Estimating the Routing Parameter of the Xin’anjiang Hydrological Model Based on Remote Sensing Data and Machine Learning
The parameters of hydrological models should be determined before applying those models to estimate or predict hydrological processes. The Xin’anjiang (XAJ) hydrological model is widely used throughout China. Since the prediction in ungauged basins (PUB) era, the regionalization of the XAJ model par...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 18; p. 4609 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The parameters of hydrological models should be determined before applying those models to estimate or predict hydrological processes. The Xin’anjiang (XAJ) hydrological model is widely used throughout China. Since the prediction in ungauged basins (PUB) era, the regionalization of the XAJ model parameters has been a subject of intense focus; nevertheless, while many efforts have targeted parameters related to runoff yield using in-site data sets, classic regression has predominantly been applied. In this paper, we employed remotely sensed underlying surface data and a machine learning approach to establish models for estimating the runoff routing parameter, namely, CS, of the XAJ model. The study was conducted on 114 catchments from the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) data set, and the relationships between CS and various underlying surface characteristics were explored by a gradient-boosted regression tree (GBRT). The results showed that the drainage density, stream source density and area of the catchment were the three major factors with the most significant impact on CS. The best correlation coefficient (r), root mean square error (RMSE) and mean absolute error (MAE) between the GBRT-estimated and calibrated CS were 0.96, 0.06 and 0.04, respectively, verifying the good performance of GBRT in estimating CS. Although bias was noted between the GBRT-estimated and calibrated CS, runoff simulations using the GBRT-estimated CS could still achieve results comparable to those using the calibrated CS. Further validations based on two catchments in China confirmed the overall robustness and accuracy of simulating runoff processes using the GBRT-estimated CS. Our results confirm the following hypotheses: (1) with the help of large sample of catchments and associated remote sensing data, the ML-based approach can capture the nonstationary and nonlinear relationships between CS and the underlying surface characteristics and (2) CS estimated by ML from large samples has a robustness that can guarantee the overall performance of the XAJ mode. This study advances the methodology for quantitatively estimating the XAJ model parameters and can be extended to other parameters or other models. |
---|---|
AbstractList | The parameters of hydrological models should be determined before applying those models to estimate or predict hydrological processes. The Xin’anjiang (XAJ) hydrological model is widely used throughout China. Since the prediction in ungauged basins (PUB) era, the regionalization of the XAJ model parameters has been a subject of intense focus; nevertheless, while many efforts have targeted parameters related to runoff yield using in-site data sets, classic regression has predominantly been applied. In this paper, we employed remotely sensed underlying surface data and a machine learning approach to establish models for estimating the runoff routing parameter, namely, CS, of the XAJ model. The study was conducted on 114 catchments from the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) data set, and the relationships between CS and various underlying surface characteristics were explored by a gradient-boosted regression tree (GBRT). The results showed that the drainage density, stream source density and area of the catchment were the three major factors with the most significant impact on CS. The best correlation coefficient (r), root mean square error (RMSE) and mean absolute error (MAE) between the GBRT-estimated and calibrated CS were 0.96, 0.06 and 0.04, respectively, verifying the good performance of GBRT in estimating CS. Although bias was noted between the GBRT-estimated and calibrated CS, runoff simulations using the GBRT-estimated CS could still achieve results comparable to those using the calibrated CS. Further validations based on two catchments in China confirmed the overall robustness and accuracy of simulating runoff processes using the GBRT-estimated CS. Our results confirm the following hypotheses: (1) with the help of large sample of catchments and associated remote sensing data, the ML-based approach can capture the nonstationary and nonlinear relationships between CS and the underlying surface characteristics and (2) CS estimated by ML from large samples has a robustness that can guarantee the overall performance of the XAJ mode. This study advances the methodology for quantitatively estimating the XAJ model parameters and can be extended to other parameters or other models. |
Author | Qu, Bo Xia, Dazhong Fang, Yuanhao Zhang, Xingnan Huang, Yizhi Zhang, Tao |
Author_xml | – sequence: 1 givenname: Yuanhao orcidid: 0000-0002-6510-2302 surname: Fang fullname: Fang, Yuanhao – sequence: 2 givenname: Yizhi surname: Huang fullname: Huang, Yizhi – sequence: 3 givenname: Bo surname: Qu fullname: Qu, Bo – sequence: 4 givenname: Xingnan surname: Zhang fullname: Zhang, Xingnan – sequence: 5 givenname: Tao surname: Zhang fullname: Zhang, Tao – sequence: 6 givenname: Dazhong surname: Xia fullname: Xia, Dazhong |
BookMark | eNptkd9qVDEQxoNUsK698QkC3oiwmn8n2VxqW21hi1IVvDtMkjnbLGeTmmQv6pWv4ev5JJ7dFZViIGTI95uPGb7H5CjlhIQ85eyllJa9KpUrvlCa2QfkWDAj5kpYcfRP_Yic1Lpm05GSW6aOybfz2uIGWkwr2m6QXuftvv4ABTbYsNA87IUvMf38_gPSOsIkX9yFkse8ih5GepUDjvQNVAw0J3qNm9yQfsRUd05n0IBCCvQK_E1MSJcIJU3KE_JwgLHiye93Rj6_Pf90ejFfvn93efp6OffSqjb3QYOxlnUmGK0dH7iHznEpBpTOO4EGrZNcMRQI2hivugFZ8E53Xej0Qs7I5cE3ZFj3t2Vat9z1GWK__8hl1UNp0Y_YK7tAZmQQFrUyirswMNdp5OAkOMEmr-cHr9uSv26xtn4Tq8dxhIR5W3thhORC7u6MPLuHrvO2pGnTieJaMy3lbrgXB8qXXGvB4c-AnPW7VPu_qU4wuwf72KbscmoF4vi_ll8mq6bO |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2025_133055 crossref_primary_10_3390_atmos13101688 crossref_primary_10_1016_j_atmosres_2025_107932 crossref_primary_10_1016_j_ejrh_2023_101638 crossref_primary_10_3390_f14081537 crossref_primary_10_3390_w16223168 crossref_primary_10_5194_essd_16_1559_2024 crossref_primary_10_1016_j_jhydrol_2024_131598 crossref_primary_10_1016_j_jhydrol_2024_132549 crossref_primary_10_1109_ACCESS_2023_3318739 |
Cites_doi | 10.1016/j.jhydrol.2018.04.005 10.20944/preprints201810.0098.v2 10.5194/hess-21-3359-2017 10.1029/2018WR023325 10.2478/johh-2019-0012 10.1016/0022-1694(69)90020-1 10.3390/rs14153541 10.3390/rs14153675 10.5194/hess-21-5293-2017 10.5194/hess-9-157-2005 10.1016/j.jhydrol.2018.10.079 10.1029/2019WR025924 10.1016/j.jhydrol.2012.08.025 10.1016/j.jhydrol.2021.126266 10.1002/eco.1409 10.1080/02626667.2013.866709 10.3390/rs14143350 10.1175/JHM-D-20-0075.1 10.1016/j.jhydrol.2015.10.038 10.1016/j.wse.2016.06.003 10.1016/j.jhydrol.2020.125286 10.1029/2006WR005271 10.3390/su132112166 10.1214/aos/1013203451 10.1016/0022-1694(92)90096-E 10.1029/2021MS002855 10.1029/2018WR023539 10.1016/j.jhydrol.2017.05.024 10.1016/j.jhydrol.2020.124780 10.5194/hess-21-393-2017 10.1016/j.jhydrol.2005.04.022 10.1016/j.jhydrol.2016.03.026 10.1061/(ASCE)HE.1943-5584.0000415 10.3390/w12123429 10.2166/wst.2020.369 10.1029/2017WR021895 10.1016/j.jhydrol.2005.07.030 10.1002/hyp.13740 10.1016/j.agwat.2019.03.015 10.1002/wat2.1487 10.18307/20010404 10.5194/hess-13-1019-2009 10.1016/j.jhydrol.2012.11.015 10.1016/j.scitotenv.2019.06.205 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2 10.1175/JAMC-D-13-0270.1 10.5194/hess-19-209-2015 10.1002/2015WR017780 10.1029/WR014i006p01183 10.1029/2002WR001708 10.1007/s11069-021-04531-0 10.3390/w12051469 10.1002/eco.1362 10.1080/1573062X.2022.2075770 10.1016/j.advwatres.2014.12.011 10.1061/(ASCE)HE.1943-5584.0000527 10.1016/j.jhydrol.2012.07.048 10.1002/2015WR018434 10.1016/j.rse.2021.112706 10.1016/j.jhydrol.2007.11.017 10.1080/0305215X.2017.1303053 10.1002/hyp.9984 10.1109/TGRS.2012.2187300 10.1080/02626667.2014.966721 10.1016/j.rse.2021.112301 10.1006/jare.2001.0947 10.1002/2015JF003747 10.5194/hess-18-1873-2014 10.1016/j.jhydrol.2018.12.071 10.1002/wat2.1533 10.5194/hess-11-1563-2007 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs14184609 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_498e073d29e64741bdf0b56e1ab3ab20 10_3390_rs14184609 |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: United States--US – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-cd6a799057d766b1f1ca5b132fe3bcb2e7e9b3140e2ea677c45fe0dcb655d5683 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:32:43 EDT 2025 Thu Jul 10 23:06:30 EDT 2025 Fri Jul 25 09:32:50 EDT 2025 Tue Jul 01 03:10:46 EDT 2025 Thu Apr 24 23:11:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-cd6a799057d766b1f1ca5b132fe3bcb2e7e9b3140e2ea677c45fe0dcb655d5683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6510-2302 |
OpenAccessLink | https://www.proquest.com/docview/2716606338?pq-origsite=%requestingapplication% |
PQID | 2716606338 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_498e073d29e64741bdf0b56e1ab3ab20 proquest_miscellaneous_2723123312 proquest_journals_2716606338 crossref_primary_10_3390_rs14184609 crossref_citationtrail_10_3390_rs14184609 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Yaseen (ref_36) 2015; 530 Lu (ref_22) 2016; 35 Ni (ref_80) 2019; 67 Nijzink (ref_5) 2018; 54 Li (ref_10) 2013; 18 Meng (ref_27) 2017; 550 Bao (ref_21) 2012; 17 Emanuel (ref_12) 2014; 7 Abowarda (ref_41) 2021; 255 ref_16 Zhang (ref_46) 2005; 36 Hopson (ref_63) 2015; 19 Abrahart (ref_34) 2007; 11 Kan (ref_9) 2018; 50 Niu (ref_3) 2014; 7 Singh (ref_14) 2008; 5 Guo (ref_24) 2016; 9 Iqbal (ref_40) 2022; 19 Jamali (ref_51) 2020; 20 Hapuarachchi (ref_8) 2001; 13 Guo (ref_17) 2021; 8 Granata (ref_43) 2019; 217 Mantilla (ref_47) 2022; 14 Fujisada (ref_75) 2012; 50 ref_23 Qi (ref_74) 2019; 571 ref_65 Sit (ref_32) 2020; 82 ref_64 ref_62 Bjerklie (ref_78) 2018; 561 Durand (ref_79) 2016; 52 Immerzeel (ref_77) 2008; 349 Niu (ref_13) 2014; 18 ref_28 Schmidt (ref_30) 2020; 56 Wu (ref_11) 2017; 21 Karthikeyan (ref_42) 2021; 266 Erdal (ref_58) 2013; 477 Cao (ref_26) 2020; 21 Batelaan (ref_57) 2021; 598 Arabameri (ref_60) 2019; 688 Dingman (ref_66) 1978; 14 Clubb (ref_70) 2016; 121 Zhang (ref_39) 2020; 585 Shi (ref_25) 2008; 19 Friedman (ref_59) 2001; 29 ref_31 Horton (ref_68) 1945; 56 ref_73 Hallema (ref_72) 2014; 28 Freeze (ref_4) 1969; 9 Yao (ref_15) 2012; 468–469 Fang (ref_55) 2017; 21 Doherty (ref_56) 2002; 2005 Zhao (ref_6) 1992; 135 Fatichi (ref_2) 2016; 537 Parajka (ref_19) 2005; 9 Pedregosa (ref_61) 2011; 12 Heuvelmans (ref_29) 2006; 319 Zhang (ref_37) 2018; 54 ref_81 Zhang (ref_54) 2018; 54 Addor (ref_52) 2017; 21 Chen (ref_44) 2020; 591 Corbari (ref_76) 2015; 60 ref_45 Zarlenga (ref_67) 2015; 76 Pagliero (ref_20) 2019; 570 Paniconi (ref_1) 2015; 51 Xu (ref_33) 2021; 8 Broxton (ref_53) 2014; 53 Cheng (ref_7) 2006; 316 Choubin (ref_35) 2016; 61 ref_49 Pallard (ref_69) 2009; 13 Bao (ref_18) 2012; 466–467 ref_48 Oppel (ref_38) 2020; 34 Mwakalila (ref_71) 2002; 52 |
References_xml | – volume: 561 start-page: 1000 year: 2018 ident: ref_78 article-title: Satellite remote sensing estimation of river discharge: Application to the Yukon River Alaska publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.04.005 – ident: ref_31 doi: 10.20944/preprints201810.0098.v2 – volume: 21 start-page: 3359 year: 2017 ident: ref_55 article-title: Improving the Xin’anjiang hydrological model based on mass–energy balance publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-3359-2017 – volume: 54 start-page: 7859 year: 2018 ident: ref_37 article-title: Predicting Runoff Signatures Using Regression and Hydrological Modeling Approaches publication-title: Water Resour. Res. doi: 10.1029/2018WR023325 – volume: 67 start-page: 252 year: 2019 ident: ref_80 article-title: Mathematical modeling of shallow-water flows on steep slopes publication-title: J. Hydrol. Hydromech. doi: 10.2478/johh-2019-0012 – volume: 9 start-page: 237 year: 1969 ident: ref_4 article-title: Blueprint for a physically-based, digitally-simulated hydrologic response model publication-title: J. Hydrol. doi: 10.1016/0022-1694(69)90020-1 – ident: ref_49 doi: 10.3390/rs14153541 – ident: ref_48 doi: 10.3390/rs14153675 – volume: 21 start-page: 5293 year: 2017 ident: ref_52 article-title: The CAMELS data set: Catchment attributes and meteorology for large-sample studies publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-5293-2017 – volume: 9 start-page: 157 year: 2005 ident: ref_19 article-title: A comparison of regionalisation methods for catchment model parameters publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-9-157-2005 – ident: ref_65 – volume: 571 start-page: 585 year: 2019 ident: ref_74 article-title: Selection of appropriate topographic data for 1D hydraulic models based on impact of morphometric variables on hydrologic process publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.10.079 – volume: 56 start-page: e2019WR025924 year: 2020 ident: ref_30 article-title: Challenges in Applying Machine Learning Models for Hydrological Inference: A Case Study for Flooding Events Across Germany publication-title: Water Resour. Res. doi: 10.1029/2019WR025924 – volume: 19 start-page: 264 year: 2008 ident: ref_25 article-title: Calculating storage capacity with topographic index publication-title: Adv. Water Sci. – volume: 468–469 start-page: 47 year: 2012 ident: ref_15 article-title: A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.08.025 – volume: 598 start-page: 126266 year: 2021 ident: ref_57 article-title: Ensemble machine learning paradigms in hydrology: A review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126266 – volume: 7 start-page: 887 year: 2014 ident: ref_12 article-title: Vegetation and topographic influences on the connectivity of shallow groundwater between hillslopes and streams publication-title: Ecohydrology doi: 10.1002/eco.1409 – volume: 60 start-page: 202 year: 2015 ident: ref_76 article-title: Les données satellitaires de température de surface peuvent-elles être utilisées de la même manière que les mesures de débit au sol pour le calage de modèles hydrologiques distribués? publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2013.866709 – ident: ref_50 doi: 10.3390/rs14143350 – volume: 21 start-page: 2083 year: 2020 ident: ref_26 article-title: Does Subgrid Routing Information Matter for Urban Flood Forecasting? A Multiscenario Analysis at the Land Parcel Scale publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-20-0075.1 – volume: 530 start-page: 829 year: 2015 ident: ref_36 article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.10.038 – volume: 9 start-page: 97 year: 2016 ident: ref_24 article-title: A distributed Grid-Xinanjiang model with integration of subgrid variability of soil storage capacity publication-title: Water Sci. Eng. doi: 10.1016/j.wse.2016.06.003 – volume: 591 start-page: 125286 year: 2020 ident: ref_44 article-title: Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125286 – ident: ref_45 doi: 10.1029/2006WR005271 – ident: ref_62 doi: 10.3390/su132112166 – volume: 29 start-page: 1189 year: 2001 ident: ref_59 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 135 start-page: 371 year: 1992 ident: ref_6 article-title: The Xinanjiang model applied in China publication-title: J. Hydrol. doi: 10.1016/0022-1694(92)90096-E – volume: 36 start-page: 759 year: 2005 ident: ref_46 article-title: Study of hydrological simulation on the basis of digital elevation model publication-title: Shuili Xuebao J. Hydraul. Eng. – volume: 14 start-page: e2021MS002855 year: 2022 ident: ref_47 article-title: Identification and Regionalization of Streamflow Routing Parameters Using Machine Learning for the HLM Hydrological Model in Iowa publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2021MS002855 – volume: 54 start-page: 9774 year: 2018 ident: ref_54 article-title: A High-Resolution Global Map of Soil Hydraulic Properties Produced by a Hierarchical Parameterization of a Physically Based Water Retention Model publication-title: Water Resour. Res. doi: 10.1029/2018WR023539 – volume: 550 start-page: 568 year: 2017 ident: ref_27 article-title: Assimilation of soil moisture and streamflow observations to improve flood forecasting with considering runoff routing lags publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.05.024 – volume: 585 start-page: 124780 year: 2020 ident: ref_39 article-title: Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124780 – volume: 12 start-page: 2825 year: 2011 ident: ref_61 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 20 start-page: 100428 year: 2020 ident: ref_51 article-title: Assessing the expansion of saline lands through vegetation and wetland loss using remote sensing and GIS publication-title: Remote Sens. Appl. Soc. Environ. – volume: 21 start-page: 393 year: 2017 ident: ref_11 article-title: Improvement of hydrological model calibration by selecting multiple parameter ranges publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-393-2017 – volume: 316 start-page: 129 year: 2006 ident: ref_7 article-title: Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.04.022 – volume: 537 start-page: 45 year: 2016 ident: ref_2 article-title: An overview of current applications, challenges, and future trends in distributed process-based models in hydrology publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.03.026 – volume: 17 start-page: 118 year: 2012 ident: ref_21 article-title: Estimating Selected Parameters for the XAJ Model under Multicollinearity among Watershed Characteristics publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000415 – ident: ref_28 – ident: ref_23 doi: 10.3390/w12123429 – volume: 82 start-page: 2635 year: 2020 ident: ref_32 article-title: A comprehensive review of deep learning applications in hydrology and water resources publication-title: Water Sci. Technol. doi: 10.2166/wst.2020.369 – volume: 54 start-page: 8332 year: 2018 ident: ref_5 article-title: Constraining Conceptual Hydrological Models with Multiple Information Sources publication-title: Water Resour. Res. doi: 10.1029/2017WR021895 – volume: 319 start-page: 245 year: 2006 ident: ref_29 article-title: Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.07.030 – volume: 34 start-page: 2450 year: 2020 ident: ref_38 article-title: Machine learning based identification of dominant controls on runoff dynamics publication-title: Hydrol. Process. doi: 10.1002/hyp.13740 – volume: 217 start-page: 303 year: 2019 ident: ref_43 article-title: Evapotranspiration evaluation models based on machine learning algorithms—A comparative study publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.03.015 – volume: 8 start-page: e1487 year: 2021 ident: ref_17 article-title: Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review publication-title: WIREs Water doi: 10.1002/wat2.1487 – volume: 13 start-page: 304 year: 2001 ident: ref_8 article-title: Application of SCE-UA method for calibrating the Xinanjiang watershed model publication-title: J. Lake Sci. doi: 10.18307/20010404 – volume: 13 start-page: 1019 year: 2009 ident: ref_69 article-title: A look at the links between drainage density and flood statistics publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-13-1019-2009 – volume: 477 start-page: 119 year: 2013 ident: ref_58 article-title: Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.11.015 – volume: 688 start-page: 903 year: 2019 ident: ref_60 article-title: Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.205 – volume: 56 start-page: 275 year: 1945 ident: ref_68 article-title: Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology publication-title: GSA Bull. doi: 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2 – volume: 53 start-page: 1593 year: 2014 ident: ref_53 article-title: A Global Land Cover Climatology Using MODIS Data publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-13-0270.1 – volume: 19 start-page: 209 year: 2015 ident: ref_63 article-title: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-209-2015 – volume: 51 start-page: 7090 year: 2015 ident: ref_1 article-title: Physically based modeling in catchment hydrology at 50: Survey and outlook publication-title: Water Resour. Res. doi: 10.1002/2015WR017780 – volume: 14 start-page: 1183 year: 1978 ident: ref_66 article-title: Drainage density and streamflow: A closer look publication-title: Water Resour. Res. doi: 10.1029/WR014i006p01183 – ident: ref_73 doi: 10.1029/2002WR001708 – ident: ref_16 doi: 10.1007/s11069-021-04531-0 – ident: ref_81 doi: 10.3390/w12051469 – volume: 7 start-page: 427 year: 2014 ident: ref_3 article-title: An integrated modelling framework of catchment-scale ecohydrological processes: 1. Model description and tests over an energy-limited watershed publication-title: Ecohydrology doi: 10.1002/eco.1362 – volume: 19 start-page: 686 year: 2022 ident: ref_40 article-title: Prediction of Hydraulic Blockage at Culverts using Lab Scale Simulated Hydraulic Data publication-title: Urban Water J. doi: 10.1080/1573062X.2022.2075770 – volume: 76 start-page: 157 year: 2015 ident: ref_67 article-title: Hydrological effects of within-catchment heterogeneity of drainage density publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2014.12.011 – volume: 18 start-page: 1513 year: 2013 ident: ref_10 article-title: Study of the Xinanjiang model parameter calibration publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000527 – volume: 466–467 start-page: 37 year: 2012 ident: ref_18 article-title: Comparison of regionalization approaches based on regression and similarity for predictions in ungauged catchments under multiple hydro-climatic conditions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.07.048 – volume: 52 start-page: 4527 year: 2016 ident: ref_79 article-title: An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope publication-title: Water Resour. Res. doi: 10.1002/2015WR018434 – ident: ref_64 – volume: 266 start-page: 112706 year: 2021 ident: ref_42 article-title: Multi-layer high-resolution soil moisture estimation using machine learning over the United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112706 – volume: 349 start-page: 411 year: 2008 ident: ref_77 article-title: Calibration of a distributed hydrological model based on satellite evapotranspiration publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.11.017 – volume: 5 start-page: 1641 year: 2008 ident: ref_14 article-title: Robust estimation of hydrological model parameters publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 2005 start-page: 279 year: 2002 ident: ref_56 article-title: Model-Independent Parameter Estimation publication-title: Watermark Numer. Comput. – volume: 50 start-page: 106 year: 2018 ident: ref_9 article-title: Fast hydrological model calibration based on the heterogeneous parallel computing accelerated shuffled complex evolution method publication-title: Eng. Optim. doi: 10.1080/0305215X.2017.1303053 – volume: 35 start-page: 1 year: 2016 ident: ref_22 article-title: New approach to synthesization of recession coefficients in Xinanjiang model publication-title: J. Hydroelectr. Eng. – volume: 28 start-page: 4877 year: 2014 ident: ref_72 article-title: A model for distributed GIUH-based flow routing on natural and anthropogenic hillslopes publication-title: Hydrol. Process. doi: 10.1002/hyp.9984 – volume: 50 start-page: 3725 year: 2012 ident: ref_75 article-title: Technical Methodology for ASTER Global DEM publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2187300 – volume: 61 start-page: 1001 year: 2016 ident: ref_35 article-title: Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2014.966721 – volume: 255 start-page: 112301 year: 2021 ident: ref_41 article-title: Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112301 – volume: 52 start-page: 245 year: 2002 ident: ref_71 article-title: The influence of physical catchment properties on baseflow in semi-arid environments publication-title: J. Arid Environ. doi: 10.1006/jare.2001.0947 – volume: 121 start-page: 1724 year: 2016 ident: ref_70 article-title: The relationship between drainage density, erosion rate, and hilltop curvature: Implications for sediment transport processes publication-title: J. Geophys. Res. Earth Surf. doi: 10.1002/2015JF003747 – volume: 18 start-page: 1873 year: 2014 ident: ref_13 article-title: Incipient subsurface heterogeneity and its effect on overland flow generation—Insight from a modeling study of the first experiment at the Biosphere 2 Landscape Evolution Observatory publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-1873-2014 – volume: 570 start-page: 220 year: 2019 ident: ref_20 article-title: Investigating regionalization techniques for large-scale hydrological modelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.12.071 – volume: 8 start-page: 1 year: 2021 ident: ref_33 article-title: Machine learning for hydrologic sciences: An introductory overview publication-title: Wiley Interdiscip. Rev. Water doi: 10.1002/wat2.1533 – volume: 11 start-page: 1563 year: 2007 ident: ref_34 article-title: Neural network modelling of non-linear hydrological relationships publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-11-1563-2007 |
SSID | ssj0000331904 |
Score | 2.3742452 |
Snippet | The parameters of hydrological models should be determined before applying those models to estimate or predict hydrological processes. The Xin’anjiang (XAJ)... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4609 |
SubjectTerms | Algorithms Calibration Catchments China Correlation coefficient Correlation coefficients data collection Datasets drainage Drainage density Hydrologic models Hydrology Learning algorithms Machine learning Mathematical functions Meteorology model parameters Parameter estimation Parameters Partial differential equations Precipitation prediction regionalization Regression analysis Remote sensing remote sensing data remotely sensed underlying surface characteristics Robustness Root-mean-square errors Runoff Stream flow streams Surface properties Variables watersheds Xin’anjiang hydrological model |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL3BBfIqFgozgwiHqxrGd5NhCqxVSEQIq7S2y4_ECqrxouz2UU_8Gf49fwhsnu6wEEhduVjxSnJmxZ57yPCPESwAT4xS1xbQHRNGlikVjG4dRU0dVRsQ0vo18-s7OzvTbuZnvtPpiTthQHnhQ3IFuG4IbBtWS1Qh_PsSpN5ZK5yvnVUbriHk7YCqfwRVca6qHeqQVcP3B6qLE-7Vl5uFOBMqF-v84h3NwObkjbo9ZoTwcVnNX3KB0T9wcG5R_vrovvh9jK3JymRYSKZtkIg-P3zsmV0E3chnzxPxL-nn9w6WvMPtCzq7CanO6SW57di6PELaCXCb5gWAlkh-ZwQ7RN27tpEtBnmZ6Jcmx8urigTg7Of70elaMbROKvmr1uuiDdTWCjKlDba2HvntnPFBnpMr3XlFNra8ArEiRs3XdaxNpGnpvjQnGNtVDsZeWiR4JGaAu7cuSuC1MQ9R4IFqlHJLGWEZbTsSrjSq7fqwpzq0tzjtgC1Z791vtE_FiK_ttqKTxV6kjtshWgqtf5wfwiW70ie5fPjER-xt7duOWvOgUkCHQGj5gIp5vp7GZ-A-JS7S8ZBmkuwq-ox7_j3U8EbcU35bIlLR9sbdeXdJT5DBr_yy76y-Ptu-T priority: 102 providerName: Directory of Open Access Journals |
Title | Estimating the Routing Parameter of the Xin’anjiang Hydrological Model Based on Remote Sensing Data and Machine Learning |
URI | https://www.proquest.com/docview/2716606338 https://www.proquest.com/docview/2723123312 https://doaj.org/article/498e073d29e64741bdf0b56e1ab3ab20 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtNAEB7R5gAXxK8ILdEiuHCwaq-9a_uEGpoQIVJVLZVys3a94xRUrdskPZQTr8Hr8STMOJsUCcTN8o4sa2Z35vt2Z2cA3hIxUUZiGcU1UZQskU1U6MLQU5E3MmkopvFt5Omxnpxnn2ZqFjbcliGtcuMTO0ft2pr3yA8kAXsC28So3l9dR9w1ik9XQwuNHeiRCy6IfPWGo-OT0-0uS5zSFIuzdV3SlPj9wWKZ0H9kmjMQ_4hEXcH-v_xxF2TGj-BhQIficG3Ox3AP_RO4HxqVX9w-he8jWpIMMv1cEHQTnNDDzyeGk6xIR6JtuoHZV__rx0_jv5H552Jy6xYbLye4_dmlGFL4cqL14hTJWijOOJOdRI_MygjjnZh2aZYoQgXW-TM4H4--fJhEoX1CVKdltopqp01OwUblLtfakt5royyxzwZTW1uJOZY2JYKFEo3O8zpTDcautlopp3SRPodd33p8AcKRujKbJMjtYQrEwpIdpDQEHpuk0Ukf3m1UWdWhtji3uLisiGOw2qs7tffhzVb2al1R459SQ7bIVoKrYHcv2sW8CouqysoCyUU5WaLOCBpZ18RWaUyMTY2VcR_2N_aswtJcVncTqQ-vt8O0qPikxHhsb1iGYK-kuSNf_v8Te_BA8n2ILulsH3ZXixt8RShlZQewU4w_DqB3eDT9fDYIE3PQcf7f8Kvr4w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VciiXil8RaGERcOBg1V6v1_YBIUobUtpUCFopN7M_4xRU2SVJVYUTr8FL8FA8CTOOnSKBuPVmeUcre_72m93ZGYBnFJgkRmIehI5CFBXJMsh0ZugpS0sZlbSm8W3k4aEeHKt3o2S0Aj-7uzCcVtn5xMZR-9rxHvmWJGBPYJsiqldnXwPuGsWnq10LjYVa7OP8gkK26cu9HZLvcyn7u0dvBkHbVSBwca5mgfPapOSDk9SnWlv6HGcSS0FZibF1VmKKuY0p7kCJRqepU0mJoXdWJ4lPdBbTvNfguorjnC0q679d7umEMSl0qBZVUGk83JpMI_prpTnf8Y91r2kP8Jf3b5a0_k1Yb7GoeL1QnluwgtVtWGvbop_M78C3XXIADGmrsSCgKDh9iJ_fG07pIomIumwGRp-rX99_mOoLKdtYDOZ-0vlUwc3WTsU2LZZe1JX4gKQbKD5y3jyR7piZEabyYtgkdaJo672O78LxlbD1HqxWdYX3QXhil7JRhNyMJkPMLEldSkNQtYxKHfXgRcfKwrWVzLmhxmlBEQ2zvbhkew-eLmnPFvU7_km1zRJZUnDN7eZFPRkXrQkXKs-QHKKXOWpFQMz6MrSJxsjY2FgZ9mCjk2fROoJpcam2PXiyHCYT5nMZU2F9zjQEsiXpjnzw_ykew9rgaHhQHOwd7j-EG5JvYjTpbhuwOpuc4ybho5l91CilgE9XbQW_AVvRJPc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tXQm4IH5FYQEj4MAhauIkTnJAiNJWXZatqoWVegt2PC6gVbK0XaFy4jV4FR6HJ2EmTbpIIG57i-KRFY0_z3wTj2cAnlJgEmuJmecXFKJEgXReqlJNT2niZODIp_Ft5MOJGh9Hb2bxbAd-tndhOK2ytYm1obZVwf_Ie5KIPZFtiqh6rkmLmA5GL0-_eNxBik9a23YaG4gc4PorhW_LF_sDWutnUo6G71-PvabDgFeEWbTyCqt0QvY4TmyilKFPK3RsKEBzGJrCSEwwMyHFIChRqyQpotihbwuj4tjGKg1p3kuwm1BU5Hdgtz-cTI-2f3j8kODtR5uaqGGY-b3FMiAdRIqzH__wgnWzgL98Qe3gRtfhWsNMxasNlG7ADpY34UrTJP3j-hZ8G5I5YIJbzgXRRsHJRPw81ZzgResjKlcPzD6Vv77_0OVngt5cjNd20VpYwa3XTkSfXKcVVSmOkJCC4h1n0ZPoQK-00KUVh3WKJ4qm-uv8NhxfiGLvQKesSrwLwpK6IhMEyK1pUsTUEAak1ERcXeBU0IXnrSrzoqlrzu01TnKKb1jt-bnau_BkK3u6qebxT6k-r8hWgitw1y-qxTxvNnQeZSmSebQyQxURLTPW-SZWGGgTaiP9Luy165k3ZmGZn4O4C4-3w7Sh-ZRGl1idsQxRbknYkff-P8UjuEw7IH-7Pzm4D1clX8uoc9_2oLNanOEDIksr87BBpYAPF70RfgOasSqJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+Routing+Parameter+of+the+Xin%E2%80%99anjiang+Hydrological+Model+Based+on+Remote+Sensing+Data+and+Machine+Learning&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Fang%2C+Yuanhao&rft.au=Huang%2C+Yizhi&rft.au=Qu%2C+Bo&rft.au=Zhang%2C+Xingnan&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=18&rft.spage=4609&rft_id=info:doi/10.3390%2Frs14184609&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |