p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage

The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we repor...

Full description

Saved in:
Bibliographic Details
Published inCell research Vol. 25; no. 3; pp. 351 - 369
Main Authors Gong, Lu, Gong, Hongjian, Pan, Xiao, Chang, Changqing, Ou, Zhao, Ye, Shengfan, Yin, Le, Yang, Lina, Tao, Ting, Zhang, Zhenhai, Liu, Cong, Lane, David P, Peng, Jinrong, Chen, Jun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ 113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ 113p53 M/M mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51 , lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ 133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.
AbstractList The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.
The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ 113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ 113p53 M/M mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51 , lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ 133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.
The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.
Author Ye, Shengfan
Gong, Lu
Chen, Jun
Liu, Cong
Ou, Zhao
Chang, Changqing
Yang, Lina
Yin, Le
Zhang, Zhenhai
Gong, Hongjian
Pan, Xiao
Peng, Jinrong
Tao, Ting
Lane, David P
Author_xml – sequence: 1
  givenname: Lu
  surname: Gong
  fullname: Gong, Lu
  organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
– sequence: 2
  givenname: Hongjian
  surname: Gong
  fullname: Gong, Hongjian
  organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
– sequence: 3
  givenname: Xiao
  surname: Pan
  fullname: Pan, Xiao
  organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
– sequence: 4
  givenname: Changqing
  surname: Chang
  fullname: Chang, Changqing
  organization: College of Natural Resources and Environment, South China Agricultural University
– sequence: 5
  givenname: Zhao
  surname: Ou
  fullname: Ou, Zhao
  organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
– sequence: 6
  givenname: Shengfan
  surname: Ye
  fullname: Ye, Shengfan
  organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
– sequence: 7
  givenname: Le
  surname: Yin
  fullname: Yin, Le
  organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
– sequence: 8
  givenname: Lina
  surname: Yang
  fullname: Yang, Lina
  organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
– sequence: 9
  givenname: Ting
  surname: Tao
  fullname: Tao, Ting
  organization: College of Animal Sciences, Zhejiang University
– sequence: 10
  givenname: Zhenhai
  surname: Zhang
  fullname: Zhang, Zhenhai
  organization: and Division of Nephrology, National Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University
– sequence: 11
  givenname: Cong
  surname: Liu
  fullname: Liu, Cong
  organization: Developmental and Stem Cell Institute, West China Second University Hospital, Sichuan University
– sequence: 12
  givenname: David P
  surname: Lane
  fullname: Lane, David P
  organization: Biomedical Research Council, Agency for Science and Technology Research
– sequence: 13
  givenname: Jinrong
  surname: Peng
  fullname: Peng, Jinrong
  email: pengjr@zju.edu.cn
  organization: College of Animal Sciences, Zhejiang University
– sequence: 14
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  email: chenjun2009@zju.edu.cn
  organization: Key laboratory for Molecular Animal Nutrition, Ministry of Education, Innovation Center for Signaling Network, College of Life Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25698579$$D View this record in MEDLINE/PubMed
BookMark eNptkdtuFSEUhompsQe98QEMl8ZmdoGBGebGpGk9NGn0Rq8Jw6zZpc7ACIyJj-B9n8tnKrjbRk0TElbg-_91OkR7zjtA6CUlG0pqeWLChhEqNow9QQe05bJqZS33ckwIrUhD2D46jPGaECa4oM_QPhNNJ0XbHaBfi6ixjX70Yca_byit88NJDuoS4CX42SeI-PzTKR782k9QxRS0G3AfQH_DARZtA06-oAlMwgamCY9ZhwfQ6QoXNoKDaMAZwNZlTVy8i1BUf3z1rLfwHD0d9RThxd19hL6-f_fl7GN1-fnDxdnpZWXqTrCKcy2JaaQRwDQQowfKBj2AEY3UNetHGAfdtboztKUyT4AbaAwfG8Lb3gCrj9Dbne-y9jMMuarcz6SWYGcdfiqvrfr3x9krtfU_FK95xwTNBq_vDIL_vkJMaraxdK0d-DUq2jQkH0a6jL76O9dDkvv5Z4DsABN8jAFGZWzSyfqS2k6KElVWrExQZcWKlfrf_Ce5d30UPt7BMUNuC0Fd-zW4PN_H6FtVwLcx
CitedBy_id crossref_primary_10_1080_15384101_2021_1909260
crossref_primary_10_3390_fishes8040191
crossref_primary_10_3390_jcdd10060246
crossref_primary_10_1631_jzus_B1900167
crossref_primary_10_1038_s41419_021_03438_9
crossref_primary_10_1093_jmcb_mjv069
crossref_primary_10_1016_j_neuroscience_2022_06_004
crossref_primary_10_1038_s41418_018_0085_8
crossref_primary_10_1038_s41419_019_1861_1
crossref_primary_10_1136_jitc_2020_001846
crossref_primary_10_3389_fncel_2017_00326
crossref_primary_10_1002_cbin_11181
crossref_primary_10_1155_2019_4260309
crossref_primary_10_2144_fsoa_2020_0085
crossref_primary_10_1016_j_envres_2024_120504
crossref_primary_10_1093_jmcb_mjy068
crossref_primary_10_3390_ijms17121982
crossref_primary_10_1038_s41388_017_0117_8
crossref_primary_10_1080_23723556_2015_1033587
crossref_primary_10_1007_s00335_018_9758_3
crossref_primary_10_1016_j_pharmthera_2020_107492
crossref_primary_10_1093_carcin_bgaa071
crossref_primary_10_7554_eLife_61389
crossref_primary_10_1038_s41419_021_03954_8
crossref_primary_10_1101_cshperspect_a026039
crossref_primary_10_1038_s41419_023_05731_1
crossref_primary_10_1093_nar_gkz105
crossref_primary_10_3390_cancers15112918
crossref_primary_10_1371_journal_pone_0284327
crossref_primary_10_1038_s41375_024_02367_8
crossref_primary_10_1038_s41388_017_0101_3
crossref_primary_10_1038_srep37281
crossref_primary_10_1186_s12979_024_00437_0
crossref_primary_10_1038_s41419_024_06783_7
crossref_primary_10_1080_14737159_2019_1563484
crossref_primary_10_1186_s43141_022_00388_3
crossref_primary_10_1016_j_bbcan_2023_188882
crossref_primary_10_1016_j_biochi_2022_09_013
crossref_primary_10_1002_mabi_201800205
crossref_primary_10_1007_s11033_021_06314_z
crossref_primary_10_1016_j_nano_2018_09_003
crossref_primary_10_1038_cdd_2017_48
crossref_primary_10_18632_oncotarget_27521
crossref_primary_10_1038_s41419_020_02781_7
crossref_primary_10_1016_j_pathol_2024_02_003
crossref_primary_10_1038_s41467_017_02408_0
crossref_primary_10_18632_oncotarget_4371
crossref_primary_10_3390_cancers13122885
crossref_primary_10_1371_journal_pone_0172125
crossref_primary_10_4331_wjbc_v10_i3_44
crossref_primary_10_1016_j_jgg_2021_06_011
crossref_primary_10_7554_eLife_74611
crossref_primary_10_1096_fba_1028
crossref_primary_10_3390_cancers14133145
crossref_primary_10_15252_embr_202153085
crossref_primary_10_2174_1570180820666230227114821
crossref_primary_10_1007_s11033_019_05127_5
crossref_primary_10_1096_fj_201801973R
crossref_primary_10_3892_mmr_2017_6162
crossref_primary_10_1016_j_molcel_2024_10_006
crossref_primary_10_3390_ijms20236023
crossref_primary_10_1073_pnas_2317735121
crossref_primary_10_1016_j_ecoenv_2023_115911
crossref_primary_10_1371_journal_pone_0256938
crossref_primary_10_2147_CMAR_S263559
crossref_primary_10_3390_cancers10090288
crossref_primary_10_1038_s41418_019_0445_z
crossref_primary_10_3390_ijms252212108
crossref_primary_10_1186_s13619_020_00049_1
crossref_primary_10_1002_path_5111
crossref_primary_10_1016_j_celrep_2019_11_032
crossref_primary_10_14336_AD_2016_0910
crossref_primary_10_12688_f1000research_12682_1
crossref_primary_10_3390_cancers12113422
crossref_primary_10_3390_ijms18091952
crossref_primary_10_1038_cdd_2016_37
crossref_primary_10_1152_ajpheart_00160_2018
crossref_primary_10_1038_s41419_024_06769_5
crossref_primary_10_1038_s41467_024_46578_0
crossref_primary_10_3390_ijms20246257
Cites_doi 10.1073/pnas.0504614102
10.1038/nm0302-282
10.1073/pnas.132268899
10.1016/j.molcel.2006.05.022
10.1016/j.cell.2009.04.037
10.1038/sj.onc.1203809
10.1038/cdd.2010.91
10.1016/j.dnarep.2010.09.018
10.1101/gad.1761609
10.1038/sj.onc.1201143
10.1038/nrc2716
10.1073/pnas.0813088106
10.1074/jbc.R300027200
10.1038/emboj.2008.15
10.1093/carcin/bgs370
10.1038/onc.2012.242
10.1002/jcb.21091
10.1093/carcin/bgp117
10.1038/sj.cdd.4401903
10.1038/sj.onc.1203142
10.1016/j.jgg.2014.01.001
10.1038/nrc2587
10.1101/gad.1339905
10.1089/zeb.2009.0598
10.1101/gad.1366405
10.1038/ncb1928
10.1016/j.jgg.2012.07.009
10.1074/jbc.M411176200
10.1016/j.jmb.2003.12.050
10.1038/cdd.2011.120
10.1016/j.canlet.2010.12.006
10.1093/nar/25.19.3868
10.1038/onc.2010.26
10.1016/j.jgg.2012.07.004
10.1038/nrc2723
10.1038/nm.2546
10.1016/j.suronc.2011.12.002
10.1128/MCB.22.17.6306-6317.2002
10.1038/sj.onc.1207982
10.1038/sj.embor.7400587
10.1101/gad.1204304
10.1073/pnas.0406252102
10.1038/cr.2013.16
10.1016/j.mrrev.2003.07.001
10.1126/science.1218351
10.1016/j.molcel.2010.09.019
10.1038/sj.onc.1206632
10.1093/genetics/142.3.693
ContentType Journal Article
Copyright Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2015
Copyright © 2015 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2015 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
Copyright_xml – notice: Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2015
– notice: Copyright © 2015 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2015 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1038/cr.2015.22
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Δ113p53/Δ133p53 promotes DNA double-strand break repair
EISSN 1748-7838
EndPage 369
ExternalDocumentID PMC4349251
25698579
10_1038_cr_2015_22
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-01
-0A
-Q-
-SA
-S~
0R~
29B
2WC
36B
39C
3V.
4.4
406
53G
5GY
5VR
5XA
5XB
6J9
70F
7X7
88E
8FE
8FH
8FI
8FJ
92E
92I
92M
9D9
9DA
AACDK
AAHBH
AANZL
AASML
AATNV
AAXDM
AAYZH
AAZLF
ABAKF
ABAWZ
ABJNI
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACIWK
ACKTT
ACMJI
ACPRK
ACRQY
ACZOJ
ADBBV
ADFRT
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AESKC
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFRAH
AFSHS
AFUIB
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AOIJS
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C1A
CAG
CAJEA
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CW9
DIK
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMOBN
F5P
FA0
FDQFY
FERAY
FIGPU
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HYE
HZ~
IWAJR
JSO
JUIAU
JZLTJ
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
NADUK
NAO
NQJWS
NXXTH
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q--
Q-0
R-A
RNS
RNT
RNTTT
ROL
RPM
RT1
S..
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
T8Q
TAOOD
TBHMF
TCJ
TDRGL
TGP
TR2
U1F
U1G
U5A
U5K
UKHRP
WFFXF
XSB
~88
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PPXIY
PQGLB
5PM
ABRTQ
PJZUB
ID FETCH-LOGICAL-c3952-44a80c68c5e2ae0cad12dadec568a32bfefda97a9c17181004ce6c4f6047bce23
ISSN 1001-0602
1748-7838
IngestDate Thu Aug 21 18:32:25 EDT 2025
Fri Jul 11 02:10:52 EDT 2025
Wed Feb 19 02:31:42 EST 2025
Tue Jul 01 03:41:33 EDT 2025
Thu Apr 24 23:02:36 EDT 2025
Fri Feb 21 02:38:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords SSA
senescence
Δ113p53/Δ133p53
cell death
p53 isoform
HR
NHEJ
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3952-44a80c68c5e2ae0cad12dadec568a32bfefda97a9c17181004ce6c4f6047bce23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.nature.com/articles/cr201522.pdf
PMID 25698579
PQID 1660660209
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4349251
proquest_miscellaneous_1660660209
pubmed_primary_25698579
crossref_citationtrail_10_1038_cr_2015_22
crossref_primary_10_1038_cr_2015_22
springer_journals_10_1038_cr_2015_22
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150300
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 3
  year: 2015
  text: 20150300
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cell research
PublicationTitleAbbrev Cell Res
PublicationTitleAlternate Cell Res
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Dudas, Chovanec (CR1) 2004; 566
Huang, Zhu, Lin, Zhang (CR50) 2012; 39
Sung, Krejci, Van, Sehorn (CR38) 2003; 278
Hakem (CR2) 2008; 27
Henriquez-Hernandez, Bordon, Pinar (CR46) 2012; 21
Mayer, Popanda, Greve (CR47) 2011; 302
Ou, Yin, Chang, Peng, Chen (CR43) 2014; 41
Xia, Sheng, Nakanishi (CR33) 2006; 22
Boehden, Akyuz, Roemer, Wiesmuller (CR17) 2003; 22
Chen, Ng, Chang (CR26) 2009; 23
Yoon, Wang, Stapleford, Wiesmuller, Chen (CR35) 2004; 336
Keimling, Wiesmuller (CR14) 2009; 30
Hoh, Jin, Parrado (CR5) 2002; 99
Willers, McCarthy, Wu (CR15) 2000; 19
Buchhop, Gibson, Wang (CR18) 1997; 25
Zoric, Horvat, Slade (CR44) 2013; 34
Berghmans, Murphey, Wienholds (CR32) 2005; 102
Bykov, Issaeva, Shilov (CR41) 2002; 8
Marcel, Vijayakumar, Fernandez-Cuesta (CR27) 2010; 29
Aoubala, Murray-Zmijewski, Khoury (CR28) 2011; 18
Marcel, Dichtel-Danjoy, Sagne (CR42) 2011; 18
Purvis, Karhohs, Mock (CR21) 2012; 336
Hiom (CR3) 2010; 9
Helton, Chen (CR10) 2007; 100
Zhang, Liu, Cheng, Wang (CR22) 2009; 106
Romanova, Willers, Blagosklonny, Powell (CR19) 2004; 23
Liu, Gong, Chang (CR31) 2012; 39
Bernard, Garmy-Susini, Ainaoui (CR30) 2013; 32
Vrekoussis, Chaniotis, Navrozoglou (CR48) 2009; 29
Fujita, Mondal, Horikawa (CR29) 2009; 11
Mekeel, Tang, Kachnic (CR12) 1997; 14
Ivanov, Sugawara, Fishman-Lobell, Haber (CR40) 1996; 142
Ciccia, Elledge (CR4) 2010; 40
Bochkareva, Kaustov, Ayed (CR36) 2005; 102
Meek (CR9) 2009; 9
Chen, Ruan, Ng (CR24) 2005; 19
Friedler, Veprintsev, Rutherford, von Glos, Fersht (CR37) 2005; 280
Susse, Janz, Janus, Deppert, Wiesmuller (CR34) 2000; 19
Chen, Peng (CR25) 2009; 6
Linke, Sengupta, Khabie (CR16) 2003; 63
Vousden, Prives (CR8) 2009; 137
Arias-Lopez, Lazaro-Trueba, Kerr (CR20) 2006; 7
Barnett, West, Dunning (CR45) 2009; 9
Tao, Shi, Guan (CR49) 2013; 23
Akyuz, Boehden, Susse (CR13) 2002; 22
Mills, Ferguson, Essers (CR39) 2004; 18
Levine, Oren (CR7) 2009; 9
Gatz, Wiesmuller (CR11) 2006; 13
Amson, Pece, Lespagnol (CR6) 2012; 18
Bourdon, Fernandes, Murray-Zmijewski (CR23) 2005; 19
D Yoon (BFcr201522_CR35) 2004; 336
P Sung (BFcr201522_CR38) 2003; 278
J Chen (BFcr201522_CR26) 2009; 23
T Tao (BFcr201522_CR49) 2013; 23
A Friedler (BFcr201522_CR37) 2005; 280
R Hakem (BFcr201522_CR2) 2008; 27
P Huang (BFcr201522_CR50) 2012; 39
R Amson (BFcr201522_CR6) 2012; 18
V Marcel (BFcr201522_CR27) 2010; 29
M Aoubala (BFcr201522_CR28) 2011; 18
GC Barnett (BFcr201522_CR45) 2009; 9
J Liu (BFcr201522_CR31) 2012; 39
K Hiom (BFcr201522_CR3) 2010; 9
DW Meek (BFcr201522_CR9) 2009; 9
KL Mekeel (BFcr201522_CR12) 1997; 14
S Berghmans (BFcr201522_CR32) 2005; 102
E Bochkareva (BFcr201522_CR36) 2005; 102
J Chen (BFcr201522_CR24) 2005; 19
KH Vousden (BFcr201522_CR8) 2009; 137
LY Romanova (BFcr201522_CR19) 2004; 23
SP Linke (BFcr201522_CR16) 2003; 63
S Buchhop (BFcr201522_CR18) 1997; 25
J Chen (BFcr201522_CR25) 2009; 6
JC Bourdon (BFcr201522_CR23) 2005; 19
K Fujita (BFcr201522_CR29) 2009; 11
ES Helton (BFcr201522_CR10) 2007; 100
H Willers (BFcr201522_CR15) 2000; 19
A Ciccia (BFcr201522_CR4) 2010; 40
AJ Levine (BFcr201522_CR7) 2009; 9
XP Zhang (BFcr201522_CR22) 2009; 106
V Marcel (BFcr201522_CR42) 2011; 18
VJ Bykov (BFcr201522_CR41) 2002; 8
C Arias-Lopez (BFcr201522_CR20) 2006; 7
KD Mills (BFcr201522_CR39) 2004; 18
Z Ou (BFcr201522_CR43) 2014; 41
SA Gatz (BFcr201522_CR11) 2006; 13
N Akyuz (BFcr201522_CR13) 2002; 22
M Keimling (BFcr201522_CR14) 2009; 30
JE Purvis (BFcr201522_CR21) 2012; 336
B Xia (BFcr201522_CR33) 2006; 22
EL Ivanov (BFcr201522_CR40) 1996; 142
GS Boehden (BFcr201522_CR17) 2003; 22
T Vrekoussis (BFcr201522_CR48) 2009; 29
LA Henriquez-Hernandez (BFcr201522_CR46) 2012; 21
J Hoh (BFcr201522_CR5) 2002; 99
C Mayer (BFcr201522_CR47) 2011; 302
S Susse (BFcr201522_CR34) 2000; 19
A Zoric (BFcr201522_CR44) 2013; 34
A Dudas (BFcr201522_CR1) 2004; 566
H Bernard (BFcr201522_CR30) 2013; 32
References_xml – volume: 102
  start-page: 15412
  year: 2005
  end-page: 15417
  ident: CR36
  article-title: Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504614102
– volume: 8
  start-page: 282
  year: 2002
  end-page: 288
  ident: CR41
  article-title: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound
  publication-title: Nat Med
  doi: 10.1038/nm0302-282
– volume: 99
  start-page: 8467
  year: 2002
  end-page: 8472
  ident: CR5
  article-title: The p53MH algorithm and its application in detecting p53-responsive genes
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.132268899
– volume: 22
  start-page: 719
  year: 2006
  end-page: 729
  ident: CR33
  article-title: Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.05.022
– volume: 137
  start-page: 413
  year: 2009
  end-page: 431
  ident: CR8
  article-title: Blinded by the light: the growing complexity of p53
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.037
– volume: 19
  start-page: 4500
  year: 2000
  end-page: 4512
  ident: CR34
  article-title: Role of heteroduplex joints in the functional interactions between human Rad51 and wild-type p53
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203809
– volume: 18
  start-page: 248
  year: 2011
  end-page: 258
  ident: CR28
  article-title: p53 directly transactivates Delta133p53alpha, regulating cell fate outcome in response to DNA damage
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2010.91
– volume: 9
  start-page: 1256
  year: 2010
  end-page: 1263
  ident: CR3
  article-title: Coping with DNA double strand breaks
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2010.09.018
– volume: 23
  start-page: 278
  year: 2009
  end-page: 290
  ident: CR26
  article-title: p53 isoform delta113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish
  publication-title: Genes Dev
  doi: 10.1101/gad.1761609
– volume: 63
  start-page: 2596
  year: 2003
  end-page: 2605
  ident: CR16
  article-title: p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination
  publication-title: Cancer Res
– volume: 14
  start-page: 1847
  year: 1997
  end-page: 1857
  ident: CR12
  article-title: Inactivation of p53 results in high rates of homologous recombination
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1201143
– volume: 9
  start-page: 714
  year: 2009
  end-page: 723
  ident: CR9
  article-title: Tumour suppression by p53: a role for the DNA damage response?
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2716
– volume: 106
  start-page: 12245
  year: 2009
  end-page: 12250
  ident: CR22
  article-title: Cell fate decision mediated by p53 pulses
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0813088106
– volume: 278
  start-page: 42729
  year: 2003
  end-page: 42732
  ident: CR38
  article-title: Rad51 recombinase and recombination mediators
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R300027200
– volume: 27
  start-page: 589
  year: 2008
  end-page: 605
  ident: CR2
  article-title: DNA damage repair; the good, the bad, and the ugly
  publication-title: EMBO J
  doi: 10.1038/emboj.2008.15
– volume: 34
  start-page: 522
  year: 2013
  end-page: 529
  ident: CR44
  article-title: Differential effects of diverse p53 isoforms on TAp73 transcriptional activity and apoptosis
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs370
– volume: 32
  start-page: 2150
  year: 2013
  end-page: 2160
  ident: CR30
  article-title: The p53 isoform, delta133p53alpha, stimulates angiogenesis and tumour progression
  publication-title: Oncogene
  doi: 10.1038/onc.2012.242
– volume: 100
  start-page: 883
  year: 2007
  end-page: 896
  ident: CR10
  article-title: p53 modulation of the DNA damage response
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.21091
– volume: 30
  start-page: 1260
  year: 2009
  end-page: 1268
  ident: CR14
  article-title: DNA double-strand break repair activities in mammary epithelial cells ― influence of endogenous p53 variants
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgp117
– volume: 13
  start-page: 1003
  year: 2006
  end-page: 1016
  ident: CR11
  article-title: p53 in recombination and repair
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4401903
– volume: 19
  start-page: 632
  year: 2000
  end-page: 639
  ident: CR15
  article-title: Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203142
– volume: 41
  start-page: 53
  year: 2014
  end-page: 62
  ident: CR43
  article-title: Protein interaction between p53 and delta113p53 is required for the anti-apoptotic function of delta113p53
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2014.01.001
– volume: 142
  start-page: 693
  year: 1996
  end-page: 704
  ident: CR40
  article-title: Genetic requirements for the single-strand annealing pathway of double-strand break repair in
  publication-title: Genetics
– volume: 9
  start-page: 134
  year: 2009
  end-page: 142
  ident: CR45
  article-title: Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2587
– volume: 19
  start-page: 2122
  year: 2005
  end-page: 2137
  ident: CR23
  article-title: p53 isoforms can regulate p53 transcriptional activity
  publication-title: Genes Dev
  doi: 10.1101/gad.1339905
– volume: 6
  start-page: 389
  year: 2009
  end-page: 395
  ident: CR25
  article-title: p53 isoform delta113p53 in zebrafish
  publication-title: Zebrafish
  doi: 10.1089/zeb.2009.0598
– volume: 19
  start-page: 2900
  year: 2005
  end-page: 2911
  ident: CR24
  article-title: Loss of function of def selectively upregulates {Delta}113p53 expression to arrest expansion growth of digestive organs in zebrafish
  publication-title: Genes Dev
  doi: 10.1101/gad.1366405
– volume: 11
  start-page: 1135
  year: 2009
  end-page: 1142
  ident: CR29
  article-title: p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1928
– volume: 39
  start-page: 489
  year: 2012
  end-page: 502
  ident: CR31
  article-title: Development of novel visual-plus quantitative analysis systems for studying DNA double-strand break repairs in zebrafish
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2012.07.009
– volume: 280
  start-page: 8051
  year: 2005
  end-page: 8059
  ident: CR37
  article-title: Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic binding site in p53
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M411176200
– volume: 336
  start-page: 639
  year: 2004
  end-page: 654
  ident: CR35
  article-title: P53 inhibits strand exchange and replication fork regression promoted by human Rad51
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2003.12.050
– volume: 18
  start-page: 1815
  year: 2011
  end-page: 1824
  ident: CR42
  article-title: Biological functions of p53 isoforms through evolution: lessons from animal and cellular models
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2011.120
– volume: 302
  start-page: 20
  year: 2011
  end-page: 28
  ident: CR47
  article-title: A radiation-induced gene expression signature as a tool to predict acute radiotherapy-induced adverse side effects
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2010.12.006
– volume: 25
  start-page: 3868
  year: 1997
  end-page: 3874
  ident: CR18
  article-title: Interaction of p53 with the human Rad51 protein
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.19.3868
– volume: 29
  start-page: 2691
  year: 2010
  end-page: 2700
  ident: CR27
  article-title: p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter
  publication-title: Oncogene
  doi: 10.1038/onc.2010.26
– volume: 39
  start-page: 421
  year: 2012
  end-page: 433
  ident: CR50
  article-title: Reverse genetic approaches in zebrafish
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2012.07.004
– volume: 9
  start-page: 749
  year: 2009
  end-page: 758
  ident: CR7
  article-title: The first 30 years of p53: growing ever more complex
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2723
– volume: 18
  start-page: 91
  year: 2012
  end-page: 99
  ident: CR6
  article-title: Reciprocal repression between P53 and TCTP
  publication-title: Nat Med
  doi: 10.1038/nm.2546
– volume: 29
  start-page: 4995
  year: 2009
  end-page: 4998
  ident: CR48
  article-title: Image analysis of breast cancer immunohistochemistry-stained sections using imageJ: an RGB-based model
  publication-title: Anticancer Res
– volume: 21
  start-page: 201
  year: 2012
  end-page: 206
  ident: CR46
  article-title: Prediction of normal tissue toxicity as part of the individualized treatment with radiotherapy in oncology patients
  publication-title: Surg Oncol
  doi: 10.1016/j.suronc.2011.12.002
– volume: 22
  start-page: 6306
  year: 2002
  end-page: 6317
  ident: CR13
  article-title: DNA substrate dependence of p53-mediated regulation of double-strand break repair
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.22.17.6306-6317.2002
– volume: 23
  start-page: 9025
  year: 2004
  end-page: 9033
  ident: CR19
  article-title: The interaction of p53 with replication protein A mediates suppression of homologous recombination
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207982
– volume: 7
  start-page: 219
  year: 2006
  end-page: 224
  ident: CR20
  article-title: p53 modulates homologous recombination by transcriptional regulation of the gene
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7400587
– volume: 18
  start-page: 1283
  year: 2004
  end-page: 1292
  ident: CR39
  article-title: Rad54 and DNA ligase IV cooperate to maintain mammalian chromatid stability
  publication-title: Genes Dev
  doi: 10.1101/gad.1204304
– volume: 102
  start-page: 407
  year: 2005
  end-page: 412
  ident: CR32
  article-title: mutant zebrafish develop malignant peripheral nerve sheath tumors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0406252102
– volume: 23
  start-page: 620
  year: 2013
  end-page: 634
  ident: CR49
  article-title: Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation
  publication-title: Cell Res
  doi: 10.1038/cr.2013.16
– volume: 566
  start-page: 131
  year: 2004
  end-page: 167
  ident: CR1
  article-title: DNA double-strand break repair by homologous recombination
  publication-title: Mutat Res
  doi: 10.1016/j.mrrev.2003.07.001
– volume: 336
  start-page: 1440
  year: 2012
  end-page: 1444
  ident: CR21
  article-title: p53 dynamics control cell fate
  publication-title: Science
  doi: 10.1126/science.1218351
– volume: 40
  start-page: 179
  year: 2010
  end-page: 204
  ident: CR4
  article-title: The DNA damage response: making it safe to play with knives
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.09.019
– volume: 22
  start-page: 4111
  year: 2003
  end-page: 4117
  ident: CR17
  article-title: p53 mutated in the transactivation domain retains regulatory functions in homology-directed double-strand break repair
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206632
– volume: 29
  start-page: 2691
  year: 2010
  ident: BFcr201522_CR27
  publication-title: Oncogene
  doi: 10.1038/onc.2010.26
– volume: 22
  start-page: 6306
  year: 2002
  ident: BFcr201522_CR13
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.22.17.6306-6317.2002
– volume: 21
  start-page: 201
  year: 2012
  ident: BFcr201522_CR46
  publication-title: Surg Oncol
  doi: 10.1016/j.suronc.2011.12.002
– volume: 11
  start-page: 1135
  year: 2009
  ident: BFcr201522_CR29
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1928
– volume: 18
  start-page: 1815
  year: 2011
  ident: BFcr201522_CR42
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2011.120
– volume: 18
  start-page: 1283
  year: 2004
  ident: BFcr201522_CR39
  publication-title: Genes Dev
  doi: 10.1101/gad.1204304
– volume: 6
  start-page: 389
  year: 2009
  ident: BFcr201522_CR25
  publication-title: Zebrafish
  doi: 10.1089/zeb.2009.0598
– volume: 566
  start-page: 131
  year: 2004
  ident: BFcr201522_CR1
  publication-title: Mutat Res
  doi: 10.1016/j.mrrev.2003.07.001
– volume: 19
  start-page: 2900
  year: 2005
  ident: BFcr201522_CR24
  publication-title: Genes Dev
  doi: 10.1101/gad.1366405
– volume: 9
  start-page: 134
  year: 2009
  ident: BFcr201522_CR45
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2587
– volume: 106
  start-page: 12245
  year: 2009
  ident: BFcr201522_CR22
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0813088106
– volume: 27
  start-page: 589
  year: 2008
  ident: BFcr201522_CR2
  publication-title: EMBO J
  doi: 10.1038/emboj.2008.15
– volume: 18
  start-page: 91
  year: 2012
  ident: BFcr201522_CR6
  publication-title: Nat Med
  doi: 10.1038/nm.2546
– volume: 19
  start-page: 4500
  year: 2000
  ident: BFcr201522_CR34
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203809
– volume: 336
  start-page: 1440
  year: 2012
  ident: BFcr201522_CR21
  publication-title: Science
  doi: 10.1126/science.1218351
– volume: 19
  start-page: 632
  year: 2000
  ident: BFcr201522_CR15
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203142
– volume: 278
  start-page: 42729
  year: 2003
  ident: BFcr201522_CR38
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R300027200
– volume: 8
  start-page: 282
  year: 2002
  ident: BFcr201522_CR41
  publication-title: Nat Med
  doi: 10.1038/nm0302-282
– volume: 41
  start-page: 53
  year: 2014
  ident: BFcr201522_CR43
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2014.01.001
– volume: 23
  start-page: 620
  year: 2013
  ident: BFcr201522_CR49
  publication-title: Cell Res
  doi: 10.1038/cr.2013.16
– volume: 29
  start-page: 4995
  year: 2009
  ident: BFcr201522_CR48
  publication-title: Anticancer Res
– volume: 23
  start-page: 278
  year: 2009
  ident: BFcr201522_CR26
  publication-title: Genes Dev
  doi: 10.1101/gad.1761609
– volume: 336
  start-page: 639
  year: 2004
  ident: BFcr201522_CR35
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2003.12.050
– volume: 280
  start-page: 8051
  year: 2005
  ident: BFcr201522_CR37
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M411176200
– volume: 18
  start-page: 248
  year: 2011
  ident: BFcr201522_CR28
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2010.91
– volume: 25
  start-page: 3868
  year: 1997
  ident: BFcr201522_CR18
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.19.3868
– volume: 302
  start-page: 20
  year: 2011
  ident: BFcr201522_CR47
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2010.12.006
– volume: 9
  start-page: 1256
  year: 2010
  ident: BFcr201522_CR3
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2010.09.018
– volume: 39
  start-page: 421
  year: 2012
  ident: BFcr201522_CR50
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2012.07.004
– volume: 63
  start-page: 2596
  year: 2003
  ident: BFcr201522_CR16
  publication-title: Cancer Res
– volume: 13
  start-page: 1003
  year: 2006
  ident: BFcr201522_CR11
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4401903
– volume: 34
  start-page: 522
  year: 2013
  ident: BFcr201522_CR44
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs370
– volume: 102
  start-page: 15412
  year: 2005
  ident: BFcr201522_CR36
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504614102
– volume: 23
  start-page: 9025
  year: 2004
  ident: BFcr201522_CR19
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207982
– volume: 102
  start-page: 407
  year: 2005
  ident: BFcr201522_CR32
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0406252102
– volume: 137
  start-page: 413
  year: 2009
  ident: BFcr201522_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.037
– volume: 32
  start-page: 2150
  year: 2013
  ident: BFcr201522_CR30
  publication-title: Oncogene
  doi: 10.1038/onc.2012.242
– volume: 14
  start-page: 1847
  year: 1997
  ident: BFcr201522_CR12
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1201143
– volume: 9
  start-page: 749
  year: 2009
  ident: BFcr201522_CR7
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2723
– volume: 100
  start-page: 883
  year: 2007
  ident: BFcr201522_CR10
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.21091
– volume: 22
  start-page: 4111
  year: 2003
  ident: BFcr201522_CR17
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206632
– volume: 7
  start-page: 219
  year: 2006
  ident: BFcr201522_CR20
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7400587
– volume: 30
  start-page: 1260
  year: 2009
  ident: BFcr201522_CR14
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgp117
– volume: 40
  start-page: 179
  year: 2010
  ident: BFcr201522_CR4
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.09.019
– volume: 39
  start-page: 489
  year: 2012
  ident: BFcr201522_CR31
  publication-title: J Genet Genomics
  doi: 10.1016/j.jgg.2012.07.009
– volume: 99
  start-page: 8467
  year: 2002
  ident: BFcr201522_CR5
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.132268899
– volume: 22
  start-page: 719
  year: 2006
  ident: BFcr201522_CR33
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.05.022
– volume: 142
  start-page: 693
  year: 1996
  ident: BFcr201522_CR40
  publication-title: Genetics
  doi: 10.1093/genetics/142.3.693
– volume: 19
  start-page: 2122
  year: 2005
  ident: BFcr201522_CR23
  publication-title: Genes Dev
  doi: 10.1101/gad.1339905
– volume: 9
  start-page: 714
  year: 2009
  ident: BFcr201522_CR9
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2716
SSID ssj0025451
Score 2.440734
Snippet The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 351
SubjectTerms 631/337/1427/2122
631/80/82
692/699/67/1059/485
692/699/67/581
Animals
Animals, Genetically Modified
Apoptosis - genetics
Biomedical and Life Sciences
Cell Biology
Cell Line
Cellular Senescence - genetics
DNA - genetics
DNA Breaks, Double-Stranded - radiation effects
DNA Ligase ATP
DNA Ligases - biosynthesis
DNA Repair - genetics
DNA-Binding Proteins - biosynthesis
DNA-Binding Proteins - metabolism
G2 Phase Cell Cycle Checkpoints - genetics
G2 Phase Cell Cycle Checkpoints - radiation effects
Humans
Life Sciences
Original
original-article
Promoter Regions, Genetic - genetics
Protein Binding
Protein Isoforms - genetics
Rad51 Recombinase - biosynthesis
RNA Interference
RNA, Small Interfering
Tumor Suppressor Protein p53 - genetics
Zebrafish
Zebrafish Proteins - biosynthesis
Zebrafish Proteins - genetics
Title p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage
URI https://link.springer.com/article/10.1038/cr.2015.22
https://www.ncbi.nlm.nih.gov/pubmed/25698579
https://www.proquest.com/docview/1660660209
https://pubmed.ncbi.nlm.nih.gov/PMC4349251
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKV0hcEG_KY2XE7gFV2W1s53VcSmGFoFqhXam3yHEcbWFJSh8H-Afc-Qn8Hn4TM7aTPg8Ll9RxHLfJfJ35xh6PCTngoYwVWHKPFzzzcP7WkywHIidCzv0gE4HCtcMfh-HphXg_Ckat1u-VqKXFPDtSP3auK_kfqUIdyBVXyf6DZJtOoQLKIF84goTheC0ZTwLeHc8q5J3dw_7gMBG-zydmhwl3yvEUg7BAInrWfTM86ebVIrvSHg5xlMA-gTR-wZkDOZ4iD3V5G7o4oG_XnuRIEs0cwwz1ojKqwKyCMdG1ZusN06_8KtcDi_rYh8sm1Iw6v3MxwB8WmzWn8Pl5Ba1ndmx2NJbVShCCbWsK32qz60Yt_GAZtuUUrQnlCntWE2tbF4nYi2Kb7aXWznZZtEMhX1G13CWqtVab2w1ftgyCTf-uMPOrHxwxtjR79VT_hjVsYhTN7DyPUzVN8d6UgaHfY-CMsDbZez0Ynn1qHHtgocaxr5-pToPL4-PlN68Tny1vZjsod2Nm3hCe8zvktvNU6ImF3V3S0uU9ctPuXfr9PvkJwKIOfPTPLwu8YygYyNEachSgQdcgRw3kqIUcnVfUQY4i5ChCjhrIUWy7hBwdl7SGHN5l-jWQe0Au3g7O-6ee29fDUzwJmCeEjHsqjFWgmdQ9JXOf5TLXKghjyVlW6CKXSSQT5QNzwpSGSodKFGFPRJnSjD8k7bIq9WNChcp8YNBAWgsukl6RxWEmC9xmMgmBm-Yd8qp-6alySe9x75WrdFu8HfKyaTuxqV52tnpRyy4FTYyvRpa6WsxSP8TBAHC_kg55ZGXZ9AOORRIHEVyJ1qTcNMAs7-tXyvGlyfYuTP5Qv0MOajykTgXNdvy8J9d6iKfk1vJP-Yy059OFfg7kep7tkxvRKNp3CP8Ld2TO1A
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p53+isoform+%CE%94113p53%2F%CE%94133p53+promotes+DNA+double-strand+break+repair+to+protect+cell+from+death+and+senescence+in+response+to+DNA+damage&rft.jtitle=Cell+research&rft.au=Gong%2C+Lu&rft.au=Gong%2C+Hongjian&rft.au=Pan%2C+Xiao&rft.au=Chang%2C+Changqing&rft.date=2015-03-01&rft.issn=1001-0602&rft.eissn=1748-7838&rft.volume=25&rft.issue=3&rft.spage=351&rft.epage=369&rft_id=info:doi/10.1038%2Fcr.2015.22&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_cr_2015_22
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-0602&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-0602&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-0602&client=summon