An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection
•Every growing data volume also incorporate extraordinary dimensions.•Hybrid sine-cosine Harris hawks optimization (SCHHO) is proposed for feature selection.•Results of numerical problems and feature selection reveal efficacy of SCHHO.•SCHHO outperforms other counterparts and hybrid approached from...
Saved in:
Published in | Expert systems with applications Vol. 176; p. 114778 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.08.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Every growing data volume also incorporate extraordinary dimensions.•Hybrid sine-cosine Harris hawks optimization (SCHHO) is proposed for feature selection.•Results of numerical problems and feature selection reveal efficacy of SCHHO.•SCHHO outperforms other counterparts and hybrid approached from recent literature.
Feature selection, an optimization problem, becomes an important pre-process tool in data mining, which simultaneously aims at minimizing feature-size and maximizing model generalization. Because of large search space, conventional optimization methods often fail to generate global optimum solution. A variety of hybrid techniques merging different search strategies have been proposed in feature selection literature, but mostly deal with low dimensional datasets. In this paper, a hybrid optimization method is proposed for numerical optimization and feature selection, which integrates sine-cosine algorithm (SCA) in Harris hawks optimization (HHO). The goal of SCA integration is to cater ineffective exploration in HHO, moreover exploitation is enhanced by dynamically adjusting candidate solutions for avoiding solution stagnancy in HHO. The proposed method, namely SCHHO, is evaluated by employing CEC’17 test suite for numerical optimization and sixteen datasets with low and high-dimensions exceeding 15000 attributes, and compared with original SCA and HHO, as well as, other well-known optimization methods like dragonfly algorithm (DA), whale optimization algorithm (WOA), grasshopper optimization algorithm (GOA), Grey wolf optimization (GWO), and salp swarm algorithm (SSA); in addition to state-of-the-art methods. Performance of the proposed method is also validated against hybrid methods proposed in recent related literature. The extensive experimental and statistical analyses suggest that the proposed hybrid variant of HHO is able to produce efficient search results without additional computational cost. With increased convergence speed, SCHHO reduced feature-size up to 87% and achieved accuracy up to 92%. Motivated from the findings of this study, various potential future directions are also highlighted. |
---|---|
AbstractList | •Every growing data volume also incorporate extraordinary dimensions.•Hybrid sine-cosine Harris hawks optimization (SCHHO) is proposed for feature selection.•Results of numerical problems and feature selection reveal efficacy of SCHHO.•SCHHO outperforms other counterparts and hybrid approached from recent literature.
Feature selection, an optimization problem, becomes an important pre-process tool in data mining, which simultaneously aims at minimizing feature-size and maximizing model generalization. Because of large search space, conventional optimization methods often fail to generate global optimum solution. A variety of hybrid techniques merging different search strategies have been proposed in feature selection literature, but mostly deal with low dimensional datasets. In this paper, a hybrid optimization method is proposed for numerical optimization and feature selection, which integrates sine-cosine algorithm (SCA) in Harris hawks optimization (HHO). The goal of SCA integration is to cater ineffective exploration in HHO, moreover exploitation is enhanced by dynamically adjusting candidate solutions for avoiding solution stagnancy in HHO. The proposed method, namely SCHHO, is evaluated by employing CEC’17 test suite for numerical optimization and sixteen datasets with low and high-dimensions exceeding 15000 attributes, and compared with original SCA and HHO, as well as, other well-known optimization methods like dragonfly algorithm (DA), whale optimization algorithm (WOA), grasshopper optimization algorithm (GOA), Grey wolf optimization (GWO), and salp swarm algorithm (SSA); in addition to state-of-the-art methods. Performance of the proposed method is also validated against hybrid methods proposed in recent related literature. The extensive experimental and statistical analyses suggest that the proposed hybrid variant of HHO is able to produce efficient search results without additional computational cost. With increased convergence speed, SCHHO reduced feature-size up to 87% and achieved accuracy up to 92%. Motivated from the findings of this study, various potential future directions are also highlighted. Feature selection, an optimization problem, becomes an important pre-process tool in data mining, which simultaneously aims at minimizing feature-size and maximizing model generalization. Because of large search space, conventional optimization methods often fail to generate global optimum solution. A variety of hybrid techniques merging different search strategies have been proposed in feature selection literature, but mostly deal with low dimensional datasets. In this paper, a hybrid optimization method is proposed for numerical optimization and feature selection, which integrates sine-cosine algorithm (SCA) in Harris hawks optimization (HHO). The goal of SCA integration is to cater ineffective exploration in HHO, moreover exploitation is enhanced by dynamically adjusting candidate solutions for avoiding solution stagnancy in HHO. The proposed method, namely SCHHO, is evaluated by employing CEC'17 test suite for numerical optimization and sixteen datasets with low and high-dimensions exceeding 15000 attributes, and compared with original SCA and HHO, as well as, other well-known optimization methods like dragonfly algorithm (DA), whale optimization algorithm (WOA), grasshopper optimization algorithm (GOA), Grey wolf optimization (GWO), and salp swarm algorithm (SSA); in addition to state-of-the-art methods. Performance of the proposed method is also validated against hybrid methods proposed in recent related literature. The extensive experimental and statistical analyses suggest that the proposed hybrid variant of HHO is able to produce efficient search results without additional computational cost. With increased convergence speed, SCHHO reduced feature-size up to 87% and achieved accuracy up to 92%. Motivated from the findings of this study, various potential future directions are also highlighted. |
ArticleNumber | 114778 |
Author | Neggaz, Nabil Hussain, Kashif Houssein, Essam H. Zhu, William |
Author_xml | – sequence: 1 givenname: Kashif surname: Hussain fullname: Hussain, Kashif email: k.hussain@uestc.edu.cn organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 2 givenname: Nabil surname: Neggaz fullname: Neggaz, Nabil email: nabil.neggaz@univ-usto.dz organization: Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP 1505, EL M’naouer, 31000 Oran, Algeria – sequence: 3 givenname: William surname: Zhu fullname: Zhu, William email: wfzhu@uestc.edu.cn organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 4 givenname: Essam H. surname: Houssein fullname: Houssein, Essam H. email: essam.halim@mu.edu.eg organization: Faculty of Computers and Information, Minia University, Egypt |
BookMark | eNp9kLFOwzAQhi1UJNrCCzBZYk7xOU6cSCxVBRSpEgvMluuciUsaFzulgqcnoUwMnf7h_u90903IqPUtEnINbAYM8tvNDONBzzjjMAMQUhZnZAyFTJNclumIjFmZyUSAFBdkEuOGMZCMyTGp5y1Fa51x2Ha0_loHV9HoWkyMH4IudQgu0lof3iP1u85t3bfunG-p9YE2_kB1W9HavdVJ5bbYxn6kG2pRd_uANGKDZqhfknOrm4hXfzklrw_3L4tlsnp-fFrMV4lJS9ElyNcm51yIAqxGLFJEnWXGcFGitBYKrPIqA0jXa5aKorQcNGOlFVDxPMtNOiU3x7274D_2GDu18fvQnxQVz0Tao1JC3yqOLRN8jAGtMq77fasL2jUKmBq8qo0avKrBqzp67VH-D90Ft9Xh6zR0d4Swf_3TYVBxMG6wcqH3oyrvTuE_d5qVHQ |
CitedBy_id | crossref_primary_10_1007_s42107_024_01207_5 crossref_primary_10_1080_21681163_2021_2024088 crossref_primary_10_1016_j_eswa_2024_123977 crossref_primary_10_1007_s42235_024_00580_w crossref_primary_10_2478_amns_2023_1_00180 crossref_primary_10_1016_j_est_2021_103848 crossref_primary_10_1080_21681163_2022_2157748 crossref_primary_10_1016_j_knosys_2023_111191 crossref_primary_10_1016_j_asoc_2023_110558 crossref_primary_10_1016_j_egyr_2023_09_163 crossref_primary_10_1007_s10489_021_03080_0 crossref_primary_10_1016_j_knosys_2025_113252 crossref_primary_10_1007_s00500_022_07115_7 crossref_primary_10_1109_ACCESS_2022_3203400 crossref_primary_10_1109_ACCESS_2024_3454084 crossref_primary_10_1007_s11053_023_10259_4 crossref_primary_10_1007_s00521_023_08772_x crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1038_s41598_024_59064_w crossref_primary_10_3390_rs15163980 crossref_primary_10_32604_cmc_2021_019047 crossref_primary_10_1007_s00521_021_06881_z crossref_primary_10_1016_j_eswa_2021_116417 crossref_primary_10_1007_s10462_022_10233_1 crossref_primary_10_1002_er_7103 crossref_primary_10_1016_j_eswa_2025_126503 crossref_primary_10_1080_21681163_2022_2058616 crossref_primary_10_1371_journal_pone_0295579 crossref_primary_10_1007_s00521_024_09603_3 crossref_primary_10_1016_j_egyr_2022_09_025 crossref_primary_10_1016_j_jocs_2022_101867 crossref_primary_10_1007_s10462_021_10026_y crossref_primary_10_1007_s10586_024_04348_z crossref_primary_10_3390_s24247879 crossref_primary_10_1016_j_neucom_2024_129018 crossref_primary_10_1109_JSEN_2022_3164018 crossref_primary_10_1007_s10586_024_04770_3 crossref_primary_10_1038_s41598_023_38252_0 crossref_primary_10_1007_s41870_023_01161_6 crossref_primary_10_1007_s10462_021_10100_5 crossref_primary_10_1016_j_engappai_2022_104952 crossref_primary_10_53370_001c_66280 crossref_primary_10_1016_j_matcom_2021_08_013 crossref_primary_10_1109_ACCESS_2022_3153493 crossref_primary_10_1016_j_asoc_2024_112152 crossref_primary_10_1007_s00521_022_07705_4 crossref_primary_10_1109_ACCESS_2023_3332902 crossref_primary_10_1007_s10586_024_04382_x crossref_primary_10_1016_j_eswa_2021_116432 crossref_primary_10_1007_s00521_022_07925_8 crossref_primary_10_3390_e25081128 crossref_primary_10_3390_app142210248 crossref_primary_10_1016_j_asoc_2024_111734 crossref_primary_10_1016_j_compbiomed_2022_106520 crossref_primary_10_1016_j_compeleceng_2022_108553 crossref_primary_10_3390_math9202622 crossref_primary_10_1007_s13042_024_02143_1 crossref_primary_10_1016_j_jare_2023_01_014 crossref_primary_10_1109_ACCESS_2022_3151119 crossref_primary_10_1142_S0219622022500754 crossref_primary_10_1016_j_ifacsc_2023_100239 crossref_primary_10_1007_s00521_022_07522_9 crossref_primary_10_1109_ACCESS_2021_3138403 crossref_primary_10_1007_s42461_022_00719_5 crossref_primary_10_1111_exsy_13330 crossref_primary_10_1016_j_knosys_2022_108411 crossref_primary_10_1016_j_eswa_2022_117255 crossref_primary_10_32604_cmc_2023_043061 crossref_primary_10_1016_j_eswa_2023_120944 crossref_primary_10_1371_journal_pone_0255269 crossref_primary_10_1007_s00521_024_09565_6 crossref_primary_10_1038_s41598_024_73559_6 crossref_primary_10_3390_biomimetics9090552 crossref_primary_10_3390_su15010397 crossref_primary_10_1007_s13042_022_01656_x crossref_primary_10_1007_s12597_024_00785_x crossref_primary_10_1299_transjsme_24_00021 crossref_primary_10_32604_cmc_2024_053892 crossref_primary_10_1007_s12530_023_09557_2 crossref_primary_10_1007_s10489_021_02776_7 crossref_primary_10_32604_csse_2023_038025 crossref_primary_10_1007_s10489_022_04201_z crossref_primary_10_1016_j_eswa_2022_116550 crossref_primary_10_1038_s41598_023_31876_2 crossref_primary_10_1016_j_eswa_2022_116552 crossref_primary_10_1007_s11042_023_15023_7 crossref_primary_10_1007_s13042_024_02308_y crossref_primary_10_1007_s42979_023_02015_5 crossref_primary_10_1007_s42835_022_01036_z crossref_primary_10_1016_j_istruc_2023_105280 crossref_primary_10_1155_2022_1452301 crossref_primary_10_1007_s00521_022_07146_z crossref_primary_10_1142_S1469026823500281 crossref_primary_10_1016_j_knosys_2022_109446 crossref_primary_10_3390_biomimetics9030187 crossref_primary_10_1007_s00500_023_07988_2 crossref_primary_10_1371_journal_pone_0307288 crossref_primary_10_1002_qre_3639 crossref_primary_10_1007_s10489_022_03428_0 crossref_primary_10_1016_j_compbiomed_2023_106854 crossref_primary_10_1016_j_eswa_2022_119017 crossref_primary_10_1007_s10489_023_04473_z crossref_primary_10_1016_j_aei_2022_101761 crossref_primary_10_1038_s41598_024_66285_6 crossref_primary_10_1007_s11053_021_09929_y crossref_primary_10_1016_j_asoc_2024_111946 crossref_primary_10_1155_2023_1444938 crossref_primary_10_1007_s10586_021_03459_1 crossref_primary_10_1016_j_compbiomed_2023_106691 crossref_primary_10_1109_ACCESS_2022_3189476 crossref_primary_10_1155_2022_1825341 crossref_primary_10_1038_s41598_024_65292_x crossref_primary_10_3390_a16030167 crossref_primary_10_1016_j_engappai_2023_106554 crossref_primary_10_32604_cmes_2024_048071 crossref_primary_10_1007_s13042_021_01326_4 crossref_primary_10_1007_s42235_023_00446_7 crossref_primary_10_1016_j_engappai_2023_106277 crossref_primary_10_1109_ACCESS_2021_3105485 crossref_primary_10_1186_s44147_023_00227_3 crossref_primary_10_3934_mbe_2021352 crossref_primary_10_3390_e24081065 crossref_primary_10_1007_s11831_024_10218_z crossref_primary_10_1007_s00521_022_07398_9 crossref_primary_10_1038_s41598_021_01018_7 crossref_primary_10_1007_s11227_023_05260_w |
Cites_doi | 10.1109/CEC.2017.7969524 10.3139/120.111378 10.1016/j.eswa.2019.113103 10.1016/j.matcom.2019.06.017 10.1016/j.advengsoft.2017.01.004 10.26599/TST.2018.9010101 10.1016/j.future.2019.07.015 10.1109/CEC.2017.7969595 10.1109/TEVC.2020.2968743 10.1109/CEC.2017.7969336 10.1016/j.neucom.2017.04.053 10.1016/j.eswa.2020.113510 10.1109/TII.2017.2773475 10.1016/j.eswa.2018.09.015 10.1016/j.future.2019.02.028 10.1016/j.advengsoft.2016.01.008 10.1007/s00521-015-1920-1 10.3233/IDA-1997-1302 10.1038/s41598-019-54987-1 10.1007/978-981-10-8863-6_9 10.1016/j.knosys.2017.12.037 10.1109/ACCESS.2019.2906757 10.1109/ACCESS.2020.2968981 10.1016/j.advengsoft.2013.12.007 10.1109/TCBB.2016.2602263 10.1016/j.eswa.2016.06.004 10.1016/j.swevo.2018.02.021 10.1109/ACCESS.2020.2966582 10.1109/TCYB.2015.2404806 10.1007/s00500-019-03891-x 10.1109/TEVC.2015.2504420 10.1016/j.aci.2018.04.001 10.1016/j.engappai.2019.103370 10.1016/j.knosys.2017.10.028 10.1109/ACCESS.2020.3031718 10.1016/j.swevo.2017.04.002 10.3139/120.111478 10.1109/ACCESS.2019.2909945 10.1016/j.compchemeng.2019.106656 10.1016/j.eswa.2019.113122 10.1016/j.eswa.2019.03.039 10.3390/rs11121421 10.1155/2017/2030489 10.1109/TCYB.2016.2549639 10.1016/j.eswa.2020.113873 10.1109/ACCESS.2019.2897325 10.1016/j.asoc.2018.02.049 10.1109/CEC.2014.6900380 10.1016/j.eswa.2020.113428 10.1016/j.eswa.2018.01.019 10.1016/j.asoc.2019.106018 10.1016/j.asoc.2016.01.044 10.1007/s12559-019-09668-6 10.3390/electronics8101130 10.1016/j.eswa.2016.01.021 10.1016/j.eswa.2020.113364 10.3934/mfc.2018009 10.1016/j.swevo.2019.04.008 10.1016/j.advengsoft.2017.07.002 10.1016/j.compeleceng.2013.11.024 10.1108/IDD-09-2018-0045 10.1016/j.knosys.2015.12.022 10.1109/CEC.2018.8477908 10.1109/TSMCB.2012.2227469 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Aug 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Aug 15, 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2021.114778 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2021_114778 S0957417421002190 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAYWO AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c394t-e2bc6224481faee83eea55cc249e7ff18ed6d5113bb03489f21a009f41d2656c3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 25 05:57:41 EDT 2025 Tue Jul 01 04:05:51 EDT 2025 Thu Apr 24 23:00:27 EDT 2025 Sat Feb 15 15:52:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-dimensional data Feature selection Sine-cosine algorithm Optimization problems Harris hawks optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-e2bc6224481faee83eea55cc249e7ff18ed6d5113bb03489f21a009f41d2656c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2543511771 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2543511771 crossref_citationtrail_10_1016_j_eswa_2021_114778 crossref_primary_10_1016_j_eswa_2021_114778 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114778 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-15 |
PublicationDateYYYYMMDD | 2021-08-15 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello, Herrera (b0060) 2019; 48 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0110) 2019; 97 Jia, Lang, Oliva, Song, Peng (b0145) 2019; 11 Neggaz, N., Houssein, E. H., & Hussain, K. (2020). An efficient henry gas solubility optimization for feature selection. (pp. 1658–1665). Kumar, Bharti (b0170) 2019 Saremi, Mirjalili, Lewis (b0270) 2017; 105 Tubishat, Idris, Shuib, Abushariah, Mirjalili (b0320) 2020; 145 Zhang, G., & Shi, Y. (2018). Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0105) 2019; 101 Alweshah, Alkhalaileh, Albashish, Mafarja, Bsoul, Dorgham (b0015) 2020 (pp. 79–87). Zawbaa, Emary, Grosan, Snasel (b0350) 2018; 42 Mirjalili, Mirjalili, Lewis (b0230) 2014; 69 Ibrahim, Elaziz, Oliva, Cuevas, Lu (b0135) 2019; 23 Fu, Shao, Tan, Wang (b0085) 2020; 8 Tubishat, Ja’afar, Alswaitti, Mirjalili, Idris, Ismail, Omar (b0325) 2021; 164 Zhang, Kang, Cheng, Wang (b0360) 2018; 67 Hussien, A. G., Hassanien, A. E., Houssein, E. H., Bhattacharyya, S., & Amin, M. (2019). Bhattacharyya, Chatterjee, Singh, Yoon, Geem, Sarkar (b0035) 2020; 8 Mendiratta, Turk, Bansal (b0205) 2016; 2 Yıldız, Yıldız, Sait, Bureerat, Pholdee (b0345) 2019; 61 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0220) 2017; 114 Xue, Zhang, Browne, Yao (b0335) 2015; 20 Mafarja, Aljarah, Faris, Hammouri, Ala’M, Mirjalili (b0180) 2019; 117 Houssein, Hosney, Oliva, Mohamed, Hassaballah (b0115) 2020; 133 Houssein, Saad, Hussain, Zhu, Shaban, Hassaballah (b0120) 2020; 8 Nag, Pal (b0245) 2015; 46 Pirgazi, Alimoradi, Abharian, Olyaee (b0260) 2019; 9 Mistry, Zhang, Neoh, Lim, Fielding (b0235) 2016; 47 . Mafarja, Jaber, Ahmed, Thaher (b0190) 2019 Talbi (b0295) 2009; Vol. 74 Hans, Kaur (b0100) 2019 Dadaneh, Markid, Zakerolhosseini (b0050) 2018; 53 Abdel-Basset, Ding, El-Shahat (b0005) 2020 Mirjalili (b0215) 2016; 96 Elaziz, Ewees, Ibrahim, Lu (b0070) 2020; 168 Too, Abdullah, Mohd Saad (b0315) 2019; 8 Kommadath, R., & Kotecha, P. (2017). Moradi, Gholampour (b0240) 2016; 43 Singh, Singh (b0285) 2017; 14 Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017). Issa, Hassanien, Oliva, Helmi, Ziedan, Alzohairy (b0140) 2018; 99 Kurtuluş, Yıldız, Sait, Bureerat (b0175) 2020; 62 Balakumar, Mohan (b0030) 2019; 47 (p. 113510). Neggaz, Ewees, Elaziz, Mafarja (b0250) 2020; 145 Dash, Liu (b0055) 1997; 1 Mirjalili (b0210) 2016; 27 Yan, Ma, Luo, Wang (b0340) 2018; 23 Chandrashekar, Sahin (b0040) 2014; 40 Singh, N., & Singh, S. (2017). Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. Arora, Singh, Sharma, Sharma, Anand (b0020) 2019; 7 Fan, Chen, Xia (b0080) 2020 (p. 113428). Ewees, Elaziz (b0075) 2020; 88 Mafarja, Qasem, Heidari, Aljarah, Faris, Mirjalili (b0195) 2020; 12 Hancer, Xue, Zhang (b0095) 2018; 140 (pp. 2397–2403). Xue, Zhang, Browne (b0330) 2012; 43 (pp. 372–379). Gupta, S., Deep, K., Heidari, A. A., Moayedi, H., & Wang, M. (2020). Opposition-based learning harris hawks optimization with advanced transition rules: Principles and analysis. Mafarja, Aljarah, Heidari, Hammouri, Faris, Ala’M, Mirjalili (b0185) 2018; 145 Tawhid, Dsouza (b0310) 2018; 1 Al-Tashi, Kadir, Rais, Mirjalili, Alhussian (b0010) 2019; 7 Kumar, A., Misra, R. K., & Singh, D. (2017). Shunmugapriya, Kanmani (b0275) 2017; 36 Mafarja, Mirjalili (b0200) 2017; 260 Zorarpacı, Özel (b0365) 2016; 62 (pp. 1835–1842). Song, Zhang, Guo, Sun, Wang (b0290) 2020 Kamboj, Nandi, Bhadoria, Sehgal (b0155) 2020; 89 (pp. 1–7). Tanabe, R., & Fukunaga, A. S. (2014). Tawhid, Dsouza (b0305) 2018 Mirjalili, Lewis (b0225) 2016; 95 Rodríguez-Esparza, E., Zanella-Calzada, L. A., Oliva, D., Heidari, A. A., Zaldivar, D., Pérez-Cisneros, M., & Foong, L. K. (2020). An efficient harris hawks-inspired image segmentation method. (p. 113364). Hu, Dai, Su, Moore, Zhang, Mao, Chen, Xu (b0125) 2016; 15 Eberhart, Kennedy (b0065) 1995 Jia, Xing, Song (b0150) 2019; 7 Chen, Zhou, Yuan (b0045) 2019; 128 10.1016/j.eswa.2021.114778_b0130 Bhattacharyya (10.1016/j.eswa.2021.114778_b0035) 2020; 8 Dadaneh (10.1016/j.eswa.2021.114778_b0050) 2018; 53 10.1016/j.eswa.2021.114778_b0255 Mirjalili (10.1016/j.eswa.2021.114778_b0225) 2016; 95 Jia (10.1016/j.eswa.2021.114778_b0145) 2019; 11 Fan (10.1016/j.eswa.2021.114778_b0080) 2020 Chen (10.1016/j.eswa.2021.114778_b0045) 2019; 128 Issa (10.1016/j.eswa.2021.114778_b0140) 2018; 99 Dash (10.1016/j.eswa.2021.114778_b0055) 1997; 1 Mafarja (10.1016/j.eswa.2021.114778_b0180) 2019; 117 10.1016/j.eswa.2021.114778_b0265 Singh (10.1016/j.eswa.2021.114778_b0285) 2017; 14 Yan (10.1016/j.eswa.2021.114778_b0340) 2018; 23 Mafarja (10.1016/j.eswa.2021.114778_b0185) 2018; 145 Mirjalili (10.1016/j.eswa.2021.114778_b0210) 2016; 27 10.1016/j.eswa.2021.114778_b0025 Mirjalili (10.1016/j.eswa.2021.114778_b0230) 2014; 69 10.1016/j.eswa.2021.114778_b0300 Zawbaa (10.1016/j.eswa.2021.114778_b0350) 2018; 42 Moradi (10.1016/j.eswa.2021.114778_b0240) 2016; 43 Mafarja (10.1016/j.eswa.2021.114778_b0195) 2020; 12 Balakumar (10.1016/j.eswa.2021.114778_b0030) 2019; 47 Mendiratta (10.1016/j.eswa.2021.114778_b0205) 2016; 2 Kurtuluş (10.1016/j.eswa.2021.114778_b0175) 2020; 62 Tawhid (10.1016/j.eswa.2021.114778_b0305) 2018 Hashim (10.1016/j.eswa.2021.114778_b0105) 2019; 101 Del Ser (10.1016/j.eswa.2021.114778_b0060) 2019; 48 Pirgazi (10.1016/j.eswa.2021.114778_b0260) 2019; 9 Song (10.1016/j.eswa.2021.114778_b0290) 2020 Hu (10.1016/j.eswa.2021.114778_b0125) 2016; 15 Ewees (10.1016/j.eswa.2021.114778_b0075) 2020; 88 Saremi (10.1016/j.eswa.2021.114778_b0270) 2017; 105 Heidari (10.1016/j.eswa.2021.114778_b0110) 2019; 97 Hancer (10.1016/j.eswa.2021.114778_b0095) 2018; 140 Eberhart (10.1016/j.eswa.2021.114778_b0065) 1995 Mistry (10.1016/j.eswa.2021.114778_b0235) 2016; 47 10.1016/j.eswa.2021.114778_b0355 Chandrashekar (10.1016/j.eswa.2021.114778_b0040) 2014; 40 Neggaz (10.1016/j.eswa.2021.114778_b0250) 2020; 145 Too (10.1016/j.eswa.2021.114778_b0315) 2019; 8 Tubishat (10.1016/j.eswa.2021.114778_b0320) 2020; 145 Hans (10.1016/j.eswa.2021.114778_b0100) 2019 Zorarpacı (10.1016/j.eswa.2021.114778_b0365) 2016; 62 Elaziz (10.1016/j.eswa.2021.114778_b0070) 2020; 168 Zhang (10.1016/j.eswa.2021.114778_b0360) 2018; 67 Abdel-Basset (10.1016/j.eswa.2021.114778_b0005) 2020 Tubishat (10.1016/j.eswa.2021.114778_b0325) 2021; 164 Xue (10.1016/j.eswa.2021.114778_b0335) 2015; 20 Shunmugapriya (10.1016/j.eswa.2021.114778_b0275) 2017; 36 Nag (10.1016/j.eswa.2021.114778_b0245) 2015; 46 Mirjalili (10.1016/j.eswa.2021.114778_b0215) 2016; 96 Al-Tashi (10.1016/j.eswa.2021.114778_b0010) 2019; 7 Houssein (10.1016/j.eswa.2021.114778_b0115) 2020; 133 Mirjalili (10.1016/j.eswa.2021.114778_b0220) 2017; 114 10.1016/j.eswa.2021.114778_b0280 10.1016/j.eswa.2021.114778_b0160 Kamboj (10.1016/j.eswa.2021.114778_b0155) 2020; 89 10.1016/j.eswa.2021.114778_b0165 Tawhid (10.1016/j.eswa.2021.114778_b0310) 2018; 1 Arora (10.1016/j.eswa.2021.114778_b0020) 2019; 7 Mafarja (10.1016/j.eswa.2021.114778_b0200) 2017; 260 Fu (10.1016/j.eswa.2021.114778_b0085) 2020; 8 Alweshah (10.1016/j.eswa.2021.114778_b0015) 2020 Xue (10.1016/j.eswa.2021.114778_b0330) 2012; 43 Yıldız (10.1016/j.eswa.2021.114778_b0345) 2019; 61 Jia (10.1016/j.eswa.2021.114778_b0150) 2019; 7 Kumar (10.1016/j.eswa.2021.114778_b0170) 2019 Houssein (10.1016/j.eswa.2021.114778_b0120) 2020; 8 10.1016/j.eswa.2021.114778_b0090 Ibrahim (10.1016/j.eswa.2021.114778_b0135) 2019; 23 Mafarja (10.1016/j.eswa.2021.114778_b0190) 2019 Talbi (10.1016/j.eswa.2021.114778_b0295) 2009; Vol. 74 |
References_xml | – volume: 128 start-page: 140 year: 2019 end-page: 156 ident: b0045 article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection publication-title: Expert Systems with Applications – volume: 7 start-page: 26343 year: 2019 end-page: 26361 ident: b0020 article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection publication-title: IEEE Access – year: 2019 ident: b0100 article-title: Hybrid binary sine cosine algorithm and ant lion optimization (scalo) approaches for feature selection problem publication-title: International Journal of Computational Materials Science and Engineering – reference: Kommadath, R., & Kotecha, P. (2017). – volume: 7 start-page: 49614 year: 2019 end-page: 49631 ident: b0150 article-title: A new hybrid seagull optimization algorithm for feature selection publication-title: IEEE Access – volume: 145 start-page: 25 year: 2018 end-page: 45 ident: b0185 article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems publication-title: Knowledge-Based Systems – volume: 133 year: 2020 ident: b0115 article-title: A novel hybrid harris hawks optimization and support vector machines for drug design and discovery publication-title: Computers & Chemical Engineering – reference: Kumar, A., Misra, R. K., & Singh, D. (2017). – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b0215 article-title: Sca: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-based Systems – volume: 8 start-page: 13086 year: 2020 end-page: 13104 ident: b0085 article-title: Fault diagnosis for rolling bearings based on composite multiscale fine-sorted dispersion entropy and svm with hybrid mutation sca-hho algorithm optimization publication-title: IEEE Access – year: 2018 ident: b0305 article-title: Hybrid binary bat enhanced particle swarm optimization algorithm for solving feature selection problems publication-title: Applied Computing and Informatics – volume: 47 start-page: 154 year: 2019 end-page: 170 ident: b0030 article-title: Artificial bee colony algorithm for feature selection and improved support vector machine for text classification publication-title: Information Discovery and Delivery – volume: 8 start-page: 19381 year: 2020 end-page: 19397 ident: b0120 article-title: Optimal sink node placement in large scale wireless sensor networks based on harris’ hawk optimization algorithm publication-title: IEEE Access – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b0210 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications – volume: 23 start-page: 733 year: 2018 end-page: 743 ident: b0340 article-title: A hybrid algorithm based on binary chemical reaction optimization and tabu search for feature selection of high-dimensional biomedical data publication-title: Tsinghua Science and Technology – volume: 9 start-page: 1 year: 2019 end-page: 15 ident: b0260 article-title: An efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets publication-title: Scientific Reports – volume: 53 start-page: 27 year: 2018 end-page: 42 ident: b0050 article-title: Unsupervised probabilistic feature selection using ant colony optimization publication-title: Expert Systems with Applications – volume: Vol. 74 year: 2009 ident: b0295 publication-title: Metaheuristics: From design to implementation – volume: 43 start-page: 117 year: 2016 end-page: 130 ident: b0240 article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy publication-title: Applied Soft Computing – start-page: 39 year: 1995 end-page: 43 ident: b0065 article-title: A new optimizer using particle swarm theory – volume: 7 start-page: 39496 year: 2019 end-page: 39508 ident: b0010 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access – start-page: 1 year: 2020 end-page: 19 ident: b0080 article-title: A novel quasi-reflected harris hawks optimization algorithm for global optimization problems publication-title: Soft Computing – reference: (pp. 1658–1665). – reference: Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017). – volume: 117 start-page: 267 year: 2019 end-page: 286 ident: b0180 article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems publication-title: Expert Systems with Applications – reference: Singh, N., & Singh, S. (2017). Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. – volume: 11 start-page: 1421 year: 2019 ident: b0145 article-title: Dynamic harris hawks optimization with mutation mechanism for satellite image segmentation publication-title: Remote Sensing – volume: 145 year: 2020 ident: b0320 article-title: Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection publication-title: Expert Systems with Applications – volume: 89 year: 2020 ident: b0155 article-title: An intensify harris hawks optimizer for numerical and engineering optimization problems publication-title: Applied Soft Computing – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0230 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – reference: Zhang, G., & Shi, Y. (2018). – volume: 67 start-page: 197 year: 2018 end-page: 214 ident: b0360 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Applied Soft Computing – volume: 1 start-page: 131 year: 1997 end-page: 156 ident: b0055 article-title: Feature selection for classification publication-title: Intelligent Data Analysis – volume: 61 start-page: 735 year: 2019 end-page: 743 ident: b0345 article-title: A new hybrid harris hawks-nelder-mead optimization algorithm for solving design and manufacturing problems publication-title: Materials Testing – reference: (pp. 79–87). – start-page: 1 year: 2019 end-page: 23 ident: b0170 article-title: A novel hybrid bpso–sca approach for feature selection publication-title: Natural Computing – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b0110 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems – volume: 42 start-page: 29 year: 2018 end-page: 42 ident: b0350 article-title: Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach publication-title: Swarm and Evolutionary Computation – volume: 62 start-page: 91 year: 2016 end-page: 103 ident: b0365 article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection publication-title: Expert Systems with Applications – volume: 2 start-page: 1 year: 2016 end-page: 7 ident: b0205 publication-title: Automatic speech recognition using optimal selection of features based on hybrid abc-pso – reference: (pp. 1–7). – start-page: 1 year: 2020 end-page: 45 ident: b0005 article-title: A hybrid harris hawks optimization algorithm with simulated annealing for feature selection publication-title: Artificial Intelligence Review – volume: 140 start-page: 103 year: 2018 end-page: 119 ident: b0095 article-title: Differential evolution for filter feature selection based on information theory and feature ranking publication-title: Knowledge-Based Systems – reference: Tanabe, R., & Fukunaga, A. S. (2014). – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: b0040 article-title: A survey on feature selection methods publication-title: Computers & Electrical Engineering – start-page: 1 year: 2020 end-page: 18 ident: b0015 article-title: A hybrid mine blast algorithm for feature selection problems publication-title: Soft Computing – volume: 164 year: 2021 ident: b0325 article-title: Dynamic salp swarm algorithm for feature selection publication-title: Expert Systems with Applications – start-page: 1 year: 2019 end-page: 17 ident: b0190 article-title: Whale optimisation algorithm for high-dimensional small-instance feature selection publication-title: International Journal of Parallel, Emergent and Distributed Systems – volume: 47 start-page: 1496 year: 2016 end-page: 1509 ident: b0235 article-title: A micro-ga embedded pso feature selection approach to intelligent facial emotion recognition publication-title: IEEE transactions on cybernetics – reference: (p. 113364). – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0225 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – volume: 1 start-page: 181 year: 2018 end-page: 200 ident: b0310 article-title: Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems publication-title: Mathematical Foundations of Computing – volume: 260 start-page: 302 year: 2017 end-page: 312 ident: b0200 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing – volume: 14 start-page: 2994 year: 2017 end-page: 3002 ident: b0285 article-title: Optimal feature selection via nsga-ii for power quality disturbances classification publication-title: IEEE Transactions on Industrial Informatics – reference: (pp. 2397–2403). – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b0270 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Advances in Engineering Software – reference: (pp. 1835–1842). – volume: 8 start-page: 1130 year: 2019 ident: b0315 article-title: A new quadratic binary harris hawk optimization for feature selection publication-title: Electronics – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b0220 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software – volume: 36 start-page: 27 year: 2017 end-page: 36 ident: b0275 article-title: A hybrid algorithm using ant and bee colony optimization for feature selection and classification (ac-abc hybrid) publication-title: Swarm and Evolutionary Computation – reference: (pp. 372–379). – volume: 48 start-page: 220 year: 2019 end-page: 250 ident: b0060 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm and Evolutionary Computation – volume: 15 start-page: 1765 year: 2016 end-page: 1773 ident: b0125 article-title: Feature selection for optimized high-dimensional biomedical data using an improved shuffled frog leaping algorithm publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 168 start-page: 48 year: 2020 end-page: 75 ident: b0070 article-title: Opposition-based moth-flame optimization improved by differential evolution for feature selection publication-title: Mathematics and Computers in Simulation – reference: Rodríguez-Esparza, E., Zanella-Calzada, L. A., Oliva, D., Heidari, A. A., Zaldivar, D., Pérez-Cisneros, M., & Foong, L. K. (2020). An efficient harris hawks-inspired image segmentation method. – volume: 43 start-page: 1656 year: 2012 end-page: 1671 ident: b0330 article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach publication-title: IEEE Transactions on Cybernetics – reference: Hussien, A. G., Hassanien, A. E., Houssein, E. H., Bhattacharyya, S., & Amin, M. (2019). – volume: 46 start-page: 499 year: 2015 end-page: 510 ident: b0245 article-title: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification publication-title: IEEE Transactions on Cybernetics – volume: 12 start-page: 150 year: 2020 end-page: 175 ident: b0195 article-title: Efficient hybrid nature-inspired binary optimizers for feature selection publication-title: Cognitive Computation – year: 2020 ident: b0290 article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data publication-title: IEEE Transactions on Evolutionary Computation – volume: 145 year: 2020 ident: b0250 article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection publication-title: Expert Systems with Applications – reference: . – volume: 20 start-page: 606 year: 2015 end-page: 626 ident: b0335 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Transactions on Evolutionary Computation – volume: 88 year: 2020 ident: b0075 article-title: Performance analysis of chaotic multi-verse harris hawks optimization: A case study on solving engineering problems publication-title: Engineering Applications of Artificial Intelligence – reference: (p. 113510). – volume: 23 start-page: 13547 year: 2019 end-page: 13567 ident: b0135 article-title: An opposition-based social spider optimization for feature selection publication-title: Soft Computing – reference: Gupta, S., Deep, K., Heidari, A. A., Moayedi, H., & Wang, M. (2020). Opposition-based learning harris hawks optimization with advanced transition rules: Principles and analysis. – volume: 99 start-page: 56 year: 2018 end-page: 70 ident: b0140 article-title: Asca-pso: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment publication-title: Expert Systems with Applications – reference: (p. 113428). – volume: 101 start-page: 646 year: 2019 end-page: 667 ident: b0105 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Generation Computer Systems – volume: 8 start-page: 195929 year: 2020 end-page: 195945 ident: b0035 article-title: Mayfly in harmony: A new hybrid meta-heuristic feature selection algorithm publication-title: IEEE Access – reference: Neggaz, N., Houssein, E. H., & Hussain, K. (2020). An efficient henry gas solubility optimization for feature selection. – volume: 62 start-page: 251 year: 2020 end-page: 260 ident: b0175 article-title: A novel hybrid harris hawks-simulated annealing algorithm and rbf-based metamodel for design optimization of highway guardrails publication-title: Materials Testing – ident: 10.1016/j.eswa.2021.114778_b0165 doi: 10.1109/CEC.2017.7969524 – volume: 61 start-page: 735 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0345 article-title: A new hybrid harris hawks-nelder-mead optimization algorithm for solving design and manufacturing problems publication-title: Materials Testing doi: 10.3139/120.111378 – volume: 145 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0250 article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.113103 – volume: 168 start-page: 48 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0070 article-title: Opposition-based moth-flame optimization improved by differential evolution for feature selection publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2019.06.017 – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.eswa.2021.114778_b0270 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.01.004 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0170 article-title: A novel hybrid bpso–sca approach for feature selection publication-title: Natural Computing – volume: 23 start-page: 733 year: 2018 ident: 10.1016/j.eswa.2021.114778_b0340 article-title: A hybrid algorithm based on binary chemical reaction optimization and tabu search for feature selection of high-dimensional biomedical data publication-title: Tsinghua Science and Technology doi: 10.26599/TST.2018.9010101 – volume: 101 start-page: 646 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0105 article-title: Henry gas solubility optimization: A novel physics-based algorithm publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.07.015 – ident: 10.1016/j.eswa.2021.114778_b0160 doi: 10.1109/CEC.2017.7969595 – volume: 2 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2021.114778_b0205 publication-title: Automatic speech recognition using optimal selection of features based on hybrid abc-pso – year: 2020 ident: 10.1016/j.eswa.2021.114778_b0290 article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2020.2968743 – ident: 10.1016/j.eswa.2021.114778_b0025 doi: 10.1109/CEC.2017.7969336 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0080 article-title: A novel quasi-reflected harris hawks optimization algorithm for global optimization problems publication-title: Soft Computing – volume: 260 start-page: 302 year: 2017 ident: 10.1016/j.eswa.2021.114778_b0200 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – ident: 10.1016/j.eswa.2021.114778_b0090 doi: 10.1016/j.eswa.2020.113510 – volume: 14 start-page: 2994 year: 2017 ident: 10.1016/j.eswa.2021.114778_b0285 article-title: Optimal feature selection via nsga-ii for power quality disturbances classification publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2017.2773475 – volume: 117 start-page: 267 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0180 article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.09.015 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0110 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2021.114778_b0225 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 27 start-page: 1053 year: 2016 ident: 10.1016/j.eswa.2021.114778_b0210 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1920-1 – volume: 1 start-page: 131 year: 1997 ident: 10.1016/j.eswa.2021.114778_b0055 article-title: Feature selection for classification publication-title: Intelligent Data Analysis doi: 10.3233/IDA-1997-1302 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0260 article-title: An efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets publication-title: Scientific Reports doi: 10.1038/s41598-019-54987-1 – ident: 10.1016/j.eswa.2021.114778_b0130 doi: 10.1007/978-981-10-8863-6_9 – volume: 145 start-page: 25 year: 2018 ident: 10.1016/j.eswa.2021.114778_b0185 article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.12.037 – volume: 7 start-page: 39496 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0010 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906757 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0005 article-title: A hybrid harris hawks optimization algorithm with simulated annealing for feature selection publication-title: Artificial Intelligence Review – volume: 8 start-page: 19381 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0120 article-title: Optimal sink node placement in large scale wireless sensor networks based on harris’ hawk optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968981 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2021.114778_b0230 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 15 start-page: 1765 year: 2016 ident: 10.1016/j.eswa.2021.114778_b0125 article-title: Feature selection for optimized high-dimensional biomedical data using an improved shuffled frog leaping algorithm publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2016.2602263 – volume: 62 start-page: 91 year: 2016 ident: 10.1016/j.eswa.2021.114778_b0365 article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.06.004 – start-page: 39 year: 1995 ident: 10.1016/j.eswa.2021.114778_b0065 – volume: 42 start-page: 29 year: 2018 ident: 10.1016/j.eswa.2021.114778_b0350 article-title: Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.02.021 – volume: 8 start-page: 13086 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0085 article-title: Fault diagnosis for rolling bearings based on composite multiscale fine-sorted dispersion entropy and svm with hybrid mutation sca-hho algorithm optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966582 – volume: 46 start-page: 499 year: 2015 ident: 10.1016/j.eswa.2021.114778_b0245 article-title: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2404806 – volume: 23 start-page: 13547 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0135 article-title: An opposition-based social spider optimization for feature selection publication-title: Soft Computing doi: 10.1007/s00500-019-03891-x – volume: 20 start-page: 606 year: 2015 ident: 10.1016/j.eswa.2021.114778_b0335 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2015.2504420 – year: 2018 ident: 10.1016/j.eswa.2021.114778_b0305 article-title: Hybrid binary bat enhanced particle swarm optimization algorithm for solving feature selection problems publication-title: Applied Computing and Informatics doi: 10.1016/j.aci.2018.04.001 – volume: 88 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0075 article-title: Performance analysis of chaotic multi-verse harris hawks optimization: A case study on solving engineering problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2019.103370 – volume: 140 start-page: 103 year: 2018 ident: 10.1016/j.eswa.2021.114778_b0095 article-title: Differential evolution for filter feature selection based on information theory and feature ranking publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.10.028 – volume: 8 start-page: 195929 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0035 article-title: Mayfly in harmony: A new hybrid meta-heuristic feature selection algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031718 – volume: 36 start-page: 27 year: 2017 ident: 10.1016/j.eswa.2021.114778_b0275 article-title: A hybrid algorithm using ant and bee colony optimization for feature selection and classification (ac-abc hybrid) publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.04.002 – volume: 62 start-page: 251 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0175 article-title: A novel hybrid harris hawks-simulated annealing algorithm and rbf-based metamodel for design optimization of highway guardrails publication-title: Materials Testing doi: 10.3139/120.111478 – volume: 7 start-page: 49614 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0150 article-title: A new hybrid seagull optimization algorithm for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909945 – volume: 133 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0115 article-title: A novel hybrid harris hawks optimization and support vector machines for drug design and discovery publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2019.106656 – volume: 145 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0320 article-title: Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.113122 – volume: 128 start-page: 140 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0045 article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.03.039 – volume: 11 start-page: 1421 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0145 article-title: Dynamic harris hawks optimization with mutation mechanism for satellite image segmentation publication-title: Remote Sensing doi: 10.3390/rs11121421 – ident: 10.1016/j.eswa.2021.114778_b0280 doi: 10.1155/2017/2030489 – volume: Vol. 74 year: 2009 ident: 10.1016/j.eswa.2021.114778_b0295 – volume: 47 start-page: 1496 year: 2016 ident: 10.1016/j.eswa.2021.114778_b0235 article-title: A micro-ga embedded pso feature selection approach to intelligent facial emotion recognition publication-title: IEEE transactions on cybernetics doi: 10.1109/TCYB.2016.2549639 – volume: 164 year: 2021 ident: 10.1016/j.eswa.2021.114778_b0325 article-title: Dynamic salp swarm algorithm for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113873 – volume: 7 start-page: 26343 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0020 article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897325 – volume: 67 start-page: 197 year: 2018 ident: 10.1016/j.eswa.2021.114778_b0360 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.02.049 – year: 2019 ident: 10.1016/j.eswa.2021.114778_b0100 article-title: Hybrid binary sine cosine algorithm and ant lion optimization (scalo) approaches for feature selection problem publication-title: International Journal of Computational Materials Science and Engineering – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0190 article-title: Whale optimisation algorithm for high-dimensional small-instance feature selection publication-title: International Journal of Parallel, Emergent and Distributed Systems – ident: 10.1016/j.eswa.2021.114778_b0300 doi: 10.1109/CEC.2014.6900380 – ident: 10.1016/j.eswa.2021.114778_b0265 doi: 10.1016/j.eswa.2020.113428 – volume: 99 start-page: 56 year: 2018 ident: 10.1016/j.eswa.2021.114778_b0140 article-title: Asca-pso: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.01.019 – volume: 89 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0155 article-title: An intensify harris hawks optimizer for numerical and engineering optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.106018 – volume: 43 start-page: 117 year: 2016 ident: 10.1016/j.eswa.2021.114778_b0240 article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.01.044 – volume: 12 start-page: 150 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0195 article-title: Efficient hybrid nature-inspired binary optimizers for feature selection publication-title: Cognitive Computation doi: 10.1007/s12559-019-09668-6 – volume: 8 start-page: 1130 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0315 article-title: A new quadratic binary harris hawk optimization for feature selection publication-title: Electronics doi: 10.3390/electronics8101130 – volume: 53 start-page: 27 year: 2018 ident: 10.1016/j.eswa.2021.114778_b0050 article-title: Unsupervised probabilistic feature selection using ant colony optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.01.021 – ident: 10.1016/j.eswa.2021.114778_b0255 doi: 10.1016/j.eswa.2020.113364 – volume: 1 start-page: 181 year: 2018 ident: 10.1016/j.eswa.2021.114778_b0310 article-title: Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems publication-title: Mathematical Foundations of Computing doi: 10.3934/mfc.2018009 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2021.114778_b0015 article-title: A hybrid mine blast algorithm for feature selection problems publication-title: Soft Computing – volume: 48 start-page: 220 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0060 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2019.04.008 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.eswa.2021.114778_b0220 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 40 start-page: 16 year: 2014 ident: 10.1016/j.eswa.2021.114778_b0040 article-title: A survey on feature selection methods publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2013.11.024 – volume: 47 start-page: 154 year: 2019 ident: 10.1016/j.eswa.2021.114778_b0030 article-title: Artificial bee colony algorithm for feature selection and improved support vector machine for text classification publication-title: Information Discovery and Delivery doi: 10.1108/IDD-09-2018-0045 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.eswa.2021.114778_b0215 article-title: Sca: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-based Systems doi: 10.1016/j.knosys.2015.12.022 – ident: 10.1016/j.eswa.2021.114778_b0355 doi: 10.1109/CEC.2018.8477908 – volume: 43 start-page: 1656 year: 2012 ident: 10.1016/j.eswa.2021.114778_b0330 article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TSMCB.2012.2227469 |
SSID | ssj0017007 |
Score | 2.6598873 |
Snippet | •Every growing data volume also incorporate extraordinary dimensions.•Hybrid sine-cosine Harris hawks optimization (SCHHO) is proposed for feature... Feature selection, an optimization problem, becomes an important pre-process tool in data mining, which simultaneously aims at minimizing feature-size and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114778 |
SubjectTerms | Algorithms Data mining Datasets Feature selection Harris hawks optimization High-dimensional data Optimization Optimization algorithms Optimization problems Search methods Sine-cosine algorithm Statistical analysis Trigonometric functions |
Title | An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection |
URI | https://dx.doi.org/10.1016/j.eswa.2021.114778 https://www.proquest.com/docview/2543511771 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCy8EeVReWBDpk3ixM5YVVQBBAsgdbMcx1aBklS0qGLht3OXOEggxMAU2bKj6Hy-7-zcfUfIKeiMdsakzEa8z3jhHNOFTqAJ6Cx1ZF0fk5NvbpPsgV-N4_EKGba5MBhW6W1_Y9Nra-17el6avdnjY-8OnAOAQzjaIYso4BpmsHOBWn7-8RXmgfRzouHbEwxH-8SZJsbLzpfIPRQGSJkrsNTa7-D0w0zX2DPaIhveaaSD5ru2yYotd8hmW5CB-v25SyaDktqaEwKghE7eMRuLYmA7MxU-aKZfYVPTiV4-z2kF1uLFp2FS8F3ptFpSXRYUKYxZgbT_DWUHdbam_6TzumgO9O2Rh9HF_TBjvpQCM1HKF8yGuUkArbkMnLZWRtbqODYGDl9WOBdIWyQF-F5RnvcjLlMXBhq8L8eDIgSPz0T7ZLWsSntAaGJMXggjJY8dtyKVPNTO5YLLRMYiFR0StDJUxvOMY7mLqWoDyp4Uyl2h3FUj9w45-5oza1g2_hwdt0ujvumKAhj4c95xu47K79S5QjKAGP9cB4f_fO0RWccWXjQH8TFZXby-2RPwVBZ5t1bFLlkbXF5nt58tr-lr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOSyXhYVFy_JYH7ghq01iJ86xQqDw6gWQuFmOY6tASREtqvj3O5M4SCDEgVMUx46i8Xi-cTzzDcAB6ozx1ubcJWLAReU9N5VJ8RbRWZnE-QElJ1-O0uJGnN3K2yU46nJhKKwy2P7WpjfWOrT0gzT7T3d3_St0DhAOcWtHLKKIa8uwQuxUsgcrw9PzYvR2mJAN2qxp7M9pQMidacO83GxB9ENxRKy5GVVb-xyfPljqBn5O1uFn8BvZsP20X7Dk6g1Y62oysLBEN2E8rJlraCEQTdj4lRKyGMW2czulCyvMM65rNjaLhxmbosF4DJmYDN1XNpkumKkrRizGvCLm_5a1g3nXMICyWVM3B9t-w83J8fVRwUM1BW6TXMy5i0ubImALFXnjnEqcM1Jai_svl3kfKVelFbpfSVkOEqFyH0cGHTAvoipGp88mW9Crp7X7Ayy1tqwyq5SQXrgsVyI23peZUKmSWZ5tQ9TJUNtANU4VLya6iym71yR3TXLXrdy34fBtzFNLtPFlb9lNjX6nLhqR4Mtxu9086rBYZ5r4ACQdXkd_v_naf_CjuL680Beno_MdWKUn9N85krvQmz-_uD10XOblflDM_zGB7Bw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+hybrid+sine-cosine+Harris+hawks+optimization+for+low+and+high-dimensional+feature+selection&rft.jtitle=Expert+systems+with+applications&rft.au=Hussain%2C+Kashif&rft.au=Neggaz%2C+Nabil&rft.au=Zhu%2C+William&rft.au=Houssein%2C+Essam+H.&rft.date=2021-08-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=176&rft_id=info:doi/10.1016%2Fj.eswa.2021.114778&rft.externalDocID=S0957417421002190 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |