SmokeNet: Satellite Smoke Scene Detection Using Convolutional Neural Network with Spatial and Channel-Wise Attention
A variety of environmental analysis applications have been advanced by the use of satellite remote sensing. Smoke detection based on satellite imagery is imperative for wildfire detection and monitoring. However, the commonly used smoke detection methods mainly focus on smoke discrimination from a f...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 14; p. 1702 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
18.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs11141702 |
Cover
Loading…
Abstract | A variety of environmental analysis applications have been advanced by the use of satellite remote sensing. Smoke detection based on satellite imagery is imperative for wildfire detection and monitoring. However, the commonly used smoke detection methods mainly focus on smoke discrimination from a few specific classes, which reduces their applicability in different regions of various classes. To this end, in this paper, we present a new large-scale satellite imagery smoke detection benchmark based on Moderate Resolution Imaging Spectroradiometer (MODIS) data, namely USTC_SmokeRS, consisting of 6225 satellite images from six classes (i.e., cloud, dust, haze, land, seaside, and smoke) and covering various areas/regions over the world. To build a baseline for smoke detection in satellite imagery, we evaluate several state-of-the-art deep learning-based image classification models. Moreover, we propose a new convolution neural network (CNN) model, SmokeNet, which incorporates spatial and channel-wise attention in CNN to enhance feature representation for scene classification. The experimental results of our method using different proportions (16%, 32%, 48%, and 64%) of training images reveal that our model outperforms other approaches with higher accuracy and Kappa coefficient. Specifically, the proposed SmokeNet model trained with 64% training images achieves the best accuracy of 92.75% and Kappa coefficient of 0.9130. The model trained with 16% training images can also improve the classification accuracy and Kappa coefficient by at least 4.99% and 0.06, respectively, over the state-of-the-art models. |
---|---|
AbstractList | A variety of environmental analysis applications have been advanced by the use of satellite remote sensing. Smoke detection based on satellite imagery is imperative for wildfire detection and monitoring. However, the commonly used smoke detection methods mainly focus on smoke discrimination from a few specific classes, which reduces their applicability in different regions of various classes. To this end, in this paper, we present a new large-scale satellite imagery smoke detection benchmark based on Moderate Resolution Imaging Spectroradiometer (MODIS) data, namely USTC_SmokeRS, consisting of 6225 satellite images from six classes (i.e., cloud, dust, haze, land, seaside, and smoke) and covering various areas/regions over the world. To build a baseline for smoke detection in satellite imagery, we evaluate several state-of-the-art deep learning-based image classification models. Moreover, we propose a new convolution neural network (CNN) model, SmokeNet, which incorporates spatial and channel-wise attention in CNN to enhance feature representation for scene classification. The experimental results of our method using different proportions (16%, 32%, 48%, and 64%) of training images reveal that our model outperforms other approaches with higher accuracy and Kappa coefficient. Specifically, the proposed SmokeNet model trained with 64% training images achieves the best accuracy of 92.75% and Kappa coefficient of 0.9130. The model trained with 16% training images can also improve the classification accuracy and Kappa coefficient by at least 4.99% and 0.06, respectively, over the state-of-the-art models. |
Author | Chen, Chen Yuan, Jing Song, Weiguo Lo, Siuming Ba, Rui |
Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0001-8889-3111 surname: Ba fullname: Ba, Rui – sequence: 2 givenname: Chen surname: Chen fullname: Chen, Chen – sequence: 3 givenname: Jing surname: Yuan fullname: Yuan, Jing – sequence: 4 givenname: Weiguo surname: Song fullname: Song, Weiguo – sequence: 5 givenname: Siuming surname: Lo fullname: Lo, Siuming |
BookMark | eNptkU9rVDEUxR9SwVq78RME3IjwNP8mmbgrU62FUhdTcRnuJPe1mb5JxiTP4rdvZkZRitnccPidA_fcl91RTBG77jWj74Uw9EMujDHJNOXPumNONe8lN_zon_-L7rSUNW1PCGaoPO7qcpPu8RrrR7KEiuMYKpK9RpYOI5JzrOhqSJF8KyHekkWKP9M47RQYyTVOeT_qQ8r35CHUO7LcQg1NhOjJ4g5ixLH_HgqSs1ox7oyvuucDjAVPf8-T7ubzp5vFl_7q68Xl4uyqd8LI2nvqJHVcOO0598IJJ1eUAYAGoQakRgnKPeNKaaNBe6cGjvPZoKjUK8nFSXd5iPUJ1nabwwbyL5sg2L2Q8q2FXIMb0YIz3jvNtQYq-cwZOh-Aa25msFKD9C3r7SFrm9OPCUu1m1Bc6wsipqlYbuZKK6bkrKFvnqDrNOXWVqMElVQqIUWj6IFyOZWScbAuVNi1UzOE0TJqd0e1f4_aLO-eWP7s9B_4Edlzo2E |
CitedBy_id | crossref_primary_10_3390_pr12051039 crossref_primary_10_3389_ffgc_2023_1136969 crossref_primary_10_3390_plants12223835 crossref_primary_10_1016_j_firesaf_2022_103547 crossref_primary_10_3390_rs14163979 crossref_primary_10_3390_s23063161 crossref_primary_10_3390_e22040415 crossref_primary_10_3390_f15050839 crossref_primary_10_3390_rs13020196 crossref_primary_10_1109_LGRS_2023_3312317 crossref_primary_10_1088_1748_9326_acc8ee crossref_primary_10_1109_ACCESS_2024_3406215 crossref_primary_10_1109_TITS_2022_3198047 crossref_primary_10_3390_rs14133047 crossref_primary_10_3390_fire4040075 crossref_primary_10_3390_agronomy11061202 crossref_primary_10_1016_j_neucom_2024_127975 crossref_primary_10_3390_fire6060225 crossref_primary_10_1186_s42408_024_00304_9 crossref_primary_10_3390_fire7030068 crossref_primary_10_1016_j_rsase_2024_101152 crossref_primary_10_3390_fire6120455 crossref_primary_10_3390_su142315690 crossref_primary_10_3390_s20226442 crossref_primary_10_3390_s22239384 crossref_primary_10_3390_rs14010045 crossref_primary_10_1109_JIOT_2023_3339476 crossref_primary_10_1109_TITS_2023_3239190 crossref_primary_10_3390_rs12162576 crossref_primary_10_3390_rs13183721 crossref_primary_10_1109_JSTARS_2023_3338448 crossref_primary_10_1016_j_scitotenv_2024_173273 crossref_primary_10_3390_rs14174324 crossref_primary_10_3390_s22197305 crossref_primary_10_3390_s21196519 crossref_primary_10_1109_LGRS_2022_3179013 crossref_primary_10_1016_j_isprsjprs_2021_06_002 crossref_primary_10_1016_j_isprsjprs_2022_01_013 crossref_primary_10_1109_ACCESS_2024_3448608 crossref_primary_10_1071_WF22220 crossref_primary_10_3390_rs14030688 crossref_primary_10_3390_s24175597 crossref_primary_10_1016_j_neucom_2025_129540 crossref_primary_10_1016_j_neunet_2024_107112 crossref_primary_10_1007_s00521_023_08809_1 crossref_primary_10_3390_ijgi10070488 crossref_primary_10_1155_2021_7212567 crossref_primary_10_3390_s24165184 crossref_primary_10_3390_land13101696 crossref_primary_10_1109_JSTARS_2022_3209541 crossref_primary_10_1007_s11760_024_03399_4 crossref_primary_10_3390_e24121748 crossref_primary_10_3390_rs14041007 crossref_primary_10_1007_s11334_022_00521_y crossref_primary_10_1109_JSTARS_2024_3394574 crossref_primary_10_1117_1_JRS_18_044522 crossref_primary_10_3390_rs15051342 crossref_primary_10_3390_fire6050192 crossref_primary_10_3390_info15090538 crossref_primary_10_1016_j_jnlssr_2022_10_001 crossref_primary_10_1007_s10694_023_01531_3 crossref_primary_10_3390_f14030485 crossref_primary_10_3390_rs11171996 crossref_primary_10_1080_01431161_2020_1724346 crossref_primary_10_1007_s00521_024_10165_7 crossref_primary_10_1016_j_jag_2023_103257 crossref_primary_10_1016_j_jnlssr_2021_05_002 crossref_primary_10_3390_fire7100343 crossref_primary_10_1080_01431161_2024_2343430 crossref_primary_10_3390_rs14133159 crossref_primary_10_1109_ACCESS_2025_3534782 crossref_primary_10_2174_0118741495324737240722111958 crossref_primary_10_3390_electronics12143166 crossref_primary_10_1016_j_jag_2022_102865 crossref_primary_10_1080_10095020_2024_2347922 crossref_primary_10_1016_j_iot_2024_101171 crossref_primary_10_1109_OAJPE_2023_3337751 crossref_primary_10_3390_atmos11111241 crossref_primary_10_1109_ACCESS_2020_2982034 crossref_primary_10_1109_ACCESS_2021_3087736 crossref_primary_10_1016_j_eswa_2021_116114 crossref_primary_10_1016_j_rsase_2024_101283 crossref_primary_10_1109_OAJPE_2023_3337760 crossref_primary_10_3390_fire4040066 crossref_primary_10_1016_j_neucom_2021_09_026 crossref_primary_10_1139_er_2020_0019 crossref_primary_10_1109_TGRS_2022_3208120 crossref_primary_10_3389_fenvs_2022_794028 crossref_primary_10_3390_s23031512 crossref_primary_10_3390_f14030477 crossref_primary_10_3390_fire6040169 crossref_primary_10_1080_01431161_2021_1943040 crossref_primary_10_3390_rs14112701 crossref_primary_10_3390_f13030366 crossref_primary_10_1016_j_eswa_2023_120330 crossref_primary_10_1145_3648435 |
Cites_doi | 10.1109/TGRS.2014.2357078 10.1080/014311698214424 10.1109/LGRS.2015.2475299 10.1007/978-3-319-46484-8_29 10.3390/rs10121992 10.1016/j.firesaf.2011.01.001 10.3390/s16081310 10.1016/S0034-4257(03)00184-6 10.3390/rs10050750 10.1080/01431160701236795 10.3390/rs2102347 10.1109/MGRS.2017.2762307 10.1016/j.patrec.2010.05.009 10.1007/978-3-642-75395-4_16 10.1109/CVPR.2017.667 10.3390/rs70201320 10.3390/rs11030326 10.1109/CVPR.2018.00678 10.3390/rs10030371 10.1016/j.rse.2006.11.009 10.3390/rs71114680 10.1109/TGRS.2017.2685945 10.1016/j.neucom.2016.09.010 10.1109/CVPR.2016.90 10.1109/LGRS.2015.2513443 10.1109/MGRS.2016.2540798 10.1109/CVPR.2018.00745 10.3390/rs70404473 10.1016/j.firesaf.2017.08.004 10.1016/j.proeng.2017.12.034 10.1109/TENCON.2017.8228302 10.1016/j.rse.2006.11.024 10.1109/CVPR.2015.7298594 10.1007/s11263-015-0816-y 10.1109/ACCESS.2019.2902606 10.3390/rs10060918 10.1109/5.726791 10.1109/CVPR.2017.243 10.1109/TGRS.2004.826801 10.1109/CVPR.2017.683 10.1038/35058500 10.1145/1869790.1869829 10.1080/01431160410001712954 10.1109/36.951076 10.14358/PERS.80.10.971 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs11141702 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_ac9ddc7277a0425c908fa27295ab6f4d 10_3390_rs11141702 |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-d0c40c23c7d22d3c3c4b01aaa7a36fe096302d1266797a7dc6f2e85f6047b423 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:29:10 EDT 2025 Fri Jul 11 03:10:00 EDT 2025 Fri Jul 25 12:18:05 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 Tue Jul 01 04:14:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-d0c40c23c7d22d3c3c4b01aaa7a36fe096302d1266797a7dc6f2e85f6047b423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8889-3111 |
OpenAccessLink | https://doaj.org/article/ac9ddc7277a0425c908fa27295ab6f4d |
PQID | 2304046343 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ac9ddc7277a0425c908fa27295ab6f4d proquest_miscellaneous_2986761645 proquest_journals_2304046343 crossref_citationtrail_10_3390_rs11141702 crossref_primary_10_3390_rs11141702 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190718 |
PublicationDateYYYYMMDD | 2019-07-18 |
PublicationDate_xml | – month: 07 year: 2019 text: 20190718 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Giglio (ref_11) 2003; 87 Yuan (ref_23) 2011; 46 Chrysoulakis (ref_7) 2004; 25 ref_57 ref_12 ref_56 ref_55 Xu (ref_26) 2019; 7 ref_54 Wang (ref_13) 2007; 108 ref_53 ref_52 ref_51 Fazekas (ref_29) 2010; 31 ref_19 Yu (ref_64) 2017; 219 Chrysoulakis (ref_4) 2007; 108 ref_16 Randriambelo (ref_8) 1998; 19 Russakovsky (ref_37) 2015; 115 ref_61 ref_60 Zhang (ref_25) 2018; 211 ref_67 LeCun (ref_15) 1998; 86 ref_66 ref_65 ref_20 ref_62 Li (ref_6) 2015; 7 ref_28 Su (ref_58) 2017; 2017 Zou (ref_21) 2015; 12 Hu (ref_68) 2015; 7 Xu (ref_24) 2017; 93 ref_36 ref_35 ref_34 Stroppiana (ref_63) 2015; 7 ref_33 ref_30 Li (ref_14) 2014; 80 Zhang (ref_18) 2016; 4 Li (ref_59) 2004; 42 ref_38 Zhu (ref_31) 2016; 13 Lin (ref_27) 2017; 11 Li (ref_2) 2001; 39 Xia (ref_22) 2017; 55 Itti (ref_39) 2001; 2 Zhao (ref_3) 2010; 2 Zhu (ref_17) 2017; 5 ref_47 ref_46 ref_45 ref_44 ref_43 ref_42 ref_41 ref_40 ref_1 Xie (ref_10) 2007; 28 ref_49 ref_48 ref_9 Zhang (ref_32) 2015; 53 ref_5 |
References_xml | – ident: ref_55 – volume: 53 start-page: 2175 year: 2015 ident: ref_32 article-title: Saliency-guided unsupervised feature learning for scene classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2357078 – volume: 2017 start-page: 1 year: 2017 ident: ref_58 article-title: A method for the spectral analysis and identification of Fog, Haze and Dust storm using MODIS data publication-title: Atmos. Meas. Tech. Discuss. – ident: ref_51 – volume: 19 start-page: 2623 year: 1998 ident: ref_8 article-title: An improved detection and characterization of active fires and smoke plumes in south-eastern Africa and Madagascar publication-title: Int. J. Remote Sens. doi: 10.1080/014311698214424 – ident: ref_16 – ident: ref_65 – volume: 12 start-page: 2321 year: 2015 ident: ref_21 article-title: Deep learning based feature selection for remote sensing scene classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2475299 – ident: ref_42 – ident: ref_61 – ident: ref_49 doi: 10.1007/978-3-319-46484-8_29 – ident: ref_5 doi: 10.3390/rs10121992 – volume: 46 start-page: 132 year: 2011 ident: ref_23 article-title: Video-based smoke detection with histogram sequence of LBP and LBPV pyramids publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2011.01.001 – ident: ref_57 doi: 10.3390/s16081310 – volume: 87 start-page: 273 year: 2003 ident: ref_11 article-title: An Enhanced Contextual Fire Detection Algorithm for MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00184-6 – ident: ref_52 doi: 10.3390/rs10050750 – volume: 28 start-page: 2367 year: 2007 ident: ref_10 article-title: Smoke plume detection in the eastern United States using MODIS publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701236795 – ident: ref_41 – ident: ref_66 – volume: 2 start-page: 2347 year: 2010 ident: ref_3 article-title: Dust and smoke detection for multi-channel imagers publication-title: Remote Sens. doi: 10.3390/rs2102347 – volume: 5 start-page: 8 year: 2017 ident: ref_17 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – volume: 31 start-page: 1627 year: 2010 ident: ref_29 article-title: DynTex: A comprehensive database of dynamic textures publication-title: Patt. Recogn. Lett. doi: 10.1016/j.patrec.2010.05.009 – ident: ref_62 – ident: ref_9 doi: 10.1007/978-3-642-75395-4_16 – ident: ref_38 – ident: ref_45 – ident: ref_44 doi: 10.1109/CVPR.2017.667 – volume: 7 start-page: 1320 year: 2015 ident: ref_63 article-title: Integration of Optical and SAR Data for Burned Area Mapping in Mediterranean Regions publication-title: Remote Sens. doi: 10.3390/rs70201320 – ident: ref_50 doi: 10.3390/rs11030326 – ident: ref_67 doi: 10.1109/CVPR.2018.00678 – ident: ref_20 – ident: ref_28 – ident: ref_53 – ident: ref_56 doi: 10.3390/rs10030371 – volume: 108 start-page: 163 year: 2007 ident: ref_13 article-title: An improved algorithm for small and cool fire detection using MODIS data: A preliminary study in the southeastern United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.11.009 – volume: 7 start-page: 14680 year: 2015 ident: ref_68 article-title: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs71114680 – volume: 55 start-page: 3965 year: 2017 ident: ref_22 article-title: AID: A benchmark data set for performance evaluation of aerial scene classification publication-title: IEEE T. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2685945 – volume: 219 start-page: 88 year: 2017 ident: ref_64 article-title: Convolutional neural networks for hyperspectral image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.010 – ident: ref_35 doi: 10.1109/CVPR.2016.90 – volume: 13 start-page: 747 year: 2016 ident: ref_31 article-title: Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2513443 – volume: 4 start-page: 22 year: 2016 ident: ref_18 article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – ident: ref_40 – ident: ref_48 doi: 10.1109/CVPR.2018.00745 – volume: 7 start-page: 4473 year: 2015 ident: ref_6 article-title: Forest Fire Smoke Detection Using Back-Propagation Neural Network Based on MODIS Data publication-title: Remote Sens. doi: 10.3390/rs70404473 – volume: 93 start-page: 53 year: 2017 ident: ref_24 article-title: Deep domain adaptation based video smoke detection using synthetic smoke images publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2017.08.004 – volume: 211 start-page: 441 year: 2018 ident: ref_25 article-title: Wildland forest fire smoke detection based on faster R-CNN using synthetic smoke images publication-title: Proc. Eng. doi: 10.1016/j.proeng.2017.12.034 – ident: ref_30 doi: 10.1109/TENCON.2017.8228302 – volume: 108 start-page: 393 year: 2007 ident: ref_4 article-title: An improved algorithm for the detection of plumes caused by natural or technological hazards using AVHRR imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.11.024 – volume: 11 start-page: 5522 year: 2017 ident: ref_27 article-title: Smoke detection in video sequences based on dynamic texture using volume local binary patterns publication-title: KSII Trans. Internet Inf. Syst. – ident: ref_33 – ident: ref_34 doi: 10.1109/CVPR.2015.7298594 – volume: 115 start-page: 211 year: 2015 ident: ref_37 article-title: ImageNet large scale visual recognition challenge publication-title: IJCV doi: 10.1007/s11263-015-0816-y – ident: ref_54 – volume: 7 start-page: 29471 year: 2019 ident: ref_26 article-title: Adversarial Adaptation From Synthesis to Reality in Fast Detector for Smoke Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902606 – ident: ref_1 doi: 10.3390/rs10060918 – ident: ref_46 – ident: ref_12 – volume: 86 start-page: 2278 year: 1998 ident: ref_15 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: ref_36 doi: 10.1109/CVPR.2017.243 – volume: 42 start-page: 1300 year: 2004 ident: ref_59 article-title: A technique for detecting burn scars using MODIS data publication-title: IEEE Trans. Geosci. Remote doi: 10.1109/TGRS.2004.826801 – ident: ref_47 doi: 10.1109/CVPR.2017.683 – volume: 2 start-page: 194 year: 2001 ident: ref_39 article-title: Computational modelling of visual attention publication-title: Nat. Rev. doi: 10.1038/35058500 – ident: ref_19 doi: 10.1145/1869790.1869829 – volume: 25 start-page: 5247 year: 2004 ident: ref_7 article-title: Using NOAA and FY imagery to track plumes caused by the 2003 bombing of Baghdad publication-title: Int. J. Remote Sens. doi: 10.1080/01431160410001712954 – ident: ref_43 – ident: ref_60 – volume: 39 start-page: 1859 year: 2001 ident: ref_2 article-title: Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery publication-title: IEEE T. Geosci. Remote Sens. doi: 10.1109/36.951076 – volume: 80 start-page: 971 year: 2014 ident: ref_14 article-title: Automatic Smoke Detection in MODIS Satellite Data based on K-means Clustering and Fisher Linear Discrimination publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.80.10.971 |
SSID | ssj0000331904 |
Score | 2.5282176 |
Snippet | A variety of environmental analysis applications have been advanced by the use of satellite remote sensing. Smoke detection based on satellite imagery is... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1702 |
SubjectTerms | Artificial neural networks attention Cameras Classification CNN Coefficients Convolution Datasets Deep learning dust environmental assessment Forest fire detection Haze Identification Image classification Image detection Machine learning Methods Model accuracy moderate resolution imaging spectroradiometer monitoring Neural networks Remote sensing Satellite imagery Satellites scene classification Sensors Smoke smoke detection Spectroradiometers State-of-the-art reviews Surveillance Training wildfire Wildfires |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxQxDI2gPcCl4lNsKSgILhyiZibZJMMFtaVVhcQKsUX0Nso4mYIoM2U3ReLfY2ez2wOI00gZK4fEdvwc55mxV13EMws8iAgGhA5BC9chSnHeO3TJASpFr5E_zMzpZ_3-fHpeEm7LUla59onZUYcRKEe-T8lLYrfS6u3VT0Fdo-h2tbTQuM220QU7BF_bh8ezj582WRapUMWkXvGSKsT3-4slWreubMmjrE-iTNj_lz_Oh8zJPbZTokN-sNrO--xWHB6wO6VR-dffD1ma_xi_x1lMb_jcZzLNFHke43NAt8XfxZSLqwaeiwH40Tj8KtqFExMVR_7k2m9OSVhOTYlRCbkfAqe3BkO8FF--LSM_SGlVC_mInZ0cnx2ditI4QYBqdBJBgpZQK7ChroMCBbqTlffeemX6iKhFyTpUeDbbxnobwPR1dNPeSG07jK8es61hHOITxr2je7YGETdEbfBvFU1FhDMuYKAr44S9Xq9hC4VUnHpbXLYILmi925v1nrCXG9mrFZXGP6UOaSs2EkR_nQfGxUVbrKn10KAaYehlPTkdaKTrfY04Yeo70-swYXvrjWyLTS7bGw2asBeb32hNdEXihzheo0zjjDUIIae7_5_iKbuLoRO9_xKV22NbaXEdn2F4krrnRQf_ALfc5x8 priority: 102 providerName: ProQuest |
Title | SmokeNet: Satellite Smoke Scene Detection Using Convolutional Neural Network with Spatial and Channel-Wise Attention |
URI | https://www.proquest.com/docview/2304046343 https://www.proquest.com/docview/2986761645 https://doaj.org/article/ac9ddc7277a0425c908fa27295ab6f4d |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BOcAFUR5ioV0ZwYVD1CT22k5v28dSIbpCbBG9Rc7YUREli7ouUv89M052qQQSF06W7ElkjcfzsMffALxpAtksdJgF1Jgp71VmG4pSrHOWVLLHQvJr5NO5Pvms3p9Pzm-V-uKcsB4euGfcnsOKviAraxzLF1a5bV1JLuHENbpVnrUv2bxbwVTSwZJEK1c9HqmkuH7vakW7WhVmOD9ZW6AE1P-HHk7GZfYIHg5eoZj2s9mGO6F7DPeHAuUXN08gLr4vv4V5iPti4RKIZgwi9YkFkroSRyGmpKpOpCQAcbjsfg5SRT9mCI7UpJxvwYevgosRk_AJ13nBbwy6cJl9-boKYhpjnwP5FM5mx2eHJ9lQMCFDWamY-RxVjqVE48vSS5SomrxwzhkndRsoWpF56QuyyaYyznjUbRnspNW5Mg35Vc9gq1t24TkIZ_l-raJIG4PSNFoEXTDQjPXk4OZhBG_XPKxxABPnmhaXNQUVzO_6N79H8HpD-6OH0Pgr1QEvxYaCYa9TBwlDPQhD_S9hGMHOeiHrYS-uaj72Zlw0JUfwajNMu4ivRlwXltdEU1ltNIWOkxf_Yx4v4QE5Vvw6LCvsDmzFq-uwS85LbMZw187ejeHe9Oj0w4Lag-P5x0_jJL2_ACLD8ug |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqcigXxKdYKGAEHDhEdWKv7SAhVFqWLW33sovozXJsBxAlKbsuqD-K_8iMk2wPIG49RYotH-zn55nx-A0hz6sAZ5azLgtOukx4LzJdgZeirdVAyd7lHF8jH8_k9KP4cDI-2SC_h7cwmFY5cGIiat86jJHvYPAS1a0Ef3P2I8OqUXi7OpTQ6GBxGC5-gcu2en2wD-v7oigm7xZ706yvKpA5XoqYeeYEcwV3yheF5447UbHcWqssl3UAk56zwudwcKlSWeWdrIugx7VkQlUCdQ6A8a8JzkvcUHryfh3SYRzwzEQnggrtbGe5AioRueqDNsOxl6oD_EX-6USb3CQ3elOU7nbYuUU2QnObbPVV0b9c3CFx_r39FmYhvqJzm5Q7Y6DpH5074Ei6H2LK5Gpoyjyge23zs4cyDIy6H-mTEs0pRnwpVkAGxFPbeIoPG5pwmn36ugp0N8Yu8fIuWVzFfN4jm03bhPuEWo2XeiW49y4ICa15kDmq22gPVjULI_JymEPjegVzLKRxasCTwfk2l_M9Is_Wfc863Y5_9nqLS7HugVrb6Ue7_Gz6rWusKwGzYOcpiwznSqZrW4BTMraVrIUfke1hIU1PACtzCdcRebpuhq2L9zG2Ce059Cm1VBL81fGD_w_xhGxNF8dH5uhgdviQXAebDR-eZbneJptxeR4egV0Uq8cJjZSYK0b_Hws0IX4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQRcEE-xtIARcOAQrRN77QQJobbbVUthVbFF9BY5tlNQS1J2XVB_Gv-OGcfZHkDceorkWD7Yn-flmW8IeVk50FlGm8QZaRJhrUjyCryUXOscRLI1Kcdq5I8zufdZvD8eH6-R330tDKZV9jIxCGrbGoyRjzB4iexWgo_qmBZxOJm-O_-RYAcpfGnt22l0EDlwl7_AfVu-3Z_AWb_Ksunu0c5eEjsMJIYXwieWGcFMxo2yWWa54UZULNVaK81l7cC85yyzKSgxVSitrJF15vJxLZlQlUDOA5D-6wqcIjYg69u7s8NPqwAP44BuJjpKVM4LNlosQbCIVMUQTq8EQ6-Av1RB0G_TO-R2NEzpVoeku2TNNffIzdgj_evlfeLn39tTN3P-DZ3rwOPpHQ1jdG5AYtKJ8yGvq6EhD4HutM3PCGxYGFlAwieknVOM_1Lshwz4p7qxFMscGneWfPm2dHTL-y4N8wE5uo4dfUgGTdu4R4TqHJ_4CnD2jRMS_qZOpsh1k1uwsZkbktf9HpYm8pljW42zEvwa3O_yar-H5MVq7nnH4vHPWdt4FKsZyLwdBtrFSRkvcqlNAQgGq09plHemYHmtM3BRxrqStbBDstkfZBnFwbK8Au-QPF_9houMrzO6ce0FzClyqSR4r-PH_1_iGbkByC8_7M8ONsgtMOCwCi1J800y8IsL9wSMJF89jXCkpLzmC_AHMbwnEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SmokeNet%3A+Satellite+Smoke+Scene+Detection+Using+Convolutional+Neural+Network+with+Spatial+and+Channel-Wise+Attention&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Rui+Ba&rft.au=Chen+Chen&rft.au=Jing+Yuan&rft.au=Weiguo+Song&rft.date=2019-07-18&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=14&rft.spage=1702&rft_id=info:doi/10.3390%2Frs11141702&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ac9ddc7277a0425c908fa27295ab6f4d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |