HDFNet: Hierarchical Dynamic Fusion Network for Change Detection in Optical Aerial Images

Accurate change detection in optical aerial images by using deep learning techniques has been attracting lots of research efforts in recent years. Correct change-detection results usually involve both global and local deep learning features. Existing deep learning approaches have achieved good perfo...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 8; p. 1440
Main Authors Zhang, Yi, Fu, Lei, Li, Ying, Zhang, Yanning
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 08.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate change detection in optical aerial images by using deep learning techniques has been attracting lots of research efforts in recent years. Correct change-detection results usually involve both global and local deep learning features. Existing deep learning approaches have achieved good performance on this task. However, under the scenarios of containing multiscale change areas within a bi-temporal image pair, existing methods still have shortcomings in adapting these change areas, such as false detection and limited completeness in detected areas. To deal with these problems, we design a hierarchical dynamic fusion network (HDFNet) to implement the optical aerial image-change detection task. Specifically, we propose a change-detection framework with hierarchical fusion strategy to provide sufficient information encouraging for change detection and introduce dynamic convolution modules to self-adaptively learn from this information. Also, we use a multilevel supervision strategy with multiscale loss functions to supervise the training process. Comprehensive experiments are conducted on two benchmark datasets, LEBEDEV and LEVIR-CD, to verify the effectiveness of the proposed method and the experimental results show that our model achieves state-of-the-art performance.
AbstractList Accurate change detection in optical aerial images by using deep learning techniques has been attracting lots of research efforts in recent years. Correct change-detection results usually involve both global and local deep learning features. Existing deep learning approaches have achieved good performance on this task. However, under the scenarios of containing multiscale change areas within a bi-temporal image pair, existing methods still have shortcomings in adapting these change areas, such as false detection and limited completeness in detected areas. To deal with these problems, we design a hierarchical dynamic fusion network (HDFNet) to implement the optical aerial image-change detection task. Specifically, we propose a change-detection framework with hierarchical fusion strategy to provide sufficient information encouraging for change detection and introduce dynamic convolution modules to self-adaptively learn from this information. Also, we use a multilevel supervision strategy with multiscale loss functions to supervise the training process. Comprehensive experiments are conducted on two benchmark datasets, LEBEDEV and LEVIR-CD, to verify the effectiveness of the proposed method and the experimental results show that our model achieves state-of-the-art performance.
Author Zhang, Yi
Li, Ying
Fu, Lei
Zhang, Yanning
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0002-1751-3836
  surname: Zhang
  fullname: Zhang, Yi
– sequence: 2
  givenname: Lei
  surname: Fu
  fullname: Fu, Lei
– sequence: 3
  givenname: Ying
  surname: Li
  fullname: Li, Ying
– sequence: 4
  givenname: Yanning
  surname: Zhang
  fullname: Zhang, Yanning
BookMark eNptkUFPGzEQha0KpFLIpb9gpV6qSgF77N21e0NJQyIhcoFDT9bgnQ1ON-vU3gjx7-sQVBDCl7Hs7z29mfnCjvrQE2NfBT-X0vCLmITkWijFP7ET4DWMFRg4enP_zEYprXk-UgrD1Qn7PZ_Obmj4Wcw9RYzuwTvsiulTjxvvitku-dAXGXgM8U_RhlhMHrBfUTGlgdyw__R9sdwOz7JLij6XxQZXlM7YcYtdotFLPWV3s1-3k_n4enm1mFxej500ahg3usmZTWs0oQNoHAdRaSNKhbyFVtyDFiUvhWgFKoe5QV1XsnQVkRFSannKFgffJuDabqPfYHyyAb19fghxZTHmfB3ZVrgGQNVVXWsF1b0BbMBV2V9zWaLIXt8PXtsY_u4oDXbjk6Ouw57CLlkoa5VHndUZ_fYOXYdd7HOnmSo51KURkKkfB8rFkFKk9n9Awe1-afZ1aRnm72DnB9wPeYjou48k_wCqipbk
CitedBy_id crossref_primary_10_3390_ijgi11040246
crossref_primary_10_1109_TGRS_2022_3233849
crossref_primary_10_1016_j_patcog_2024_111266
crossref_primary_10_1109_TIP_2022_3226418
crossref_primary_10_1016_j_inffus_2024_102392
crossref_primary_10_1109_LGRS_2022_3184179
crossref_primary_10_1109_JSTARS_2023_3241157
crossref_primary_10_3390_rs13244971
crossref_primary_10_1109_TGRS_2023_3286113
crossref_primary_10_1109_TGRS_2024_3360516
crossref_primary_10_1111_phor_12492
crossref_primary_10_1080_15481603_2022_2142626
crossref_primary_10_3390_rs14215577
crossref_primary_10_1109_JIOT_2024_3483175
crossref_primary_10_1109_TGRS_2023_3247605
crossref_primary_10_3390_rs15010045
crossref_primary_10_1109_TGRS_2023_3311535
crossref_primary_10_3390_rs16050844
crossref_primary_10_3390_rs16142573
crossref_primary_10_1109_LGRS_2023_3267879
crossref_primary_10_1088_1742_6596_2258_1_012059
crossref_primary_10_3390_rs15040949
crossref_primary_10_1109_TGRS_2024_3363431
crossref_primary_10_1109_TGRS_2023_3325536
crossref_primary_10_1109_TGRS_2022_3228016
crossref_primary_10_1109_JSTARS_2023_3344633
crossref_primary_10_1016_j_ecoinf_2023_102250
crossref_primary_10_1109_ACCESS_2022_3227069
crossref_primary_10_3390_rs14215402
crossref_primary_10_1109_TNNLS_2023_3306896
crossref_primary_10_1016_j_isprsjprs_2022_07_016
crossref_primary_10_3390_rs15020395
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_3390_ijgi11040263
crossref_primary_10_1109_TITS_2024_3404654
crossref_primary_10_3390_rs15051219
crossref_primary_10_1109_TGRS_2022_3196040
crossref_primary_10_1109_JSTARS_2024_3372386
crossref_primary_10_1007_s11042_023_16165_4
crossref_primary_10_3390_s22030888
crossref_primary_10_1038_s41598_022_16329_6
crossref_primary_10_3390_rs15225268
crossref_primary_10_1109_TGRS_2023_3272006
crossref_primary_10_1109_TGRS_2024_3410977
crossref_primary_10_3390_sym14061138
crossref_primary_10_1016_j_isprsjprs_2022_02_021
crossref_primary_10_1109_TMM_2023_3323890
crossref_primary_10_1080_01431161_2023_2225712
crossref_primary_10_1109_TGRS_2024_3491111
crossref_primary_10_1109_JSTARS_2021_3113831
crossref_primary_10_3390_rs13245152
crossref_primary_10_1109_TGRS_2025_3527483
Cites_doi 10.1109/IGARSS.2018.8518178
10.3390/rs8090761
10.1109/LGRS.2016.2601930
10.1007/978-3-319-24574-4_28
10.1109/LGRS.2017.2738149
10.1080/01431160801950162
10.1109/MGRS.2016.2540798
10.3390/rs12101662
10.1109/ICCV.2017.324
10.1109/LGRS.2017.2766840
10.1109/LGRS.2018.2869608
10.1109/TGRS.2017.2707528
10.3390/rs11111382
10.1109/ICIP.2018.8451652
10.1109/LGRS.2018.2889307
10.3390/s20236735
10.1109/TGRS.2018.2886643
10.1109/TGRS.2010.2045506
10.1016/j.isprsjprs.2013.03.006
10.1016/j.rse.2017.07.009
10.5244/C.29.61
10.1109/LGRS.2019.2916601
10.1109/TGRS.2017.2650198
10.1080/01431161.2013.805282
10.5194/isprs-archives-XLII-2-565-2018
10.1109/TGRS.2009.2022633
10.1109/ICCV.2009.5459462
10.1109/Multi-Temp.2019.8866947
10.1109/TGRS.2018.2819367
10.1007/978-3-030-00889-5_1
10.1109/TPAMI.2016.2572683
10.1016/j.isprsjprs.2020.06.003
10.1080/01431161.2016.1148284
10.1007/s10514-018-9734-5
10.3390/rs12030484
10.1109/LGRS.2017.2763182
10.1080/2150704X.2016.1163744
10.1109/CVPR42600.2020.01104
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13081440
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database (NC LIVE)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_f1cd22476778426b92ad2c61508035a1
10_3390_rs13081440
GeographicLocations Siam
GeographicLocations_xml – name: Siam
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-d8d0819f98eac22dc021689154a0f2f1b28150511f1a4ca30887635c6ee913383
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:30:12 EDT 2025
Fri Jul 11 07:42:53 EDT 2025
Fri Jul 25 09:29:17 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Tue Jul 01 01:58:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-d8d0819f98eac22dc021689154a0f2f1b28150511f1a4ca30887635c6ee913383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1751-3836
OpenAccessLink https://www.proquest.com/docview/2550275912?pq-origsite=%requestingapplication%
PQID 2550275912
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_f1cd22476778426b92ad2c61508035a1
proquest_miscellaneous_2574339784
proquest_journals_2550275912
crossref_primary_10_3390_rs13081440
crossref_citationtrail_10_3390_rs13081440
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210408
PublicationDateYYYYMMDD 2021-04-08
PublicationDate_xml – month: 04
  year: 2021
  text: 20210408
  day: 08
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhan (ref_24) 2017; 14
Liu (ref_32) 2020; 17
Lei (ref_31) 2019; 16
ref_14
ref_36
Benedek (ref_8) 2009; 47
ref_35
Cao (ref_9) 2016; 37
ref_33
Wu (ref_6) 2017; 199
ref_30
Hou (ref_19) 2017; 14
Zhang (ref_25) 2019; 16
ref_17
Shelhamer (ref_29) 2017; 39
ref_39
ref_38
ref_37
Lv (ref_10) 2018; 56
Bazi (ref_12) 2010; 48
Zhang (ref_21) 2016; 13
Deng (ref_7) 2008; 29
Gong (ref_28) 2017; 55
Zhang (ref_20) 2016; 4
Khan (ref_23) 2017; 55
Jian (ref_11) 2016; 37
Saha (ref_18) 2019; 57
Alcantarilla (ref_34) 2018; 42
Zhang (ref_1) 2020; 166
Hussain (ref_13) 2013; 80
Lebedev (ref_41) 2018; 42
ref_22
Qin (ref_16) 2013; 34
ref_40
Zhang (ref_15) 2018; 15
ref_3
ref_2
ref_27
ref_26
ref_5
ref_4
References_xml – ident: ref_22
  doi: 10.1109/IGARSS.2018.8518178
– ident: ref_14
  doi: 10.3390/rs8090761
– volume: 13
  start-page: 1666
  year: 2016
  ident: ref_21
  article-title: Feature-Level Change Detection Using Deep Representation and Feature Change Analysis for Multispectral Imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2601930
– ident: ref_30
  doi: 10.1007/978-3-319-24574-4_28
– volume: 14
  start-page: 1845
  year: 2017
  ident: ref_24
  article-title: Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2738149
– volume: 29
  start-page: 4823
  year: 2008
  ident: ref_7
  article-title: PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160801950162
– volume: 4
  start-page: 22
  year: 2016
  ident: ref_20
  article-title: Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– ident: ref_26
– ident: ref_33
  doi: 10.3390/rs12101662
– ident: ref_40
  doi: 10.1109/ICCV.2017.324
– volume: 14
  start-page: 2418
  year: 2017
  ident: ref_19
  article-title: Change Detection Based on Deep Features and Low Rank
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2766840
– volume: 16
  start-page: 266
  year: 2019
  ident: ref_25
  article-title: Triplet-Based Semantic Relation Learning for Aerial Remote Sensing Image Change Detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2869608
– volume: 55
  start-page: 5407
  year: 2017
  ident: ref_23
  article-title: Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/TGRS.2017.2707528
– ident: ref_2
  doi: 10.3390/rs11111382
– ident: ref_3
  doi: 10.1109/ICIP.2018.8451652
– ident: ref_37
– volume: 16
  start-page: 982
  year: 2019
  ident: ref_31
  article-title: Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2889307
– ident: ref_36
  doi: 10.3390/s20236735
– volume: 57
  start-page: 3677
  year: 2019
  ident: ref_18
  article-title: Unsupervised Deep Change Vector Analysis for Multiple-Change Detection in VHR Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/TGRS.2018.2886643
– volume: 48
  start-page: 3178
  year: 2010
  ident: ref_12
  article-title: Unsupervised Change Detection in Multispectral Remotely Sensed Imagery With Level Set Methods
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2045506
– volume: 80
  start-page: 91
  year: 2013
  ident: ref_13
  article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.03.006
– volume: 199
  start-page: 241
  year: 2017
  ident: ref_6
  article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.009
– ident: ref_17
  doi: 10.5244/C.29.61
– volume: 17
  start-page: 127
  year: 2020
  ident: ref_32
  article-title: Convolutional Neural Network-Based Transfer Learning for Optical Aerial Images Change Detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2916601
– volume: 55
  start-page: 2658
  year: 2017
  ident: ref_28
  article-title: Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/TGRS.2017.2650198
– volume: 34
  start-page: 6723
  year: 2013
  ident: ref_16
  article-title: Object-based land cover change detection for cross-sensor images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.805282
– ident: ref_27
– volume: 42
  start-page: 565
  year: 2018
  ident: ref_41
  article-title: Change Detection In Remote Sensing Images Using Conditional Adversarial Networks
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-2-565-2018
– volume: 47
  start-page: 3416
  year: 2009
  ident: ref_8
  article-title: Change detection in optical aerial images by a multilayer conditional mixed Markov model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2022633
– ident: ref_39
  doi: 10.1109/ICCV.2009.5459462
– ident: ref_5
  doi: 10.1109/Multi-Temp.2019.8866947
– volume: 56
  start-page: 4002
  year: 2018
  ident: ref_10
  article-title: Unsupervised Change Detection Based on Hybrid Conditional Random Field Model for High Spatial Resolution Remote Sensing Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2819367
– ident: ref_35
  doi: 10.1007/978-3-030-00889-5_1
– volume: 39
  start-page: 640
  year: 2017
  ident: ref_29
  article-title: Fully Convolutional Networks for Semantic Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– volume: 166
  start-page: 183
  year: 2020
  ident: ref_1
  article-title: A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.06.003
– volume: 37
  start-page: 1173
  year: 2016
  ident: ref_9
  article-title: A new change-detection method in high-resolution remote sensing images based on a conditional random field model
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1148284
– volume: 42
  start-page: 1
  year: 2018
  ident: ref_34
  article-title: Street-view change detection with deconvolutional networks
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-018-9734-5
– ident: ref_4
  doi: 10.3390/rs12030484
– volume: 15
  start-page: 13
  year: 2018
  ident: ref_15
  article-title: Object-Based Change Detection for VHR Images Based on Multiscale Uncertainty Analysis
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2763182
– volume: 37
  start-page: 1814
  year: 2016
  ident: ref_11
  article-title: A hypergraph-based context-sensitive representation technique for VHR remote-sensing image change detection
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/2150704X.2016.1163744
– ident: ref_38
  doi: 10.1109/CVPR42600.2020.01104
SSID ssj0000331904
Score 2.4959326
Snippet Accurate change detection in optical aerial images by using deep learning techniques has been attracting lots of research efforts in recent years. Correct...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1440
SubjectTerms aerial photography
area
Change detection
Convolution
data collection
Deep learning
dynamic convolution
exhibitions
hierarchical
image analysis
learning
multilevel supervision
Neural networks
remote sensing
Semantics
Supervision
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF1gQT1FeMoKFIWpiu63NBpSoMJQFpDJFju2ISiWt2nTg33Nnh1IEEgtrcoN1Z9995zt_R8iFZspIZW3U6UgVCRHzSHdjE8XtQmmNlG-hQXbQ6T-Lh2F7uDLqC3vCAj1wUFyrSIyFMNNFojOIJrli2jLjacxj3tY-8YGYt5JMeR_MYWvFIvCRcsjrW7M5eGuJpcxvEcgT9f_wwz64pFtks0aF9DqsZpusuXKHrNcDyl_fd8lLv5cOXHVF-yN8MewHmIxpL4yTp-kC77zoILR0U8ChNLwaoD1X-V6rko5K-jj1F9f02u86ev8GvmS-R57Tu6fbflRPRYgMV6KKrLQYxgslwWcyZg1EadAzQCEdF6xIciZBOYCjikQLozm6EUAVpuOc8gnpPmmUk9IdEKoF05znLkFGH9e2OYC3JOEgJ6S1OW-Sy09NZaamDMfJFeMMUgfUaval1SY5X8pOA1HGr1I3qPClBJJb-w9g8qw2efaXyZvk-NNcWX3i5hmkRliBVQlrkrPlbzgrWADRpZssUAbwEgAwKQ7_Yx1HZINhhwv28chj0qhmC3cCEKXKT_1u_ABr0t6r
  priority: 102
  providerName: Directory of Open Access Journals
Title HDFNet: Hierarchical Dynamic Fusion Network for Change Detection in Optical Aerial Images
URI https://www.proquest.com/docview/2550275912
https://www.proquest.com/docview/2574339784
https://doaj.org/article/f1cd22476778426b92ad2c61508035a1
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6x9gFeENtAFLbKE7zsIVpiu53NC-rWZQWxDgGTxlPk2A5MGmlp0wf-e-4ctxMa2mtyysPlfPfdD38H8NZwbZV2LhkOlU6kTEVijlObpINKG0OUb-2A7HQ4uZIfrwfXseC2jGOVa58YHLWbWaqRHyH0pQ6bzvj7-e-EtkZRdzWu0NiCLrpgpTrQPTmbfv6yqbKkAk0slS0vqcD8_mixRK-tqKX5TyQKhP33_HEIMvkzeBrRIRu1v3MbHvl6Bx7HReU__-zC98k4n_rmHZvc0M3hsMjklo3btfIsX1Hti03b0W6GeJS1twfY2Ddh5qpmNzW7nIcCNhsF62MffqFPWT6Hq_zs2-kkidsREiu0bBKnHIXzSiv0nZw7i9Ea9Y2QyKQVr7KSKwR7iKeqzEhrBLkTRBd26L0OiekL6NSz2r8EZiQ3QpQ-I2YfP3AlgrgsEygnlXOl6MHhWlOFjdThtMHitsAUgrRa3Gm1B282svOWMOO_Uiek8I0EkVyHB7PFjyKemaLKrEOEcUwcdwgkSs2N4zYw2KdiYLIe7K1_VxFP3rK4s5MeHGxe45mhRoip_WxFMoibEIgp-erhT7yGJ5xmWGhSR-1Bp1ms_D6CkKbsw5bKz_vQHY0vPn3tR7vrh5T-Lxyz3HA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lAuiKdYaKkRcOAQNbG9uzZShVq2IUvLcmmlcgqO7UClkl12s6r6p_obmXGSrRCIW6_xyIrG8_g8ngfAa8O1Vdq5aDBQOpIyFpEZxjaK-6U2hlq-NQmyk0F2Kj-d9c_W4LqrhaG0ys4mBkPtppZi5LsIfemFTSf8_exXRFOj6HW1G6HRiMWRv7rEK9tibzzC833DeXp48iGL2qkCkRVa1pFTjtxgqRXaHM6dRS-H_4lQwsQlL5OCKwRJiEPKxEhrBKkhemU78F6HCx3uewc2pEBPTpXp6cdVTCcWKNCxbLqg4nq8O1-gj1D0gPqH3wvjAf6y_sGlpffhXotF2X4jPA9gzVcPYbMdi_7j6hF8zUbpxNfvWHZOdcphbMoFGzVD7Fm6pEgbmzSJ5AzRL2tqFdjI1yHDq2LnFfsyC-Fyth9knY1_ogVbPIbTW-HaE1ivppV_CsxIboQofEJ9hHzfFQgZk0QgnVTOFaIHbztO5bZtVE7zMi5yvLAQV_Mbrvbg1Yp21rTn-CfVATF8RUEttcOH6fx73mpoXibWIZ4ZUkc9hC2F5sZxG_rlx6Jvkh5sdceVt3q-yG-ksgcvV8uoofTsYio_XRLNMAiLks_-v8UObGYnn4_z4_Hk6Dnc5ZQ9QzlCagvW6_nSbyP8qYsXQeYYfLttIf8NUHASbg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFbQv4iderbqiPvgQLtnN3e0WRFrTcGclFrFQn-Jmd9MWau68y1H6r_nXObNJrojiW1-TYQmT-fjNx84AvNZcGamsDUYjqYI4DkWgx6EJwmGptKaRb02DbDaaHMcfT4YnG_CruwtDbZWdTfSG2s4M5cgHCH2pwqYiPijbtoijJH0__xnQBimqtHbrNBoROXRXlxi-Ld9NE_zXbzhPD75-mATthoHACBXXgZWWXGKpJNofzq1Bj4ffjLBChyUvo4JLBEyIScpIx0YLUkn00GbknPLBHZ57CzbHFBX1YHP_IDv6ss7whALFO4ybmahCqHCwWKLHkFRO_cML-mUBf_kC7-DSe3C3RaZsrxGl-7Dhqgdwp12Sfnb1EL5NkjRz9S6bnNOtZb9E5YIlzUp7lq4o78aypq2cIRZmzc0Flrja93tV7Lxin-c-ec72vOSz6Q-0Z8tHcHwjfHsMvWpWuSfAdMy1EIWLaKqQG9oCAWQUCaSLpbWF6MPbjlO5aceW0_aMixzDF-Jqfs3VPrxa086bYR3_pNonhq8paMC2fzBbnOatvuZlZCyimzHN10MQUyiuLTd-en4ohjrqw073u_JW65f5tYz24eX6NeorFWF05WYrokHMhiBQxtv_P-IF3EYBzz9Ns8OnsMWplYYahuQO9OrFyj1DLFQXz1uhY_D9puX8N9FIGAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HDFNet%3A+Hierarchical+Dynamic+Fusion+Network+for+Change+Detection+in+Optical+Aerial+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Yi&rft.au=Fu%2C+Lei&rft.au=Li%2C+Ying&rft.au=Zhang%2C+Yanning&rft.date=2021-04-08&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=8&rft.spage=1440&rft_id=info:doi/10.3390%2Frs13081440&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon