Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review
Recently, the advancement of deep learning (DL) in discriminative feature learning from 3-D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3-D point clouds are a challenging and tedious task. In this...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 8; pp. 3412 - 3432 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2020.3015992 |
Cover
Loading…
Abstract | Recently, the advancement of deep learning (DL) in discriminative feature learning from 3-D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3-D point clouds are a challenging and tedious task. In this article, we provide a systematic review of existing compelling DL architectures applied in LiDAR point clouds, detailing for specific tasks in autonomous driving, such as segmentation, detection, and classification. Although several published research articles focus on specific topics in computer vision for autonomous vehicles, to date, no general survey on DL applied in LiDAR point clouds for autonomous vehicles exists. Thus, the goal of this article is to narrow the gap in this topic. More than 140 key contributions in the recent five years are summarized in this survey, including the milestone 3-D deep architectures, the remarkable DL applications in 3-D semantic segmentation, object detection, and classification; specific data sets, evaluation metrics, and the state-of-the-art performance. Finally, we conclude the remaining challenges and future researches. |
---|---|
AbstractList | Recently, the advancement of deep learning (DL) in discriminative feature learning from 3-D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3-D point clouds are a challenging and tedious task. In this article, we provide a systematic review of existing compelling DL architectures applied in LiDAR point clouds, detailing for specific tasks in autonomous driving, such as segmentation, detection, and classification. Although several published research articles focus on specific topics in computer vision for autonomous vehicles, to date, no general survey on DL applied in LiDAR point clouds for autonomous vehicles exists. Thus, the goal of this article is to narrow the gap in this topic. More than 140 key contributions in the recent five years are summarized in this survey, including the milestone 3-D deep architectures, the remarkable DL applications in 3-D semantic segmentation, object detection, and classification; specific data sets, evaluation metrics, and the state-of-the-art performance. Finally, we conclude the remaining challenges and future researches. Recently, the advancement of deep learning (DL) in discriminative feature learning from 3-D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3-D point clouds are a challenging and tedious task. In this article, we provide a systematic review of existing compelling DL architectures applied in LiDAR point clouds, detailing for specific tasks in autonomous driving, such as segmentation, detection, and classification. Although several published research articles focus on specific topics in computer vision for autonomous vehicles, to date, no general survey on DL applied in LiDAR point clouds for autonomous vehicles exists. Thus, the goal of this article is to narrow the gap in this topic. More than 140 key contributions in the recent five years are summarized in this survey, including the milestone 3-D deep architectures, the remarkable DL applications in 3-D semantic segmentation, object detection, and classification; specific data sets, evaluation metrics, and the state-of-the-art performance. Finally, we conclude the remaining challenges and future researches.Recently, the advancement of deep learning (DL) in discriminative feature learning from 3-D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3-D point clouds are a challenging and tedious task. In this article, we provide a systematic review of existing compelling DL architectures applied in LiDAR point clouds, detailing for specific tasks in autonomous driving, such as segmentation, detection, and classification. Although several published research articles focus on specific topics in computer vision for autonomous vehicles, to date, no general survey on DL applied in LiDAR point clouds for autonomous vehicles exists. Thus, the goal of this article is to narrow the gap in this topic. More than 140 key contributions in the recent five years are summarized in this survey, including the milestone 3-D deep architectures, the remarkable DL applications in 3-D semantic segmentation, object detection, and classification; specific data sets, evaluation metrics, and the state-of-the-art performance. Finally, we conclude the remaining challenges and future researches. |
Author | Cao, Dongpu Li, Ying Liu, Fei Chapman, Michael A. Ma, Lingfei Zhong, Zilong Li, Jonathan |
Author_xml | – sequence: 1 givenname: Ying orcidid: 0000-0003-0608-9619 surname: Li fullname: Li, Ying email: y2424li@uwaterloo.ca organization: Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON, Canada – sequence: 2 givenname: Lingfei orcidid: 0000-0001-8893-9693 surname: Ma fullname: Ma, Lingfei email: l53ma@uwaterloo.ca organization: Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON, Canada – sequence: 3 givenname: Zilong orcidid: 0000-0003-0104-9116 surname: Zhong fullname: Zhong, Zilong email: z26zhong@uwaterloo.ca organization: Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON, Canada – sequence: 4 givenname: Fei surname: Liu fullname: Liu, Fei email: fledaliu@xilinx.com organization: Xilinx Technology Beijing, Ltd., Beijing, China – sequence: 5 givenname: Michael A. surname: Chapman fullname: Chapman, Michael A. email: mchapman@ryerson.ca organization: Department of Civil Engineering, Ryerson University, Toronto, ON, Canada – sequence: 6 givenname: Dongpu orcidid: 0000-0001-7929-4336 surname: Cao fullname: Cao, Dongpu email: dongpu.cao@uwaterloo.ca organization: Waterloo Cognitive Autonomous Driving Laboratory, University of Waterloo, Waterloo, ON, Canada – sequence: 7 givenname: Jonathan orcidid: 0000-0001-7899-0049 surname: Li fullname: Li, Jonathan email: junli@uwaterloo.ca organization: Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON, Canada |
BookMark | eNp9kEtPwzAQhC0E4v0H4GKJC5cWv2LH3KqWlxQBKkXiZrnJBhmldrGTIv49KUUcOLCX3cM3O6M5QNs-eEDohJIhpURfzO7vi6chI4wMOaGZ1mwL7TMq2YDxPN_-vdXLHjpO6Y30I0kmhd5Fe5zljHFK99FkArDEBdjonX_FdYi4cJPRFD8G51s8bkJXJew8HnVt8GERuoQn0a16-BKP8BRWDj6O0E5tmwTHP_sQPV9fzca3g-Lh5m48KgYl16IdVEqDqHglwEI5p0orTapK2IrqXDKRgeBcqHkNGZOl5brkQlhp56qPKnQt-SE63_xdxvDeQWrNwqUSmsZ66IMZJrgUhKs869GzP-hb6KLv0xmWZWtrLvOeYhuqjCGlCLVZRrew8dNQYtY1m--azbpm81NzL8r_iErX2tYF30brmv-lpxupA4BfL00VV0TyL8YOiFA |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_3390_rs14174393 crossref_primary_10_3390_rs15153787 crossref_primary_10_1109_LSP_2024_3449226 crossref_primary_10_3390_electronics13152915 crossref_primary_10_3390_s24010283 crossref_primary_10_1016_j_precisioneng_2025_03_016 crossref_primary_10_3390_rs17030443 crossref_primary_10_1109_TNNLS_2023_3326606 crossref_primary_10_3390_sci4040046 crossref_primary_10_1007_s00521_024_10259_2 crossref_primary_10_1109_TITS_2022_3195213 crossref_primary_10_1016_j_autcon_2022_104456 crossref_primary_10_3390_rs13204123 crossref_primary_10_1007_s13042_023_01863_0 crossref_primary_10_1109_TMM_2022_3206664 crossref_primary_10_3390_s22249577 crossref_primary_10_1016_j_isprsjprs_2022_01_001 crossref_primary_10_1080_01431161_2023_2297177 crossref_primary_10_1109_TVT_2024_3372940 crossref_primary_10_1016_j_ultras_2024_107381 crossref_primary_10_1093_jcde_qwae013 crossref_primary_10_1080_14498596_2023_2236996 crossref_primary_10_3390_s22072576 crossref_primary_10_1364_OE_483522 crossref_primary_10_1016_j_knosys_2022_109770 crossref_primary_10_1109_TGRS_2023_3313876 crossref_primary_10_1109_TCSI_2024_3387998 crossref_primary_10_1109_TRO_2023_3323936 crossref_primary_10_1088_2632_2153_aca1f8 crossref_primary_10_1016_j_jag_2022_102836 crossref_primary_10_1016_j_isprsjprs_2023_11_005 crossref_primary_10_1145_3715851 crossref_primary_10_1109_LGRS_2022_3190558 crossref_primary_10_1109_JSEN_2024_3379990 crossref_primary_10_1109_TNNLS_2024_3352974 crossref_primary_10_3390_s24196446 crossref_primary_10_3390_s25051581 crossref_primary_10_3390_heritage7100261 crossref_primary_10_1016_j_ijepes_2023_109348 crossref_primary_10_1016_j_vlsi_2023_102111 crossref_primary_10_1016_j_engappai_2023_105817 crossref_primary_10_1109_TCSII_2024_3364514 crossref_primary_10_1038_s41598_024_62342_2 crossref_primary_10_3390_wevj15010020 crossref_primary_10_1109_TIV_2023_3343878 crossref_primary_10_3390_rs16030453 crossref_primary_10_12688_cobot_17590_1 crossref_primary_10_3390_s22228858 crossref_primary_10_1109_TNNLS_2023_3281871 crossref_primary_10_1016_j_aei_2024_102850 crossref_primary_10_1016_j_cag_2024_104053 crossref_primary_10_1016_j_jfranklin_2024_01_033 crossref_primary_10_3390_rs15010061 crossref_primary_10_1007_s10489_023_04646_w crossref_primary_10_1007_s42235_025_00654_3 crossref_primary_10_1016_j_cose_2023_103471 crossref_primary_10_3389_fnbot_2022_891158 crossref_primary_10_3390_info15070376 crossref_primary_10_1002_smr_2644 crossref_primary_10_1038_s41598_024_62629_4 crossref_primary_10_1016_j_geits_2023_100125 crossref_primary_10_1109_TGRS_2024_3385667 crossref_primary_10_1016_j_isprsjprs_2021_03_003 crossref_primary_10_1109_ACCESS_2023_3315741 crossref_primary_10_1109_TITS_2022_3220025 crossref_primary_10_1007_s11263_021_01504_5 crossref_primary_10_1080_10095020_2023_2175478 crossref_primary_10_3390_s21237860 crossref_primary_10_1016_j_eswa_2024_125039 crossref_primary_10_1109_TGRS_2022_3226956 crossref_primary_10_3390_s23063085 crossref_primary_10_1109_ACCESS_2024_3486603 crossref_primary_10_1016_j_compeleceng_2024_109555 crossref_primary_10_1016_j_ophoto_2024_100061 crossref_primary_10_1016_j_mfglet_2024_09_175 crossref_primary_10_1016_j_neucom_2024_129277 crossref_primary_10_1109_JSEN_2023_3240295 crossref_primary_10_3390_drones8100561 crossref_primary_10_3390_electronics12245017 crossref_primary_10_1109_TNNLS_2023_3267333 crossref_primary_10_1109_TMM_2022_3216951 crossref_primary_10_1109_TGRS_2022_3165746 crossref_primary_10_3390_machines11010054 crossref_primary_10_1016_j_neucom_2023_126822 crossref_primary_10_1007_s10489_023_05263_3 crossref_primary_10_3390_rs14225760 crossref_primary_10_3390_agriengineering7030068 crossref_primary_10_3390_infrastructures10040070 crossref_primary_10_1016_j_eswa_2023_122140 crossref_primary_10_1109_ACCESS_2024_3456893 crossref_primary_10_1109_TNNLS_2022_3141821 crossref_primary_10_3390_s22239316 crossref_primary_10_3390_wevj16020080 crossref_primary_10_1109_TITS_2023_3347150 crossref_primary_10_32604_cmc_2024_053204 crossref_primary_10_3233_JIFS_223584 crossref_primary_10_3390_make5030041 crossref_primary_10_1007_s10915_021_01699_2 crossref_primary_10_3390_s22114051 crossref_primary_10_1016_j_imavis_2024_105409 crossref_primary_10_1109_TAI_2023_3237787 crossref_primary_10_1109_TMM_2024_3387729 crossref_primary_10_1016_j_jag_2023_103180 crossref_primary_10_1109_TETCI_2023_3259441 crossref_primary_10_1109_ACCESS_2024_3452160 crossref_primary_10_1109_TIP_2024_3437234 crossref_primary_10_1109_ACCESS_2022_3186476 crossref_primary_10_1145_3627160 crossref_primary_10_1109_TIM_2023_3288256 crossref_primary_10_3390_rs16050743 crossref_primary_10_1016_j_neucom_2022_01_005 crossref_primary_10_1109_JSEN_2023_3235830 crossref_primary_10_3390_rs14153583 crossref_primary_10_1016_j_neucom_2023_126732 crossref_primary_10_1109_TSMC_2023_3311446 crossref_primary_10_3390_s22207868 crossref_primary_10_3390_app12041975 crossref_primary_10_1109_TVT_2024_3390414 crossref_primary_10_3390_rs15010253 crossref_primary_10_3390_s20143964 crossref_primary_10_1016_j_patcog_2022_109267 crossref_primary_10_1109_JSEN_2023_3347585 crossref_primary_10_1109_TVT_2024_3351053 crossref_primary_10_1016_j_aei_2024_102911 crossref_primary_10_1016_j_isprsjprs_2023_01_009 crossref_primary_10_1109_JSEN_2023_3320099 crossref_primary_10_1016_j_isprsjprs_2023_08_008 crossref_primary_10_1109_ACCESS_2023_3337049 crossref_primary_10_1145_3639261 crossref_primary_10_1016_j_procs_2022_10_123 crossref_primary_10_1021_acsomega_1c05473 crossref_primary_10_1109_TNNLS_2022_3146306 crossref_primary_10_1109_ACCESS_2022_3181131 crossref_primary_10_1364_OL_545310 crossref_primary_10_1061_JCCEE5_CPENG_4979 crossref_primary_10_1016_j_eswa_2024_123564 crossref_primary_10_3390_s23020601 crossref_primary_10_3390_machines10070507 crossref_primary_10_1016_j_neunet_2023_06_025 crossref_primary_10_1109_MITS_2021_3109041 crossref_primary_10_1007_s12652_022_03874_1 crossref_primary_10_1016_j_jag_2022_102684 crossref_primary_10_1063_5_0154871 crossref_primary_10_1109_TNNLS_2024_3363244 crossref_primary_10_1177_17298806241297424 crossref_primary_10_1109_TCAD_2022_3172031 crossref_primary_10_3390_s23136119 crossref_primary_10_1016_j_compag_2025_109944 crossref_primary_10_1016_j_inffus_2024_102299 crossref_primary_10_1109_TGRS_2022_3162582 crossref_primary_10_1109_TAI_2023_3342104 crossref_primary_10_1109_TITS_2024_3394481 crossref_primary_10_1109_ACCESS_2025_3541023 crossref_primary_10_1016_j_imavis_2024_104916 crossref_primary_10_1109_TGRS_2023_3234542 crossref_primary_10_1007_s44196_023_00303_9 crossref_primary_10_1109_TITS_2022_3183889 crossref_primary_10_3390_s23062936 crossref_primary_10_3390_pr11020501 crossref_primary_10_1016_j_compag_2023_108264 crossref_primary_10_1007_s11263_024_02027_5 crossref_primary_10_7467_KSAE_2022_30_8_635 crossref_primary_10_1016_j_mfglet_2024_09_159 crossref_primary_10_3390_en15134681 crossref_primary_10_1109_TMC_2022_3198089 crossref_primary_10_1109_ACCESS_2024_3351868 crossref_primary_10_3390_rs15143578 crossref_primary_10_1016_j_autcon_2024_105850 crossref_primary_10_1109_TCSVT_2024_3382322 crossref_primary_10_1109_ACCESS_2021_3131389 crossref_primary_10_1109_TIFS_2023_3333687 crossref_primary_10_1109_ACCESS_2023_3337995 crossref_primary_10_3390_s22166210 crossref_primary_10_1038_s41598_021_98697_z crossref_primary_10_1109_TNNLS_2021_3128968 crossref_primary_10_1002_cta_4465 crossref_primary_10_1155_abb_2451501 crossref_primary_10_1007_s11831_024_10108_4 crossref_primary_10_11834_jig_220942 crossref_primary_10_3390_rs14132955 crossref_primary_10_3390_s22062184 crossref_primary_10_1109_LRA_2023_3301278 crossref_primary_10_1016_j_isprsjprs_2022_04_023 crossref_primary_10_1145_3674979 crossref_primary_10_1007_s00371_024_03600_2 crossref_primary_10_3390_s23083892 crossref_primary_10_1109_TIM_2024_3381260 crossref_primary_10_1080_01431161_2024_2424509 crossref_primary_10_5194_gi_11_195_2022 crossref_primary_10_1016_j_neucom_2024_129313 crossref_primary_10_1155_2022_6430120 crossref_primary_10_1109_JSEN_2023_3344947 crossref_primary_10_1016_j_jag_2021_102580 crossref_primary_10_1109_TIM_2022_3224525 crossref_primary_10_1109_TITS_2022_3204068 crossref_primary_10_1016_j_measurement_2023_113620 crossref_primary_10_3390_s23042019 crossref_primary_10_1109_TCYB_2023_3312647 crossref_primary_10_1109_TNNLS_2022_3233562 crossref_primary_10_1142_S0218271825400103 crossref_primary_10_1109_TNSE_2023_3306202 crossref_primary_10_1016_j_measurement_2025_116860 crossref_primary_10_3390_s21217177 crossref_primary_10_1109_TNNLS_2022_3155282 crossref_primary_10_1109_JSTARS_2023_3324483 crossref_primary_10_1145_3690768 crossref_primary_10_1109_TNNLS_2022_3201534 crossref_primary_10_1109_JIOT_2022_3194716 crossref_primary_10_3390_photonics10101118 crossref_primary_10_3390_rs15041093 crossref_primary_10_1016_j_cag_2022_07_008 crossref_primary_10_1109_TPAMI_2022_3204713 crossref_primary_10_3390_s22155510 crossref_primary_10_3390_machines11110982 crossref_primary_10_1109_TITS_2024_3456293 crossref_primary_10_1088_2631_8695_adaabf crossref_primary_10_1007_s11760_024_03728_7 crossref_primary_10_1007_s10462_024_10754_x crossref_primary_10_1007_s00521_024_10733_x crossref_primary_10_1109_TITS_2024_3391286 crossref_primary_10_1177_20539517231203669 crossref_primary_10_1109_TCYB_2022_3219142 crossref_primary_10_3390_electronics12112424 crossref_primary_10_3390_s24227268 crossref_primary_10_1007_s10489_024_05822_2 crossref_primary_10_1364_AO_538498 crossref_primary_10_1109_TVT_2023_3287687 crossref_primary_10_1016_j_comcom_2024_06_015 crossref_primary_10_1109_TIM_2024_3450071 crossref_primary_10_1109_TIV_2022_3223131 crossref_primary_10_3390_s24196494 crossref_primary_10_21653_tjpr_1421321 crossref_primary_10_1109_TNNLS_2023_3265533 crossref_primary_10_1016_j_asoc_2024_112466 crossref_primary_10_1109_TPAMI_2023_3312592 crossref_primary_10_1109_TSMC_2023_3321881 crossref_primary_10_3390_pr11020435 crossref_primary_10_1016_j_aej_2024_10_037 crossref_primary_10_1016_j_isprsjprs_2024_03_024 crossref_primary_10_1109_ACCESS_2023_3238824 crossref_primary_10_3390_s22218115 crossref_primary_10_1109_TSMC_2023_3276218 crossref_primary_10_34133_research_0467 crossref_primary_10_1088_2040_8986_ac4870 |
Cites_doi | 10.1109/ICPR.2016.7900038 10.1155/2018/7068349 10.1109/ICCV.2017.99 10.1007/978-3-030-01225-0_37 10.1109/CVPR.2018.00907 10.1177/0278364913491297 10.1109/CVPR.2018.00526 10.1109/CVPR.2018.00028 10.1016/j.cag.2015.03.004 10.1109/IROS.2015.7353481 10.3390/s19194188 10.1007/978-3-030-01237-3_6 10.1016/j.isprsjprs.2015.01.011 10.1109/CVPR.2018.00798 10.1080/19479832.2016.1188860 10.1109/CVPR.2018.00979 10.1109/TIM.2018.2840598 10.1038/nature14539 10.1016/j.isprsjprs.2017.05.012 10.1109/CVPR.2018.00272 10.15607/RSS.2016.XII.042 10.1109/3DV.2018.00052 10.1109/TITS.2019.2892405 10.1109/CVPR.2018.00959 10.1177/0278364916679498 10.1109/TITS.2016.2639582 10.3390/s19040810 10.1109/CVPR.2016.90 10.1109/ICCV.2017.230 10.1016/j.isprsjprs.2018.10.007 10.1109/CVPR.2019.00705 10.1109/CVPR.2018.00268 10.1109/MGRS.2016.2540798 10.1109/CVPR.2009.5206590 10.1016/j.neucom.2015.09.116 10.1109/ICCV.2015.114 10.1145/1964179.1964190 10.1007/s11263-014-0733-5 10.1109/ITSC.2018.8569311 10.1109/TIE.2015.2410258 10.1109/ICPR.2016.7899697 10.1016/j.isprsjprs.2018.02.008 10.1145/3042064 10.1109/CVPR.2017.691 10.1109/TNNLS.2018.2876865 10.1109/CVPR.2017.701 10.1109/CVPR.2019.00910 10.1109/MGRS.2017.2762307 10.3390/rs10040612 10.1109/CVPRW.2018.00141 10.1109/CVPR.2018.00479 10.1109/TITS.2017.2752461 10.1109/ICRA.2018.8462926 10.1109/IVS.2011.5940562 10.1016/j.isprsjprs.2017.05.006 10.1109/CVPR.2018.00472 10.1016/j.isprsjprs.2018.06.018 10.1109/3DV.2017.00067 10.1016/j.neucom.2018.09.075 10.1109/TGRS.2014.2359951 10.1007/978-3-030-01225-0_4 10.1016/j.isprsjprs.2019.01.024 10.1109/IROS.2017.8206198 10.1109/CVPR.2018.00278 10.1109/CVPR.2012.6248074 10.1016/j.cag.2017.10.007 10.1109/JSTARS.2017.2781132 10.1109/CVPR.2018.00375 10.1007/978-3-030-01249-6_28 10.1109/ICRA.2017.7989161 10.1007/978-3-030-01228-1_35 10.1109/CVPR.2017.16 10.1109/CVPR.2015.7298965 10.1007/978-3-319-64689-3_8 10.1109/TGRS.2018.2829625 10.1007/s11263-015-0816-y 10.1016/j.trc.2018.02.012 10.1109/TGRS.2017.2769120 10.1016/j.optlastec.2017.06.015 10.1109/CVPR.2017.11 10.1109/IROS.2017.8205955 10.1109/CVPR.2015.7298594 10.1109/CVPR.2018.00033 10.3390/rs3061104 10.1145/1531326.1531377 10.1016/j.isprsjprs.2018.11.006 10.1109/CVPR.2018.00484 10.3390/rs10101531 10.1109/CVPR.2019.01054 10.1109/ICCV.2019.00937 10.1016/j.isprsjprs.2018.04.022 10.1007/978-3-030-01267-0_37 10.1109/CVPR.2018.00102 10.1007/978-3-030-01270-0_39 10.1109/MSP.2017.2693418 10.1109/ICRA.2019.8793983 10.1109/CVPR.2016.609 10.15607/RSS.2015.XI.035 10.1109/JPROC.2017.2761740 10.5194/isprs-annals-IV-1-W1-91-2017 10.1016/j.neucom.2016.12.038 10.1145/3240508.3240702 10.1145/1618452.1618522 10.1109/CVPR.2017.697 10.1109/IROS.2018.8594049 10.1007/978-3-642-33715-4_54 10.1109/LRA.2018.2852843 10.1109/CVPR.2018.00481 10.1016/j.isprsjprs.2015.01.016 10.1109/TPAMI.2017.2706685 10.1109/RAM.2013.6758588 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2020.3015992 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 3432 |
ExternalDocumentID | 10_1109_TNNLS_2020_3015992 9173706 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) grantid: 50503-10284 funderid: 10.13039/501100000038 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c394t-d79e4d3d4eaecb179790dd4ad1986245e43347bfe526ca39c344a6ab723149f63 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 12:28:46 EDT 2025 Mon Jun 30 07:16:15 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Tue Jul 01 00:27:35 EDT 2025 Wed Aug 27 02:39:34 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-d79e4d3d4eaecb179790dd4ad1986245e43347bfe526ca39c344a6ab723149f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0104-9116 0000-0001-7929-4336 0000-0003-0608-9619 0000-0001-8893-9693 0000-0001-7899-0049 |
PMID | 32822311 |
PQID | 2557979368 |
PQPubID | 85436 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2557979368 proquest_miscellaneous_2436403785 crossref_citationtrail_10_1109_TNNLS_2020_3015992 crossref_primary_10_1109_TNNLS_2020_3015992 ieee_primary_9173706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 mescheder (ref136) 2018 ref56 ref58 ref53 ref52 ref55 ref54 li (ref71) 2018 veli?kovi? (ref75) 2017 simonyan (ref87) 2014 engelmann (ref99) 2018 ref51 ref50 krizhevsky (ref86) 2012 roynard (ref59) 2018 ref46 ref45 ref48 ref47 ref42 ref41 ref44 sauder (ref145) 2019 ref43 ref49 ref8 ref7 ref9 ref4 yu (ref125) 2017 lafferty (ref114) 2001 ref3 ahmed (ref29) 2018 ref6 liu (ref23) 2018 ref5 ref100 ref101 ref40 ref34 ref37 ref36 ref31 ref33 ref32 zhi (ref94) 2017 ref39 lei (ref98) 2018 rusu (ref103) 2011 shoef (ref146) 2019 ref24 ref26 ref20 de deuge (ref61) 2013; 2 ref22 ref21 wu (ref68) 2016 liaw (ref117) 2002; 2 garcia-garcia (ref25) 2017 ref28 ref27 boulch (ref11) 2017 fujiwara (ref140) 2018 ref13 ref128 ref15 ref129 ref14 ref97 ref127 ref96 ref124 vosselman (ref80) 2004; 46 ref10 ref17 ref16 ref19 ref18 ref133 ref93 ref134 ref92 ref131 ref95 ref132 ref91 treml (ref38) 2016; 1 ref89 ref139 ren (ref126) 2015 ref137 qi (ref12) 2017 ref138 ref85 ref135 ref88 goodfellow (ref81) 2014 ref144 ref82 ref142 ref84 ref143 ref83 ref141 ref79 ref108 ref78 ref109 ref106 ref107 ref104 ref105 ref77 ref102 ref76 ref2 sedaghat (ref130) 2016 ref111 ref70 ref112 hana (ref35) 2018 ref73 ref72 ref110 ref67 ref69 ref118 ref64 ref115 ref63 ref66 ref113 ref65 wu (ref30) 2015 janai (ref1) 2017 wang (ref74) 2018 yang (ref119) 2018 simony (ref116) 2018 ref60 ref122 su (ref90) 2018 ref123 ref62 ref120 ref121 |
References_xml | – year: 2014 ident: ref87 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref112 doi: 10.1109/ICPR.2016.7900038 – ident: ref20 doi: 10.1155/2018/7068349 – ident: ref70 doi: 10.1109/ICCV.2017.99 – ident: ref108 doi: 10.1007/978-3-030-01225-0_37 – year: 2016 ident: ref130 article-title: Orientation-boosted voxel nets for 3D object recognition publication-title: arXiv 1604 03351 – start-page: 9 year: 2017 ident: ref94 article-title: Lightnet: A lightweight 3D convolutional neural network for real-time 3D object recognition publication-title: Proc 3DOR – ident: ref120 doi: 10.1109/CVPR.2018.00907 – ident: ref54 doi: 10.1177/0278364913491297 – ident: ref78 doi: 10.1109/CVPR.2018.00526 – ident: ref142 doi: 10.1109/CVPR.2018.00028 – ident: ref58 doi: 10.1016/j.cag.2015.03.004 – ident: ref67 doi: 10.1109/IROS.2015.7353481 – year: 2018 ident: ref35 article-title: A comprehensive review of 3D point cloud descriptors publication-title: arXiv 1802 02297 – ident: ref37 doi: 10.3390/s19194188 – ident: ref129 doi: 10.1007/978-3-030-01237-3_6 – ident: ref102 doi: 10.1016/j.isprsjprs.2015.01.011 – ident: ref8 doi: 10.1109/CVPR.2018.00798 – ident: ref32 doi: 10.1080/19479832.2016.1188860 – ident: ref96 doi: 10.1109/CVPR.2018.00979 – ident: ref131 doi: 10.1109/TIM.2018.2840598 – ident: ref17 doi: 10.1038/nature14539 – year: 2017 ident: ref75 article-title: Graph attention networks publication-title: arXiv 1710 10903 – ident: ref48 doi: 10.1016/j.isprsjprs.2017.05.012 – year: 2019 ident: ref145 article-title: Context prediction for unsupervised deep learning on point clouds publication-title: arXiv 1901 08396 – ident: ref109 doi: 10.1109/CVPR.2018.00272 – ident: ref9 doi: 10.15607/RSS.2016.XII.042 – ident: ref104 doi: 10.1109/3DV.2018.00052 – ident: ref36 doi: 10.1109/TITS.2019.2892405 – ident: ref137 doi: 10.1109/CVPR.2018.00959 – ident: ref64 doi: 10.1177/0278364916679498 – ident: ref97 doi: 10.1109/TITS.2016.2639582 – ident: ref33 doi: 10.3390/s19040810 – ident: ref89 doi: 10.1109/CVPR.2016.90 – ident: ref82 doi: 10.1109/ICCV.2017.230 – ident: ref47 doi: 10.1016/j.isprsjprs.2018.10.007 – ident: ref135 doi: 10.1109/CVPR.2019.00705 – ident: ref110 doi: 10.1109/CVPR.2018.00268 – ident: ref21 doi: 10.1109/MGRS.2016.2540798 – ident: ref57 doi: 10.1109/CVPR.2009.5206590 – year: 2018 ident: ref119 article-title: IPOD: Intensive point-based object detector for point cloud publication-title: arXiv 1812 05276 – ident: ref19 doi: 10.1016/j.neucom.2015.09.116 – ident: ref76 doi: 10.1109/ICCV.2015.114 – ident: ref83 doi: 10.1145/1964179.1964190 – year: 2018 ident: ref29 article-title: A survey on deep learning advances on different 3D data representations: A survey publication-title: arXiv 1808 01462 – ident: ref62 doi: 10.1007/s11263-014-0733-5 – volume: 1 start-page: 5 year: 2016 ident: ref38 article-title: Speeding up semantic segmentation for autonomous driving publication-title: Proc MLITS NIPS Workshop – ident: ref43 doi: 10.1109/ITSC.2018.8569311 – ident: ref55 doi: 10.1109/TIE.2015.2410258 – ident: ref50 doi: 10.1109/ICPR.2016.7899697 – ident: ref65 doi: 10.1016/j.isprsjprs.2018.02.008 – volume: 2 start-page: 1 year: 2013 ident: ref61 article-title: Unsupervised feature learning for classification of outdoor 3D scans publication-title: Proc ACRA – ident: ref28 doi: 10.1145/3042064 – year: 2017 ident: ref1 article-title: Computer vision for autonomous vehicles: Problems, datasets and state of the art publication-title: arXiv 1704 05519 – ident: ref123 doi: 10.1109/CVPR.2017.691 – ident: ref24 doi: 10.1109/TNNLS.2018.2876865 – ident: ref69 doi: 10.1109/CVPR.2017.701 – ident: ref52 doi: 10.1109/CVPR.2019.00910 – start-page: 395 year: 2018 ident: ref99 article-title: Know what your neighbors do: 3D semantic segmentation of point clouds publication-title: Proc ECC – start-page: 2672 year: 2014 ident: ref81 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref22 doi: 10.1109/MGRS.2017.2762307 – ident: ref106 doi: 10.3390/rs10040612 – start-page: 5099 year: 2017 ident: ref12 article-title: Pointnet++: Deep hierarchical feature learning on point sets in a metric space publication-title: Proc Adv Neural Inf Process Syst – ident: ref4 doi: 10.1109/CVPRW.2018.00141 – ident: ref105 doi: 10.1109/CVPR.2018.00479 – ident: ref5 doi: 10.1109/TITS.2017.2752461 – ident: ref7 doi: 10.1109/ICRA.2018.8462926 – ident: ref2 doi: 10.1109/IVS.2011.5940562 – year: 2018 ident: ref74 article-title: Dynamic graph CNN for learning on point clouds publication-title: arXiv 1801 07829 – ident: ref101 doi: 10.1016/j.isprsjprs.2017.05.006 – ident: ref13 doi: 10.1109/CVPR.2018.00472 – ident: ref141 doi: 10.1016/j.isprsjprs.2018.06.018 – ident: ref113 doi: 10.1109/3DV.2017.00067 – ident: ref132 doi: 10.1016/j.neucom.2018.09.075 – ident: ref46 doi: 10.1109/TGRS.2014.2359951 – ident: ref84 doi: 10.1007/978-3-030-01225-0_4 – ident: ref45 doi: 10.1016/j.isprsjprs.2019.01.024 – ident: ref16 doi: 10.1109/IROS.2017.8206198 – volume: 2 start-page: 18 year: 2002 ident: ref117 article-title: Classification and regression by randomforest publication-title: R News – ident: ref40 doi: 10.1109/CVPR.2018.00278 – ident: ref60 doi: 10.1109/CVPR.2012.6248074 – ident: ref93 doi: 10.1016/j.cag.2017.10.007 – start-page: 1 year: 2011 ident: ref103 article-title: Point cloud library (PCL) publication-title: Proc IEEE ICRA – start-page: 1097 year: 2012 ident: ref86 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref34 doi: 10.1109/JSTARS.2017.2781132 – year: 2017 ident: ref25 article-title: A review on deep learning techniques applied to semantic segmentation publication-title: arXiv 1704 06857 – year: 2018 ident: ref59 article-title: Classification of point cloud scenes with multiscale voxel deep network publication-title: arXiv 1804 03583 – start-page: 1912 year: 2015 ident: ref30 article-title: 3D ShapeNets: A deep representation for volumetric shapes publication-title: Proc IEEE CVPR – ident: ref44 doi: 10.1109/CVPR.2018.00375 – ident: ref77 doi: 10.1007/978-3-030-01249-6_28 – ident: ref122 doi: 10.1109/ICRA.2017.7989161 – ident: ref139 doi: 10.1007/978-3-030-01228-1_35 – ident: ref10 doi: 10.1109/CVPR.2017.16 – ident: ref79 doi: 10.1109/CVPR.2015.7298965 – year: 2019 ident: ref146 article-title: PointWise: An unsupervised point-wise feature learning network publication-title: arXiv 1901 04544 – ident: ref107 doi: 10.1007/978-3-319-64689-3_8 – ident: ref111 doi: 10.1109/TGRS.2018.2829625 – ident: ref92 doi: 10.1007/s11263-015-0816-y – ident: ref3 doi: 10.1016/j.trc.2018.02.012 – ident: ref118 doi: 10.1109/TGRS.2017.2769120 – ident: ref63 doi: 10.1016/j.optlastec.2017.06.015 – ident: ref73 doi: 10.1109/CVPR.2017.11 – start-page: 7 year: 2017 ident: ref11 article-title: Unstructured point cloud semantic labeling using deep segmentation networks publication-title: Proc 3DOR – ident: ref14 doi: 10.1109/IROS.2017.8205955 – ident: ref88 doi: 10.1109/CVPR.2015.7298594 – ident: ref134 doi: 10.1109/CVPR.2018.00033 – year: 2018 ident: ref136 article-title: Occupancy networks: Learning 3D reconstruction in function space publication-title: arXiv 1812 03828 – ident: ref6 doi: 10.3390/rs3061104 – start-page: 82 year: 2016 ident: ref68 article-title: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling publication-title: Proc Adv Neural Inf Process Syst – ident: ref51 doi: 10.1145/1531326.1531377 – ident: ref49 doi: 10.1016/j.isprsjprs.2018.11.006 – ident: ref143 doi: 10.1109/CVPR.2018.00484 – ident: ref31 doi: 10.3390/rs10101531 – ident: ref85 doi: 10.1109/CVPR.2019.01054 – ident: ref42 doi: 10.1109/ICCV.2019.00937 – start-page: 91 year: 2015 ident: ref126 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref115 doi: 10.1016/j.isprsjprs.2018.04.022 – start-page: 197 year: 2018 ident: ref116 article-title: Complex-Yolo: An Euler-region-proposal for real-time 3D object detection on point clouds publication-title: Proc ECC – ident: ref144 doi: 10.1007/978-3-030-01267-0_37 – ident: ref41 doi: 10.1109/CVPR.2018.00102 – ident: ref133 doi: 10.1007/978-3-030-01270-0_39 – volume: 46 start-page: 33 year: 2004 ident: ref80 article-title: Recognising structure in laser scanner point clouds publication-title: ISPRS Int Arch Photogramm Remote Sens Spatial Inf Sci – ident: ref27 doi: 10.1109/MSP.2017.2693418 – ident: ref138 doi: 10.1109/ICRA.2019.8793983 – start-page: 645 year: 2018 ident: ref90 article-title: A deeper look at 3D shape classifiers publication-title: Proc ECCV – ident: ref15 doi: 10.1109/CVPR.2016.609 – ident: ref121 doi: 10.15607/RSS.2015.XI.035 – ident: ref18 doi: 10.1109/JPROC.2017.2761740 – ident: ref56 doi: 10.5194/isprs-annals-IV-1-W1-91-2017 – year: 2018 ident: ref23 article-title: Deep learning for generic object detection: A survey publication-title: arXiv 1809 02165 – ident: ref26 doi: 10.1016/j.neucom.2016.12.038 – ident: ref91 doi: 10.1145/3240508.3240702 – ident: ref53 doi: 10.1145/1618452.1618522 – ident: ref72 doi: 10.1109/CVPR.2017.697 – ident: ref124 doi: 10.1109/IROS.2018.8594049 – start-page: 102 year: 2017 ident: ref125 article-title: Vehicle detection and localization on bird's eye view elevation images using convolutional neural network publication-title: Proc IEEE SSRR – ident: ref128 doi: 10.1007/978-3-642-33715-4_54 – ident: ref127 doi: 10.1109/LRA.2018.2852843 – start-page: 282 year: 2001 ident: ref114 article-title: Conditional random fields: Probabilistic models for segmenting and labeling sequence data publication-title: Proc IEEE Int Conf Mach Learn – ident: ref95 doi: 10.1109/CVPR.2018.00481 – year: 2018 ident: ref140 article-title: Canonical and compact point cloud representation for shape classification publication-title: arXiv 1809 04820 – ident: ref100 doi: 10.1016/j.isprsjprs.2015.01.016 – ident: ref66 doi: 10.1109/TPAMI.2017.2706685 – ident: ref39 doi: 10.1109/RAM.2013.6758588 – start-page: 820 year: 2018 ident: ref71 article-title: PointCNN: Convolution on X-transformed points publication-title: Proc NeurIPS – year: 2018 ident: ref98 article-title: Spherical convolutional neural network for 3D point clouds publication-title: arXiv 1805 07872 |
SSID | ssj0000605649 |
Score | 2.7105625 |
Snippet | Recently, the advancement of deep learning (DL) in discriminative feature learning from 3-D LiDAR data has led to rapid development in the field of autonomous... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3412 |
SubjectTerms | Autonomous driving Autonomous vehicles Classification Computer vision Deep learning deep learning (DL) Laser radar LiDAR Machine learning object classification Object detection Object recognition point clouds Polls & surveys Semantic segmentation Semantics Solid modeling Task analysis Three dimensional models Three-dimensional displays |
Title | Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review |
URI | https://ieeexplore.ieee.org/document/9173706 https://www.proquest.com/docview/2557979368 https://www.proquest.com/docview/2436403785 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpTr00bZPSTdKiQm-tN7I1lle5LdmGUJIl5AF7M7I0LksWO2TtS399RvID-qD0ZvDIWDMazTfSPBj7DEZgUoKMbKpFBGh0ZApDm6FLS0KvMHMzn418tVQX9_B9la522NcxFwYRQ_AZTv1juMt3tW39UdkJuRYy8_W1X5Dj1uVqjecpgnC5Cmg3iVUSJTJbDTkyQp_cLZeXt-QNJuSkkgHU2nexkT6EUsbxLyYp9Fj5Y2MO1uZ8j10N_9kFmTxM26aY2p-_lXD834m8Zq962Mnn3Tp5w3awesv2hpYOvNfwfbZYID7yvujqD06Ill-uF_Mbfl2vq4afberWbfm64vO28ekQdbvli6e1P5U45XPe3TQcsPvzb3dnF1HfaCGyUkMTuUwjOOlIVGgLUtFMC-fAuFj7_JEUQUrIihLTRFkjtZUARpkiI-6BLpV8x3arusL3jNvYpQ6kEKVBUJbIUjBIGAAtYSVpJiweeJ3bvgq5b4axyYM3InQeRJV7UeW9qCbsyzjmsavB8U_qfc_wkbLn9YQdDyLNezXd5uRP-clKNZuwT-NrUjB_a2IqJCbmCUgFQmaz9PDvXz5iLxMf6BKiAo_ZbvPU4gdCKk3xMSzRZxRo4H4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELem8QAvDBiIsg2MxBukc-KLU_NWrZsKtBWCTupb5NiXqWJKpjV52V_POV_SGEK8RYodxXc-3-_O98HYBzACoxxkYGMtAkCjA5MZOgxdnBN6hYmb-Gzk5UrNL-HrJt7ssU9DLgwiNsFnOPaPzV2-K23tXWWnZFrIxNfXfkR6H3SbrTV4VAQhc9Xg3ShUURDJZNNnyQh9ul6tFj_JHozITCUVqLXvYyN9EKUMw3tKqemy8uBobvTNxQFb9n_ahpn8GtdVNrZ3fxRx_N-lPGNPO-DJp-1Oec72sHjBDvqmDryT8UM2myHe8K7s6hUnTMsX29n0B_9ebouKn12XtdvxbcGndeUTIsp6x2e3W--X-MynvL1reMkuL87XZ_Oga7UQWKmhClyiEZx0xCy0GQlpooVzYFyofQZJjCAlJFmOcaSskdpKAKNMlhD1QOdKvmL7RVnga8Zt6GIHUojcIChLw2IwSCgALaElaUYs7Gmd2q4OuW-HcZ029ojQacOq1LMq7Vg1Yh-HOTdtFY5_jj70BB9GdrQeseOepWknqLuULCq_WKkmI_Z-eE0i5u9NTIFExDQCqUDIZBK_-fuX37HH8_VykS6-rL4dsSeRD3tpYgSP2X51W-MJ4ZYqe9ts198KSuPO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+LiDAR+Point+Clouds+in+Autonomous+Driving%3A+A+Review&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Ying&rft.au=Ma%2C+Lingfei&rft.au=Zhong%2C+Zilong&rft.au=Liu%2C+Fei&rft.date=2021-08-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=32&rft.issue=8&rft.spage=3412&rft.epage=3432&rft_id=info:doi/10.1109%2FTNNLS.2020.3015992&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2020_3015992 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |