SmokeNet: Satellite Smoke Scene Detection Using Convolutional Neural Network with Spatial and Channel-Wise Attention

A variety of environmental analysis applications have been advanced by the use of satellite remote sensing. Smoke detection based on satellite imagery is imperative for wildfire detection and monitoring. However, the commonly used smoke detection methods mainly focus on smoke discrimination from a f...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 14; p. 1702
Main Authors Ba, Rui, Chen, Chen, Yuan, Jing, Song, Weiguo, Lo, Siuming
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 18.07.2019
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs11141702

Cover

Loading…
Abstract A variety of environmental analysis applications have been advanced by the use of satellite remote sensing. Smoke detection based on satellite imagery is imperative for wildfire detection and monitoring. However, the commonly used smoke detection methods mainly focus on smoke discrimination from a few specific classes, which reduces their applicability in different regions of various classes. To this end, in this paper, we present a new large-scale satellite imagery smoke detection benchmark based on Moderate Resolution Imaging Spectroradiometer (MODIS) data, namely USTC_SmokeRS, consisting of 6225 satellite images from six classes (i.e., cloud, dust, haze, land, seaside, and smoke) and covering various areas/regions over the world. To build a baseline for smoke detection in satellite imagery, we evaluate several state-of-the-art deep learning-based image classification models. Moreover, we propose a new convolution neural network (CNN) model, SmokeNet, which incorporates spatial and channel-wise attention in CNN to enhance feature representation for scene classification. The experimental results of our method using different proportions (16%, 32%, 48%, and 64%) of training images reveal that our model outperforms other approaches with higher accuracy and Kappa coefficient. Specifically, the proposed SmokeNet model trained with 64% training images achieves the best accuracy of 92.75% and Kappa coefficient of 0.9130. The model trained with 16% training images can also improve the classification accuracy and Kappa coefficient by at least 4.99% and 0.06, respectively, over the state-of-the-art models.
AbstractList A variety of environmental analysis applications have been advanced by the use of satellite remote sensing. Smoke detection based on satellite imagery is imperative for wildfire detection and monitoring. However, the commonly used smoke detection methods mainly focus on smoke discrimination from a few specific classes, which reduces their applicability in different regions of various classes. To this end, in this paper, we present a new large-scale satellite imagery smoke detection benchmark based on Moderate Resolution Imaging Spectroradiometer (MODIS) data, namely USTC_SmokeRS, consisting of 6225 satellite images from six classes (i.e., cloud, dust, haze, land, seaside, and smoke) and covering various areas/regions over the world. To build a baseline for smoke detection in satellite imagery, we evaluate several state-of-the-art deep learning-based image classification models. Moreover, we propose a new convolution neural network (CNN) model, SmokeNet, which incorporates spatial and channel-wise attention in CNN to enhance feature representation for scene classification. The experimental results of our method using different proportions (16%, 32%, 48%, and 64%) of training images reveal that our model outperforms other approaches with higher accuracy and Kappa coefficient. Specifically, the proposed SmokeNet model trained with 64% training images achieves the best accuracy of 92.75% and Kappa coefficient of 0.9130. The model trained with 16% training images can also improve the classification accuracy and Kappa coefficient by at least 4.99% and 0.06, respectively, over the state-of-the-art models.
Author Chen, Chen
Yuan, Jing
Song, Weiguo
Lo, Siuming
Ba, Rui
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0001-8889-3111
  surname: Ba
  fullname: Ba, Rui
– sequence: 2
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
– sequence: 3
  givenname: Jing
  surname: Yuan
  fullname: Yuan, Jing
– sequence: 4
  givenname: Weiguo
  surname: Song
  fullname: Song, Weiguo
– sequence: 5
  givenname: Siuming
  surname: Lo
  fullname: Lo, Siuming
BookMark eNptkU9rVDEUxR9SwVq78RME3IjwNP8mmbgrU62FUhdTcRnuJPe1mb5JxiTP4rdvZkZRitnccPidA_fcl91RTBG77jWj74Uw9EMujDHJNOXPumNONe8lN_zon_-L7rSUNW1PCGaoPO7qcpPu8RrrR7KEiuMYKpK9RpYOI5JzrOhqSJF8KyHekkWKP9M47RQYyTVOeT_qQ8r35CHUO7LcQg1NhOjJ4g5ixLH_HgqSs1ox7oyvuucDjAVPf8-T7ubzp5vFl_7q68Xl4uyqd8LI2nvqJHVcOO0598IJJ1eUAYAGoQakRgnKPeNKaaNBe6cGjvPZoKjUK8nFSXd5iPUJ1nabwwbyL5sg2L2Q8q2FXIMb0YIz3jvNtQYq-cwZOh-Aa25msFKD9C3r7SFrm9OPCUu1m1Bc6wsipqlYbuZKK6bkrKFvnqDrNOXWVqMElVQqIUWj6IFyOZWScbAuVNi1UzOE0TJqd0e1f4_aLO-eWP7s9B_4Edlzo2E
CitedBy_id crossref_primary_10_3390_pr12051039
crossref_primary_10_3389_ffgc_2023_1136969
crossref_primary_10_3390_plants12223835
crossref_primary_10_1016_j_firesaf_2022_103547
crossref_primary_10_3390_rs14163979
crossref_primary_10_3390_s23063161
crossref_primary_10_3390_e22040415
crossref_primary_10_3390_f15050839
crossref_primary_10_3390_rs13020196
crossref_primary_10_1109_LGRS_2023_3312317
crossref_primary_10_1088_1748_9326_acc8ee
crossref_primary_10_1109_ACCESS_2024_3406215
crossref_primary_10_1109_TITS_2022_3198047
crossref_primary_10_3390_rs14133047
crossref_primary_10_3390_fire4040075
crossref_primary_10_3390_agronomy11061202
crossref_primary_10_1016_j_neucom_2024_127975
crossref_primary_10_3390_fire6060225
crossref_primary_10_1186_s42408_024_00304_9
crossref_primary_10_3390_fire7030068
crossref_primary_10_1016_j_rsase_2024_101152
crossref_primary_10_3390_fire6120455
crossref_primary_10_3390_su142315690
crossref_primary_10_3390_s20226442
crossref_primary_10_3390_s22239384
crossref_primary_10_3390_rs14010045
crossref_primary_10_1109_JIOT_2023_3339476
crossref_primary_10_1109_TITS_2023_3239190
crossref_primary_10_3390_rs12162576
crossref_primary_10_3390_rs13183721
crossref_primary_10_1109_JSTARS_2023_3338448
crossref_primary_10_1016_j_scitotenv_2024_173273
crossref_primary_10_3390_rs14174324
crossref_primary_10_3390_s22197305
crossref_primary_10_3390_s21196519
crossref_primary_10_1109_LGRS_2022_3179013
crossref_primary_10_1016_j_isprsjprs_2021_06_002
crossref_primary_10_1016_j_isprsjprs_2022_01_013
crossref_primary_10_1109_ACCESS_2024_3448608
crossref_primary_10_1071_WF22220
crossref_primary_10_3390_rs14030688
crossref_primary_10_3390_s24175597
crossref_primary_10_1016_j_neucom_2025_129540
crossref_primary_10_1016_j_neunet_2024_107112
crossref_primary_10_1007_s00521_023_08809_1
crossref_primary_10_3390_ijgi10070488
crossref_primary_10_1155_2021_7212567
crossref_primary_10_3390_s24165184
crossref_primary_10_3390_land13101696
crossref_primary_10_1109_JSTARS_2022_3209541
crossref_primary_10_1007_s11760_024_03399_4
crossref_primary_10_3390_e24121748
crossref_primary_10_3390_rs14041007
crossref_primary_10_1007_s11334_022_00521_y
crossref_primary_10_1109_JSTARS_2024_3394574
crossref_primary_10_1117_1_JRS_18_044522
crossref_primary_10_3390_rs15051342
crossref_primary_10_3390_fire6050192
crossref_primary_10_3390_info15090538
crossref_primary_10_1016_j_jnlssr_2022_10_001
crossref_primary_10_1007_s10694_023_01531_3
crossref_primary_10_3390_f14030485
crossref_primary_10_3390_rs11171996
crossref_primary_10_1080_01431161_2020_1724346
crossref_primary_10_1007_s00521_024_10165_7
crossref_primary_10_1016_j_jag_2023_103257
crossref_primary_10_1016_j_jnlssr_2021_05_002
crossref_primary_10_3390_fire7100343
crossref_primary_10_1080_01431161_2024_2343430
crossref_primary_10_3390_rs14133159
crossref_primary_10_1109_ACCESS_2025_3534782
crossref_primary_10_2174_0118741495324737240722111958
crossref_primary_10_3390_electronics12143166
crossref_primary_10_1016_j_jag_2022_102865
crossref_primary_10_1080_10095020_2024_2347922
crossref_primary_10_1016_j_iot_2024_101171
crossref_primary_10_1109_OAJPE_2023_3337751
crossref_primary_10_3390_atmos11111241
crossref_primary_10_1109_ACCESS_2020_2982034
crossref_primary_10_1109_ACCESS_2021_3087736
crossref_primary_10_1016_j_eswa_2021_116114
crossref_primary_10_1016_j_rsase_2024_101283
crossref_primary_10_1109_OAJPE_2023_3337760
crossref_primary_10_3390_fire4040066
crossref_primary_10_1016_j_neucom_2021_09_026
crossref_primary_10_1139_er_2020_0019
crossref_primary_10_1109_TGRS_2022_3208120
crossref_primary_10_3389_fenvs_2022_794028
crossref_primary_10_3390_s23031512
crossref_primary_10_3390_f14030477
crossref_primary_10_3390_fire6040169
crossref_primary_10_1080_01431161_2021_1943040
crossref_primary_10_3390_rs14112701
crossref_primary_10_3390_f13030366
crossref_primary_10_1016_j_eswa_2023_120330
crossref_primary_10_1145_3648435
Cites_doi 10.1109/TGRS.2014.2357078
10.1080/014311698214424
10.1109/LGRS.2015.2475299
10.1007/978-3-319-46484-8_29
10.3390/rs10121992
10.1016/j.firesaf.2011.01.001
10.3390/s16081310
10.1016/S0034-4257(03)00184-6
10.3390/rs10050750
10.1080/01431160701236795
10.3390/rs2102347
10.1109/MGRS.2017.2762307
10.1016/j.patrec.2010.05.009
10.1007/978-3-642-75395-4_16
10.1109/CVPR.2017.667
10.3390/rs70201320
10.3390/rs11030326
10.1109/CVPR.2018.00678
10.3390/rs10030371
10.1016/j.rse.2006.11.009
10.3390/rs71114680
10.1109/TGRS.2017.2685945
10.1016/j.neucom.2016.09.010
10.1109/CVPR.2016.90
10.1109/LGRS.2015.2513443
10.1109/MGRS.2016.2540798
10.1109/CVPR.2018.00745
10.3390/rs70404473
10.1016/j.firesaf.2017.08.004
10.1016/j.proeng.2017.12.034
10.1109/TENCON.2017.8228302
10.1016/j.rse.2006.11.024
10.1109/CVPR.2015.7298594
10.1007/s11263-015-0816-y
10.1109/ACCESS.2019.2902606
10.3390/rs10060918
10.1109/5.726791
10.1109/CVPR.2017.243
10.1109/TGRS.2004.826801
10.1109/CVPR.2017.683
10.1038/35058500
10.1145/1869790.1869829
10.1080/01431160410001712954
10.1109/36.951076
10.14358/PERS.80.10.971
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs11141702
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ac9ddc7277a0425c908fa27295ab6f4d
10_3390_rs11141702
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-d0c40c23c7d22d3c3c4b01aaa7a36fe096302d1266797a7dc6f2e85f6047b423
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:29:10 EDT 2025
Fri Jul 11 03:10:00 EDT 2025
Fri Jul 25 12:18:05 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
Tue Jul 01 04:14:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-d0c40c23c7d22d3c3c4b01aaa7a36fe096302d1266797a7dc6f2e85f6047b423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8889-3111
OpenAccessLink https://doaj.org/article/ac9ddc7277a0425c908fa27295ab6f4d
PQID 2304046343
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_ac9ddc7277a0425c908fa27295ab6f4d
proquest_miscellaneous_2986761645
proquest_journals_2304046343
crossref_citationtrail_10_3390_rs11141702
crossref_primary_10_3390_rs11141702
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190718
PublicationDateYYYYMMDD 2019-07-18
PublicationDate_xml – month: 07
  year: 2019
  text: 20190718
  day: 18
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Giglio (ref_11) 2003; 87
Yuan (ref_23) 2011; 46
Chrysoulakis (ref_7) 2004; 25
ref_57
ref_12
ref_56
ref_55
Xu (ref_26) 2019; 7
ref_54
Wang (ref_13) 2007; 108
ref_53
ref_52
ref_51
Fazekas (ref_29) 2010; 31
ref_19
Yu (ref_64) 2017; 219
Chrysoulakis (ref_4) 2007; 108
ref_16
Randriambelo (ref_8) 1998; 19
Russakovsky (ref_37) 2015; 115
ref_61
ref_60
Zhang (ref_25) 2018; 211
ref_67
LeCun (ref_15) 1998; 86
ref_66
ref_65
ref_20
ref_62
Li (ref_6) 2015; 7
ref_28
Su (ref_58) 2017; 2017
Zou (ref_21) 2015; 12
Hu (ref_68) 2015; 7
Xu (ref_24) 2017; 93
ref_36
ref_35
ref_34
Stroppiana (ref_63) 2015; 7
ref_33
ref_30
Li (ref_14) 2014; 80
Zhang (ref_18) 2016; 4
Li (ref_59) 2004; 42
ref_38
Zhu (ref_31) 2016; 13
Lin (ref_27) 2017; 11
Li (ref_2) 2001; 39
Xia (ref_22) 2017; 55
Itti (ref_39) 2001; 2
Zhao (ref_3) 2010; 2
Zhu (ref_17) 2017; 5
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
ref_41
ref_40
ref_1
Xie (ref_10) 2007; 28
ref_49
ref_48
ref_9
Zhang (ref_32) 2015; 53
ref_5
References_xml – ident: ref_55
– volume: 53
  start-page: 2175
  year: 2015
  ident: ref_32
  article-title: Saliency-guided unsupervised feature learning for scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2357078
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref_58
  article-title: A method for the spectral analysis and identification of Fog, Haze and Dust storm using MODIS data
  publication-title: Atmos. Meas. Tech. Discuss.
– ident: ref_51
– volume: 19
  start-page: 2623
  year: 1998
  ident: ref_8
  article-title: An improved detection and characterization of active fires and smoke plumes in south-eastern Africa and Madagascar
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311698214424
– ident: ref_16
– ident: ref_65
– volume: 12
  start-page: 2321
  year: 2015
  ident: ref_21
  article-title: Deep learning based feature selection for remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2475299
– ident: ref_42
– ident: ref_61
– ident: ref_49
  doi: 10.1007/978-3-319-46484-8_29
– ident: ref_5
  doi: 10.3390/rs10121992
– volume: 46
  start-page: 132
  year: 2011
  ident: ref_23
  article-title: Video-based smoke detection with histogram sequence of LBP and LBPV pyramids
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2011.01.001
– ident: ref_57
  doi: 10.3390/s16081310
– volume: 87
  start-page: 273
  year: 2003
  ident: ref_11
  article-title: An Enhanced Contextual Fire Detection Algorithm for MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00184-6
– ident: ref_52
  doi: 10.3390/rs10050750
– volume: 28
  start-page: 2367
  year: 2007
  ident: ref_10
  article-title: Smoke plume detection in the eastern United States using MODIS
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701236795
– ident: ref_41
– ident: ref_66
– volume: 2
  start-page: 2347
  year: 2010
  ident: ref_3
  article-title: Dust and smoke detection for multi-channel imagers
  publication-title: Remote Sens.
  doi: 10.3390/rs2102347
– volume: 5
  start-page: 8
  year: 2017
  ident: ref_17
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
– volume: 31
  start-page: 1627
  year: 2010
  ident: ref_29
  article-title: DynTex: A comprehensive database of dynamic textures
  publication-title: Patt. Recogn. Lett.
  doi: 10.1016/j.patrec.2010.05.009
– ident: ref_62
– ident: ref_9
  doi: 10.1007/978-3-642-75395-4_16
– ident: ref_38
– ident: ref_45
– ident: ref_44
  doi: 10.1109/CVPR.2017.667
– volume: 7
  start-page: 1320
  year: 2015
  ident: ref_63
  article-title: Integration of Optical and SAR Data for Burned Area Mapping in Mediterranean Regions
  publication-title: Remote Sens.
  doi: 10.3390/rs70201320
– ident: ref_50
  doi: 10.3390/rs11030326
– ident: ref_67
  doi: 10.1109/CVPR.2018.00678
– ident: ref_20
– ident: ref_28
– ident: ref_53
– ident: ref_56
  doi: 10.3390/rs10030371
– volume: 108
  start-page: 163
  year: 2007
  ident: ref_13
  article-title: An improved algorithm for small and cool fire detection using MODIS data: A preliminary study in the southeastern United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.11.009
– volume: 7
  start-page: 14680
  year: 2015
  ident: ref_68
  article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 55
  start-page: 3965
  year: 2017
  ident: ref_22
  article-title: AID: A benchmark data set for performance evaluation of aerial scene classification
  publication-title: IEEE T. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2685945
– volume: 219
  start-page: 88
  year: 2017
  ident: ref_64
  article-title: Convolutional neural networks for hyperspectral image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.010
– ident: ref_35
  doi: 10.1109/CVPR.2016.90
– volume: 13
  start-page: 747
  year: 2016
  ident: ref_31
  article-title: Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2513443
– volume: 4
  start-page: 22
  year: 2016
  ident: ref_18
  article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– ident: ref_40
– ident: ref_48
  doi: 10.1109/CVPR.2018.00745
– volume: 7
  start-page: 4473
  year: 2015
  ident: ref_6
  article-title: Forest Fire Smoke Detection Using Back-Propagation Neural Network Based on MODIS Data
  publication-title: Remote Sens.
  doi: 10.3390/rs70404473
– volume: 93
  start-page: 53
  year: 2017
  ident: ref_24
  article-title: Deep domain adaptation based video smoke detection using synthetic smoke images
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2017.08.004
– volume: 211
  start-page: 441
  year: 2018
  ident: ref_25
  article-title: Wildland forest fire smoke detection based on faster R-CNN using synthetic smoke images
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2017.12.034
– ident: ref_30
  doi: 10.1109/TENCON.2017.8228302
– volume: 108
  start-page: 393
  year: 2007
  ident: ref_4
  article-title: An improved algorithm for the detection of plumes caused by natural or technological hazards using AVHRR imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.11.024
– volume: 11
  start-page: 5522
  year: 2017
  ident: ref_27
  article-title: Smoke detection in video sequences based on dynamic texture using volume local binary patterns
  publication-title: KSII Trans. Internet Inf. Syst.
– ident: ref_33
– ident: ref_34
  doi: 10.1109/CVPR.2015.7298594
– volume: 115
  start-page: 211
  year: 2015
  ident: ref_37
  article-title: ImageNet large scale visual recognition challenge
  publication-title: IJCV
  doi: 10.1007/s11263-015-0816-y
– ident: ref_54
– volume: 7
  start-page: 29471
  year: 2019
  ident: ref_26
  article-title: Adversarial Adaptation From Synthesis to Reality in Fast Detector for Smoke Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902606
– ident: ref_1
  doi: 10.3390/rs10060918
– ident: ref_46
– ident: ref_12
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_15
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: ref_36
  doi: 10.1109/CVPR.2017.243
– volume: 42
  start-page: 1300
  year: 2004
  ident: ref_59
  article-title: A technique for detecting burn scars using MODIS data
  publication-title: IEEE Trans. Geosci. Remote
  doi: 10.1109/TGRS.2004.826801
– ident: ref_47
  doi: 10.1109/CVPR.2017.683
– volume: 2
  start-page: 194
  year: 2001
  ident: ref_39
  article-title: Computational modelling of visual attention
  publication-title: Nat. Rev.
  doi: 10.1038/35058500
– ident: ref_19
  doi: 10.1145/1869790.1869829
– volume: 25
  start-page: 5247
  year: 2004
  ident: ref_7
  article-title: Using NOAA and FY imagery to track plumes caused by the 2003 bombing of Baghdad
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160410001712954
– ident: ref_43
– ident: ref_60
– volume: 39
  start-page: 1859
  year: 2001
  ident: ref_2
  article-title: Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery
  publication-title: IEEE T. Geosci. Remote Sens.
  doi: 10.1109/36.951076
– volume: 80
  start-page: 971
  year: 2014
  ident: ref_14
  article-title: Automatic Smoke Detection in MODIS Satellite Data based on K-means Clustering and Fisher Linear Discrimination
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.80.10.971
SSID ssj0000331904
Score 2.5282176
Snippet A variety of environmental analysis applications have been advanced by the use of satellite remote sensing. Smoke detection based on satellite imagery is...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1702
SubjectTerms Artificial neural networks
attention
Cameras
Classification
CNN
Coefficients
Convolution
Datasets
Deep learning
dust
environmental assessment
Forest fire detection
Haze
Identification
Image classification
Image detection
Machine learning
Methods
Model accuracy
moderate resolution imaging spectroradiometer
monitoring
Neural networks
Remote sensing
Satellite imagery
Satellites
scene classification
Sensors
Smoke
smoke detection
Spectroradiometers
State-of-the-art reviews
Surveillance
Training
wildfire
Wildfires
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxQxDI2gPcCl4lNsKSgILhyiZibZJMMFtaVVhcQKsUX0Nso4mYIoM2U3ReLfY2ez2wOI00gZK4fEdvwc55mxV13EMws8iAgGhA5BC9chSnHeO3TJASpFr5E_zMzpZ_3-fHpeEm7LUla59onZUYcRKEe-T8lLYrfS6u3VT0Fdo-h2tbTQuM220QU7BF_bh8ezj582WRapUMWkXvGSKsT3-4slWreubMmjrE-iTNj_lz_Oh8zJPbZTokN-sNrO--xWHB6wO6VR-dffD1ma_xi_x1lMb_jcZzLNFHke43NAt8XfxZSLqwaeiwH40Tj8KtqFExMVR_7k2m9OSVhOTYlRCbkfAqe3BkO8FF--LSM_SGlVC_mInZ0cnx2ditI4QYBqdBJBgpZQK7ChroMCBbqTlffeemX6iKhFyTpUeDbbxnobwPR1dNPeSG07jK8es61hHOITxr2je7YGETdEbfBvFU1FhDMuYKAr44S9Xq9hC4VUnHpbXLYILmi925v1nrCXG9mrFZXGP6UOaSs2EkR_nQfGxUVbrKn10KAaYehlPTkdaKTrfY04Yeo70-swYXvrjWyLTS7bGw2asBeb32hNdEXihzheo0zjjDUIIae7_5_iKbuLoRO9_xKV22NbaXEdn2F4krrnRQf_ALfc5x8
  priority: 102
  providerName: ProQuest
Title SmokeNet: Satellite Smoke Scene Detection Using Convolutional Neural Network with Spatial and Channel-Wise Attention
URI https://www.proquest.com/docview/2304046343
https://www.proquest.com/docview/2986761645
https://doaj.org/article/ac9ddc7277a0425c908fa27295ab6f4d
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BOcAFUR5ioV0ZwYVD1CT22k5v28dSIbpCbBG9Rc7YUREli7ouUv89M052qQQSF06W7ElkjcfzsMffALxpAtksdJgF1Jgp71VmG4pSrHOWVLLHQvJr5NO5Pvms3p9Pzm-V-uKcsB4euGfcnsOKviAraxzLF1a5bV1JLuHENbpVnrUv2bxbwVTSwZJEK1c9HqmkuH7vakW7WhVmOD9ZW6AE1P-HHk7GZfYIHg5eoZj2s9mGO6F7DPeHAuUXN08gLr4vv4V5iPti4RKIZgwi9YkFkroSRyGmpKpOpCQAcbjsfg5SRT9mCI7UpJxvwYevgosRk_AJ13nBbwy6cJl9-boKYhpjnwP5FM5mx2eHJ9lQMCFDWamY-RxVjqVE48vSS5SomrxwzhkndRsoWpF56QuyyaYyznjUbRnspNW5Mg35Vc9gq1t24TkIZ_l-raJIG4PSNFoEXTDQjPXk4OZhBG_XPKxxABPnmhaXNQUVzO_6N79H8HpD-6OH0Pgr1QEvxYaCYa9TBwlDPQhD_S9hGMHOeiHrYS-uaj72Zlw0JUfwajNMu4ivRlwXltdEU1ltNIWOkxf_Yx4v4QE5Vvw6LCvsDmzFq-uwS85LbMZw187ejeHe9Oj0w4Lag-P5x0_jJL2_ACLD8ug
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqcigXxKdYKGAEHDhEdWKv7SAhVFqWLW33sovozXJsBxAlKbsuqD-K_8iMk2wPIG49RYotH-zn55nx-A0hz6sAZ5azLgtOukx4LzJdgZeirdVAyd7lHF8jH8_k9KP4cDI-2SC_h7cwmFY5cGIiat86jJHvYPAS1a0Ef3P2I8OqUXi7OpTQ6GBxGC5-gcu2en2wD-v7oigm7xZ706yvKpA5XoqYeeYEcwV3yheF5447UbHcWqssl3UAk56zwudwcKlSWeWdrIugx7VkQlUCdQ6A8a8JzkvcUHryfh3SYRzwzEQnggrtbGe5AioRueqDNsOxl6oD_EX-6USb3CQ3elOU7nbYuUU2QnObbPVV0b9c3CFx_r39FmYhvqJzm5Q7Y6DpH5074Ei6H2LK5Gpoyjyge23zs4cyDIy6H-mTEs0pRnwpVkAGxFPbeIoPG5pwmn36ugp0N8Yu8fIuWVzFfN4jm03bhPuEWo2XeiW49y4ICa15kDmq22gPVjULI_JymEPjegVzLKRxasCTwfk2l_M9Is_Wfc863Y5_9nqLS7HugVrb6Ue7_Gz6rWusKwGzYOcpiwznSqZrW4BTMraVrIUfke1hIU1PACtzCdcRebpuhq2L9zG2Ce059Cm1VBL81fGD_w_xhGxNF8dH5uhgdviQXAebDR-eZbneJptxeR4egV0Uq8cJjZSYK0b_Hws0IX4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQRcEE-xtIARcOAQrRN77QQJobbbVUthVbFF9BY5tlNQS1J2XVB_Gv-OGcfZHkDceorkWD7Yn-flmW8IeVk50FlGm8QZaRJhrUjyCryUXOscRLI1Kcdq5I8zufdZvD8eH6-R330tDKZV9jIxCGrbGoyRjzB4iexWgo_qmBZxOJm-O_-RYAcpfGnt22l0EDlwl7_AfVu-3Z_AWb_Ksunu0c5eEjsMJIYXwieWGcFMxo2yWWa54UZULNVaK81l7cC85yyzKSgxVSitrJF15vJxLZlQlUDOA5D-6wqcIjYg69u7s8NPqwAP44BuJjpKVM4LNlosQbCIVMUQTq8EQ6-Av1RB0G_TO-R2NEzpVoeku2TNNffIzdgj_evlfeLn39tTN3P-DZ3rwOPpHQ1jdG5AYtKJ8yGvq6EhD4HutM3PCGxYGFlAwieknVOM_1Lshwz4p7qxFMscGneWfPm2dHTL-y4N8wE5uo4dfUgGTdu4R4TqHJ_4CnD2jRMS_qZOpsh1k1uwsZkbktf9HpYm8pljW42zEvwa3O_yar-H5MVq7nnH4vHPWdt4FKsZyLwdBtrFSRkvcqlNAQgGq09plHemYHmtM3BRxrqStbBDstkfZBnFwbK8Au-QPF_9houMrzO6ce0FzClyqSR4r-PH_1_iGbkByC8_7M8ONsgtMOCwCi1J800y8IsL9wSMJF89jXCkpLzmC_AHMbwnEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SmokeNet%3A+Satellite+Smoke+Scene+Detection+Using+Convolutional+Neural+Network+with+Spatial+and+Channel-Wise+Attention&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Rui+Ba&rft.au=Chen+Chen&rft.au=Jing+Yuan&rft.au=Weiguo+Song&rft.date=2019-07-18&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=14&rft.spage=1702&rft_id=info:doi/10.3390%2Frs11141702&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ac9ddc7277a0425c908fa27295ab6f4d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon