HDFNet: Hierarchical Dynamic Fusion Network for Change Detection in Optical Aerial Images
Accurate change detection in optical aerial images by using deep learning techniques has been attracting lots of research efforts in recent years. Correct change-detection results usually involve both global and local deep learning features. Existing deep learning approaches have achieved good perfo...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 8; p. 1440 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
08.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate change detection in optical aerial images by using deep learning techniques has been attracting lots of research efforts in recent years. Correct change-detection results usually involve both global and local deep learning features. Existing deep learning approaches have achieved good performance on this task. However, under the scenarios of containing multiscale change areas within a bi-temporal image pair, existing methods still have shortcomings in adapting these change areas, such as false detection and limited completeness in detected areas. To deal with these problems, we design a hierarchical dynamic fusion network (HDFNet) to implement the optical aerial image-change detection task. Specifically, we propose a change-detection framework with hierarchical fusion strategy to provide sufficient information encouraging for change detection and introduce dynamic convolution modules to self-adaptively learn from this information. Also, we use a multilevel supervision strategy with multiscale loss functions to supervise the training process. Comprehensive experiments are conducted on two benchmark datasets, LEBEDEV and LEVIR-CD, to verify the effectiveness of the proposed method and the experimental results show that our model achieves state-of-the-art performance. |
---|---|
AbstractList | Accurate change detection in optical aerial images by using deep learning techniques has been attracting lots of research efforts in recent years. Correct change-detection results usually involve both global and local deep learning features. Existing deep learning approaches have achieved good performance on this task. However, under the scenarios of containing multiscale change areas within a bi-temporal image pair, existing methods still have shortcomings in adapting these change areas, such as false detection and limited completeness in detected areas. To deal with these problems, we design a hierarchical dynamic fusion network (HDFNet) to implement the optical aerial image-change detection task. Specifically, we propose a change-detection framework with hierarchical fusion strategy to provide sufficient information encouraging for change detection and introduce dynamic convolution modules to self-adaptively learn from this information. Also, we use a multilevel supervision strategy with multiscale loss functions to supervise the training process. Comprehensive experiments are conducted on two benchmark datasets, LEBEDEV and LEVIR-CD, to verify the effectiveness of the proposed method and the experimental results show that our model achieves state-of-the-art performance. |
Author | Zhang, Yi Li, Ying Fu, Lei Zhang, Yanning |
Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0002-1751-3836 surname: Zhang fullname: Zhang, Yi – sequence: 2 givenname: Lei surname: Fu fullname: Fu, Lei – sequence: 3 givenname: Ying surname: Li fullname: Li, Ying – sequence: 4 givenname: Yanning surname: Zhang fullname: Zhang, Yanning |
BookMark | eNptkUFPGzEQha0KpFLIpb9gpV6qSgF77N21e0NJQyIhcoFDT9bgnQ1ON-vU3gjx7-sQVBDCl7Hs7z29mfnCjvrQE2NfBT-X0vCLmITkWijFP7ET4DWMFRg4enP_zEYprXk-UgrD1Qn7PZ_Obmj4Wcw9RYzuwTvsiulTjxvvitku-dAXGXgM8U_RhlhMHrBfUTGlgdyw__R9sdwOz7JLij6XxQZXlM7YcYtdotFLPWV3s1-3k_n4enm1mFxej500ahg3usmZTWs0oQNoHAdRaSNKhbyFVtyDFiUvhWgFKoe5QV1XsnQVkRFSannKFgffJuDabqPfYHyyAb19fghxZTHmfB3ZVrgGQNVVXWsF1b0BbMBV2V9zWaLIXt8PXtsY_u4oDXbjk6Ouw57CLlkoa5VHndUZ_fYOXYdd7HOnmSo51KURkKkfB8rFkFKk9n9Awe1-afZ1aRnm72DnB9wPeYjou48k_wCqipbk |
CitedBy_id | crossref_primary_10_3390_ijgi11040246 crossref_primary_10_1109_TGRS_2022_3233849 crossref_primary_10_1016_j_patcog_2024_111266 crossref_primary_10_1109_TIP_2022_3226418 crossref_primary_10_1016_j_inffus_2024_102392 crossref_primary_10_1109_LGRS_2022_3184179 crossref_primary_10_1109_JSTARS_2023_3241157 crossref_primary_10_3390_rs13244971 crossref_primary_10_1109_TGRS_2023_3286113 crossref_primary_10_1109_TGRS_2024_3360516 crossref_primary_10_1111_phor_12492 crossref_primary_10_1080_15481603_2022_2142626 crossref_primary_10_3390_rs14215577 crossref_primary_10_1109_JIOT_2024_3483175 crossref_primary_10_1109_TGRS_2023_3247605 crossref_primary_10_3390_rs15010045 crossref_primary_10_1109_TGRS_2023_3311535 crossref_primary_10_3390_rs16050844 crossref_primary_10_3390_rs16142573 crossref_primary_10_1109_LGRS_2023_3267879 crossref_primary_10_1088_1742_6596_2258_1_012059 crossref_primary_10_3390_rs15040949 crossref_primary_10_1109_TGRS_2024_3363431 crossref_primary_10_1109_TGRS_2023_3325536 crossref_primary_10_1109_TGRS_2022_3228016 crossref_primary_10_1109_JSTARS_2023_3344633 crossref_primary_10_1016_j_ecoinf_2023_102250 crossref_primary_10_1109_ACCESS_2022_3227069 crossref_primary_10_3390_rs14215402 crossref_primary_10_1109_TNNLS_2023_3306896 crossref_primary_10_1016_j_isprsjprs_2022_07_016 crossref_primary_10_3390_rs15020395 crossref_primary_10_1109_MGRS_2024_3412770 crossref_primary_10_3390_ijgi11040263 crossref_primary_10_1109_TITS_2024_3404654 crossref_primary_10_3390_rs15051219 crossref_primary_10_1109_TGRS_2022_3196040 crossref_primary_10_1109_JSTARS_2024_3372386 crossref_primary_10_1007_s11042_023_16165_4 crossref_primary_10_3390_s22030888 crossref_primary_10_1038_s41598_022_16329_6 crossref_primary_10_3390_rs15225268 crossref_primary_10_1109_TGRS_2023_3272006 crossref_primary_10_1109_TGRS_2024_3410977 crossref_primary_10_3390_sym14061138 crossref_primary_10_1016_j_isprsjprs_2022_02_021 crossref_primary_10_1109_TMM_2023_3323890 crossref_primary_10_1080_01431161_2023_2225712 crossref_primary_10_1109_TGRS_2024_3491111 crossref_primary_10_1109_JSTARS_2021_3113831 crossref_primary_10_3390_rs13245152 crossref_primary_10_1109_TGRS_2025_3527483 |
Cites_doi | 10.1109/IGARSS.2018.8518178 10.3390/rs8090761 10.1109/LGRS.2016.2601930 10.1007/978-3-319-24574-4_28 10.1109/LGRS.2017.2738149 10.1080/01431160801950162 10.1109/MGRS.2016.2540798 10.3390/rs12101662 10.1109/ICCV.2017.324 10.1109/LGRS.2017.2766840 10.1109/LGRS.2018.2869608 10.1109/TGRS.2017.2707528 10.3390/rs11111382 10.1109/ICIP.2018.8451652 10.1109/LGRS.2018.2889307 10.3390/s20236735 10.1109/TGRS.2018.2886643 10.1109/TGRS.2010.2045506 10.1016/j.isprsjprs.2013.03.006 10.1016/j.rse.2017.07.009 10.5244/C.29.61 10.1109/LGRS.2019.2916601 10.1109/TGRS.2017.2650198 10.1080/01431161.2013.805282 10.5194/isprs-archives-XLII-2-565-2018 10.1109/TGRS.2009.2022633 10.1109/ICCV.2009.5459462 10.1109/Multi-Temp.2019.8866947 10.1109/TGRS.2018.2819367 10.1007/978-3-030-00889-5_1 10.1109/TPAMI.2016.2572683 10.1016/j.isprsjprs.2020.06.003 10.1080/01431161.2016.1148284 10.1007/s10514-018-9734-5 10.3390/rs12030484 10.1109/LGRS.2017.2763182 10.1080/2150704X.2016.1163744 10.1109/CVPR42600.2020.01104 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs13081440 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database (NC LIVE) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_f1cd22476778426b92ad2c61508035a1 10_3390_rs13081440 |
GeographicLocations | Siam |
GeographicLocations_xml | – name: Siam |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-d8d0819f98eac22dc021689154a0f2f1b28150511f1a4ca30887635c6ee913383 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:30:12 EDT 2025 Fri Jul 11 07:42:53 EDT 2025 Fri Jul 25 09:29:17 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Tue Jul 01 01:58:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-d8d0819f98eac22dc021689154a0f2f1b28150511f1a4ca30887635c6ee913383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1751-3836 |
OpenAccessLink | https://www.proquest.com/docview/2550275912?pq-origsite=%requestingapplication% |
PQID | 2550275912 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f1cd22476778426b92ad2c61508035a1 proquest_miscellaneous_2574339784 proquest_journals_2550275912 crossref_primary_10_3390_rs13081440 crossref_citationtrail_10_3390_rs13081440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210408 |
PublicationDateYYYYMMDD | 2021-04-08 |
PublicationDate_xml | – month: 04 year: 2021 text: 20210408 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhan (ref_24) 2017; 14 Liu (ref_32) 2020; 17 Lei (ref_31) 2019; 16 ref_14 ref_36 Benedek (ref_8) 2009; 47 ref_35 Cao (ref_9) 2016; 37 ref_33 Wu (ref_6) 2017; 199 ref_30 Hou (ref_19) 2017; 14 Zhang (ref_25) 2019; 16 ref_17 Shelhamer (ref_29) 2017; 39 ref_39 ref_38 ref_37 Lv (ref_10) 2018; 56 Bazi (ref_12) 2010; 48 Zhang (ref_21) 2016; 13 Deng (ref_7) 2008; 29 Gong (ref_28) 2017; 55 Zhang (ref_20) 2016; 4 Khan (ref_23) 2017; 55 Jian (ref_11) 2016; 37 Saha (ref_18) 2019; 57 Alcantarilla (ref_34) 2018; 42 Zhang (ref_1) 2020; 166 Hussain (ref_13) 2013; 80 Lebedev (ref_41) 2018; 42 ref_22 Qin (ref_16) 2013; 34 ref_40 Zhang (ref_15) 2018; 15 ref_3 ref_2 ref_27 ref_26 ref_5 ref_4 |
References_xml | – ident: ref_22 doi: 10.1109/IGARSS.2018.8518178 – ident: ref_14 doi: 10.3390/rs8090761 – volume: 13 start-page: 1666 year: 2016 ident: ref_21 article-title: Feature-Level Change Detection Using Deep Representation and Feature Change Analysis for Multispectral Imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2601930 – ident: ref_30 doi: 10.1007/978-3-319-24574-4_28 – volume: 14 start-page: 1845 year: 2017 ident: ref_24 article-title: Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2738149 – volume: 29 start-page: 4823 year: 2008 ident: ref_7 article-title: PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160801950162 – volume: 4 start-page: 22 year: 2016 ident: ref_20 article-title: Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – ident: ref_26 – ident: ref_33 doi: 10.3390/rs12101662 – ident: ref_40 doi: 10.1109/ICCV.2017.324 – volume: 14 start-page: 2418 year: 2017 ident: ref_19 article-title: Change Detection Based on Deep Features and Low Rank publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2766840 – volume: 16 start-page: 266 year: 2019 ident: ref_25 article-title: Triplet-Based Semantic Relation Learning for Aerial Remote Sensing Image Change Detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2869608 – volume: 55 start-page: 5407 year: 2017 ident: ref_23 article-title: Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/TGRS.2017.2707528 – ident: ref_2 doi: 10.3390/rs11111382 – ident: ref_3 doi: 10.1109/ICIP.2018.8451652 – ident: ref_37 – volume: 16 start-page: 982 year: 2019 ident: ref_31 article-title: Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2889307 – ident: ref_36 doi: 10.3390/s20236735 – volume: 57 start-page: 3677 year: 2019 ident: ref_18 article-title: Unsupervised Deep Change Vector Analysis for Multiple-Change Detection in VHR Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/TGRS.2018.2886643 – volume: 48 start-page: 3178 year: 2010 ident: ref_12 article-title: Unsupervised Change Detection in Multispectral Remotely Sensed Imagery With Level Set Methods publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2045506 – volume: 80 start-page: 91 year: 2013 ident: ref_13 article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.03.006 – volume: 199 start-page: 241 year: 2017 ident: ref_6 article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.009 – ident: ref_17 doi: 10.5244/C.29.61 – volume: 17 start-page: 127 year: 2020 ident: ref_32 article-title: Convolutional Neural Network-Based Transfer Learning for Optical Aerial Images Change Detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2916601 – volume: 55 start-page: 2658 year: 2017 ident: ref_28 article-title: Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/TGRS.2017.2650198 – volume: 34 start-page: 6723 year: 2013 ident: ref_16 article-title: Object-based land cover change detection for cross-sensor images publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.805282 – ident: ref_27 – volume: 42 start-page: 565 year: 2018 ident: ref_41 article-title: Change Detection In Remote Sensing Images Using Conditional Adversarial Networks publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-2-565-2018 – volume: 47 start-page: 3416 year: 2009 ident: ref_8 article-title: Change detection in optical aerial images by a multilayer conditional mixed Markov model publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2022633 – ident: ref_39 doi: 10.1109/ICCV.2009.5459462 – ident: ref_5 doi: 10.1109/Multi-Temp.2019.8866947 – volume: 56 start-page: 4002 year: 2018 ident: ref_10 article-title: Unsupervised Change Detection Based on Hybrid Conditional Random Field Model for High Spatial Resolution Remote Sensing Imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2819367 – ident: ref_35 doi: 10.1007/978-3-030-00889-5_1 – volume: 39 start-page: 640 year: 2017 ident: ref_29 article-title: Fully Convolutional Networks for Semantic Segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2572683 – volume: 166 start-page: 183 year: 2020 ident: ref_1 article-title: A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.06.003 – volume: 37 start-page: 1173 year: 2016 ident: ref_9 article-title: A new change-detection method in high-resolution remote sensing images based on a conditional random field model publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1148284 – volume: 42 start-page: 1 year: 2018 ident: ref_34 article-title: Street-view change detection with deconvolutional networks publication-title: Auton. Robot. doi: 10.1007/s10514-018-9734-5 – ident: ref_4 doi: 10.3390/rs12030484 – volume: 15 start-page: 13 year: 2018 ident: ref_15 article-title: Object-Based Change Detection for VHR Images Based on Multiscale Uncertainty Analysis publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2763182 – volume: 37 start-page: 1814 year: 2016 ident: ref_11 article-title: A hypergraph-based context-sensitive representation technique for VHR remote-sensing image change detection publication-title: Int. J. Remote Sens. doi: 10.1080/2150704X.2016.1163744 – ident: ref_38 doi: 10.1109/CVPR42600.2020.01104 |
SSID | ssj0000331904 |
Score | 2.4959326 |
Snippet | Accurate change detection in optical aerial images by using deep learning techniques has been attracting lots of research efforts in recent years. Correct... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1440 |
SubjectTerms | aerial photography area Change detection Convolution data collection Deep learning dynamic convolution exhibitions hierarchical image analysis learning multilevel supervision Neural networks remote sensing Semantics Supervision |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF1gQT1FeMoKFIWpiu63NBpSoMJQFpDJFju2ISiWt2nTg33Nnh1IEEgtrcoN1Z9995zt_R8iFZspIZW3U6UgVCRHzSHdjE8XtQmmNlG-hQXbQ6T-Lh2F7uDLqC3vCAj1wUFyrSIyFMNNFojOIJrli2jLjacxj3tY-8YGYt5JMeR_MYWvFIvCRcsjrW7M5eGuJpcxvEcgT9f_wwz64pFtks0aF9DqsZpusuXKHrNcDyl_fd8lLv5cOXHVF-yN8MewHmIxpL4yTp-kC77zoILR0U8ChNLwaoD1X-V6rko5K-jj1F9f02u86ev8GvmS-R57Tu6fbflRPRYgMV6KKrLQYxgslwWcyZg1EadAzQCEdF6xIciZBOYCjikQLozm6EUAVpuOc8gnpPmmUk9IdEKoF05znLkFGH9e2OYC3JOEgJ6S1OW-Sy09NZaamDMfJFeMMUgfUaval1SY5X8pOA1HGr1I3qPClBJJb-w9g8qw2efaXyZvk-NNcWX3i5hmkRliBVQlrkrPlbzgrWADRpZssUAbwEgAwKQ7_Yx1HZINhhwv28chj0qhmC3cCEKXKT_1u_ABr0t6r priority: 102 providerName: Directory of Open Access Journals |
Title | HDFNet: Hierarchical Dynamic Fusion Network for Change Detection in Optical Aerial Images |
URI | https://www.proquest.com/docview/2550275912 https://www.proquest.com/docview/2574339784 https://doaj.org/article/f1cd22476778426b92ad2c61508035a1 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6x9gFeENtAFLbKE7zsIVpiu53NC-rWZQWxDgGTxlPk2A5MGmlp0wf-e-4ctxMa2mtyysPlfPfdD38H8NZwbZV2LhkOlU6kTEVijlObpINKG0OUb-2A7HQ4uZIfrwfXseC2jGOVa58YHLWbWaqRHyH0pQ6bzvj7-e-EtkZRdzWu0NiCLrpgpTrQPTmbfv6yqbKkAk0slS0vqcD8_mixRK-tqKX5TyQKhP33_HEIMvkzeBrRIRu1v3MbHvl6Bx7HReU__-zC98k4n_rmHZvc0M3hsMjklo3btfIsX1Hti03b0W6GeJS1twfY2Ddh5qpmNzW7nIcCNhsF62MffqFPWT6Hq_zs2-kkidsREiu0bBKnHIXzSiv0nZw7i9Ea9Y2QyKQVr7KSKwR7iKeqzEhrBLkTRBd26L0OiekL6NSz2r8EZiQ3QpQ-I2YfP3AlgrgsEygnlXOl6MHhWlOFjdThtMHitsAUgrRa3Gm1B282svOWMOO_Uiek8I0EkVyHB7PFjyKemaLKrEOEcUwcdwgkSs2N4zYw2KdiYLIe7K1_VxFP3rK4s5MeHGxe45mhRoip_WxFMoibEIgp-erhT7yGJ5xmWGhSR-1Bp1ms_D6CkKbsw5bKz_vQHY0vPn3tR7vrh5T-Lxyz3HA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lAuiKdYaKkRcOAQNbG9uzZShVq2IUvLcmmlcgqO7UClkl12s6r6p_obmXGSrRCIW6_xyIrG8_g8ngfAa8O1Vdq5aDBQOpIyFpEZxjaK-6U2hlq-NQmyk0F2Kj-d9c_W4LqrhaG0ys4mBkPtppZi5LsIfemFTSf8_exXRFOj6HW1G6HRiMWRv7rEK9tibzzC833DeXp48iGL2qkCkRVa1pFTjtxgqRXaHM6dRS-H_4lQwsQlL5OCKwRJiEPKxEhrBKkhemU78F6HCx3uewc2pEBPTpXp6cdVTCcWKNCxbLqg4nq8O1-gj1D0gPqH3wvjAf6y_sGlpffhXotF2X4jPA9gzVcPYbMdi_7j6hF8zUbpxNfvWHZOdcphbMoFGzVD7Fm6pEgbmzSJ5AzRL2tqFdjI1yHDq2LnFfsyC-Fyth9knY1_ogVbPIbTW-HaE1ivppV_CsxIboQofEJ9hHzfFQgZk0QgnVTOFaIHbztO5bZtVE7zMi5yvLAQV_Mbrvbg1Yp21rTn-CfVATF8RUEttcOH6fx73mpoXibWIZ4ZUkc9hC2F5sZxG_rlx6Jvkh5sdceVt3q-yG-ksgcvV8uoofTsYio_XRLNMAiLks_-v8UObGYnn4_z4_Hk6Dnc5ZQ9QzlCagvW6_nSbyP8qYsXQeYYfLttIf8NUHASbg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFbQv4iderbqiPvgQLtnN3e0WRFrTcGclFrFQn-Jmd9MWau68y1H6r_nXObNJrojiW1-TYQmT-fjNx84AvNZcGamsDUYjqYI4DkWgx6EJwmGptKaRb02DbDaaHMcfT4YnG_CruwtDbZWdTfSG2s4M5cgHCH2pwqYiPijbtoijJH0__xnQBimqtHbrNBoROXRXlxi-Ld9NE_zXbzhPD75-mATthoHACBXXgZWWXGKpJNofzq1Bj4ffjLBChyUvo4JLBEyIScpIx0YLUkn00GbknPLBHZ57CzbHFBX1YHP_IDv6ss7whALFO4ybmahCqHCwWKLHkFRO_cML-mUBf_kC7-DSe3C3RaZsrxGl-7Dhqgdwp12Sfnb1EL5NkjRz9S6bnNOtZb9E5YIlzUp7lq4o78aypq2cIRZmzc0Flrja93tV7Lxin-c-ec72vOSz6Q-0Z8tHcHwjfHsMvWpWuSfAdMy1EIWLaKqQG9oCAWQUCaSLpbWF6MPbjlO5aceW0_aMixzDF-Jqfs3VPrxa086bYR3_pNonhq8paMC2fzBbnOatvuZlZCyimzHN10MQUyiuLTd-en4ohjrqw073u_JW65f5tYz24eX6NeorFWF05WYrokHMhiBQxtv_P-IF3EYBzz9Ns8OnsMWplYYahuQO9OrFyj1DLFQXz1uhY_D9puX8N9FIGAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HDFNet%3A+Hierarchical+Dynamic+Fusion+Network+for+Change+Detection+in+Optical+Aerial+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Yi&rft.au=Fu%2C+Lei&rft.au=Li%2C+Ying&rft.au=Zhang%2C+Yanning&rft.date=2021-04-08&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=8&rft.spage=1440&rft_id=info:doi/10.3390%2Frs13081440&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |