Self-sensing magnetic actuators of bilayer hydrogels

Hard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots and their interaction with target objects. Here, we propose a strategy to fabricate a self-sensing bilayer actuator by combining magnetic and ionic con...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of smart and nano materials Vol. 14; no. 4; pp. 496 - 509
Main Authors Zhang, Shengyuan, Wei, Huangsan, Tang, Jingda
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis Ltd 02.10.2023
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1947-5411
1947-542X
DOI10.1080/19475411.2023.2257616

Cover

Loading…
Abstract Hard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots and their interaction with target objects. Here, we propose a strategy to fabricate a self-sensing bilayer actuator by combining magnetic and ionic conductive hydrogels. The magnetic hydrogel containing NdFeB particles exhibits rapid response to magnetic field and achieve bending deformation. Meanwhile, the polyacrylamide (PAAm) hydrogel with lithium chloride (LiCl) allows for the sensing of deformation. The bending behavior of the bilayer under magnetic field is well captured by theoretical and simulated models. Additionally, the bilayer strain sensor shows good sensitivity, stability and can endure a wide-range cyclic stretching (0–300%). These merits qualify the self-sensing actuator to monitor the motion signals, such as bending of fingers and grasping process of an intelligent gripper. When subject to an external magnetic field, the gripper can grab a cube and sense the resistance change simultaneously to detect the object size. This work may provide a versatile strategy to integrate actuating and self-sensing ability in soft robots.
AbstractList ABSTRACTHard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots and their interaction with target objects. Here, we propose a strategy to fabricate a self-sensing bilayer actuator by combining magnetic and ionic conductive hydrogels. The magnetic hydrogel containing NdFeB particles exhibits rapid response to magnetic field and achieve bending deformation. Meanwhile, the polyacrylamide (PAAm) hydrogel with lithium chloride (LiCl) allows for the sensing of deformation. The bending behavior of the bilayer under magnetic field is well captured by theoretical and simulated models. Additionally, the bilayer strain sensor shows good sensitivity, stability and can endure a wide-range cyclic stretching (0–300%). These merits qualify the self-sensing actuator to monitor the motion signals, such as bending of fingers and grasping process of an intelligent gripper. When subject to an external magnetic field, the gripper can grab a cube and sense the resistance change simultaneously to detect the object size. This work may provide a versatile strategy to integrate actuating and self-sensing ability in soft robots.
Hard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots and their interaction with target objects. Here, we propose a strategy to fabricate a self-sensing bilayer actuator by combining magnetic and ionic conductive hydrogels. The magnetic hydrogel containing NdFeB particles exhibits rapid response to magnetic field and achieve bending deformation. Meanwhile, the polyacrylamide (PAAm) hydrogel with lithium chloride (LiCl) allows for the sensing of deformation. The bending behavior of the bilayer under magnetic field is well captured by theoretical and simulated models. Additionally, the bilayer strain sensor shows good sensitivity, stability and can endure a wide-range cyclic stretching (0–300%). These merits qualify the self-sensing actuator to monitor the motion signals, such as bending of fingers and grasping process of an intelligent gripper. When subject to an external magnetic field, the gripper can grab a cube and sense the resistance change simultaneously to detect the object size. This work may provide a versatile strategy to integrate actuating and self-sensing ability in soft robots.
Author Wei, Huangsan
Tang, Jingda
Zhang, Shengyuan
Author_xml – sequence: 1
  givenname: Shengyuan
  surname: Zhang
  fullname: Zhang, Shengyuan
  organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 2
  givenname: Huangsan
  surname: Wei
  fullname: Wei, Huangsan
  organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 3
  givenname: Jingda
  surname: Tang
  fullname: Tang, Jingda
  organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, China
BookMark eNp9kEtLw0AUhQepYH38BCHgOnVmMq-LKyk-CgUXKrgbbpJJTImZOpMu-u-d2urChXdzL4d7Dh_nlEwGPzhCLhmdMWroNQOhpWBsxikvZpxLrZg6ItOdnkvB3ya_N2Mn5CLGFU1TcKBSTYl4dn2TRzfEbmizD2wHN3ZVhtW4wdGHmPkmK7sety5k79s6-Nb18ZwcN9hHd3HYZ-T1_u5l_pgvnx4W89tlXhUgxrwuXWJhlRG8kYCCUWBCg9MFgFGGoUIEXnPlRAVQokMQkiohgCnNjCzOyGKfW3tc2XXoPjBsrcfOfgs-tBZDwu2drZoStNNGQ5kC6sIYWhuhWA01FgkgZV3ts9bBf25cHO3Kb8KQ8C03IBSXiuv0dbP_qoKPMbjGVt2IY-eHMWDXW0btrnX707rdtW4PrSe3_OP-Yf7f9wViCIOR
CitedBy_id crossref_primary_10_1039_D4TC01667J
crossref_primary_10_1080_19475411_2024_2415972
crossref_primary_10_3390_biomimetics9100585
crossref_primary_10_1016_j_apm_2024_115876
crossref_primary_10_1016_j_ijfatigue_2024_108766
crossref_primary_10_1016_j_compstruct_2024_118783
crossref_primary_10_1016_j_mechmat_2024_105183
crossref_primary_10_1088_1361_665X_ad9dc7
crossref_primary_10_1002_app_55700
crossref_primary_10_1021_acsami_4c10502
crossref_primary_10_1080_19475411_2024_2353312
crossref_primary_10_1140_epjs_s11734_025_01557_4
Cites_doi 10.1002/admt.202200047
10.1007/s12274-022-4394-3
10.1016/j.cej.2021.128988
10.1016/j.jmps.2018.10.008
10.7567/JJAP.54.06FP06
10.1038/s41467-021-26136-8
10.1016/j.jmps.2019.103751
10.1038/s41586-018-0185-0
10.1016/j.matdes.2022.111149
10.1039/D1TB01694F
10.1039/D2TA07447H
10.1002/adma.201906657
10.1021/acs.chemrev.1c00481
10.1038/nature25443
10.1016/j.jmps.2020.104045
10.1021/acsami.1c01721
10.1016/j.coche.2017.12.008
10.1016/j.mattod.2021.05.008
10.1002/adfm.201901721
10.1021/acs.chemmater.2c00093
10.1039/C3SM27809C
10.1039/D1NR06111A
10.1002/aisy.202200250
10.1016/j.isci.2021.103075
10.1088/2399-7532/abcb0c
10.1002/aisy.202000240
10.1002/advs.201800239
10.1021/acsami.8b04250
10.1002/adfm.202010918
10.1002/adfm.202004975
10.1039/C6PY01872F
10.1021/acs.chemmater.9b03919
10.1002/aisy.202100139
10.3390/gels3010004
10.1126/scirobotics.aav4494
10.1002/adma.201900332
10.1021/acsami.0c01453
10.1021/acsapm.0c01385
10.1002/adma.201603160
ContentType Journal Article
Copyright 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
DOA
DOI 10.1080/19475411.2023.2257616
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1947-542X
EndPage 509
ExternalDocumentID oai_doaj_org_article_cfb97e7879b644d3880d8461d9da3842
10_1080_19475411_2023_2257616
GroupedDBID .7F
0YH
2DF
4.4
5VS
AAYXX
ABDBF
ACGFO
ACIWK
ACUHS
ADBBV
ADCVX
ADMLS
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CE4
CITATION
EBS
ESX
FIJ
GROUPED_DOAJ
H13
HH5
I-F
IPNFZ
KQ8
M4Z
MK~
OK1
P2P
RDKPK
RIG
RNS
TDBHL
TFL
TFW
TUS
ID FETCH-LOGICAL-c394t-dbe6161c842f59a41091479e73998681a6aa92d26e4c99baea945064491671853
IEDL.DBID DOA
ISSN 1947-5411
IngestDate Wed Aug 27 01:19:37 EDT 2025
Mon Jun 30 09:00:31 EDT 2025
Tue Jul 01 02:19:59 EDT 2025
Thu Apr 24 22:50:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-dbe6161c842f59a41091479e73998681a6aa92d26e4c99baea945064491671853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/cfb97e7879b644d3880d8461d9da3842
PQID 2894625627
PQPubID 436400
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_cfb97e7879b644d3880d8461d9da3842
proquest_journals_2894625627
crossref_citationtrail_10_1080_19475411_2023_2257616
crossref_primary_10_1080_19475411_2023_2257616
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-02
PublicationDateYYYYMMDD 2023-10-02
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of smart and nano materials
PublicationYear 2023
Publisher Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_40_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_15_1
e_1_3_2_36_1
References_xml – ident: e_1_3_2_25_1
  doi: 10.1002/admt.202200047
– ident: e_1_3_2_19_1
  doi: 10.1007/s12274-022-4394-3
– ident: e_1_3_2_20_1
  doi: 10.1016/j.cej.2021.128988
– ident: e_1_3_2_39_1
  doi: 10.1016/j.jmps.2018.10.008
– ident: e_1_3_2_7_1
  doi: 10.7567/JJAP.54.06FP06
– ident: e_1_3_2_14_1
  doi: 10.1038/s41467-021-26136-8
– ident: e_1_3_2_35_1
  doi: 10.1016/j.jmps.2019.103751
– ident: e_1_3_2_12_1
  doi: 10.1038/s41586-018-0185-0
– ident: e_1_3_2_23_1
  doi: 10.1016/j.matdes.2022.111149
– ident: e_1_3_2_33_1
  doi: 10.1039/D1TB01694F
– ident: e_1_3_2_30_1
  doi: 10.1039/D2TA07447H
– ident: e_1_3_2_16_1
  doi: 10.1002/adma.201906657
– ident: e_1_3_2_10_1
  doi: 10.1021/acs.chemrev.1c00481
– ident: e_1_3_2_11_1
  doi: 10.1038/nature25443
– ident: e_1_3_2_38_1
  doi: 10.1016/j.jmps.2020.104045
– ident: e_1_3_2_24_1
  doi: 10.1021/acsami.1c01721
– ident: e_1_3_2_6_1
  doi: 10.1016/j.coche.2017.12.008
– ident: e_1_3_2_31_1
  doi: 10.1016/j.mattod.2021.05.008
– ident: e_1_3_2_34_1
  doi: 10.1002/adfm.201901721
– ident: e_1_3_2_40_1
  doi: 10.1021/acs.chemmater.2c00093
– ident: e_1_3_2_9_1
  doi: 10.1039/C3SM27809C
– ident: e_1_3_2_28_1
  doi: 10.1039/D1NR06111A
– ident: e_1_3_2_22_1
  doi: 10.1002/aisy.202200250
– ident: e_1_3_2_2_1
  doi: 10.1016/j.isci.2021.103075
– ident: e_1_3_2_18_1
  doi: 10.1088/2399-7532/abcb0c
– ident: e_1_3_2_26_1
  doi: 10.1002/aisy.202000240
– ident: e_1_3_2_27_1
  doi: 10.1002/advs.201800239
– ident: e_1_3_2_8_1
  doi: 10.1021/acsami.8b04250
– ident: e_1_3_2_17_1
  doi: 10.1002/adfm.202010918
– ident: e_1_3_2_15_1
  doi: 10.1002/adfm.202004975
– ident: e_1_3_2_4_1
  doi: 10.1039/C6PY01872F
– ident: e_1_3_2_29_1
  doi: 10.1021/acs.chemmater.9b03919
– ident: e_1_3_2_37_1
  doi: 10.1002/aisy.202100139
– ident: e_1_3_2_5_1
  doi: 10.3390/gels3010004
– ident: e_1_3_2_13_1
  doi: 10.1126/scirobotics.aav4494
– ident: e_1_3_2_32_1
  doi: 10.1002/adma.201900332
– ident: e_1_3_2_36_1
  doi: 10.1021/acsami.0c01453
– ident: e_1_3_2_21_1
  doi: 10.1021/acsapm.0c01385
– ident: e_1_3_2_3_1
  doi: 10.1002/adma.201603160
SSID ssj0000329056
Score 2.3723903
Snippet Hard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots and their...
ABSTRACTHard magnetic soft robots have been widely used in biomedical engineering. In these applications, it is crucial to sense the movement of soft robots...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 496
SubjectTerms Actuators
Bending
bilayer structure
Biomedical engineering
Deformation
hard magnetic soft robots
Hydrogels
ionic conductive hydrogel
Lithium chloride
Magnetic fields
Polyacrylamide
Robots
self-sensing
Soft robotics
Title Self-sensing magnetic actuators of bilayer hydrogels
URI https://www.proquest.com/docview/2894625627
https://doaj.org/article/cfb97e7879b644d3880d8461d9da3842
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQWWBAfIpCqTKwuq0dN47HFqgqJFigUrfIcc4FqaSoLQP_nrt8VJEYWFgtR3HuHL93ku89xm4h8mBDbzmJnXMFXnCDHI6DVwMbSZdpQQ3OT8_RdKYe58N5w-qL7oSV8sBl4PrOp0YDbiuTInRnpF2SIWaKzGQ2jFVx-iLmNYqp4gwOpRkU1q1YpGs-VELU7TvxoE9jNNQj7_CeJM5NfucNYCr0-38dzwXmTI7ZUUUWg1G5yBO2B_kpO2xICJ4x9QJLzzd0DT1fBB92kVNXYmCpL4SMdIKVD9L3pUVmHbx9Z-vVAsHwnM0mD693U145IXAXGrXlWQq4QuHwe_3QWEVqnkob0Egv4igWNrLWyExGoJwxqQVrFCnRKSR_mhD5grXyVQ6XLIgAKyLQjnwjlceZ0iBHSlMngbTSRZupOgyJq2TCya1imYhKTbSOXkLRS6rotVlv99hnqZPx1wNjivFuMslcFwOY_KRKfvJX8tusU2coqf69TYIlpMKqLpL66j_ecc0OaN3FBT7ZYa3t-gtukIhs0y7bH43vx5Nusfd-AAel0w0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-sensing+magnetic+actuators+of+bilayer+hydrogels&rft.jtitle=International+journal+of+smart+and+nano+materials&rft.au=Zhang%2C+Shengyuan&rft.au=Wei%2C+Huangsan&rft.au=Tang%2C+Jingda&rft.date=2023-10-02&rft.issn=1947-5411&rft.eissn=1947-542X&rft.volume=14&rft.issue=4&rft.spage=496&rft.epage=509&rft_id=info:doi/10.1080%2F19475411.2023.2257616&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_19475411_2023_2257616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-5411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-5411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-5411&client=summon