An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection

•Every growing data volume also incorporate extraordinary dimensions.•Hybrid sine-cosine Harris hawks optimization (SCHHO) is proposed for feature selection.•Results of numerical problems and feature selection reveal efficacy of SCHHO.•SCHHO outperforms other counterparts and hybrid approached from...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 176; p. 114778
Main Authors Hussain, Kashif, Neggaz, Nabil, Zhu, William, Houssein, Essam H.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.08.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Every growing data volume also incorporate extraordinary dimensions.•Hybrid sine-cosine Harris hawks optimization (SCHHO) is proposed for feature selection.•Results of numerical problems and feature selection reveal efficacy of SCHHO.•SCHHO outperforms other counterparts and hybrid approached from recent literature. Feature selection, an optimization problem, becomes an important pre-process tool in data mining, which simultaneously aims at minimizing feature-size and maximizing model generalization. Because of large search space, conventional optimization methods often fail to generate global optimum solution. A variety of hybrid techniques merging different search strategies have been proposed in feature selection literature, but mostly deal with low dimensional datasets. In this paper, a hybrid optimization method is proposed for numerical optimization and feature selection, which integrates sine-cosine algorithm (SCA) in Harris hawks optimization (HHO). The goal of SCA integration is to cater ineffective exploration in HHO, moreover exploitation is enhanced by dynamically adjusting candidate solutions for avoiding solution stagnancy in HHO. The proposed method, namely SCHHO, is evaluated by employing CEC’17 test suite for numerical optimization and sixteen datasets with low and high-dimensions exceeding 15000 attributes, and compared with original SCA and HHO, as well as, other well-known optimization methods like dragonfly algorithm (DA), whale optimization algorithm (WOA), grasshopper optimization algorithm (GOA), Grey wolf optimization (GWO), and salp swarm algorithm (SSA); in addition to state-of-the-art methods. Performance of the proposed method is also validated against hybrid methods proposed in recent related literature. The extensive experimental and statistical analyses suggest that the proposed hybrid variant of HHO is able to produce efficient search results without additional computational cost. With increased convergence speed, SCHHO reduced feature-size up to 87% and achieved accuracy up to 92%. Motivated from the findings of this study, various potential future directions are also highlighted.
AbstractList •Every growing data volume also incorporate extraordinary dimensions.•Hybrid sine-cosine Harris hawks optimization (SCHHO) is proposed for feature selection.•Results of numerical problems and feature selection reveal efficacy of SCHHO.•SCHHO outperforms other counterparts and hybrid approached from recent literature. Feature selection, an optimization problem, becomes an important pre-process tool in data mining, which simultaneously aims at minimizing feature-size and maximizing model generalization. Because of large search space, conventional optimization methods often fail to generate global optimum solution. A variety of hybrid techniques merging different search strategies have been proposed in feature selection literature, but mostly deal with low dimensional datasets. In this paper, a hybrid optimization method is proposed for numerical optimization and feature selection, which integrates sine-cosine algorithm (SCA) in Harris hawks optimization (HHO). The goal of SCA integration is to cater ineffective exploration in HHO, moreover exploitation is enhanced by dynamically adjusting candidate solutions for avoiding solution stagnancy in HHO. The proposed method, namely SCHHO, is evaluated by employing CEC’17 test suite for numerical optimization and sixteen datasets with low and high-dimensions exceeding 15000 attributes, and compared with original SCA and HHO, as well as, other well-known optimization methods like dragonfly algorithm (DA), whale optimization algorithm (WOA), grasshopper optimization algorithm (GOA), Grey wolf optimization (GWO), and salp swarm algorithm (SSA); in addition to state-of-the-art methods. Performance of the proposed method is also validated against hybrid methods proposed in recent related literature. The extensive experimental and statistical analyses suggest that the proposed hybrid variant of HHO is able to produce efficient search results without additional computational cost. With increased convergence speed, SCHHO reduced feature-size up to 87% and achieved accuracy up to 92%. Motivated from the findings of this study, various potential future directions are also highlighted.
Feature selection, an optimization problem, becomes an important pre-process tool in data mining, which simultaneously aims at minimizing feature-size and maximizing model generalization. Because of large search space, conventional optimization methods often fail to generate global optimum solution. A variety of hybrid techniques merging different search strategies have been proposed in feature selection literature, but mostly deal with low dimensional datasets. In this paper, a hybrid optimization method is proposed for numerical optimization and feature selection, which integrates sine-cosine algorithm (SCA) in Harris hawks optimization (HHO). The goal of SCA integration is to cater ineffective exploration in HHO, moreover exploitation is enhanced by dynamically adjusting candidate solutions for avoiding solution stagnancy in HHO. The proposed method, namely SCHHO, is evaluated by employing CEC'17 test suite for numerical optimization and sixteen datasets with low and high-dimensions exceeding 15000 attributes, and compared with original SCA and HHO, as well as, other well-known optimization methods like dragonfly algorithm (DA), whale optimization algorithm (WOA), grasshopper optimization algorithm (GOA), Grey wolf optimization (GWO), and salp swarm algorithm (SSA); in addition to state-of-the-art methods. Performance of the proposed method is also validated against hybrid methods proposed in recent related literature. The extensive experimental and statistical analyses suggest that the proposed hybrid variant of HHO is able to produce efficient search results without additional computational cost. With increased convergence speed, SCHHO reduced feature-size up to 87% and achieved accuracy up to 92%. Motivated from the findings of this study, various potential future directions are also highlighted.
ArticleNumber 114778
Author Neggaz, Nabil
Hussain, Kashif
Houssein, Essam H.
Zhu, William
Author_xml – sequence: 1
  givenname: Kashif
  surname: Hussain
  fullname: Hussain, Kashif
  email: k.hussain@uestc.edu.cn
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 2
  givenname: Nabil
  surname: Neggaz
  fullname: Neggaz, Nabil
  email: nabil.neggaz@univ-usto.dz
  organization: Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, BP 1505, EL M’naouer, 31000 Oran, Algeria
– sequence: 3
  givenname: William
  surname: Zhu
  fullname: Zhu, William
  email: wfzhu@uestc.edu.cn
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 4
  givenname: Essam H.
  surname: Houssein
  fullname: Houssein, Essam H.
  email: essam.halim@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University, Egypt
BookMark eNp9kLFOwzAQhi1UJNrCCzBZYk7xOU6cSCxVBRSpEgvMluuciUsaFzulgqcnoUwMnf7h_u90903IqPUtEnINbAYM8tvNDONBzzjjMAMQUhZnZAyFTJNclumIjFmZyUSAFBdkEuOGMZCMyTGp5y1Fa51x2Ha0_loHV9HoWkyMH4IudQgu0lof3iP1u85t3bfunG-p9YE2_kB1W9HavdVJ5bbYxn6kG2pRd_uANGKDZqhfknOrm4hXfzklrw_3L4tlsnp-fFrMV4lJS9ElyNcm51yIAqxGLFJEnWXGcFGitBYKrPIqA0jXa5aKorQcNGOlFVDxPMtNOiU3x7274D_2GDu18fvQnxQVz0Tao1JC3yqOLRN8jAGtMq77fasL2jUKmBq8qo0avKrBqzp67VH-D90Ft9Xh6zR0d4Swf_3TYVBxMG6wcqH3oyrvTuE_d5qVHQ
CitedBy_id crossref_primary_10_1007_s42107_024_01207_5
crossref_primary_10_1080_21681163_2021_2024088
crossref_primary_10_1016_j_eswa_2024_123977
crossref_primary_10_1007_s42235_024_00580_w
crossref_primary_10_2478_amns_2023_1_00180
crossref_primary_10_1016_j_est_2021_103848
crossref_primary_10_1080_21681163_2022_2157748
crossref_primary_10_1016_j_knosys_2023_111191
crossref_primary_10_1016_j_asoc_2023_110558
crossref_primary_10_1016_j_egyr_2023_09_163
crossref_primary_10_1007_s10489_021_03080_0
crossref_primary_10_1016_j_knosys_2025_113252
crossref_primary_10_1007_s00500_022_07115_7
crossref_primary_10_1109_ACCESS_2022_3203400
crossref_primary_10_1109_ACCESS_2024_3454084
crossref_primary_10_1007_s11053_023_10259_4
crossref_primary_10_1007_s00521_023_08772_x
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1038_s41598_024_59064_w
crossref_primary_10_3390_rs15163980
crossref_primary_10_32604_cmc_2021_019047
crossref_primary_10_1007_s00521_021_06881_z
crossref_primary_10_1016_j_eswa_2021_116417
crossref_primary_10_1007_s10462_022_10233_1
crossref_primary_10_1002_er_7103
crossref_primary_10_1016_j_eswa_2025_126503
crossref_primary_10_1080_21681163_2022_2058616
crossref_primary_10_1371_journal_pone_0295579
crossref_primary_10_1007_s00521_024_09603_3
crossref_primary_10_1016_j_egyr_2022_09_025
crossref_primary_10_1016_j_jocs_2022_101867
crossref_primary_10_1007_s10462_021_10026_y
crossref_primary_10_1007_s10586_024_04348_z
crossref_primary_10_3390_s24247879
crossref_primary_10_1016_j_neucom_2024_129018
crossref_primary_10_1109_JSEN_2022_3164018
crossref_primary_10_1007_s10586_024_04770_3
crossref_primary_10_1038_s41598_023_38252_0
crossref_primary_10_1007_s41870_023_01161_6
crossref_primary_10_1007_s10462_021_10100_5
crossref_primary_10_1016_j_engappai_2022_104952
crossref_primary_10_53370_001c_66280
crossref_primary_10_1016_j_matcom_2021_08_013
crossref_primary_10_1109_ACCESS_2022_3153493
crossref_primary_10_1016_j_asoc_2024_112152
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_1109_ACCESS_2023_3332902
crossref_primary_10_1007_s10586_024_04382_x
crossref_primary_10_1016_j_eswa_2021_116432
crossref_primary_10_1007_s00521_022_07925_8
crossref_primary_10_3390_e25081128
crossref_primary_10_3390_app142210248
crossref_primary_10_1016_j_asoc_2024_111734
crossref_primary_10_1016_j_compbiomed_2022_106520
crossref_primary_10_1016_j_compeleceng_2022_108553
crossref_primary_10_3390_math9202622
crossref_primary_10_1007_s13042_024_02143_1
crossref_primary_10_1016_j_jare_2023_01_014
crossref_primary_10_1109_ACCESS_2022_3151119
crossref_primary_10_1142_S0219622022500754
crossref_primary_10_1016_j_ifacsc_2023_100239
crossref_primary_10_1007_s00521_022_07522_9
crossref_primary_10_1109_ACCESS_2021_3138403
crossref_primary_10_1007_s42461_022_00719_5
crossref_primary_10_1111_exsy_13330
crossref_primary_10_1016_j_knosys_2022_108411
crossref_primary_10_1016_j_eswa_2022_117255
crossref_primary_10_32604_cmc_2023_043061
crossref_primary_10_1016_j_eswa_2023_120944
crossref_primary_10_1371_journal_pone_0255269
crossref_primary_10_1007_s00521_024_09565_6
crossref_primary_10_1038_s41598_024_73559_6
crossref_primary_10_3390_biomimetics9090552
crossref_primary_10_3390_su15010397
crossref_primary_10_1007_s13042_022_01656_x
crossref_primary_10_1007_s12597_024_00785_x
crossref_primary_10_1299_transjsme_24_00021
crossref_primary_10_32604_cmc_2024_053892
crossref_primary_10_1007_s12530_023_09557_2
crossref_primary_10_1007_s10489_021_02776_7
crossref_primary_10_32604_csse_2023_038025
crossref_primary_10_1007_s10489_022_04201_z
crossref_primary_10_1016_j_eswa_2022_116550
crossref_primary_10_1038_s41598_023_31876_2
crossref_primary_10_1016_j_eswa_2022_116552
crossref_primary_10_1007_s11042_023_15023_7
crossref_primary_10_1007_s13042_024_02308_y
crossref_primary_10_1007_s42979_023_02015_5
crossref_primary_10_1007_s42835_022_01036_z
crossref_primary_10_1016_j_istruc_2023_105280
crossref_primary_10_1155_2022_1452301
crossref_primary_10_1007_s00521_022_07146_z
crossref_primary_10_1142_S1469026823500281
crossref_primary_10_1016_j_knosys_2022_109446
crossref_primary_10_3390_biomimetics9030187
crossref_primary_10_1007_s00500_023_07988_2
crossref_primary_10_1371_journal_pone_0307288
crossref_primary_10_1002_qre_3639
crossref_primary_10_1007_s10489_022_03428_0
crossref_primary_10_1016_j_compbiomed_2023_106854
crossref_primary_10_1016_j_eswa_2022_119017
crossref_primary_10_1007_s10489_023_04473_z
crossref_primary_10_1016_j_aei_2022_101761
crossref_primary_10_1038_s41598_024_66285_6
crossref_primary_10_1007_s11053_021_09929_y
crossref_primary_10_1016_j_asoc_2024_111946
crossref_primary_10_1155_2023_1444938
crossref_primary_10_1007_s10586_021_03459_1
crossref_primary_10_1016_j_compbiomed_2023_106691
crossref_primary_10_1109_ACCESS_2022_3189476
crossref_primary_10_1155_2022_1825341
crossref_primary_10_1038_s41598_024_65292_x
crossref_primary_10_3390_a16030167
crossref_primary_10_1016_j_engappai_2023_106554
crossref_primary_10_32604_cmes_2024_048071
crossref_primary_10_1007_s13042_021_01326_4
crossref_primary_10_1007_s42235_023_00446_7
crossref_primary_10_1016_j_engappai_2023_106277
crossref_primary_10_1109_ACCESS_2021_3105485
crossref_primary_10_1186_s44147_023_00227_3
crossref_primary_10_3934_mbe_2021352
crossref_primary_10_3390_e24081065
crossref_primary_10_1007_s11831_024_10218_z
crossref_primary_10_1007_s00521_022_07398_9
crossref_primary_10_1038_s41598_021_01018_7
crossref_primary_10_1007_s11227_023_05260_w
Cites_doi 10.1109/CEC.2017.7969524
10.3139/120.111378
10.1016/j.eswa.2019.113103
10.1016/j.matcom.2019.06.017
10.1016/j.advengsoft.2017.01.004
10.26599/TST.2018.9010101
10.1016/j.future.2019.07.015
10.1109/CEC.2017.7969595
10.1109/TEVC.2020.2968743
10.1109/CEC.2017.7969336
10.1016/j.neucom.2017.04.053
10.1016/j.eswa.2020.113510
10.1109/TII.2017.2773475
10.1016/j.eswa.2018.09.015
10.1016/j.future.2019.02.028
10.1016/j.advengsoft.2016.01.008
10.1007/s00521-015-1920-1
10.3233/IDA-1997-1302
10.1038/s41598-019-54987-1
10.1007/978-981-10-8863-6_9
10.1016/j.knosys.2017.12.037
10.1109/ACCESS.2019.2906757
10.1109/ACCESS.2020.2968981
10.1016/j.advengsoft.2013.12.007
10.1109/TCBB.2016.2602263
10.1016/j.eswa.2016.06.004
10.1016/j.swevo.2018.02.021
10.1109/ACCESS.2020.2966582
10.1109/TCYB.2015.2404806
10.1007/s00500-019-03891-x
10.1109/TEVC.2015.2504420
10.1016/j.aci.2018.04.001
10.1016/j.engappai.2019.103370
10.1016/j.knosys.2017.10.028
10.1109/ACCESS.2020.3031718
10.1016/j.swevo.2017.04.002
10.3139/120.111478
10.1109/ACCESS.2019.2909945
10.1016/j.compchemeng.2019.106656
10.1016/j.eswa.2019.113122
10.1016/j.eswa.2019.03.039
10.3390/rs11121421
10.1155/2017/2030489
10.1109/TCYB.2016.2549639
10.1016/j.eswa.2020.113873
10.1109/ACCESS.2019.2897325
10.1016/j.asoc.2018.02.049
10.1109/CEC.2014.6900380
10.1016/j.eswa.2020.113428
10.1016/j.eswa.2018.01.019
10.1016/j.asoc.2019.106018
10.1016/j.asoc.2016.01.044
10.1007/s12559-019-09668-6
10.3390/electronics8101130
10.1016/j.eswa.2016.01.021
10.1016/j.eswa.2020.113364
10.3934/mfc.2018009
10.1016/j.swevo.2019.04.008
10.1016/j.advengsoft.2017.07.002
10.1016/j.compeleceng.2013.11.024
10.1108/IDD-09-2018-0045
10.1016/j.knosys.2015.12.022
10.1109/CEC.2018.8477908
10.1109/TSMCB.2012.2227469
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Aug 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.114778
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_114778
S0957417421002190
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c394t-e2bc6224481faee83eea55cc249e7ff18ed6d5113bb03489f21a009f41d2656c3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 05:57:41 EDT 2025
Tue Jul 01 04:05:51 EDT 2025
Thu Apr 24 23:00:27 EDT 2025
Sat Feb 15 15:52:42 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords High-dimensional data
Feature selection
Sine-cosine algorithm
Optimization problems
Harris hawks optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-e2bc6224481faee83eea55cc249e7ff18ed6d5113bb03489f21a009f41d2656c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2543511771
PQPubID 2045477
ParticipantIDs proquest_journals_2543511771
crossref_citationtrail_10_1016_j_eswa_2021_114778
crossref_primary_10_1016_j_eswa_2021_114778
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114778
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-15
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello, Herrera (b0060) 2019; 48
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0110) 2019; 97
Jia, Lang, Oliva, Song, Peng (b0145) 2019; 11
Neggaz, N., Houssein, E. H., & Hussain, K. (2020). An efficient henry gas solubility optimization for feature selection.
(pp. 1658–1665).
Kumar, Bharti (b0170) 2019
Saremi, Mirjalili, Lewis (b0270) 2017; 105
Tubishat, Idris, Shuib, Abushariah, Mirjalili (b0320) 2020; 145
Zhang, G., & Shi, Y. (2018).
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b0105) 2019; 101
Alweshah, Alkhalaileh, Albashish, Mafarja, Bsoul, Dorgham (b0015) 2020
(pp. 79–87).
Zawbaa, Emary, Grosan, Snasel (b0350) 2018; 42
Mirjalili, Mirjalili, Lewis (b0230) 2014; 69
Ibrahim, Elaziz, Oliva, Cuevas, Lu (b0135) 2019; 23
Fu, Shao, Tan, Wang (b0085) 2020; 8
Tubishat, Ja’afar, Alswaitti, Mirjalili, Idris, Ismail, Omar (b0325) 2021; 164
Zhang, Kang, Cheng, Wang (b0360) 2018; 67
Hussien, A. G., Hassanien, A. E., Houssein, E. H., Bhattacharyya, S., & Amin, M. (2019).
Bhattacharyya, Chatterjee, Singh, Yoon, Geem, Sarkar (b0035) 2020; 8
Mendiratta, Turk, Bansal (b0205) 2016; 2
Yıldız, Yıldız, Sait, Bureerat, Pholdee (b0345) 2019; 61
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0220) 2017; 114
Xue, Zhang, Browne, Yao (b0335) 2015; 20
Mafarja, Aljarah, Faris, Hammouri, Ala’M, Mirjalili (b0180) 2019; 117
Houssein, Hosney, Oliva, Mohamed, Hassaballah (b0115) 2020; 133
Houssein, Saad, Hussain, Zhu, Shaban, Hassaballah (b0120) 2020; 8
Nag, Pal (b0245) 2015; 46
Pirgazi, Alimoradi, Abharian, Olyaee (b0260) 2019; 9
Mistry, Zhang, Neoh, Lim, Fielding (b0235) 2016; 47
.
Mafarja, Jaber, Ahmed, Thaher (b0190) 2019
Talbi (b0295) 2009; Vol. 74
Hans, Kaur (b0100) 2019
Dadaneh, Markid, Zakerolhosseini (b0050) 2018; 53
Abdel-Basset, Ding, El-Shahat (b0005) 2020
Mirjalili (b0215) 2016; 96
Elaziz, Ewees, Ibrahim, Lu (b0070) 2020; 168
Too, Abdullah, Mohd Saad (b0315) 2019; 8
Kommadath, R., & Kotecha, P. (2017).
Moradi, Gholampour (b0240) 2016; 43
Singh, Singh (b0285) 2017; 14
Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017).
Issa, Hassanien, Oliva, Helmi, Ziedan, Alzohairy (b0140) 2018; 99
Kurtuluş, Yıldız, Sait, Bureerat (b0175) 2020; 62
Balakumar, Mohan (b0030) 2019; 47
(p. 113510).
Neggaz, Ewees, Elaziz, Mafarja (b0250) 2020; 145
Dash, Liu (b0055) 1997; 1
Mirjalili (b0210) 2016; 27
Yan, Ma, Luo, Wang (b0340) 2018; 23
Chandrashekar, Sahin (b0040) 2014; 40
Singh, N., & Singh, S. (2017). Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance.
Arora, Singh, Sharma, Sharma, Anand (b0020) 2019; 7
Fan, Chen, Xia (b0080) 2020
(p. 113428).
Ewees, Elaziz (b0075) 2020; 88
Mafarja, Qasem, Heidari, Aljarah, Faris, Mirjalili (b0195) 2020; 12
Hancer, Xue, Zhang (b0095) 2018; 140
(pp. 2397–2403).
Xue, Zhang, Browne (b0330) 2012; 43
(pp. 372–379).
Gupta, S., Deep, K., Heidari, A. A., Moayedi, H., & Wang, M. (2020). Opposition-based learning harris hawks optimization with advanced transition rules: Principles and analysis.
Mafarja, Aljarah, Heidari, Hammouri, Faris, Ala’M, Mirjalili (b0185) 2018; 145
Tawhid, Dsouza (b0310) 2018; 1
Al-Tashi, Kadir, Rais, Mirjalili, Alhussian (b0010) 2019; 7
Kumar, A., Misra, R. K., & Singh, D. (2017).
Shunmugapriya, Kanmani (b0275) 2017; 36
Mafarja, Mirjalili (b0200) 2017; 260
Zorarpacı, Özel (b0365) 2016; 62
(pp. 1835–1842).
Song, Zhang, Guo, Sun, Wang (b0290) 2020
Kamboj, Nandi, Bhadoria, Sehgal (b0155) 2020; 89
(pp. 1–7).
Tanabe, R., & Fukunaga, A. S. (2014).
Tawhid, Dsouza (b0305) 2018
Mirjalili, Lewis (b0225) 2016; 95
Rodríguez-Esparza, E., Zanella-Calzada, L. A., Oliva, D., Heidari, A. A., Zaldivar, D., Pérez-Cisneros, M., & Foong, L. K. (2020). An efficient harris hawks-inspired image segmentation method.
(p. 113364).
Hu, Dai, Su, Moore, Zhang, Mao, Chen, Xu (b0125) 2016; 15
Eberhart, Kennedy (b0065) 1995
Jia, Xing, Song (b0150) 2019; 7
Chen, Zhou, Yuan (b0045) 2019; 128
10.1016/j.eswa.2021.114778_b0130
Bhattacharyya (10.1016/j.eswa.2021.114778_b0035) 2020; 8
Dadaneh (10.1016/j.eswa.2021.114778_b0050) 2018; 53
10.1016/j.eswa.2021.114778_b0255
Mirjalili (10.1016/j.eswa.2021.114778_b0225) 2016; 95
Jia (10.1016/j.eswa.2021.114778_b0145) 2019; 11
Fan (10.1016/j.eswa.2021.114778_b0080) 2020
Chen (10.1016/j.eswa.2021.114778_b0045) 2019; 128
Issa (10.1016/j.eswa.2021.114778_b0140) 2018; 99
Dash (10.1016/j.eswa.2021.114778_b0055) 1997; 1
Mafarja (10.1016/j.eswa.2021.114778_b0180) 2019; 117
10.1016/j.eswa.2021.114778_b0265
Singh (10.1016/j.eswa.2021.114778_b0285) 2017; 14
Yan (10.1016/j.eswa.2021.114778_b0340) 2018; 23
Mafarja (10.1016/j.eswa.2021.114778_b0185) 2018; 145
Mirjalili (10.1016/j.eswa.2021.114778_b0210) 2016; 27
10.1016/j.eswa.2021.114778_b0025
Mirjalili (10.1016/j.eswa.2021.114778_b0230) 2014; 69
10.1016/j.eswa.2021.114778_b0300
Zawbaa (10.1016/j.eswa.2021.114778_b0350) 2018; 42
Moradi (10.1016/j.eswa.2021.114778_b0240) 2016; 43
Mafarja (10.1016/j.eswa.2021.114778_b0195) 2020; 12
Balakumar (10.1016/j.eswa.2021.114778_b0030) 2019; 47
Mendiratta (10.1016/j.eswa.2021.114778_b0205) 2016; 2
Kurtuluş (10.1016/j.eswa.2021.114778_b0175) 2020; 62
Tawhid (10.1016/j.eswa.2021.114778_b0305) 2018
Hashim (10.1016/j.eswa.2021.114778_b0105) 2019; 101
Del Ser (10.1016/j.eswa.2021.114778_b0060) 2019; 48
Pirgazi (10.1016/j.eswa.2021.114778_b0260) 2019; 9
Song (10.1016/j.eswa.2021.114778_b0290) 2020
Hu (10.1016/j.eswa.2021.114778_b0125) 2016; 15
Ewees (10.1016/j.eswa.2021.114778_b0075) 2020; 88
Saremi (10.1016/j.eswa.2021.114778_b0270) 2017; 105
Heidari (10.1016/j.eswa.2021.114778_b0110) 2019; 97
Hancer (10.1016/j.eswa.2021.114778_b0095) 2018; 140
Eberhart (10.1016/j.eswa.2021.114778_b0065) 1995
Mistry (10.1016/j.eswa.2021.114778_b0235) 2016; 47
10.1016/j.eswa.2021.114778_b0355
Chandrashekar (10.1016/j.eswa.2021.114778_b0040) 2014; 40
Neggaz (10.1016/j.eswa.2021.114778_b0250) 2020; 145
Too (10.1016/j.eswa.2021.114778_b0315) 2019; 8
Tubishat (10.1016/j.eswa.2021.114778_b0320) 2020; 145
Hans (10.1016/j.eswa.2021.114778_b0100) 2019
Zorarpacı (10.1016/j.eswa.2021.114778_b0365) 2016; 62
Elaziz (10.1016/j.eswa.2021.114778_b0070) 2020; 168
Zhang (10.1016/j.eswa.2021.114778_b0360) 2018; 67
Abdel-Basset (10.1016/j.eswa.2021.114778_b0005) 2020
Tubishat (10.1016/j.eswa.2021.114778_b0325) 2021; 164
Xue (10.1016/j.eswa.2021.114778_b0335) 2015; 20
Shunmugapriya (10.1016/j.eswa.2021.114778_b0275) 2017; 36
Nag (10.1016/j.eswa.2021.114778_b0245) 2015; 46
Mirjalili (10.1016/j.eswa.2021.114778_b0215) 2016; 96
Al-Tashi (10.1016/j.eswa.2021.114778_b0010) 2019; 7
Houssein (10.1016/j.eswa.2021.114778_b0115) 2020; 133
Mirjalili (10.1016/j.eswa.2021.114778_b0220) 2017; 114
10.1016/j.eswa.2021.114778_b0280
10.1016/j.eswa.2021.114778_b0160
Kamboj (10.1016/j.eswa.2021.114778_b0155) 2020; 89
10.1016/j.eswa.2021.114778_b0165
Tawhid (10.1016/j.eswa.2021.114778_b0310) 2018; 1
Arora (10.1016/j.eswa.2021.114778_b0020) 2019; 7
Mafarja (10.1016/j.eswa.2021.114778_b0200) 2017; 260
Fu (10.1016/j.eswa.2021.114778_b0085) 2020; 8
Alweshah (10.1016/j.eswa.2021.114778_b0015) 2020
Xue (10.1016/j.eswa.2021.114778_b0330) 2012; 43
Yıldız (10.1016/j.eswa.2021.114778_b0345) 2019; 61
Jia (10.1016/j.eswa.2021.114778_b0150) 2019; 7
Kumar (10.1016/j.eswa.2021.114778_b0170) 2019
Houssein (10.1016/j.eswa.2021.114778_b0120) 2020; 8
10.1016/j.eswa.2021.114778_b0090
Ibrahim (10.1016/j.eswa.2021.114778_b0135) 2019; 23
Mafarja (10.1016/j.eswa.2021.114778_b0190) 2019
Talbi (10.1016/j.eswa.2021.114778_b0295) 2009; Vol. 74
References_xml – volume: 128
  start-page: 140
  year: 2019
  end-page: 156
  ident: b0045
  article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 26343
  year: 2019
  end-page: 26361
  ident: b0020
  article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection
  publication-title: IEEE Access
– year: 2019
  ident: b0100
  article-title: Hybrid binary sine cosine algorithm and ant lion optimization (scalo) approaches for feature selection problem
  publication-title: International Journal of Computational Materials Science and Engineering
– reference: Kommadath, R., & Kotecha, P. (2017).
– volume: 7
  start-page: 49614
  year: 2019
  end-page: 49631
  ident: b0150
  article-title: A new hybrid seagull optimization algorithm for feature selection
  publication-title: IEEE Access
– volume: 145
  start-page: 25
  year: 2018
  end-page: 45
  ident: b0185
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowledge-Based Systems
– volume: 133
  year: 2020
  ident: b0115
  article-title: A novel hybrid harris hawks optimization and support vector machines for drug design and discovery
  publication-title: Computers & Chemical Engineering
– reference: Kumar, A., Misra, R. K., & Singh, D. (2017).
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b0215
  article-title: Sca: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-based Systems
– volume: 8
  start-page: 13086
  year: 2020
  end-page: 13104
  ident: b0085
  article-title: Fault diagnosis for rolling bearings based on composite multiscale fine-sorted dispersion entropy and svm with hybrid mutation sca-hho algorithm optimization
  publication-title: IEEE Access
– year: 2018
  ident: b0305
  article-title: Hybrid binary bat enhanced particle swarm optimization algorithm for solving feature selection problems
  publication-title: Applied Computing and Informatics
– volume: 47
  start-page: 154
  year: 2019
  end-page: 170
  ident: b0030
  article-title: Artificial bee colony algorithm for feature selection and improved support vector machine for text classification
  publication-title: Information Discovery and Delivery
– volume: 8
  start-page: 19381
  year: 2020
  end-page: 19397
  ident: b0120
  article-title: Optimal sink node placement in large scale wireless sensor networks based on harris’ hawk optimization algorithm
  publication-title: IEEE Access
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b0210
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Applications
– volume: 23
  start-page: 733
  year: 2018
  end-page: 743
  ident: b0340
  article-title: A hybrid algorithm based on binary chemical reaction optimization and tabu search for feature selection of high-dimensional biomedical data
  publication-title: Tsinghua Science and Technology
– volume: 9
  start-page: 1
  year: 2019
  end-page: 15
  ident: b0260
  article-title: An efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets
  publication-title: Scientific Reports
– volume: 53
  start-page: 27
  year: 2018
  end-page: 42
  ident: b0050
  article-title: Unsupervised probabilistic feature selection using ant colony optimization
  publication-title: Expert Systems with Applications
– volume: Vol. 74
  year: 2009
  ident: b0295
  publication-title: Metaheuristics: From design to implementation
– volume: 43
  start-page: 117
  year: 2016
  end-page: 130
  ident: b0240
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Applied Soft Computing
– start-page: 39
  year: 1995
  end-page: 43
  ident: b0065
  article-title: A new optimizer using particle swarm theory
– volume: 7
  start-page: 39496
  year: 2019
  end-page: 39508
  ident: b0010
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
– start-page: 1
  year: 2020
  end-page: 19
  ident: b0080
  article-title: A novel quasi-reflected harris hawks optimization algorithm for global optimization problems
  publication-title: Soft Computing
– reference: (pp. 1658–1665).
– reference: Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2017).
– volume: 117
  start-page: 267
  year: 2019
  end-page: 286
  ident: b0180
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Systems with Applications
– reference: Singh, N., & Singh, S. (2017). Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance.
– volume: 11
  start-page: 1421
  year: 2019
  ident: b0145
  article-title: Dynamic harris hawks optimization with mutation mechanism for satellite image segmentation
  publication-title: Remote Sensing
– volume: 145
  year: 2020
  ident: b0320
  article-title: Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection
  publication-title: Expert Systems with Applications
– volume: 89
  year: 2020
  ident: b0155
  article-title: An intensify harris hawks optimizer for numerical and engineering optimization problems
  publication-title: Applied Soft Computing
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0230
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– reference: Zhang, G., & Shi, Y. (2018).
– volume: 67
  start-page: 197
  year: 2018
  end-page: 214
  ident: b0360
  article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer
  publication-title: Applied Soft Computing
– volume: 1
  start-page: 131
  year: 1997
  end-page: 156
  ident: b0055
  article-title: Feature selection for classification
  publication-title: Intelligent Data Analysis
– volume: 61
  start-page: 735
  year: 2019
  end-page: 743
  ident: b0345
  article-title: A new hybrid harris hawks-nelder-mead optimization algorithm for solving design and manufacturing problems
  publication-title: Materials Testing
– reference: (pp. 79–87).
– start-page: 1
  year: 2019
  end-page: 23
  ident: b0170
  article-title: A novel hybrid bpso–sca approach for feature selection
  publication-title: Natural Computing
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b0110
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
– volume: 42
  start-page: 29
  year: 2018
  end-page: 42
  ident: b0350
  article-title: Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach
  publication-title: Swarm and Evolutionary Computation
– volume: 62
  start-page: 91
  year: 2016
  end-page: 103
  ident: b0365
  article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection
  publication-title: Expert Systems with Applications
– volume: 2
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0205
  publication-title: Automatic speech recognition using optimal selection of features based on hybrid abc-pso
– reference: (pp. 1–7).
– start-page: 1
  year: 2020
  end-page: 45
  ident: b0005
  article-title: A hybrid harris hawks optimization algorithm with simulated annealing for feature selection
  publication-title: Artificial Intelligence Review
– volume: 140
  start-page: 103
  year: 2018
  end-page: 119
  ident: b0095
  article-title: Differential evolution for filter feature selection based on information theory and feature ranking
  publication-title: Knowledge-Based Systems
– reference: Tanabe, R., & Fukunaga, A. S. (2014).
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: b0040
  article-title: A survey on feature selection methods
  publication-title: Computers & Electrical Engineering
– start-page: 1
  year: 2020
  end-page: 18
  ident: b0015
  article-title: A hybrid mine blast algorithm for feature selection problems
  publication-title: Soft Computing
– volume: 164
  year: 2021
  ident: b0325
  article-title: Dynamic salp swarm algorithm for feature selection
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2019
  end-page: 17
  ident: b0190
  article-title: Whale optimisation algorithm for high-dimensional small-instance feature selection
  publication-title: International Journal of Parallel, Emergent and Distributed Systems
– volume: 47
  start-page: 1496
  year: 2016
  end-page: 1509
  ident: b0235
  article-title: A micro-ga embedded pso feature selection approach to intelligent facial emotion recognition
  publication-title: IEEE transactions on cybernetics
– reference: (p. 113364).
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0225
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– volume: 1
  start-page: 181
  year: 2018
  end-page: 200
  ident: b0310
  article-title: Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems
  publication-title: Mathematical Foundations of Computing
– volume: 260
  start-page: 302
  year: 2017
  end-page: 312
  ident: b0200
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
– volume: 14
  start-page: 2994
  year: 2017
  end-page: 3002
  ident: b0285
  article-title: Optimal feature selection via nsga-ii for power quality disturbances classification
  publication-title: IEEE Transactions on Industrial Informatics
– reference: (pp. 2397–2403).
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b0270
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Advances in Engineering Software
– reference: (pp. 1835–1842).
– volume: 8
  start-page: 1130
  year: 2019
  ident: b0315
  article-title: A new quadratic binary harris hawk optimization for feature selection
  publication-title: Electronics
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b0220
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– volume: 36
  start-page: 27
  year: 2017
  end-page: 36
  ident: b0275
  article-title: A hybrid algorithm using ant and bee colony optimization for feature selection and classification (ac-abc hybrid)
  publication-title: Swarm and Evolutionary Computation
– reference: (pp. 372–379).
– volume: 48
  start-page: 220
  year: 2019
  end-page: 250
  ident: b0060
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm and Evolutionary Computation
– volume: 15
  start-page: 1765
  year: 2016
  end-page: 1773
  ident: b0125
  article-title: Feature selection for optimized high-dimensional biomedical data using an improved shuffled frog leaping algorithm
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 168
  start-page: 48
  year: 2020
  end-page: 75
  ident: b0070
  article-title: Opposition-based moth-flame optimization improved by differential evolution for feature selection
  publication-title: Mathematics and Computers in Simulation
– reference: Rodríguez-Esparza, E., Zanella-Calzada, L. A., Oliva, D., Heidari, A. A., Zaldivar, D., Pérez-Cisneros, M., & Foong, L. K. (2020). An efficient harris hawks-inspired image segmentation method.
– volume: 43
  start-page: 1656
  year: 2012
  end-page: 1671
  ident: b0330
  article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach
  publication-title: IEEE Transactions on Cybernetics
– reference: Hussien, A. G., Hassanien, A. E., Houssein, E. H., Bhattacharyya, S., & Amin, M. (2019).
– volume: 46
  start-page: 499
  year: 2015
  end-page: 510
  ident: b0245
  article-title: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification
  publication-title: IEEE Transactions on Cybernetics
– volume: 12
  start-page: 150
  year: 2020
  end-page: 175
  ident: b0195
  article-title: Efficient hybrid nature-inspired binary optimizers for feature selection
  publication-title: Cognitive Computation
– year: 2020
  ident: b0290
  article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 145
  year: 2020
  ident: b0250
  article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection
  publication-title: Expert Systems with Applications
– reference: .
– volume: 20
  start-page: 606
  year: 2015
  end-page: 626
  ident: b0335
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 88
  year: 2020
  ident: b0075
  article-title: Performance analysis of chaotic multi-verse harris hawks optimization: A case study on solving engineering problems
  publication-title: Engineering Applications of Artificial Intelligence
– reference: (p. 113510).
– volume: 23
  start-page: 13547
  year: 2019
  end-page: 13567
  ident: b0135
  article-title: An opposition-based social spider optimization for feature selection
  publication-title: Soft Computing
– reference: Gupta, S., Deep, K., Heidari, A. A., Moayedi, H., & Wang, M. (2020). Opposition-based learning harris hawks optimization with advanced transition rules: Principles and analysis.
– volume: 99
  start-page: 56
  year: 2018
  end-page: 70
  ident: b0140
  article-title: Asca-pso: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment
  publication-title: Expert Systems with Applications
– reference: (p. 113428).
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b0105
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
– volume: 8
  start-page: 195929
  year: 2020
  end-page: 195945
  ident: b0035
  article-title: Mayfly in harmony: A new hybrid meta-heuristic feature selection algorithm
  publication-title: IEEE Access
– reference: Neggaz, N., Houssein, E. H., & Hussain, K. (2020). An efficient henry gas solubility optimization for feature selection.
– volume: 62
  start-page: 251
  year: 2020
  end-page: 260
  ident: b0175
  article-title: A novel hybrid harris hawks-simulated annealing algorithm and rbf-based metamodel for design optimization of highway guardrails
  publication-title: Materials Testing
– ident: 10.1016/j.eswa.2021.114778_b0165
  doi: 10.1109/CEC.2017.7969524
– volume: 61
  start-page: 735
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0345
  article-title: A new hybrid harris hawks-nelder-mead optimization algorithm for solving design and manufacturing problems
  publication-title: Materials Testing
  doi: 10.3139/120.111378
– volume: 145
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0250
  article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113103
– volume: 168
  start-page: 48
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0070
  article-title: Opposition-based moth-flame optimization improved by differential evolution for feature selection
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2019.06.017
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.eswa.2021.114778_b0270
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.01.004
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0170
  article-title: A novel hybrid bpso–sca approach for feature selection
  publication-title: Natural Computing
– volume: 23
  start-page: 733
  year: 2018
  ident: 10.1016/j.eswa.2021.114778_b0340
  article-title: A hybrid algorithm based on binary chemical reaction optimization and tabu search for feature selection of high-dimensional biomedical data
  publication-title: Tsinghua Science and Technology
  doi: 10.26599/TST.2018.9010101
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0105
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.07.015
– ident: 10.1016/j.eswa.2021.114778_b0160
  doi: 10.1109/CEC.2017.7969595
– volume: 2
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.114778_b0205
  publication-title: Automatic speech recognition using optimal selection of features based on hybrid abc-pso
– year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0290
  article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.2968743
– ident: 10.1016/j.eswa.2021.114778_b0025
  doi: 10.1109/CEC.2017.7969336
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0080
  article-title: A novel quasi-reflected harris hawks optimization algorithm for global optimization problems
  publication-title: Soft Computing
– volume: 260
  start-page: 302
  year: 2017
  ident: 10.1016/j.eswa.2021.114778_b0200
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– ident: 10.1016/j.eswa.2021.114778_b0090
  doi: 10.1016/j.eswa.2020.113510
– volume: 14
  start-page: 2994
  year: 2017
  ident: 10.1016/j.eswa.2021.114778_b0285
  article-title: Optimal feature selection via nsga-ii for power quality disturbances classification
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2017.2773475
– volume: 117
  start-page: 267
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0180
  article-title: Binary grasshopper optimisation algorithm approaches for feature selection problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.09.015
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0110
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.02.028
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2021.114778_b0225
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 27
  start-page: 1053
  year: 2016
  ident: 10.1016/j.eswa.2021.114778_b0210
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1920-1
– volume: 1
  start-page: 131
  year: 1997
  ident: 10.1016/j.eswa.2021.114778_b0055
  article-title: Feature selection for classification
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-1997-1302
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0260
  article-title: An efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-54987-1
– ident: 10.1016/j.eswa.2021.114778_b0130
  doi: 10.1007/978-981-10-8863-6_9
– volume: 145
  start-page: 25
  year: 2018
  ident: 10.1016/j.eswa.2021.114778_b0185
  article-title: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.12.037
– volume: 7
  start-page: 39496
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0010
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0005
  article-title: A hybrid harris hawks optimization algorithm with simulated annealing for feature selection
  publication-title: Artificial Intelligence Review
– volume: 8
  start-page: 19381
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0120
  article-title: Optimal sink node placement in large scale wireless sensor networks based on harris’ hawk optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968981
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2021.114778_b0230
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 15
  start-page: 1765
  year: 2016
  ident: 10.1016/j.eswa.2021.114778_b0125
  article-title: Feature selection for optimized high-dimensional biomedical data using an improved shuffled frog leaping algorithm
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2016.2602263
– volume: 62
  start-page: 91
  year: 2016
  ident: 10.1016/j.eswa.2021.114778_b0365
  article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.06.004
– start-page: 39
  year: 1995
  ident: 10.1016/j.eswa.2021.114778_b0065
– volume: 42
  start-page: 29
  year: 2018
  ident: 10.1016/j.eswa.2021.114778_b0350
  article-title: Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.02.021
– volume: 8
  start-page: 13086
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0085
  article-title: Fault diagnosis for rolling bearings based on composite multiscale fine-sorted dispersion entropy and svm with hybrid mutation sca-hho algorithm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966582
– volume: 46
  start-page: 499
  year: 2015
  ident: 10.1016/j.eswa.2021.114778_b0245
  article-title: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2404806
– volume: 23
  start-page: 13547
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0135
  article-title: An opposition-based social spider optimization for feature selection
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-03891-x
– volume: 20
  start-page: 606
  year: 2015
  ident: 10.1016/j.eswa.2021.114778_b0335
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2504420
– year: 2018
  ident: 10.1016/j.eswa.2021.114778_b0305
  article-title: Hybrid binary bat enhanced particle swarm optimization algorithm for solving feature selection problems
  publication-title: Applied Computing and Informatics
  doi: 10.1016/j.aci.2018.04.001
– volume: 88
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0075
  article-title: Performance analysis of chaotic multi-verse harris hawks optimization: A case study on solving engineering problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2019.103370
– volume: 140
  start-page: 103
  year: 2018
  ident: 10.1016/j.eswa.2021.114778_b0095
  article-title: Differential evolution for filter feature selection based on information theory and feature ranking
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.10.028
– volume: 8
  start-page: 195929
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0035
  article-title: Mayfly in harmony: A new hybrid meta-heuristic feature selection algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031718
– volume: 36
  start-page: 27
  year: 2017
  ident: 10.1016/j.eswa.2021.114778_b0275
  article-title: A hybrid algorithm using ant and bee colony optimization for feature selection and classification (ac-abc hybrid)
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2017.04.002
– volume: 62
  start-page: 251
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0175
  article-title: A novel hybrid harris hawks-simulated annealing algorithm and rbf-based metamodel for design optimization of highway guardrails
  publication-title: Materials Testing
  doi: 10.3139/120.111478
– volume: 7
  start-page: 49614
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0150
  article-title: A new hybrid seagull optimization algorithm for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909945
– volume: 133
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0115
  article-title: A novel hybrid harris hawks optimization and support vector machines for drug design and discovery
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2019.106656
– volume: 145
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0320
  article-title: Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113122
– volume: 128
  start-page: 140
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0045
  article-title: Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.03.039
– volume: 11
  start-page: 1421
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0145
  article-title: Dynamic harris hawks optimization with mutation mechanism for satellite image segmentation
  publication-title: Remote Sensing
  doi: 10.3390/rs11121421
– ident: 10.1016/j.eswa.2021.114778_b0280
  doi: 10.1155/2017/2030489
– volume: Vol. 74
  year: 2009
  ident: 10.1016/j.eswa.2021.114778_b0295
– volume: 47
  start-page: 1496
  year: 2016
  ident: 10.1016/j.eswa.2021.114778_b0235
  article-title: A micro-ga embedded pso feature selection approach to intelligent facial emotion recognition
  publication-title: IEEE transactions on cybernetics
  doi: 10.1109/TCYB.2016.2549639
– volume: 164
  year: 2021
  ident: 10.1016/j.eswa.2021.114778_b0325
  article-title: Dynamic salp swarm algorithm for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113873
– volume: 7
  start-page: 26343
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0020
  article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897325
– volume: 67
  start-page: 197
  year: 2018
  ident: 10.1016/j.eswa.2021.114778_b0360
  article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.02.049
– year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0100
  article-title: Hybrid binary sine cosine algorithm and ant lion optimization (scalo) approaches for feature selection problem
  publication-title: International Journal of Computational Materials Science and Engineering
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0190
  article-title: Whale optimisation algorithm for high-dimensional small-instance feature selection
  publication-title: International Journal of Parallel, Emergent and Distributed Systems
– ident: 10.1016/j.eswa.2021.114778_b0300
  doi: 10.1109/CEC.2014.6900380
– ident: 10.1016/j.eswa.2021.114778_b0265
  doi: 10.1016/j.eswa.2020.113428
– volume: 99
  start-page: 56
  year: 2018
  ident: 10.1016/j.eswa.2021.114778_b0140
  article-title: Asca-pso: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.01.019
– volume: 89
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0155
  article-title: An intensify harris hawks optimizer for numerical and engineering optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.106018
– volume: 43
  start-page: 117
  year: 2016
  ident: 10.1016/j.eswa.2021.114778_b0240
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.01.044
– volume: 12
  start-page: 150
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0195
  article-title: Efficient hybrid nature-inspired binary optimizers for feature selection
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-019-09668-6
– volume: 8
  start-page: 1130
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0315
  article-title: A new quadratic binary harris hawk optimization for feature selection
  publication-title: Electronics
  doi: 10.3390/electronics8101130
– volume: 53
  start-page: 27
  year: 2018
  ident: 10.1016/j.eswa.2021.114778_b0050
  article-title: Unsupervised probabilistic feature selection using ant colony optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.01.021
– ident: 10.1016/j.eswa.2021.114778_b0255
  doi: 10.1016/j.eswa.2020.113364
– volume: 1
  start-page: 181
  year: 2018
  ident: 10.1016/j.eswa.2021.114778_b0310
  article-title: Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems
  publication-title: Mathematical Foundations of Computing
  doi: 10.3934/mfc.2018009
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.114778_b0015
  article-title: A hybrid mine blast algorithm for feature selection problems
  publication-title: Soft Computing
– volume: 48
  start-page: 220
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0060
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2019.04.008
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.eswa.2021.114778_b0220
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 40
  start-page: 16
  year: 2014
  ident: 10.1016/j.eswa.2021.114778_b0040
  article-title: A survey on feature selection methods
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 47
  start-page: 154
  year: 2019
  ident: 10.1016/j.eswa.2021.114778_b0030
  article-title: Artificial bee colony algorithm for feature selection and improved support vector machine for text classification
  publication-title: Information Discovery and Delivery
  doi: 10.1108/IDD-09-2018-0045
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.eswa.2021.114778_b0215
  article-title: Sca: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-based Systems
  doi: 10.1016/j.knosys.2015.12.022
– ident: 10.1016/j.eswa.2021.114778_b0355
  doi: 10.1109/CEC.2018.8477908
– volume: 43
  start-page: 1656
  year: 2012
  ident: 10.1016/j.eswa.2021.114778_b0330
  article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2227469
SSID ssj0017007
Score 2.6598873
Snippet •Every growing data volume also incorporate extraordinary dimensions.•Hybrid sine-cosine Harris hawks optimization (SCHHO) is proposed for feature...
Feature selection, an optimization problem, becomes an important pre-process tool in data mining, which simultaneously aims at minimizing feature-size and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114778
SubjectTerms Algorithms
Data mining
Datasets
Feature selection
Harris hawks optimization
High-dimensional data
Optimization
Optimization algorithms
Optimization problems
Search methods
Sine-cosine algorithm
Statistical analysis
Trigonometric functions
Title An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection
URI https://dx.doi.org/10.1016/j.eswa.2021.114778
https://www.proquest.com/docview/2543511771
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCy8EeVReWBDpk3ixM5YVVQBBAsgdbMcx1aBklS0qGLht3OXOEggxMAU2bKj6Hy-7-zcfUfIKeiMdsakzEa8z3jhHNOFTqAJ6Cx1ZF0fk5NvbpPsgV-N4_EKGba5MBhW6W1_Y9Nra-17el6avdnjY-8OnAOAQzjaIYso4BpmsHOBWn7-8RXmgfRzouHbEwxH-8SZJsbLzpfIPRQGSJkrsNTa7-D0w0zX2DPaIhveaaSD5ru2yYotd8hmW5CB-v25SyaDktqaEwKghE7eMRuLYmA7MxU-aKZfYVPTiV4-z2kF1uLFp2FS8F3ptFpSXRYUKYxZgbT_DWUHdbam_6TzumgO9O2Rh9HF_TBjvpQCM1HKF8yGuUkArbkMnLZWRtbqODYGDl9WOBdIWyQF-F5RnvcjLlMXBhq8L8eDIgSPz0T7ZLWsSntAaGJMXggjJY8dtyKVPNTO5YLLRMYiFR0StDJUxvOMY7mLqWoDyp4Uyl2h3FUj9w45-5oza1g2_hwdt0ujvumKAhj4c95xu47K79S5QjKAGP9cB4f_fO0RWccWXjQH8TFZXby-2RPwVBZ5t1bFLlkbXF5nt58tr-lr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOSyXhYVFy_JYH7ghq01iJ86xQqDw6gWQuFmOY6tASREtqvj3O5M4SCDEgVMUx46i8Xi-cTzzDcAB6ozx1ubcJWLAReU9N5VJ8RbRWZnE-QElJ1-O0uJGnN3K2yU46nJhKKwy2P7WpjfWOrT0gzT7T3d3_St0DhAOcWtHLKKIa8uwQuxUsgcrw9PzYvR2mJAN2qxp7M9pQMidacO83GxB9ENxRKy5GVVb-xyfPljqBn5O1uFn8BvZsP20X7Dk6g1Y62oysLBEN2E8rJlraCEQTdj4lRKyGMW2czulCyvMM65rNjaLhxmbosF4DJmYDN1XNpkumKkrRizGvCLm_5a1g3nXMICyWVM3B9t-w83J8fVRwUM1BW6TXMy5i0ubImALFXnjnEqcM1Jai_svl3kfKVelFbpfSVkOEqFyH0cGHTAvoipGp88mW9Crp7X7Ayy1tqwyq5SQXrgsVyI23peZUKmSWZ5tQ9TJUNtANU4VLya6iym71yR3TXLXrdy34fBtzFNLtPFlb9lNjX6nLhqR4Mtxu9086rBYZ5r4ACQdXkd_v_naf_CjuL680Beno_MdWKUn9N85krvQmz-_uD10XOblflDM_zGB7Bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+hybrid+sine-cosine+Harris+hawks+optimization+for+low+and+high-dimensional+feature+selection&rft.jtitle=Expert+systems+with+applications&rft.au=Hussain%2C+Kashif&rft.au=Neggaz%2C+Nabil&rft.au=Zhu%2C+William&rft.au=Houssein%2C+Essam+H.&rft.date=2021-08-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=176&rft_id=info:doi/10.1016%2Fj.eswa.2021.114778&rft.externalDocID=S0957417421002190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon