-title: Zebrafish doi: 10.1089/zeb.2009.0598 – volume: 566 start-page: 131 year: 2004 ident: BFcr201522_CR1 publication-title: Mutat Res doi: 10.1016/j.mrrev.2003.07.001 – volume: 19 start-page: 2900 year: 2005 ident: BFcr201522_CR24 publication-title: Genes Dev doi: 10.1101/gad.1366405 – volume: 9 start-page: 134 year: 2009 ident: BFcr201522_CR45 publication-title: Nat Rev Cancer doi: 10.1038/nrc2587 – volume: 106 start-page: 12245 year: 2009 ident: BFcr201522_CR22 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0813088106 – volume: 27 start-page: 589 year: 2008 ident: BFcr201522_CR2 publication-title: EMBO J doi: 10.1038/emboj.2008.15 – volume: 18 start-page: 91 year: 2012 ident: BFcr201522_CR6 publication-title: Nat Med doi: 10.1038/nm.2546 – volume: 19 start-page: 4500 year: 2000 ident: BFcr201522_CR34 publication-title: Oncogene doi: 10.1038/sj.onc.1203809 – volume: 336 start-page: 1440 year: 2012 ident: BFcr201522_CR21 publication-title: Science doi: 10.1126/science.1218351 – volume: 19 start-page: 632 year: 2000 ident: BFcr201522_CR15 publication-title: Oncogene doi: 10.1038/sj.onc.1203142 – volume: 278 start-page: 42729 year: 2003 ident: BFcr201522_CR38 publication-title: J Biol Chem doi: 10.1074/jbc.R300027200 – volume: 8 start-page: 282 year: 2002 ident: BFcr201522_CR41 publication-title: Nat Med doi: 10.1038/nm0302-282 – volume: 41 start-page: 53 year: 2014 ident: BFcr201522_CR43 publication-title: J Genet Genomics doi: 10.1016/j.jgg.2014.01.001 – volume: 23 start-page: 620 year: 2013 ident: BFcr201522_CR49 publication-title: Cell Res doi: 10.1038/cr.2013.16 – volume: 29 start-page: 4995 year: 2009 ident: BFcr201522_CR48 publication-title: Anticancer Res – volume: 23 start-page: 278 year: 2009 ident: BFcr201522_CR26 publication-title: Genes Dev doi: 10.1101/gad.1761609 – volume: 336 start-page: 639 year: 2004 ident: BFcr201522_CR35 publication-title: J Mol Biol doi: 10.1016/j.jmb.2003.12.050 – volume: 280 start-page: 8051 year: 2005 ident: BFcr201522_CR37 publication-title: J Biol Chem doi: 10.1074/jbc.M411176200 – volume: 18 start-page: 248 year: 2011 ident: BFcr201522_CR28 publication-title: Cell Death Differ doi: 10.1038/cdd.2010.91 – volume: 25 start-page: 3868 year: 1997 ident: BFcr201522_CR18 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.19.3868 – volume: 302 start-page: 20 year: 2011 ident: BFcr201522_CR47 publication-title: Cancer Lett doi: 10.1016/j.canlet.2010.12.006 – volume: 9 start-page: 1256 year: 2010 ident: BFcr201522_CR3 publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2010.09.018 – volume: 39 start-page: 421 year: 2012 ident: BFcr201522_CR50 publication-title: J Genet Genomics doi: 10.1016/j.jgg.2012.07.004 – volume: 63 start-page: 2596 year: 2003 ident: BFcr201522_CR16 publication-title: Cancer Res – volume: 13 start-page: 1003 year: 2006 ident: BFcr201522_CR11 publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4401903 – volume: 34 start-page: 522 year: 2013 ident: BFcr201522_CR44 publication-title: Carcinogenesis doi: 10.1093/carcin/bgs370 – volume: 102 start-page: 15412 year: 2005 ident: BFcr201522_CR36 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504614102 – volume: 23 start-page: 9025 year: 2004 ident: BFcr201522_CR19 publication-title: Oncogene doi: 10.1038/sj.onc.1207982 – volume: 102 start-page: 407 year: 2005 ident: BFcr201522_CR32 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0406252102 – volume: 137 start-page: 413 year: 2009 ident: BFcr201522_CR8 publication-title: Cell doi: 10.1016/j.cell.2009.04.037 – volume: 32 start-page: 2150 year: 2013 ident: BFcr201522_CR30 publication-title: Oncogene doi: 10.1038/onc.2012.242 – volume: 14 start-page: 1847 year: 1997 ident: BFcr201522_CR12 publication-title: Oncogene doi: 10.1038/sj.onc.1201143 – volume: 9 start-page: 749 year: 2009 ident: BFcr201522_CR7 publication-title: Nat Rev Cancer doi: 10.1038/nrc2723 – volume: 100 start-page: 883 year: 2007 ident: BFcr201522_CR10 publication-title: J Cell Biochem doi: 10.1002/jcb.21091 – volume: 22 start-page: 4111 year: 2003 ident: BFcr201522_CR17 publication-title: Oncogene doi: 10.1038/sj.onc.1206632 – volume: 7 start-page: 219 year: 2006 ident: BFcr201522_CR20 publication-title: EMBO Rep doi: 10.1038/sj.embor.7400587 – volume: 30 start-page: 1260 year: 2009 ident: BFcr201522_CR14 publication-title: Carcinogenesis doi: 10.1093/carcin/bgp117 – volume: 40 start-page: 179 year: 2010 ident: BFcr201522_CR4 publication-title: Mol Cell doi: 10.1016/j.molcel.2010.09.019 – volume: 39 start-page: 489 year: 2012 ident: BFcr201522_CR31 publication-title: J Genet Genomics doi: 10.1016/j.jgg.2012.07.009 – volume: 99 start-page: 8467 year: 2002 ident: BFcr201522_CR5 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.132268899 – volume: 22 start-page: 719 year: 2006 ident: BFcr201522_CR33 publication-title: Mol Cell doi: 10.1016/j.molcel.2006.05.022 – volume: 142 start-page: 693 year: 1996 ident: BFcr201522_CR40 publication-title: Genetics doi: 10.1093/genetics/142.3.693 – volume: 19 start-page: 2122 year: 2005 ident: BFcr201522_CR23 publication-title: Genes Dev doi: 10.1101/gad.1339905 – volume: 9 start-page: 714 year: 2009 ident: BFcr201522_CR9 publication-title: Nat Rev Cancer doi: 10.1038/nrc2716 |
SSID | ssj0025451 |
Score | 2.440734 |
Snippet | The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 351 |
SubjectTerms | 631/337/1427/2122 631/80/82 692/699/67/1059/485 692/699/67/581 Animals Animals, Genetically Modified Apoptosis - genetics Biomedical and Life Sciences Cell Biology Cell Line Cellular Senescence - genetics DNA - genetics DNA Breaks, Double-Stranded - radiation effects DNA Ligase ATP DNA Ligases - biosynthesis DNA Repair - genetics DNA-Binding Proteins - biosynthesis DNA-Binding Proteins - metabolism G2 Phase Cell Cycle Checkpoints - genetics G2 Phase Cell Cycle Checkpoints - radiation effects Humans Life Sciences Original original-article Promoter Regions, Genetic - genetics Protein Binding Protein Isoforms - genetics Rad51 Recombinase - biosynthesis RNA Interference RNA, Small Interfering Tumor Suppressor Protein p53 - genetics Zebrafish Zebrafish Proteins - biosynthesis Zebrafish Proteins - genetics |
Title | p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage |
URI | https://link.springer.com/article/10.1038/cr.2015.22 https://www.ncbi.nlm.nih.gov/pubmed/25698579 https://www.proquest.com/docview/1660660209 https://pubmed.ncbi.nlm.nih.gov/PMC4349251 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKV0hcEG_KY2XE7gFV2W1s53VcSmGFoFqhXam3yHEcbWFJSh8H-Afc-Qn8Hn4TM7aTPg8Ll9RxHLfJfJ35xh6PCTngoYwVWHKPFzzzcP7WkywHIidCzv0gE4HCtcMfh-HphXg_Ckat1u-VqKXFPDtSP3auK_kfqUIdyBVXyf6DZJtOoQLKIF84goTheC0ZTwLeHc8q5J3dw_7gMBG-zydmhwl3yvEUg7BAInrWfTM86ebVIrvSHg5xlMA-gTR-wZkDOZ4iD3V5G7o4oG_XnuRIEs0cwwz1ojKqwKyCMdG1ZusN06_8KtcDi_rYh8sm1Iw6v3MxwB8WmzWn8Pl5Ba1ndmx2NJbVShCCbWsK32qz60Yt_GAZtuUUrQnlCntWE2tbF4nYi2Kb7aXWznZZtEMhX1G13CWqtVab2w1ftgyCTf-uMPOrHxwxtjR79VT_hjVsYhTN7DyPUzVN8d6UgaHfY-CMsDbZez0Ynn1qHHtgocaxr5-pToPL4-PlN68Tny1vZjsod2Nm3hCe8zvktvNU6ImF3V3S0uU9ctPuXfr9PvkJwKIOfPTPLwu8YygYyNEachSgQdcgRw3kqIUcnVfUQY4i5ChCjhrIUWy7hBwdl7SGHN5l-jWQe0Au3g7O-6ee29fDUzwJmCeEjHsqjFWgmdQ9JXOf5TLXKghjyVlW6CKXSSQT5QNzwpSGSodKFGFPRJnSjD8k7bIq9WNChcp8YNBAWgsukl6RxWEmC9xmMgmBm-Yd8qp-6alySe9x75WrdFu8HfKyaTuxqV52tnpRyy4FTYyvRpa6WsxSP8TBAHC_kg55ZGXZ9AOORRIHEVyJ1qTcNMAs7-tXyvGlyfYuTP5Qv0MOajykTgXNdvy8J9d6iKfk1vJP-Yy059OFfg7kep7tkxvRKNp3CP8Ld2TO1A |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p53+isoform+%CE%94113p53%2F%CE%94133p53+promotes+DNA+double-strand+break+repair+to+protect+cell+from+death+and+senescence+in+response+to+DNA+damage&rft.jtitle=Cell+research&rft.au=Gong%2C+Lu&rft.au=Gong%2C+Hongjian&rft.au=Pan%2C+Xiao&rft.au=Chang%2C+Changqing&rft.date=2015-03-01&rft.issn=1001-0602&rft.eissn=1748-7838&rft.volume=25&rft.issue=3&rft.spage=351&rft.epage=369&rft_id=info:doi/10.1038%2Fcr.2015.22&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_cr_2015_22 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0602&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0602&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0602&client=summon |