Robust Feature Matching with Spatial Smoothness Constraints

Feature matching is to detect and match corresponding feature points in stereo pairs, which is one of the key techniques in accurate camera orientations. However, several factors limit the feature matching accuracy, e.g., image textures, viewing angles of stereo cameras, and resolutions of stereo pa...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 19; p. 3158
Main Authors Huang, Xu, Wan, Xue, Peng, Daifeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Feature matching is to detect and match corresponding feature points in stereo pairs, which is one of the key techniques in accurate camera orientations. However, several factors limit the feature matching accuracy, e.g., image textures, viewing angles of stereo cameras, and resolutions of stereo pairs. To improve the feature matching accuracy against these limiting factors, this paper imposes spatial smoothness constraints over the whole feature point sets with the underlying assumption that feature points should have similar matching results with their surrounding high-confidence points and proposes a robust feature matching method with the spatial smoothness constraints (RMSS). The core algorithm constructs a graph structure from the feature point sets and then formulates the feature matching problem as the optimization of a global energy function with first-order, spatial smoothness constraints based on the graph. For computational purposes, the global optimization of the energy function is then broken into sub-optimizations of each feature point, and an approximate solution of the energy function is iteratively derived as the matching results of the whole feature point sets. Experiments on close-range datasets with some above limiting factors show that the proposed method was capable of greatly improving the matching robustness and matching accuracy of some feature descriptors (e.g., scale-invariant feature transform (SIFT) and Speeded Up Robust Features (SURF)). After the optimization of the proposed method, the inlier number of SIFT and SURF was increased by average 131.9% and 113.5%, the inlier percentages between the inlier number and the total matches number of SIFT and SURF were increased by average 259.0% and 307.2%, and the absolute matching accuracy of SIFT and SURF was improved by average 80.6% and 70.2%.
AbstractList Feature matching is to detect and match corresponding feature points in stereo pairs, which is one of the key techniques in accurate camera orientations. However, several factors limit the feature matching accuracy, e.g., image textures, viewing angles of stereo cameras, and resolutions of stereo pairs. To improve the feature matching accuracy against these limiting factors, this paper imposes spatial smoothness constraints over the whole feature point sets with the underlying assumption that feature points should have similar matching results with their surrounding high-confidence points and proposes a robust feature matching method with the spatial smoothness constraints (RMSS). The core algorithm constructs a graph structure from the feature point sets and then formulates the feature matching problem as the optimization of a global energy function with first-order, spatial smoothness constraints based on the graph. For computational purposes, the global optimization of the energy function is then broken into sub-optimizations of each feature point, and an approximate solution of the energy function is iteratively derived as the matching results of the whole feature point sets. Experiments on close-range datasets with some above limiting factors show that the proposed method was capable of greatly improving the matching robustness and matching accuracy of some feature descriptors (e.g., scale-invariant feature transform (SIFT) and Speeded Up Robust Features (SURF)). After the optimization of the proposed method, the inlier number of SIFT and SURF was increased by average 131.9% and 113.5%, the inlier percentages between the inlier number and the total matches number of SIFT and SURF were increased by average 259.0% and 307.2%, and the absolute matching accuracy of SIFT and SURF was improved by average 80.6% and 70.2%.
Author Huang, Xu
Peng, Daifeng
Wan, Xue
Author_xml – sequence: 1
  givenname: Xu
  orcidid: 0000-0003-3797-6042
  surname: Huang
  fullname: Huang, Xu
– sequence: 2
  givenname: Xue
  surname: Wan
  fullname: Wan, Xue
– sequence: 3
  givenname: Daifeng
  surname: Peng
  fullname: Peng, Daifeng
BookMark eNptkcFqHDEMhk1Ioek2lzzBQC6lsIlt2eMxPZUlaQIphaY5G43tyXqZtbe2h9C372y3pCFUFwnx6eeX9I4cxxQ9IWeMXgBoepkL40wDk90ROeFU8aXgmh-_qN-S01I2dA4Apqk4IZ--p34qtbn2WKfsm69Y7TrEx-Yp1HVzv8MacGzutynVdfSlNKsUS80YYi3vyZsBx-JP_-YFebi--rG6Wd59-3K7-ny3tKBFXTo9ALhWW6a5g6F1QtPWcsWwta1VWjExKOi9kwIobTtrO9Si6ymCVZJqWJDbg65LuDG7HLaYf5mEwfxppPxoMNdgR296r6WWPVChnZAOe0TtvFMgrWpB7rU-HLR2Of2cfKlmG4r144jRp6kYLhljinezlwU5f4Vu0pTjvOlMSQpUCiln6uOBsjmVkv3wbJBRs3-L-feWGaavYBvqfOIU9ycd_zfyGzj5jvI
CitedBy_id crossref_primary_10_3390_rs14163907
crossref_primary_10_1109_ACCESS_2021_3059487
crossref_primary_10_1007_s11042_023_15616_2
crossref_primary_10_1109_TMM_2021_3107681
crossref_primary_10_1080_01431161_2024_2347529
crossref_primary_10_1109_JSTARS_2022_3192264
crossref_primary_10_1155_2022_1987857
crossref_primary_10_3390_rs14215617
crossref_primary_10_1016_j_isprsjprs_2021_11_003
Cites_doi 10.1007/978-1-84882-935-0
10.14358/PERS.83.12.813
10.1109/TIP.2014.2307478
10.1109/CVPR.2015.7299064
10.5194/isprsannals-III-1-77-2016
10.1080/17538947.2016.1151955
10.1137/080732730
10.1109/ICCV.2011.6126542
10.1007/BFb0014497
10.1007/978-3-642-33783-3_16
10.3390/rs11151833
10.3390/rs12111868
10.1109/TGRS.2014.2331234
10.14358/PERS.84.8.513
10.3390/rs11111372
10.1007/11744023_32
10.1016/j.isprsjprs.2017.06.009
10.3390/rs12142243
10.1016/j.cageo.2011.09.018
10.1080/01431161.2019.1624862
10.3390/rs12121933
10.3390/rs11232841
10.1109/3DUI.2017.7893362
10.1016/j.isprsjprs.2019.04.020
10.4218/etrij.17.2816.0045
10.3390/rs12010020
10.1109/ITSC.2019.8917293
10.1080/2150704X.2020.1723168
10.5194/isprs-annals-IV-2-W4-227-2017
10.3390/rs9080813
10.14358/PERS.81.1.49
10.3390/rs10121952
10.3390/rs8080672
10.1023/B:VISI.0000029664.99615.94
10.1145/358669.358692
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs12193158
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
AGRICOLA
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_be9595b3049d45dabaa9ded735c76359
10_3390_rs12193158
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-d9f33d69c192d3f6d4906c271a6c6c79714f73bed5430068cc8a948b0a3c75093
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:31:28 EDT 2025
Fri Jul 11 01:24:38 EDT 2025
Fri Jul 25 09:28:31 EDT 2025
Tue Jul 01 04:15:14 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-d9f33d69c192d3f6d4906c271a6c6c79714f73bed5430068cc8a948b0a3c75093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3797-6042
OpenAccessLink https://www.proquest.com/docview/2550305455?pq-origsite=%requestingapplication%
PQID 2550305455
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_be9595b3049d45dabaa9ded735c76359
proquest_miscellaneous_2511172854
proquest_journals_2550305455
crossref_primary_10_3390_rs12193158
crossref_citationtrail_10_3390_rs12193158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhou (ref_38) 2008; 27
Kim (ref_7) 2017; 39
ref_14
ref_36
ref_13
ref_12
Lowe (ref_26) 2004; 60
ref_11
ref_10
ref_32
ref_31
ref_30
Li (ref_33) 2017; 83
Huang (ref_3) 2020; 41
Kim (ref_9) 2012; 44
ref_18
ref_39
ref_15
ref_37
Ma (ref_35) 2014; 23
Wan (ref_16) 2019; 153
Chen (ref_34) 2018; 84
Wan (ref_17) 2017; 130
Morel (ref_29) 2009; 2
ref_24
Zhang (ref_23) 2015; 53
ref_21
ref_20
Fischler (ref_40) 1981; 24
Tatar (ref_19) 2019; 40
ref_1
ref_2
ref_28
ref_27
ref_8
ref_5
ref_4
Hu (ref_22) 2015; 81
ref_6
Duan (ref_25) 2016; 9
References_xml – ident: ref_1
  doi: 10.1007/978-1-84882-935-0
– volume: 83
  start-page: 813
  year: 2017
  ident: ref_33
  article-title: 4FP-Structure: A Robust Local Region Feature Descriptor
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.83.12.813
– volume: 23
  start-page: 1706
  year: 2014
  ident: ref_35
  article-title: Robust point matching via vector field consensus
  publication-title: IEEE Trans. Imag. Process.
  doi: 10.1109/TIP.2014.2307478
– ident: ref_32
  doi: 10.1109/CVPR.2015.7299064
– ident: ref_20
  doi: 10.5194/isprsannals-III-1-77-2016
– ident: ref_39
– volume: 9
  start-page: 851
  year: 2016
  ident: ref_25
  article-title: A combined image matching method for Chinese optical satellite imagery
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2016.1151955
– volume: 2
  start-page: 438
  year: 2009
  ident: ref_29
  article-title: ASIFT: A New Framework for Fully Affine Invariant Image Comparison
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/080732730
– ident: ref_18
– ident: ref_28
  doi: 10.1109/ICCV.2011.6126542
– ident: ref_37
  doi: 10.1007/BFb0014497
– ident: ref_30
  doi: 10.1007/978-3-642-33783-3_16
– ident: ref_11
  doi: 10.3390/rs11151833
– ident: ref_13
  doi: 10.3390/rs12111868
– volume: 53
  start-page: 976
  year: 2015
  ident: ref_23
  article-title: LiDAR Strip Adjustment Using Multifeatures Matched with Aerial Images
  publication-title: IEEE T. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2331234
– ident: ref_6
– volume: 84
  start-page: 513
  year: 2018
  ident: ref_34
  article-title: A Local Distinctive Features Matching Method for Remote Sensing Images with Repetitive Patterns
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.84.8.513
– ident: ref_5
  doi: 10.3390/rs11111372
– ident: ref_27
  doi: 10.1007/11744023_32
– volume: 130
  start-page: 317
  year: 2017
  ident: ref_17
  article-title: The P2L method of mismatch detection for push broom high-resolution satellite images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.009
– ident: ref_15
  doi: 10.3390/rs12142243
– volume: 44
  start-page: 184
  year: 2012
  ident: ref_9
  article-title: Implementation of Martian virtual reality environment using very high-resolution stereo topographic data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.09.018
– volume: 40
  start-page: 8879
  year: 2019
  ident: ref_19
  article-title: Stereo rectification of pushbroom satellite images by robustly estimating the fundamental matrix
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1624862
– ident: ref_12
  doi: 10.3390/rs12121933
– ident: ref_10
  doi: 10.3390/rs11232841
– ident: ref_8
  doi: 10.1109/3DUI.2017.7893362
– volume: 153
  start-page: 123
  year: 2019
  ident: ref_16
  article-title: An a-contrario method of mismatch detection for two-view pushbroom satellite images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.020
– volume: 39
  start-page: 181
  year: 2017
  ident: ref_7
  article-title: Motion Capture of the Human Body Using Multiple Depth Sensors
  publication-title: ETRI J.
  doi: 10.4218/etrij.17.2816.0045
– ident: ref_2
  doi: 10.3390/rs12010020
– ident: ref_31
  doi: 10.1109/ITSC.2019.8917293
– ident: ref_36
– volume: 41
  start-page: 4836
  year: 2020
  ident: ref_3
  article-title: A window size selection network for stereo dense image matching
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/2150704X.2020.1723168
– ident: ref_4
  doi: 10.5194/isprs-annals-IV-2-W4-227-2017
– volume: 27
  start-page: 1
  year: 2008
  ident: ref_38
  article-title: Real-time Kd-tree Construction on Graphics Hardware
  publication-title: ACM Trans. Graph.
– ident: ref_21
  doi: 10.3390/rs9080813
– volume: 81
  start-page: 49
  year: 2015
  ident: ref_22
  article-title: Reliable Spatial Relationship Constrained Feature Point Matching of Oblique Aerial Images
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.81.1.49
– ident: ref_14
  doi: 10.3390/rs10121952
– ident: ref_24
  doi: 10.3390/rs8080672
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_26
  article-title: Distinctive Image Features from Scale-Invariant Keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 24
  start-page: 381
  year: 1981
  ident: ref_40
  article-title: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
SSID ssj0000331904
Score 2.305151
Snippet Feature matching is to detect and match corresponding feature points in stereo pairs, which is one of the key techniques in accurate camera orientations....
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3158
SubjectTerms Accuracy
Algorithms
Cameras
Computer applications
data collection
Delaunay triangulation
Energy
feature matching
global energy function
Global optimization
Limiting factors
Matching
Methods
Optimization
Photogrammetry
remote sensing
Robustness
SIFT
Smoothness
spatial smoothness constraint
SURF
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF72IT4xWiejFQ2iSfSSLJxVLEepBLfQW9hU8aCJNcvDfO5OktaDgxWsyLMvM7Dcz-5iPkMuUh0oaFQXaJjQApwgDwMA0YNZwCP-xMBYLxemjmMzYw5zP16i-8E5Y1x64U9xIO8kl13gaZBm3SislrYOBucFeau3TPYh5a8VUi8EUXCtkXT9SCnX9aFFFsDhphNzuaxGobdT_A4fb4DLeIdt9VujfdLPZJRuu2CObPUH56-c-uX4qdVPVPmZszcL5U0BQ3DvycR_VR15h8CP_-b0ExSN4-UjE2dI_1NUBmY3vX-4mQc97EBgqWR1YmVNqhTSQfVmaC8tkKEycREoYYRKZRCxPqHaWM4pPPIxJlWSpDhU1mADQQzIoysIdET9KopzHJsm1CplLU62dYmA1I0TMrGQeuVrqIjN9U3Cc3FsGxQHqLfvWm0cuVrIfXSuMX6VuUaUrCWxf3X4Ao2a9UbO_jOqR4dIgWb-mqgyKH0QnxrlHzle_YTXgEYcqXNmgDGB3gq9Cj_9jHidkK8b6ur28NySDetG4U0hCan3W-tsXEyPZcw
  priority: 102
  providerName: Directory of Open Access Journals
Title Robust Feature Matching with Spatial Smoothness Constraints
URI https://www.proquest.com/docview/2550305455
https://www.proquest.com/docview/2511172854
https://doaj.org/article/be9595b3049d45dabaa9ded735c76359
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5BcmgvqIVWDYXIqFw4WNjeh3fVA4JCilCDEBSJm7Uvt4c2prFz6L_vjLMJlYp6tUeWNY9vZ2Z35wM4VCIz2pk8tb5kKTpFliIGqpR7J3D5L6TzVChOr-XlPb96EA-x4dbGY5UrTOyB2jeOeuTHmPqSb3IhTh5_pcQaRburkUJjE4YIwUoNYHh2cX1zu-6yZAxdLOPLuaQM6_vjeZtjkLKcON7_Won6gf3_4HG_yExewVbMDpPTpTlfw0aYbcOLSFT-_fcOfLxt7KLtEsrcFvOQTBFJqYeUUD81IX5h9Kfk7meDBiAQS4iQs6eB6No3cD-5-PrpMo38B6ljmnep1zVjXmqHWZhntfRcZ9IVZW6kk67UZc7rktngBWd01cM5ZTRXNjPMUSLA3sJg1szCO0jyMq9F4cramowHpawNhqP1nJQF95qP4Gili8rF4eD0cz8qLBJIb9WT3kbwYS37uByJ8azUGal0LUFjrPsHzfxbFaOiskELLSxt9XkuvLHGaB_Qa4SjQXl6BHsrg1QxttrqyRNGcLB-jVFBWx1mFpoFySCGl3Q7dPf_n3gPLwuqoPvjeXsw6OaLsI9pRmfHsKkmn8cwPD2ffrkbR88a90X7H6iR1SI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFH9BPOCFoGhcBB0jHDw0tJ2PdmKMUXRdPpaDQsKtzlflgFvYdmP4p_gbfa_bLiQab1w7k0nz5jfva-a9H8B2LmOjnUki6zMeISjiCHVgHgnvJJr_VDlPgeL4WI1OxcGZPFuCm74Whp5V9jqxVdS-cpQj30XXl7AppPxweRURaxTdrvYUGnNYHIbr3xiy1e_3P-P-7qTp8MvJ3ijqWAUix7VoIq9Lzr3SDn0bz0vlhY6VS7PEKKdcprNElBm3wUvBqYDCudxokdvYcEfmleO6D-Ch4GjJqTJ9-HWR04k5AjoW8y6oOB7vTusEVQJPiFH-jt1r6QH-0v6tSRuuwWrni7KPc_A8hqUweQIrHS36-fU6vPtW2VndMPITZ9PAxqi3KWPFKHvLiM0Y0cu-_6pwu0llMqL_bEknmvopnN6LXJ7B8qSahOfAkiwpZeqy0ppYhDy3NhiBWHFKpcJrMYC3vSwK17Uip5-7KDAkIbkVt3IbwJvF3Mt5A45_zvpEIl3MoKbZ7Ydq-rPozmBhg5ZaWrpY9EJ6Y43RPiBGpaO2fHoAm_2GFN1Jrotb3A3g9WIYzyBdrJhJqGY0By1GRrWoG_9f4hWsjE7GR8XR_vHhC3iUUuzePgzchOVmOgtb6OA09mWLKgY_7hvGfwAqOQwW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEE-xUMAIOHCINolfsRBClHbVUrqqCpV6C34FDrApm6xQ_xq_jplsskUCces1GVnW-PO8bM8H8LyQqTXeZokLmicIijRBG1gkIniJ7j9XPlCieDhTeyfi_ak83YBfw1sYulY52MTOUIfaU418gqEvYVNIOan6axFHO9M3Zz8SYpCik9aBTmMFkYN4_hPTt-b1_g6u9Ys8n-5-ereX9AwDiedGtEkwFedBGY9xTuCVCsKkyuc6s8orr43ORKW5i0EKTo8pvC-sEYVLLffkajmOewU2NWVFI9jc3p0dHa8rPClHeKdi1ROVc5NOFk2GBoJnxC__hxfsyAL-8gWdg5vehBt9ZMrerqB0Czbi_DZc60nSv57fgVfHtVs2LaOocbmI7BCtONWvGNVyGXEbI5bZx-81Lj4ZUEZkoB0FRdvchZNL0cw9GM3rebwPLNNZJXOvK2dTEYvCuWgFIscrlYtgxBheDroofd-YnCb3rcQEhfRWXuhtDM_Wsmerdhz_lNomla4lqIV296FefCn7HVm6aKSRjo4Zg5DBOmtNiIhY6alJnxnD1rAgZb-vm_IChWN4uv6NO5KOWew81kuSQf-h6WXqg_8P8QSuIoTLD_uzg4dwPadEvrsluAWjdrGMjzDaad3jHlYMPl82kn8DBxsRqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Feature+Matching+with+Spatial+Smoothness+Constraints&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Huang%2C+Xu&rft.au=Xue+Wan&rft.au=Peng%2C+Daifeng&rft.date=2020-10-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=19&rft.spage=3158&rft_id=info:doi/10.3390%2Frs12193158&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon