Self-sensing magnetic actuators of bilayer hydrogels
Hard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots and their interaction with target objects. Here, we propose a strategy to fabricate a self-sensing bilayer actuator by combining magnetic and ionic con...
Saved in:
Published in | International journal of smart and nano materials Vol. 14; no. 4; pp. 496 - 509 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis Ltd
02.10.2023
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1947-5411 1947-542X |
DOI | 10.1080/19475411.2023.2257616 |
Cover
Loading…
Abstract | Hard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots and their interaction with target objects. Here, we propose a strategy to fabricate a self-sensing bilayer actuator by combining magnetic and ionic conductive hydrogels. The magnetic hydrogel containing NdFeB particles exhibits rapid response to magnetic field and achieve bending deformation. Meanwhile, the polyacrylamide (PAAm) hydrogel with lithium chloride (LiCl) allows for the sensing of deformation. The bending behavior of the bilayer under magnetic field is well captured by theoretical and simulated models. Additionally, the bilayer strain sensor shows good sensitivity, stability and can endure a wide-range cyclic stretching (0–300%). These merits qualify the self-sensing actuator to monitor the motion signals, such as bending of fingers and grasping process of an intelligent gripper. When subject to an external magnetic field, the gripper can grab a cube and sense the resistance change simultaneously to detect the object size. This work may provide a versatile strategy to integrate actuating and self-sensing ability in soft robots. |
---|---|
AbstractList | ABSTRACTHard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots and their interaction with target objects. Here, we propose a strategy to fabricate a self-sensing bilayer actuator by combining magnetic and ionic conductive hydrogels. The magnetic hydrogel containing NdFeB particles exhibits rapid response to magnetic field and achieve bending deformation. Meanwhile, the polyacrylamide (PAAm) hydrogel with lithium chloride (LiCl) allows for the sensing of deformation. The bending behavior of the bilayer under magnetic field is well captured by theoretical and simulated models. Additionally, the bilayer strain sensor shows good sensitivity, stability and can endure a wide-range cyclic stretching (0–300%). These merits qualify the self-sensing actuator to monitor the motion signals, such as bending of fingers and grasping process of an intelligent gripper. When subject to an external magnetic field, the gripper can grab a cube and sense the resistance change simultaneously to detect the object size. This work may provide a versatile strategy to integrate actuating and self-sensing ability in soft robots. Hard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots and their interaction with target objects. Here, we propose a strategy to fabricate a self-sensing bilayer actuator by combining magnetic and ionic conductive hydrogels. The magnetic hydrogel containing NdFeB particles exhibits rapid response to magnetic field and achieve bending deformation. Meanwhile, the polyacrylamide (PAAm) hydrogel with lithium chloride (LiCl) allows for the sensing of deformation. The bending behavior of the bilayer under magnetic field is well captured by theoretical and simulated models. Additionally, the bilayer strain sensor shows good sensitivity, stability and can endure a wide-range cyclic stretching (0–300%). These merits qualify the self-sensing actuator to monitor the motion signals, such as bending of fingers and grasping process of an intelligent gripper. When subject to an external magnetic field, the gripper can grab a cube and sense the resistance change simultaneously to detect the object size. This work may provide a versatile strategy to integrate actuating and self-sensing ability in soft robots. |
Author | Wei, Huangsan Tang, Jingda Zhang, Shengyuan |
Author_xml | – sequence: 1 givenname: Shengyuan surname: Zhang fullname: Zhang, Shengyuan organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 2 givenname: Huangsan surname: Wei fullname: Wei, Huangsan organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 3 givenname: Jingda surname: Tang fullname: Tang, Jingda organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, China |
BookMark | eNp9kEtLw0AUhQepYH38BCHgOnVmMq-LKyk-CgUXKrgbbpJJTImZOpMu-u-d2urChXdzL4d7Dh_nlEwGPzhCLhmdMWroNQOhpWBsxikvZpxLrZg6ItOdnkvB3ya_N2Mn5CLGFU1TcKBSTYl4dn2TRzfEbmizD2wHN3ZVhtW4wdGHmPkmK7sety5k79s6-Nb18ZwcN9hHd3HYZ-T1_u5l_pgvnx4W89tlXhUgxrwuXWJhlRG8kYCCUWBCg9MFgFGGoUIEXnPlRAVQokMQkiohgCnNjCzOyGKfW3tc2XXoPjBsrcfOfgs-tBZDwu2drZoStNNGQ5kC6sIYWhuhWA01FgkgZV3ts9bBf25cHO3Kb8KQ8C03IBSXiuv0dbP_qoKPMbjGVt2IY-eHMWDXW0btrnX707rdtW4PrSe3_OP-Yf7f9wViCIOR |
CitedBy_id | crossref_primary_10_1039_D4TC01667J crossref_primary_10_1080_19475411_2024_2415972 crossref_primary_10_3390_biomimetics9100585 crossref_primary_10_1016_j_apm_2024_115876 crossref_primary_10_1016_j_ijfatigue_2024_108766 crossref_primary_10_1016_j_compstruct_2024_118783 crossref_primary_10_1016_j_mechmat_2024_105183 crossref_primary_10_1088_1361_665X_ad9dc7 crossref_primary_10_1002_app_55700 crossref_primary_10_1021_acsami_4c10502 crossref_primary_10_1080_19475411_2024_2353312 crossref_primary_10_1140_epjs_s11734_025_01557_4 |
Cites_doi | 10.1002/admt.202200047 10.1007/s12274-022-4394-3 10.1016/j.cej.2021.128988 10.1016/j.jmps.2018.10.008 10.7567/JJAP.54.06FP06 10.1038/s41467-021-26136-8 10.1016/j.jmps.2019.103751 10.1038/s41586-018-0185-0 10.1016/j.matdes.2022.111149 10.1039/D1TB01694F 10.1039/D2TA07447H 10.1002/adma.201906657 10.1021/acs.chemrev.1c00481 10.1038/nature25443 10.1016/j.jmps.2020.104045 10.1021/acsami.1c01721 10.1016/j.coche.2017.12.008 10.1016/j.mattod.2021.05.008 10.1002/adfm.201901721 10.1021/acs.chemmater.2c00093 10.1039/C3SM27809C 10.1039/D1NR06111A 10.1002/aisy.202200250 10.1016/j.isci.2021.103075 10.1088/2399-7532/abcb0c 10.1002/aisy.202000240 10.1002/advs.201800239 10.1021/acsami.8b04250 10.1002/adfm.202010918 10.1002/adfm.202004975 10.1039/C6PY01872F 10.1021/acs.chemmater.9b03919 10.1002/aisy.202100139 10.3390/gels3010004 10.1126/scirobotics.aav4494 10.1002/adma.201900332 10.1021/acsami.0c01453 10.1021/acsapm.0c01385 10.1002/adma.201603160 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION DOA |
DOI | 10.1080/19475411.2023.2257616 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1947-542X |
EndPage | 509 |
ExternalDocumentID | oai_doaj_org_article_cfb97e7879b644d3880d8461d9da3842 10_1080_19475411_2023_2257616 |
GroupedDBID | .7F 0YH 2DF 4.4 5VS AAYXX ABDBF ACGFO ACIWK ACUHS ADBBV ADCVX ADMLS AIAGR ALMA_UNASSIGNED_HOLDINGS BCNDV CE4 CITATION EBS ESX FIJ GROUPED_DOAJ H13 HH5 I-F IPNFZ KQ8 M4Z MK~ OK1 P2P RDKPK RIG RNS TDBHL TFL TFW TUS |
ID | FETCH-LOGICAL-c394t-dbe6161c842f59a41091479e73998681a6aa92d26e4c99baea945064491671853 |
IEDL.DBID | DOA |
ISSN | 1947-5411 |
IngestDate | Wed Aug 27 01:19:37 EDT 2025 Mon Jun 30 09:00:31 EDT 2025 Tue Jul 01 02:19:59 EDT 2025 Thu Apr 24 22:50:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-dbe6161c842f59a41091479e73998681a6aa92d26e4c99baea945064491671853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/cfb97e7879b644d3880d8461d9da3842 |
PQID | 2894625627 |
PQPubID | 436400 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cfb97e7879b644d3880d8461d9da3842 proquest_journals_2894625627 crossref_citationtrail_10_1080_19475411_2023_2257616 crossref_primary_10_1080_19475411_2023_2257616 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-02 |
PublicationDateYYYYMMDD | 2023-10-02 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International journal of smart and nano materials |
PublicationYear | 2023 |
Publisher | Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 e_1_3_2_40_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_15_1 e_1_3_2_36_1 |
References_xml | – ident: e_1_3_2_25_1 doi: 10.1002/admt.202200047 – ident: e_1_3_2_19_1 doi: 10.1007/s12274-022-4394-3 – ident: e_1_3_2_20_1 doi: 10.1016/j.cej.2021.128988 – ident: e_1_3_2_39_1 doi: 10.1016/j.jmps.2018.10.008 – ident: e_1_3_2_7_1 doi: 10.7567/JJAP.54.06FP06 – ident: e_1_3_2_14_1 doi: 10.1038/s41467-021-26136-8 – ident: e_1_3_2_35_1 doi: 10.1016/j.jmps.2019.103751 – ident: e_1_3_2_12_1 doi: 10.1038/s41586-018-0185-0 – ident: e_1_3_2_23_1 doi: 10.1016/j.matdes.2022.111149 – ident: e_1_3_2_33_1 doi: 10.1039/D1TB01694F – ident: e_1_3_2_30_1 doi: 10.1039/D2TA07447H – ident: e_1_3_2_16_1 doi: 10.1002/adma.201906657 – ident: e_1_3_2_10_1 doi: 10.1021/acs.chemrev.1c00481 – ident: e_1_3_2_11_1 doi: 10.1038/nature25443 – ident: e_1_3_2_38_1 doi: 10.1016/j.jmps.2020.104045 – ident: e_1_3_2_24_1 doi: 10.1021/acsami.1c01721 – ident: e_1_3_2_6_1 doi: 10.1016/j.coche.2017.12.008 – ident: e_1_3_2_31_1 doi: 10.1016/j.mattod.2021.05.008 – ident: e_1_3_2_34_1 doi: 10.1002/adfm.201901721 – ident: e_1_3_2_40_1 doi: 10.1021/acs.chemmater.2c00093 – ident: e_1_3_2_9_1 doi: 10.1039/C3SM27809C – ident: e_1_3_2_28_1 doi: 10.1039/D1NR06111A – ident: e_1_3_2_22_1 doi: 10.1002/aisy.202200250 – ident: e_1_3_2_2_1 doi: 10.1016/j.isci.2021.103075 – ident: e_1_3_2_18_1 doi: 10.1088/2399-7532/abcb0c – ident: e_1_3_2_26_1 doi: 10.1002/aisy.202000240 – ident: e_1_3_2_27_1 doi: 10.1002/advs.201800239 – ident: e_1_3_2_8_1 doi: 10.1021/acsami.8b04250 – ident: e_1_3_2_17_1 doi: 10.1002/adfm.202010918 – ident: e_1_3_2_15_1 doi: 10.1002/adfm.202004975 – ident: e_1_3_2_4_1 doi: 10.1039/C6PY01872F – ident: e_1_3_2_29_1 doi: 10.1021/acs.chemmater.9b03919 – ident: e_1_3_2_37_1 doi: 10.1002/aisy.202100139 – ident: e_1_3_2_5_1 doi: 10.3390/gels3010004 – ident: e_1_3_2_13_1 doi: 10.1126/scirobotics.aav4494 – ident: e_1_3_2_32_1 doi: 10.1002/adma.201900332 – ident: e_1_3_2_36_1 doi: 10.1021/acsami.0c01453 – ident: e_1_3_2_21_1 doi: 10.1021/acsapm.0c01385 – ident: e_1_3_2_3_1 doi: 10.1002/adma.201603160 |
SSID | ssj0000329056 |
Score | 2.3723903 |
Snippet | Hard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots and their... ABSTRACTHard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 496 |
SubjectTerms | Actuators Bending bilayer structure Biomedical engineering Deformation hard magnetic soft robots Hydrogels ionic conductive hydrogel Lithium chloride Magnetic fields Polyacrylamide Robots self-sensing Soft robotics |
Title | Self-sensing magnetic actuators of bilayer hydrogels |
URI | https://www.proquest.com/docview/2894625627 https://doaj.org/article/cfb97e7879b644d3880d8461d9da3842 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQWWBAfIpCqTKwuq0dN47HFqgqJFigUrfIcc4FqaSoLQP_nrt8VJEYWFgtR3HuHL93ku89xm4h8mBDbzmJnXMFXnCDHI6DVwMbSZdpQQ3OT8_RdKYe58N5w-qL7oSV8sBl4PrOp0YDbiuTInRnpF2SIWaKzGQ2jFVx-iLmNYqp4gwOpRkU1q1YpGs-VELU7TvxoE9jNNQj7_CeJM5NfucNYCr0-38dzwXmTI7ZUUUWg1G5yBO2B_kpO2xICJ4x9QJLzzd0DT1fBB92kVNXYmCpL4SMdIKVD9L3pUVmHbx9Z-vVAsHwnM0mD693U145IXAXGrXlWQq4QuHwe_3QWEVqnkob0Egv4igWNrLWyExGoJwxqQVrFCnRKSR_mhD5grXyVQ6XLIgAKyLQjnwjlceZ0iBHSlMngbTSRZupOgyJq2TCya1imYhKTbSOXkLRS6rotVlv99hnqZPx1wNjivFuMslcFwOY_KRKfvJX8tusU2coqf69TYIlpMKqLpL66j_ecc0OaN3FBT7ZYa3t-gtukIhs0y7bH43vx5Nusfd-AAel0w0 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-sensing+magnetic+actuators+of+bilayer+hydrogels&rft.jtitle=International+journal+of+smart+and+nano+materials&rft.au=Zhang%2C+Shengyuan&rft.au=Wei%2C+Huangsan&rft.au=Tang%2C+Jingda&rft.date=2023-10-02&rft.issn=1947-5411&rft.eissn=1947-542X&rft.volume=14&rft.issue=4&rft.spage=496&rft.epage=509&rft_id=info:doi/10.1080%2F19475411.2023.2257616&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_19475411_2023_2257616 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-5411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-5411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-5411&client=summon |