Robust Feature Matching with Spatial Smoothness Constraints
Feature matching is to detect and match corresponding feature points in stereo pairs, which is one of the key techniques in accurate camera orientations. However, several factors limit the feature matching accuracy, e.g., image textures, viewing angles of stereo cameras, and resolutions of stereo pa...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 19; p. 3158 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Feature matching is to detect and match corresponding feature points in stereo pairs, which is one of the key techniques in accurate camera orientations. However, several factors limit the feature matching accuracy, e.g., image textures, viewing angles of stereo cameras, and resolutions of stereo pairs. To improve the feature matching accuracy against these limiting factors, this paper imposes spatial smoothness constraints over the whole feature point sets with the underlying assumption that feature points should have similar matching results with their surrounding high-confidence points and proposes a robust feature matching method with the spatial smoothness constraints (RMSS). The core algorithm constructs a graph structure from the feature point sets and then formulates the feature matching problem as the optimization of a global energy function with first-order, spatial smoothness constraints based on the graph. For computational purposes, the global optimization of the energy function is then broken into sub-optimizations of each feature point, and an approximate solution of the energy function is iteratively derived as the matching results of the whole feature point sets. Experiments on close-range datasets with some above limiting factors show that the proposed method was capable of greatly improving the matching robustness and matching accuracy of some feature descriptors (e.g., scale-invariant feature transform (SIFT) and Speeded Up Robust Features (SURF)). After the optimization of the proposed method, the inlier number of SIFT and SURF was increased by average 131.9% and 113.5%, the inlier percentages between the inlier number and the total matches number of SIFT and SURF were increased by average 259.0% and 307.2%, and the absolute matching accuracy of SIFT and SURF was improved by average 80.6% and 70.2%. |
---|---|
AbstractList | Feature matching is to detect and match corresponding feature points in stereo pairs, which is one of the key techniques in accurate camera orientations. However, several factors limit the feature matching accuracy, e.g., image textures, viewing angles of stereo cameras, and resolutions of stereo pairs. To improve the feature matching accuracy against these limiting factors, this paper imposes spatial smoothness constraints over the whole feature point sets with the underlying assumption that feature points should have similar matching results with their surrounding high-confidence points and proposes a robust feature matching method with the spatial smoothness constraints (RMSS). The core algorithm constructs a graph structure from the feature point sets and then formulates the feature matching problem as the optimization of a global energy function with first-order, spatial smoothness constraints based on the graph. For computational purposes, the global optimization of the energy function is then broken into sub-optimizations of each feature point, and an approximate solution of the energy function is iteratively derived as the matching results of the whole feature point sets. Experiments on close-range datasets with some above limiting factors show that the proposed method was capable of greatly improving the matching robustness and matching accuracy of some feature descriptors (e.g., scale-invariant feature transform (SIFT) and Speeded Up Robust Features (SURF)). After the optimization of the proposed method, the inlier number of SIFT and SURF was increased by average 131.9% and 113.5%, the inlier percentages between the inlier number and the total matches number of SIFT and SURF were increased by average 259.0% and 307.2%, and the absolute matching accuracy of SIFT and SURF was improved by average 80.6% and 70.2%. |
Author | Huang, Xu Peng, Daifeng Wan, Xue |
Author_xml | – sequence: 1 givenname: Xu orcidid: 0000-0003-3797-6042 surname: Huang fullname: Huang, Xu – sequence: 2 givenname: Xue surname: Wan fullname: Wan, Xue – sequence: 3 givenname: Daifeng surname: Peng fullname: Peng, Daifeng |
BookMark | eNptkcFqHDEMhk1Ioek2lzzBQC6lsIlt2eMxPZUlaQIphaY5G43tyXqZtbe2h9C372y3pCFUFwnx6eeX9I4cxxQ9IWeMXgBoepkL40wDk90ROeFU8aXgmh-_qN-S01I2dA4Apqk4IZ--p34qtbn2WKfsm69Y7TrEx-Yp1HVzv8MacGzutynVdfSlNKsUS80YYi3vyZsBx-JP_-YFebi--rG6Wd59-3K7-ny3tKBFXTo9ALhWW6a5g6F1QtPWcsWwta1VWjExKOi9kwIobTtrO9Si6ymCVZJqWJDbg65LuDG7HLaYf5mEwfxppPxoMNdgR296r6WWPVChnZAOe0TtvFMgrWpB7rU-HLR2Of2cfKlmG4r144jRp6kYLhljinezlwU5f4Vu0pTjvOlMSQpUCiln6uOBsjmVkv3wbJBRs3-L-feWGaavYBvqfOIU9ycd_zfyGzj5jvI |
CitedBy_id | crossref_primary_10_3390_rs14163907 crossref_primary_10_1109_ACCESS_2021_3059487 crossref_primary_10_1007_s11042_023_15616_2 crossref_primary_10_1109_TMM_2021_3107681 crossref_primary_10_1080_01431161_2024_2347529 crossref_primary_10_1109_JSTARS_2022_3192264 crossref_primary_10_1155_2022_1987857 crossref_primary_10_3390_rs14215617 crossref_primary_10_1016_j_isprsjprs_2021_11_003 |
Cites_doi | 10.1007/978-1-84882-935-0 10.14358/PERS.83.12.813 10.1109/TIP.2014.2307478 10.1109/CVPR.2015.7299064 10.5194/isprsannals-III-1-77-2016 10.1080/17538947.2016.1151955 10.1137/080732730 10.1109/ICCV.2011.6126542 10.1007/BFb0014497 10.1007/978-3-642-33783-3_16 10.3390/rs11151833 10.3390/rs12111868 10.1109/TGRS.2014.2331234 10.14358/PERS.84.8.513 10.3390/rs11111372 10.1007/11744023_32 10.1016/j.isprsjprs.2017.06.009 10.3390/rs12142243 10.1016/j.cageo.2011.09.018 10.1080/01431161.2019.1624862 10.3390/rs12121933 10.3390/rs11232841 10.1109/3DUI.2017.7893362 10.1016/j.isprsjprs.2019.04.020 10.4218/etrij.17.2816.0045 10.3390/rs12010020 10.1109/ITSC.2019.8917293 10.1080/2150704X.2020.1723168 10.5194/isprs-annals-IV-2-W4-227-2017 10.3390/rs9080813 10.14358/PERS.81.1.49 10.3390/rs10121952 10.3390/rs8080672 10.1023/B:VISI.0000029664.99615.94 10.1145/358669.358692 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs12193158 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_be9595b3049d45dabaa9ded735c76359 10_3390_rs12193158 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-d9f33d69c192d3f6d4906c271a6c6c79714f73bed5430068cc8a948b0a3c75093 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:31:28 EDT 2025 Fri Jul 11 01:24:38 EDT 2025 Fri Jul 25 09:28:31 EDT 2025 Tue Jul 01 04:15:14 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-d9f33d69c192d3f6d4906c271a6c6c79714f73bed5430068cc8a948b0a3c75093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3797-6042 |
OpenAccessLink | https://www.proquest.com/docview/2550305455?pq-origsite=%requestingapplication% |
PQID | 2550305455 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_be9595b3049d45dabaa9ded735c76359 proquest_miscellaneous_2511172854 proquest_journals_2550305455 crossref_primary_10_3390_rs12193158 crossref_citationtrail_10_3390_rs12193158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhou (ref_38) 2008; 27 Kim (ref_7) 2017; 39 ref_14 ref_36 ref_13 ref_12 Lowe (ref_26) 2004; 60 ref_11 ref_10 ref_32 ref_31 ref_30 Li (ref_33) 2017; 83 Huang (ref_3) 2020; 41 Kim (ref_9) 2012; 44 ref_18 ref_39 ref_15 ref_37 Ma (ref_35) 2014; 23 Wan (ref_16) 2019; 153 Chen (ref_34) 2018; 84 Wan (ref_17) 2017; 130 Morel (ref_29) 2009; 2 ref_24 Zhang (ref_23) 2015; 53 ref_21 ref_20 Fischler (ref_40) 1981; 24 Tatar (ref_19) 2019; 40 ref_1 ref_2 ref_28 ref_27 ref_8 ref_5 ref_4 Hu (ref_22) 2015; 81 ref_6 Duan (ref_25) 2016; 9 |
References_xml | – ident: ref_1 doi: 10.1007/978-1-84882-935-0 – volume: 83 start-page: 813 year: 2017 ident: ref_33 article-title: 4FP-Structure: A Robust Local Region Feature Descriptor publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.83.12.813 – volume: 23 start-page: 1706 year: 2014 ident: ref_35 article-title: Robust point matching via vector field consensus publication-title: IEEE Trans. Imag. Process. doi: 10.1109/TIP.2014.2307478 – ident: ref_32 doi: 10.1109/CVPR.2015.7299064 – ident: ref_20 doi: 10.5194/isprsannals-III-1-77-2016 – ident: ref_39 – volume: 9 start-page: 851 year: 2016 ident: ref_25 article-title: A combined image matching method for Chinese optical satellite imagery publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2016.1151955 – volume: 2 start-page: 438 year: 2009 ident: ref_29 article-title: ASIFT: A New Framework for Fully Affine Invariant Image Comparison publication-title: SIAM J. Imag. Sci. doi: 10.1137/080732730 – ident: ref_18 – ident: ref_28 doi: 10.1109/ICCV.2011.6126542 – ident: ref_37 doi: 10.1007/BFb0014497 – ident: ref_30 doi: 10.1007/978-3-642-33783-3_16 – ident: ref_11 doi: 10.3390/rs11151833 – ident: ref_13 doi: 10.3390/rs12111868 – volume: 53 start-page: 976 year: 2015 ident: ref_23 article-title: LiDAR Strip Adjustment Using Multifeatures Matched with Aerial Images publication-title: IEEE T. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2331234 – ident: ref_6 – volume: 84 start-page: 513 year: 2018 ident: ref_34 article-title: A Local Distinctive Features Matching Method for Remote Sensing Images with Repetitive Patterns publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.84.8.513 – ident: ref_5 doi: 10.3390/rs11111372 – ident: ref_27 doi: 10.1007/11744023_32 – volume: 130 start-page: 317 year: 2017 ident: ref_17 article-title: The P2L method of mismatch detection for push broom high-resolution satellite images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.06.009 – ident: ref_15 doi: 10.3390/rs12142243 – volume: 44 start-page: 184 year: 2012 ident: ref_9 article-title: Implementation of Martian virtual reality environment using very high-resolution stereo topographic data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.09.018 – volume: 40 start-page: 8879 year: 2019 ident: ref_19 article-title: Stereo rectification of pushbroom satellite images by robustly estimating the fundamental matrix publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1624862 – ident: ref_12 doi: 10.3390/rs12121933 – ident: ref_10 doi: 10.3390/rs11232841 – ident: ref_8 doi: 10.1109/3DUI.2017.7893362 – volume: 153 start-page: 123 year: 2019 ident: ref_16 article-title: An a-contrario method of mismatch detection for two-view pushbroom satellite images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.020 – volume: 39 start-page: 181 year: 2017 ident: ref_7 article-title: Motion Capture of the Human Body Using Multiple Depth Sensors publication-title: ETRI J. doi: 10.4218/etrij.17.2816.0045 – ident: ref_2 doi: 10.3390/rs12010020 – ident: ref_31 doi: 10.1109/ITSC.2019.8917293 – ident: ref_36 – volume: 41 start-page: 4836 year: 2020 ident: ref_3 article-title: A window size selection network for stereo dense image matching publication-title: Int. J. Remote Sens. doi: 10.1080/2150704X.2020.1723168 – ident: ref_4 doi: 10.5194/isprs-annals-IV-2-W4-227-2017 – volume: 27 start-page: 1 year: 2008 ident: ref_38 article-title: Real-time Kd-tree Construction on Graphics Hardware publication-title: ACM Trans. Graph. – ident: ref_21 doi: 10.3390/rs9080813 – volume: 81 start-page: 49 year: 2015 ident: ref_22 article-title: Reliable Spatial Relationship Constrained Feature Point Matching of Oblique Aerial Images publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.81.1.49 – ident: ref_14 doi: 10.3390/rs10121952 – ident: ref_24 doi: 10.3390/rs8080672 – volume: 60 start-page: 91 year: 2004 ident: ref_26 article-title: Distinctive Image Features from Scale-Invariant Keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 24 start-page: 381 year: 1981 ident: ref_40 article-title: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography publication-title: Commun. ACM doi: 10.1145/358669.358692 |
SSID | ssj0000331904 |
Score | 2.305151 |
Snippet | Feature matching is to detect and match corresponding feature points in stereo pairs, which is one of the key techniques in accurate camera orientations.... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3158 |
SubjectTerms | Accuracy Algorithms Cameras Computer applications data collection Delaunay triangulation Energy feature matching global energy function Global optimization Limiting factors Matching Methods Optimization Photogrammetry remote sensing Robustness SIFT Smoothness spatial smoothness constraint SURF |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF72IT4xWiejFQ2iSfSSLJxVLEepBLfQW9hU8aCJNcvDfO5OktaDgxWsyLMvM7Dcz-5iPkMuUh0oaFQXaJjQApwgDwMA0YNZwCP-xMBYLxemjmMzYw5zP16i-8E5Y1x64U9xIO8kl13gaZBm3SislrYOBucFeau3TPYh5a8VUi8EUXCtkXT9SCnX9aFFFsDhphNzuaxGobdT_A4fb4DLeIdt9VujfdLPZJRuu2CObPUH56-c-uX4qdVPVPmZszcL5U0BQ3DvycR_VR15h8CP_-b0ExSN4-UjE2dI_1NUBmY3vX-4mQc97EBgqWR1YmVNqhTSQfVmaC8tkKEycREoYYRKZRCxPqHaWM4pPPIxJlWSpDhU1mADQQzIoysIdET9KopzHJsm1CplLU62dYmA1I0TMrGQeuVrqIjN9U3Cc3FsGxQHqLfvWm0cuVrIfXSuMX6VuUaUrCWxf3X4Ao2a9UbO_jOqR4dIgWb-mqgyKH0QnxrlHzle_YTXgEYcqXNmgDGB3gq9Cj_9jHidkK8b6ur28NySDetG4U0hCan3W-tsXEyPZcw priority: 102 providerName: Directory of Open Access Journals |
Title | Robust Feature Matching with Spatial Smoothness Constraints |
URI | https://www.proquest.com/docview/2550305455 https://www.proquest.com/docview/2511172854 https://doaj.org/article/be9595b3049d45dabaa9ded735c76359 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BcmgvqIVWDYXIqFw4WNjeh3fVA4JCilCDEBSJm7Uvt4c2prFz6L_vjLMJlYp6tUeWNY9vZ2Z35wM4VCIz2pk8tb5kKTpFliIGqpR7J3D5L6TzVChOr-XlPb96EA-x4dbGY5UrTOyB2jeOeuTHmPqSb3IhTh5_pcQaRburkUJjE4YIwUoNYHh2cX1zu-6yZAxdLOPLuaQM6_vjeZtjkLKcON7_Won6gf3_4HG_yExewVbMDpPTpTlfw0aYbcOLSFT-_fcOfLxt7KLtEsrcFvOQTBFJqYeUUD81IX5h9Kfk7meDBiAQS4iQs6eB6No3cD-5-PrpMo38B6ljmnep1zVjXmqHWZhntfRcZ9IVZW6kk67UZc7rktngBWd01cM5ZTRXNjPMUSLA3sJg1szCO0jyMq9F4cramowHpawNhqP1nJQF95qP4Gili8rF4eD0cz8qLBJIb9WT3kbwYS37uByJ8azUGal0LUFjrPsHzfxbFaOiskELLSxt9XkuvLHGaB_Qa4SjQXl6BHsrg1QxttrqyRNGcLB-jVFBWx1mFpoFySCGl3Q7dPf_n3gPLwuqoPvjeXsw6OaLsI9pRmfHsKkmn8cwPD2ffrkbR88a90X7H6iR1SI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFH9BPOCFoGhcBB0jHDw0tJ2PdmKMUXRdPpaDQsKtzlflgFvYdmP4p_gbfa_bLiQab1w7k0nz5jfva-a9H8B2LmOjnUki6zMeISjiCHVgHgnvJJr_VDlPgeL4WI1OxcGZPFuCm74Whp5V9jqxVdS-cpQj30XXl7AppPxweRURaxTdrvYUGnNYHIbr3xiy1e_3P-P-7qTp8MvJ3ijqWAUix7VoIq9Lzr3SDn0bz0vlhY6VS7PEKKdcprNElBm3wUvBqYDCudxokdvYcEfmleO6D-Ch4GjJqTJ9-HWR04k5AjoW8y6oOB7vTusEVQJPiFH-jt1r6QH-0v6tSRuuwWrni7KPc_A8hqUweQIrHS36-fU6vPtW2VndMPITZ9PAxqi3KWPFKHvLiM0Y0cu-_6pwu0llMqL_bEknmvopnN6LXJ7B8qSahOfAkiwpZeqy0ppYhDy3NhiBWHFKpcJrMYC3vSwK17Uip5-7KDAkIbkVt3IbwJvF3Mt5A45_zvpEIl3MoKbZ7Ydq-rPozmBhg5ZaWrpY9EJ6Y43RPiBGpaO2fHoAm_2GFN1Jrotb3A3g9WIYzyBdrJhJqGY0By1GRrWoG_9f4hWsjE7GR8XR_vHhC3iUUuzePgzchOVmOgtb6OA09mWLKgY_7hvGfwAqOQwW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEE-xUMAIOHCINolfsRBClHbVUrqqCpV6C34FDrApm6xQ_xq_jplsskUCces1GVnW-PO8bM8H8LyQqTXeZokLmicIijRBG1gkIniJ7j9XPlCieDhTeyfi_ak83YBfw1sYulY52MTOUIfaU418gqEvYVNIOan6axFHO9M3Zz8SYpCik9aBTmMFkYN4_hPTt-b1_g6u9Ys8n-5-ereX9AwDiedGtEkwFedBGY9xTuCVCsKkyuc6s8orr43ORKW5i0EKTo8pvC-sEYVLLffkajmOewU2NWVFI9jc3p0dHa8rPClHeKdi1ROVc5NOFk2GBoJnxC__hxfsyAL-8gWdg5vehBt9ZMrerqB0Czbi_DZc60nSv57fgVfHtVs2LaOocbmI7BCtONWvGNVyGXEbI5bZx-81Lj4ZUEZkoB0FRdvchZNL0cw9GM3rebwPLNNZJXOvK2dTEYvCuWgFIscrlYtgxBheDroofd-YnCb3rcQEhfRWXuhtDM_Wsmerdhz_lNomla4lqIV296FefCn7HVm6aKSRjo4Zg5DBOmtNiIhY6alJnxnD1rAgZb-vm_IChWN4uv6NO5KOWew81kuSQf-h6WXqg_8P8QSuIoTLD_uzg4dwPadEvrsluAWjdrGMjzDaad3jHlYMPl82kn8DBxsRqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Feature+Matching+with+Spatial+Smoothness+Constraints&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Huang%2C+Xu&rft.au=Xue+Wan&rft.au=Peng%2C+Daifeng&rft.date=2020-10-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=19&rft.spage=3158&rft_id=info:doi/10.3390%2Frs12193158&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |