Estimating the Routing Parameter of the Xin’anjiang Hydrological Model Based on Remote Sensing Data and Machine Learning

The parameters of hydrological models should be determined before applying those models to estimate or predict hydrological processes. The Xin’anjiang (XAJ) hydrological model is widely used throughout China. Since the prediction in ungauged basins (PUB) era, the regionalization of the XAJ model par...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 18; p. 4609
Main Authors Fang, Yuanhao, Huang, Yizhi, Qu, Bo, Zhang, Xingnan, Zhang, Tao, Xia, Dazhong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The parameters of hydrological models should be determined before applying those models to estimate or predict hydrological processes. The Xin’anjiang (XAJ) hydrological model is widely used throughout China. Since the prediction in ungauged basins (PUB) era, the regionalization of the XAJ model parameters has been a subject of intense focus; nevertheless, while many efforts have targeted parameters related to runoff yield using in-site data sets, classic regression has predominantly been applied. In this paper, we employed remotely sensed underlying surface data and a machine learning approach to establish models for estimating the runoff routing parameter, namely, CS, of the XAJ model. The study was conducted on 114 catchments from the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) data set, and the relationships between CS and various underlying surface characteristics were explored by a gradient-boosted regression tree (GBRT). The results showed that the drainage density, stream source density and area of the catchment were the three major factors with the most significant impact on CS. The best correlation coefficient (r), root mean square error (RMSE) and mean absolute error (MAE) between the GBRT-estimated and calibrated CS were 0.96, 0.06 and 0.04, respectively, verifying the good performance of GBRT in estimating CS. Although bias was noted between the GBRT-estimated and calibrated CS, runoff simulations using the GBRT-estimated CS could still achieve results comparable to those using the calibrated CS. Further validations based on two catchments in China confirmed the overall robustness and accuracy of simulating runoff processes using the GBRT-estimated CS. Our results confirm the following hypotheses: (1) with the help of large sample of catchments and associated remote sensing data, the ML-based approach can capture the nonstationary and nonlinear relationships between CS and the underlying surface characteristics and (2) CS estimated by ML from large samples has a robustness that can guarantee the overall performance of the XAJ mode. This study advances the methodology for quantitatively estimating the XAJ model parameters and can be extended to other parameters or other models.
AbstractList The parameters of hydrological models should be determined before applying those models to estimate or predict hydrological processes. The Xin’anjiang (XAJ) hydrological model is widely used throughout China. Since the prediction in ungauged basins (PUB) era, the regionalization of the XAJ model parameters has been a subject of intense focus; nevertheless, while many efforts have targeted parameters related to runoff yield using in-site data sets, classic regression has predominantly been applied. In this paper, we employed remotely sensed underlying surface data and a machine learning approach to establish models for estimating the runoff routing parameter, namely, CS, of the XAJ model. The study was conducted on 114 catchments from the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) data set, and the relationships between CS and various underlying surface characteristics were explored by a gradient-boosted regression tree (GBRT). The results showed that the drainage density, stream source density and area of the catchment were the three major factors with the most significant impact on CS. The best correlation coefficient (r), root mean square error (RMSE) and mean absolute error (MAE) between the GBRT-estimated and calibrated CS were 0.96, 0.06 and 0.04, respectively, verifying the good performance of GBRT in estimating CS. Although bias was noted between the GBRT-estimated and calibrated CS, runoff simulations using the GBRT-estimated CS could still achieve results comparable to those using the calibrated CS. Further validations based on two catchments in China confirmed the overall robustness and accuracy of simulating runoff processes using the GBRT-estimated CS. Our results confirm the following hypotheses: (1) with the help of large sample of catchments and associated remote sensing data, the ML-based approach can capture the nonstationary and nonlinear relationships between CS and the underlying surface characteristics and (2) CS estimated by ML from large samples has a robustness that can guarantee the overall performance of the XAJ mode. This study advances the methodology for quantitatively estimating the XAJ model parameters and can be extended to other parameters or other models.
Author Qu, Bo
Xia, Dazhong
Fang, Yuanhao
Zhang, Xingnan
Huang, Yizhi
Zhang, Tao
Author_xml – sequence: 1
  givenname: Yuanhao
  orcidid: 0000-0002-6510-2302
  surname: Fang
  fullname: Fang, Yuanhao
– sequence: 2
  givenname: Yizhi
  surname: Huang
  fullname: Huang, Yizhi
– sequence: 3
  givenname: Bo
  surname: Qu
  fullname: Qu, Bo
– sequence: 4
  givenname: Xingnan
  surname: Zhang
  fullname: Zhang, Xingnan
– sequence: 5
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
– sequence: 6
  givenname: Dazhong
  surname: Xia
  fullname: Xia, Dazhong
BookMark eNptkd9qVDEQxoNUsK698QkC3oiwmn8n2VxqW21hi1IVvDtMkjnbLGeTmmQv6pWv4ev5JJ7dFZViIGTI95uPGb7H5CjlhIQ85eyllJa9KpUrvlCa2QfkWDAj5kpYcfRP_Yic1Lpm05GSW6aOybfz2uIGWkwr2m6QXuftvv4ABTbYsNA87IUvMf38_gPSOsIkX9yFkse8ih5GepUDjvQNVAw0J3qNm9yQfsRUd05n0IBCCvQK_E1MSJcIJU3KE_JwgLHiye93Rj6_Pf90ejFfvn93efp6OffSqjb3QYOxlnUmGK0dH7iHznEpBpTOO4EGrZNcMRQI2hivugFZ8E53Xej0Qs7I5cE3ZFj3t2Vat9z1GWK__8hl1UNp0Y_YK7tAZmQQFrUyirswMNdp5OAkOMEmr-cHr9uSv26xtn4Tq8dxhIR5W3thhORC7u6MPLuHrvO2pGnTieJaMy3lbrgXB8qXXGvB4c-AnPW7VPu_qU4wuwf72KbscmoF4vi_ll8mq6bO
CitedBy_id crossref_primary_10_1016_j_jhydrol_2025_133055
crossref_primary_10_3390_atmos13101688
crossref_primary_10_1016_j_atmosres_2025_107932
crossref_primary_10_1016_j_ejrh_2023_101638
crossref_primary_10_3390_f14081537
crossref_primary_10_3390_w16223168
crossref_primary_10_5194_essd_16_1559_2024
crossref_primary_10_1016_j_jhydrol_2024_131598
crossref_primary_10_1016_j_jhydrol_2024_132549
crossref_primary_10_1109_ACCESS_2023_3318739
Cites_doi 10.1016/j.jhydrol.2018.04.005
10.20944/preprints201810.0098.v2
10.5194/hess-21-3359-2017
10.1029/2018WR023325
10.2478/johh-2019-0012
10.1016/0022-1694(69)90020-1
10.3390/rs14153541
10.3390/rs14153675
10.5194/hess-21-5293-2017
10.5194/hess-9-157-2005
10.1016/j.jhydrol.2018.10.079
10.1029/2019WR025924
10.1016/j.jhydrol.2012.08.025
10.1016/j.jhydrol.2021.126266
10.1002/eco.1409
10.1080/02626667.2013.866709
10.3390/rs14143350
10.1175/JHM-D-20-0075.1
10.1016/j.jhydrol.2015.10.038
10.1016/j.wse.2016.06.003
10.1016/j.jhydrol.2020.125286
10.1029/2006WR005271
10.3390/su132112166
10.1214/aos/1013203451
10.1016/0022-1694(92)90096-E
10.1029/2021MS002855
10.1029/2018WR023539
10.1016/j.jhydrol.2017.05.024
10.1016/j.jhydrol.2020.124780
10.5194/hess-21-393-2017
10.1016/j.jhydrol.2005.04.022
10.1016/j.jhydrol.2016.03.026
10.1061/(ASCE)HE.1943-5584.0000415
10.3390/w12123429
10.2166/wst.2020.369
10.1029/2017WR021895
10.1016/j.jhydrol.2005.07.030
10.1002/hyp.13740
10.1016/j.agwat.2019.03.015
10.1002/wat2.1487
10.18307/20010404
10.5194/hess-13-1019-2009
10.1016/j.jhydrol.2012.11.015
10.1016/j.scitotenv.2019.06.205
10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
10.1175/JAMC-D-13-0270.1
10.5194/hess-19-209-2015
10.1002/2015WR017780
10.1029/WR014i006p01183
10.1029/2002WR001708
10.1007/s11069-021-04531-0
10.3390/w12051469
10.1002/eco.1362
10.1080/1573062X.2022.2075770
10.1016/j.advwatres.2014.12.011
10.1061/(ASCE)HE.1943-5584.0000527
10.1016/j.jhydrol.2012.07.048
10.1002/2015WR018434
10.1016/j.rse.2021.112706
10.1016/j.jhydrol.2007.11.017
10.1080/0305215X.2017.1303053
10.1002/hyp.9984
10.1109/TGRS.2012.2187300
10.1080/02626667.2014.966721
10.1016/j.rse.2021.112301
10.1006/jare.2001.0947
10.1002/2015JF003747
10.5194/hess-18-1873-2014
10.1016/j.jhydrol.2018.12.071
10.1002/wat2.1533
10.5194/hess-11-1563-2007
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14184609
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Collection (ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_498e073d29e64741bdf0b56e1ab3ab20
10_3390_rs14184609
GeographicLocations United States--US
China
GeographicLocations_xml – name: United States--US
– name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-cd6a799057d766b1f1ca5b132fe3bcb2e7e9b3140e2ea677c45fe0dcb655d5683
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:32:43 EDT 2025
Thu Jul 10 23:06:30 EDT 2025
Fri Jul 25 09:32:50 EDT 2025
Tue Jul 01 03:10:46 EDT 2025
Thu Apr 24 23:11:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-cd6a799057d766b1f1ca5b132fe3bcb2e7e9b3140e2ea677c45fe0dcb655d5683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6510-2302
OpenAccessLink https://www.proquest.com/docview/2716606338?pq-origsite=%requestingapplication%
PQID 2716606338
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_498e073d29e64741bdf0b56e1ab3ab20
proquest_miscellaneous_2723123312
proquest_journals_2716606338
crossref_primary_10_3390_rs14184609
crossref_citationtrail_10_3390_rs14184609
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Yaseen (ref_36) 2015; 530
Lu (ref_22) 2016; 35
Ni (ref_80) 2019; 67
Nijzink (ref_5) 2018; 54
Li (ref_10) 2013; 18
Meng (ref_27) 2017; 550
Bao (ref_21) 2012; 17
Emanuel (ref_12) 2014; 7
Abowarda (ref_41) 2021; 255
ref_16
Zhang (ref_46) 2005; 36
Hopson (ref_63) 2015; 19
Abrahart (ref_34) 2007; 11
Kan (ref_9) 2018; 50
Niu (ref_3) 2014; 7
Singh (ref_14) 2008; 5
Guo (ref_24) 2016; 9
Iqbal (ref_40) 2022; 19
Jamali (ref_51) 2020; 20
Hapuarachchi (ref_8) 2001; 13
Guo (ref_17) 2021; 8
Granata (ref_43) 2019; 217
Mantilla (ref_47) 2022; 14
Fujisada (ref_75) 2012; 50
ref_23
Qi (ref_74) 2019; 571
ref_65
Sit (ref_32) 2020; 82
ref_64
ref_62
Bjerklie (ref_78) 2018; 561
Durand (ref_79) 2016; 52
Immerzeel (ref_77) 2008; 349
Niu (ref_13) 2014; 18
ref_28
Schmidt (ref_30) 2020; 56
Wu (ref_11) 2017; 21
Karthikeyan (ref_42) 2021; 266
Erdal (ref_58) 2013; 477
Cao (ref_26) 2020; 21
Batelaan (ref_57) 2021; 598
Arabameri (ref_60) 2019; 688
Dingman (ref_66) 1978; 14
Clubb (ref_70) 2016; 121
Zhang (ref_39) 2020; 585
Shi (ref_25) 2008; 19
Friedman (ref_59) 2001; 29
ref_31
Horton (ref_68) 1945; 56
ref_73
Hallema (ref_72) 2014; 28
Freeze (ref_4) 1969; 9
Yao (ref_15) 2012; 468–469
Fang (ref_55) 2017; 21
Doherty (ref_56) 2002; 2005
Zhao (ref_6) 1992; 135
Fatichi (ref_2) 2016; 537
Parajka (ref_19) 2005; 9
Pedregosa (ref_61) 2011; 12
Heuvelmans (ref_29) 2006; 319
Zhang (ref_37) 2018; 54
ref_81
Zhang (ref_54) 2018; 54
Addor (ref_52) 2017; 21
Chen (ref_44) 2020; 591
Corbari (ref_76) 2015; 60
ref_45
Zarlenga (ref_67) 2015; 76
Pagliero (ref_20) 2019; 570
Paniconi (ref_1) 2015; 51
Xu (ref_33) 2021; 8
Broxton (ref_53) 2014; 53
Cheng (ref_7) 2006; 316
Choubin (ref_35) 2016; 61
ref_49
Pallard (ref_69) 2009; 13
Bao (ref_18) 2012; 466–467
ref_48
Oppel (ref_38) 2020; 34
Mwakalila (ref_71) 2002; 52
References_xml – volume: 561
  start-page: 1000
  year: 2018
  ident: ref_78
  article-title: Satellite remote sensing estimation of river discharge: Application to the Yukon River Alaska
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.005
– ident: ref_31
  doi: 10.20944/preprints201810.0098.v2
– volume: 21
  start-page: 3359
  year: 2017
  ident: ref_55
  article-title: Improving the Xin’anjiang hydrological model based on mass–energy balance
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-3359-2017
– volume: 54
  start-page: 7859
  year: 2018
  ident: ref_37
  article-title: Predicting Runoff Signatures Using Regression and Hydrological Modeling Approaches
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023325
– volume: 67
  start-page: 252
  year: 2019
  ident: ref_80
  article-title: Mathematical modeling of shallow-water flows on steep slopes
  publication-title: J. Hydrol. Hydromech.
  doi: 10.2478/johh-2019-0012
– volume: 9
  start-page: 237
  year: 1969
  ident: ref_4
  article-title: Blueprint for a physically-based, digitally-simulated hydrologic response model
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(69)90020-1
– ident: ref_49
  doi: 10.3390/rs14153541
– ident: ref_48
  doi: 10.3390/rs14153675
– volume: 21
  start-page: 5293
  year: 2017
  ident: ref_52
  article-title: The CAMELS data set: Catchment attributes and meteorology for large-sample studies
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-5293-2017
– volume: 9
  start-page: 157
  year: 2005
  ident: ref_19
  article-title: A comparison of regionalisation methods for catchment model parameters
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-9-157-2005
– ident: ref_65
– volume: 571
  start-page: 585
  year: 2019
  ident: ref_74
  article-title: Selection of appropriate topographic data for 1D hydraulic models based on impact of morphometric variables on hydrologic process
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.10.079
– volume: 56
  start-page: e2019WR025924
  year: 2020
  ident: ref_30
  article-title: Challenges in Applying Machine Learning Models for Hydrological Inference: A Case Study for Flooding Events Across Germany
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR025924
– volume: 19
  start-page: 264
  year: 2008
  ident: ref_25
  article-title: Calculating storage capacity with topographic index
  publication-title: Adv. Water Sci.
– volume: 468–469
  start-page: 47
  year: 2012
  ident: ref_15
  article-title: A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.08.025
– volume: 598
  start-page: 126266
  year: 2021
  ident: ref_57
  article-title: Ensemble machine learning paradigms in hydrology: A review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126266
– volume: 7
  start-page: 887
  year: 2014
  ident: ref_12
  article-title: Vegetation and topographic influences on the connectivity of shallow groundwater between hillslopes and streams
  publication-title: Ecohydrology
  doi: 10.1002/eco.1409
– volume: 60
  start-page: 202
  year: 2015
  ident: ref_76
  article-title: Les données satellitaires de température de surface peuvent-elles être utilisées de la même manière que les mesures de débit au sol pour le calage de modèles hydrologiques distribués?
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2013.866709
– ident: ref_50
  doi: 10.3390/rs14143350
– volume: 21
  start-page: 2083
  year: 2020
  ident: ref_26
  article-title: Does Subgrid Routing Information Matter for Urban Flood Forecasting? A Multiscenario Analysis at the Land Parcel Scale
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-20-0075.1
– volume: 530
  start-page: 829
  year: 2015
  ident: ref_36
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.10.038
– volume: 9
  start-page: 97
  year: 2016
  ident: ref_24
  article-title: A distributed Grid-Xinanjiang model with integration of subgrid variability of soil storage capacity
  publication-title: Water Sci. Eng.
  doi: 10.1016/j.wse.2016.06.003
– volume: 591
  start-page: 125286
  year: 2020
  ident: ref_44
  article-title: Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125286
– ident: ref_45
  doi: 10.1029/2006WR005271
– ident: ref_62
  doi: 10.3390/su132112166
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_59
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 135
  start-page: 371
  year: 1992
  ident: ref_6
  article-title: The Xinanjiang model applied in China
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(92)90096-E
– volume: 36
  start-page: 759
  year: 2005
  ident: ref_46
  article-title: Study of hydrological simulation on the basis of digital elevation model
  publication-title: Shuili Xuebao J. Hydraul. Eng.
– volume: 14
  start-page: e2021MS002855
  year: 2022
  ident: ref_47
  article-title: Identification and Regionalization of Streamflow Routing Parameters Using Machine Learning for the HLM Hydrological Model in Iowa
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2021MS002855
– volume: 54
  start-page: 9774
  year: 2018
  ident: ref_54
  article-title: A High-Resolution Global Map of Soil Hydraulic Properties Produced by a Hierarchical Parameterization of a Physically Based Water Retention Model
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023539
– volume: 550
  start-page: 568
  year: 2017
  ident: ref_27
  article-title: Assimilation of soil moisture and streamflow observations to improve flood forecasting with considering runoff routing lags
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.05.024
– volume: 585
  start-page: 124780
  year: 2020
  ident: ref_39
  article-title: Large-scale baseflow index prediction using hydrological modelling, linear and multilevel regression approaches
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124780
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_61
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 100428
  year: 2020
  ident: ref_51
  article-title: Assessing the expansion of saline lands through vegetation and wetland loss using remote sensing and GIS
  publication-title: Remote Sens. Appl. Soc. Environ.
– volume: 21
  start-page: 393
  year: 2017
  ident: ref_11
  article-title: Improvement of hydrological model calibration by selecting multiple parameter ranges
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-393-2017
– volume: 316
  start-page: 129
  year: 2006
  ident: ref_7
  article-title: Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.04.022
– volume: 537
  start-page: 45
  year: 2016
  ident: ref_2
  article-title: An overview of current applications, challenges, and future trends in distributed process-based models in hydrology
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.03.026
– volume: 17
  start-page: 118
  year: 2012
  ident: ref_21
  article-title: Estimating Selected Parameters for the XAJ Model under Multicollinearity among Watershed Characteristics
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000415
– ident: ref_28
– ident: ref_23
  doi: 10.3390/w12123429
– volume: 82
  start-page: 2635
  year: 2020
  ident: ref_32
  article-title: A comprehensive review of deep learning applications in hydrology and water resources
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2020.369
– volume: 54
  start-page: 8332
  year: 2018
  ident: ref_5
  article-title: Constraining Conceptual Hydrological Models with Multiple Information Sources
  publication-title: Water Resour. Res.
  doi: 10.1029/2017WR021895
– volume: 319
  start-page: 245
  year: 2006
  ident: ref_29
  article-title: Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.07.030
– volume: 34
  start-page: 2450
  year: 2020
  ident: ref_38
  article-title: Machine learning based identification of dominant controls on runoff dynamics
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13740
– volume: 217
  start-page: 303
  year: 2019
  ident: ref_43
  article-title: Evapotranspiration evaluation models based on machine learning algorithms—A comparative study
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.03.015
– volume: 8
  start-page: e1487
  year: 2021
  ident: ref_17
  article-title: Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review
  publication-title: WIREs Water
  doi: 10.1002/wat2.1487
– volume: 13
  start-page: 304
  year: 2001
  ident: ref_8
  article-title: Application of SCE-UA method for calibrating the Xinanjiang watershed model
  publication-title: J. Lake Sci.
  doi: 10.18307/20010404
– volume: 13
  start-page: 1019
  year: 2009
  ident: ref_69
  article-title: A look at the links between drainage density and flood statistics
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-13-1019-2009
– volume: 477
  start-page: 119
  year: 2013
  ident: ref_58
  article-title: Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.11.015
– volume: 688
  start-page: 903
  year: 2019
  ident: ref_60
  article-title: Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.205
– volume: 56
  start-page: 275
  year: 1945
  ident: ref_68
  article-title: Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology
  publication-title: GSA Bull.
  doi: 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
– volume: 53
  start-page: 1593
  year: 2014
  ident: ref_53
  article-title: A Global Land Cover Climatology Using MODIS Data
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-13-0270.1
– volume: 19
  start-page: 209
  year: 2015
  ident: ref_63
  article-title: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-209-2015
– volume: 51
  start-page: 7090
  year: 2015
  ident: ref_1
  article-title: Physically based modeling in catchment hydrology at 50: Survey and outlook
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017780
– volume: 14
  start-page: 1183
  year: 1978
  ident: ref_66
  article-title: Drainage density and streamflow: A closer look
  publication-title: Water Resour. Res.
  doi: 10.1029/WR014i006p01183
– ident: ref_73
  doi: 10.1029/2002WR001708
– ident: ref_16
  doi: 10.1007/s11069-021-04531-0
– ident: ref_81
  doi: 10.3390/w12051469
– volume: 7
  start-page: 427
  year: 2014
  ident: ref_3
  article-title: An integrated modelling framework of catchment-scale ecohydrological processes: 1. Model description and tests over an energy-limited watershed
  publication-title: Ecohydrology
  doi: 10.1002/eco.1362
– volume: 19
  start-page: 686
  year: 2022
  ident: ref_40
  article-title: Prediction of Hydraulic Blockage at Culverts using Lab Scale Simulated Hydraulic Data
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2022.2075770
– volume: 76
  start-page: 157
  year: 2015
  ident: ref_67
  article-title: Hydrological effects of within-catchment heterogeneity of drainage density
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2014.12.011
– volume: 18
  start-page: 1513
  year: 2013
  ident: ref_10
  article-title: Study of the Xinanjiang model parameter calibration
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000527
– volume: 466–467
  start-page: 37
  year: 2012
  ident: ref_18
  article-title: Comparison of regionalization approaches based on regression and similarity for predictions in ungauged catchments under multiple hydro-climatic conditions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.07.048
– volume: 52
  start-page: 4527
  year: 2016
  ident: ref_79
  article-title: An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR018434
– ident: ref_64
– volume: 266
  start-page: 112706
  year: 2021
  ident: ref_42
  article-title: Multi-layer high-resolution soil moisture estimation using machine learning over the United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112706
– volume: 349
  start-page: 411
  year: 2008
  ident: ref_77
  article-title: Calibration of a distributed hydrological model based on satellite evapotranspiration
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.11.017
– volume: 5
  start-page: 1641
  year: 2008
  ident: ref_14
  article-title: Robust estimation of hydrological model parameters
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 2005
  start-page: 279
  year: 2002
  ident: ref_56
  article-title: Model-Independent Parameter Estimation
  publication-title: Watermark Numer. Comput.
– volume: 50
  start-page: 106
  year: 2018
  ident: ref_9
  article-title: Fast hydrological model calibration based on the heterogeneous parallel computing accelerated shuffled complex evolution method
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2017.1303053
– volume: 35
  start-page: 1
  year: 2016
  ident: ref_22
  article-title: New approach to synthesization of recession coefficients in Xinanjiang model
  publication-title: J. Hydroelectr. Eng.
– volume: 28
  start-page: 4877
  year: 2014
  ident: ref_72
  article-title: A model for distributed GIUH-based flow routing on natural and anthropogenic hillslopes
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9984
– volume: 50
  start-page: 3725
  year: 2012
  ident: ref_75
  article-title: Technical Methodology for ASTER Global DEM
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2187300
– volume: 61
  start-page: 1001
  year: 2016
  ident: ref_35
  article-title: Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2014.966721
– volume: 255
  start-page: 112301
  year: 2021
  ident: ref_41
  article-title: Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112301
– volume: 52
  start-page: 245
  year: 2002
  ident: ref_71
  article-title: The influence of physical catchment properties on baseflow in semi-arid environments
  publication-title: J. Arid Environ.
  doi: 10.1006/jare.2001.0947
– volume: 121
  start-page: 1724
  year: 2016
  ident: ref_70
  article-title: The relationship between drainage density, erosion rate, and hilltop curvature: Implications for sediment transport processes
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1002/2015JF003747
– volume: 18
  start-page: 1873
  year: 2014
  ident: ref_13
  article-title: Incipient subsurface heterogeneity and its effect on overland flow generation—Insight from a modeling study of the first experiment at the Biosphere 2 Landscape Evolution Observatory
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-18-1873-2014
– volume: 570
  start-page: 220
  year: 2019
  ident: ref_20
  article-title: Investigating regionalization techniques for large-scale hydrological modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.12.071
– volume: 8
  start-page: 1
  year: 2021
  ident: ref_33
  article-title: Machine learning for hydrologic sciences: An introductory overview
  publication-title: Wiley Interdiscip. Rev. Water
  doi: 10.1002/wat2.1533
– volume: 11
  start-page: 1563
  year: 2007
  ident: ref_34
  article-title: Neural network modelling of non-linear hydrological relationships
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-11-1563-2007
SSID ssj0000331904
Score 2.3742452
Snippet The parameters of hydrological models should be determined before applying those models to estimate or predict hydrological processes. The Xin’anjiang (XAJ)...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4609
SubjectTerms Algorithms
Calibration
Catchments
China
Correlation coefficient
Correlation coefficients
data collection
Datasets
drainage
Drainage density
Hydrologic models
Hydrology
Learning algorithms
Machine learning
Mathematical functions
Meteorology
model parameters
Parameter estimation
Parameters
Partial differential equations
Precipitation
prediction
regionalization
Regression analysis
Remote sensing
remote sensing data
remotely sensed underlying surface characteristics
Robustness
Root-mean-square errors
Runoff
Stream flow
streams
Surface properties
Variables
watersheds
Xin’anjiang hydrological model
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL3BBfIqFgozgwiHqxrGd5NhCqxVSEQIq7S2y4_ECqrxouz2UU_8Gf49fwhsnu6wEEhduVjxSnJmxZ57yPCPESwAT4xS1xbQHRNGlikVjG4dRU0dVRsQ0vo18-s7OzvTbuZnvtPpiTthQHnhQ3IFuG4IbBtWS1Qh_PsSpN5ZK5yvnVUbriHk7YCqfwRVca6qHeqQVcP3B6qLE-7Vl5uFOBMqF-v84h3NwObkjbo9ZoTwcVnNX3KB0T9wcG5R_vrovvh9jK3JymRYSKZtkIg-P3zsmV0E3chnzxPxL-nn9w6WvMPtCzq7CanO6SW57di6PELaCXCb5gWAlkh-ZwQ7RN27tpEtBnmZ6Jcmx8urigTg7Of70elaMbROKvmr1uuiDdTWCjKlDba2HvntnPFBnpMr3XlFNra8ArEiRs3XdaxNpGnpvjQnGNtVDsZeWiR4JGaAu7cuSuC1MQ9R4IFqlHJLGWEZbTsSrjSq7fqwpzq0tzjtgC1Z791vtE_FiK_ttqKTxV6kjtshWgqtf5wfwiW70ie5fPjER-xt7duOWvOgUkCHQGj5gIp5vp7GZ-A-JS7S8ZBmkuwq-ox7_j3U8EbcU35bIlLR9sbdeXdJT5DBr_yy76y-Ptu-T
  priority: 102
  providerName: Directory of Open Access Journals
Title Estimating the Routing Parameter of the Xin’anjiang Hydrological Model Based on Remote Sensing Data and Machine Learning
URI https://www.proquest.com/docview/2716606338
https://www.proquest.com/docview/2723123312
https://doaj.org/article/498e073d29e64741bdf0b56e1ab3ab20
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtNAEB7R5gAXxK8ILdEiuHCwaq-9a_uEGpoQIVJVLZVys3a94xRUrdskPZQTr8Hr8STMOJsUCcTN8o4sa2Z35vt2Z2cA3hIxUUZiGcU1UZQskU1U6MLQU5E3MmkopvFt5Omxnpxnn2ZqFjbcliGtcuMTO0ft2pr3yA8kAXsC28So3l9dR9w1ik9XQwuNHeiRCy6IfPWGo-OT0-0uS5zSFIuzdV3SlPj9wWKZ0H9kmjMQ_4hEXcH-v_xxF2TGj-BhQIficG3Ox3AP_RO4HxqVX9w-he8jWpIMMv1cEHQTnNDDzyeGk6xIR6JtuoHZV__rx0_jv5H552Jy6xYbLye4_dmlGFL4cqL14hTJWijOOJOdRI_MygjjnZh2aZYoQgXW-TM4H4--fJhEoX1CVKdltopqp01OwUblLtfakt5royyxzwZTW1uJOZY2JYKFEo3O8zpTDcautlopp3SRPodd33p8AcKRujKbJMjtYQrEwpIdpDQEHpuk0Ukf3m1UWdWhtji3uLisiGOw2qs7tffhzVb2al1R459SQ7bIVoKrYHcv2sW8CouqysoCyUU5WaLOCBpZ18RWaUyMTY2VcR_2N_aswtJcVncTqQ-vt8O0qPikxHhsb1iGYK-kuSNf_v8Te_BA8n2ILulsH3ZXixt8RShlZQewU4w_DqB3eDT9fDYIE3PQcf7f8Kvr4w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VciiXil8RaGERcOBg1V6v1_YBIUobUtpUCFopN7M_4xRU2SVJVYUTr8FL8FA8CTOOnSKBuPVmeUcre_72m93ZGYBnFJgkRmIehI5CFBXJMsh0ZugpS0sZlbSm8W3k4aEeHKt3o2S0Aj-7uzCcVtn5xMZR-9rxHvmWJGBPYJsiqldnXwPuGsWnq10LjYVa7OP8gkK26cu9HZLvcyn7u0dvBkHbVSBwca5mgfPapOSDk9SnWlv6HGcSS0FZibF1VmKKuY0p7kCJRqepU0mJoXdWJ4lPdBbTvNfguorjnC0q679d7umEMSl0qBZVUGk83JpMI_prpTnf8Y91r2kP8Jf3b5a0_k1Yb7GoeL1QnluwgtVtWGvbop_M78C3XXIADGmrsSCgKDh9iJ_fG07pIomIumwGRp-rX99_mOoLKdtYDOZ-0vlUwc3WTsU2LZZe1JX4gKQbKD5y3jyR7piZEabyYtgkdaJo672O78LxlbD1HqxWdYX3QXhil7JRhNyMJkPMLEldSkNQtYxKHfXgRcfKwrWVzLmhxmlBEQ2zvbhkew-eLmnPFvU7_km1zRJZUnDN7eZFPRkXrQkXKs-QHKKXOWpFQMz6MrSJxsjY2FgZ9mCjk2fROoJpcam2PXiyHCYT5nMZU2F9zjQEsiXpjnzw_ykew9rgaHhQHOwd7j-EG5JvYjTpbhuwOpuc4ybho5l91CilgE9XbQW_AVvRJPc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tXQm4IH5FYQEj4MAhauIkTnJAiNJWXZatqoWVegt2PC6gVbK0XaFy4jV4FR6HJ2EmTbpIIG57i-KRFY0_z3wTj2cAnlJgEmuJmecXFKJEgXReqlJNT2niZODIp_Ft5MOJGh9Hb2bxbAd-tndhOK2ytYm1obZVwf_Ie5KIPZFtiqh6rkmLmA5GL0-_eNxBik9a23YaG4gc4PorhW_LF_sDWutnUo6G71-PvabDgFeEWbTyCqt0QvY4TmyilKFPK3RsKEBzGJrCSEwwMyHFIChRqyQpotihbwuj4tjGKg1p3kuwm1BU5Hdgtz-cTI-2f3j8kODtR5uaqGGY-b3FMiAdRIqzH__wgnWzgL98Qe3gRtfhWsNMxasNlG7ADpY34UrTJP3j-hZ8G5I5YIJbzgXRRsHJRPw81ZzgResjKlcPzD6Vv77_0OVngt5cjNd20VpYwa3XTkSfXKcVVSmOkJCC4h1n0ZPoQK-00KUVh3WKJ4qm-uv8NhxfiGLvQKesSrwLwpK6IhMEyK1pUsTUEAak1ERcXeBU0IXnrSrzoqlrzu01TnKKb1jt-bnau_BkK3u6qebxT6k-r8hWgitw1y-qxTxvNnQeZSmSebQyQxURLTPW-SZWGGgTaiP9Luy165k3ZmGZn4O4C4-3w7Sh-ZRGl1idsQxRbknYkff-P8UjuEw7IH-7Pzm4D1clX8uoc9_2oLNanOEDIksr87BBpYAPF70RfgOasSqJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+Routing+Parameter+of+the+Xin%E2%80%99anjiang+Hydrological+Model+Based+on+Remote+Sensing+Data+and+Machine+Learning&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Fang%2C+Yuanhao&rft.au=Huang%2C+Yizhi&rft.au=Qu%2C+Bo&rft.au=Zhang%2C+Xingnan&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=18&rft.spage=4609&rft_id=info:doi/10.3390%2Frs14184609&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon