Whey protein isolate edible films incorporated with essential oils: Antimicrobial activity and barrier properties
Improvement of innovative biopolymers obtained from agricultural sources or food-waste products is one of the leading technologies to preserve quality, freshness and safety of food materials. The use of biopolymers in the packaging applications and their film forming ability reveal the idea of edibl...
Saved in:
Published in | Polymer degradation and stability Vol. 179; p. 109285 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.09.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Improvement of innovative biopolymers obtained from agricultural sources or food-waste products is one of the leading technologies to preserve quality, freshness and safety of food materials. The use of biopolymers in the packaging applications and their film forming ability reveal the idea of edible films which are also environment friendly. Starch, cellulose derivatives, chitosan/chitin, gums, and animal or plant-based proteins can be accepted as an option to obtain edible films for extending the shelf life of the foods. Film forming proteins provide mechanical stability and can be obtained from animals (casein, whey, gelatin, egg albumin) or plant sources (corn, wheat, rice). Flexibility of the protein network can be enhanced with plasticizers, additionally water permeability can be altered by the addition of oils or beeswax which are hydrophobic materials. Essential oils, in the concentration range of 0.05–0.1%, have demonstrated activity against pathogens. Whey protein isolate of 96% protein ratio (at 8% (w/v)), glycerol, lemon and bergamot essential oils were used for film preparation. Optimum concentrations of constituents of edible film were determined with response surface methodology as 39.2% for glycerol and 4.5% for essential oil. Essential oil concentration is higher than the value which was determined after MIC determination so this amount is effective against S. aureus and E. coli.
•Whey protein isolate (at 8% (w/v)), glycerol, lemon and bergamot essential oils were used.•Essential oils, in the range of 0.05–0.1%, have demonstrated activity against pathogens.•Optimum concentrations were determined with RSM as 39.2% for glycerol and 4.5% for essential oil.•Films showed remarkable responses against water vapor and oxygen permeability. |
---|---|
AbstractList | Improvement of innovative biopolymers obtained from agricultural sources or food-waste products is one of the leading technologies to preserve quality, freshness and safety of food materials. The use of biopolymers in the packaging applications and their film forming ability reveal the idea of edible films which are also environment friendly. Starch, cellulose derivatives, chitosan/chitin, gums, and animal or plant-based proteins can be accepted as an option to obtain edible films for extending the shelf life of the foods. Film forming proteins provide mechanical stability and can be obtained from animals (casein, whey, gelatin, egg albumin) or plant sources (corn, wheat, rice). Flexibility of the protein network can be enhanced with plasticizers, additionally water permeability can be altered by the addition of oils or beeswax which are hydrophobic materials. Essential oils, in the concentration range of 0.05–0.1%, have demonstrated activity against pathogens. Whey protein isolate of 96% protein ratio (at 8% (w/v)), glycerol, lemon and bergamot essential oils were used for film preparation. Optimum concentrations of constituents of edible film were determined with response surface methodology as 39.2% for glycerol and 4.5% for essential oil. Essential oil concentration is higher than the value which was determined after MIC determination so this amount is effective against S. aureus and E. coli.
•Whey protein isolate (at 8% (w/v)), glycerol, lemon and bergamot essential oils were used.•Essential oils, in the range of 0.05–0.1%, have demonstrated activity against pathogens.•Optimum concentrations were determined with RSM as 39.2% for glycerol and 4.5% for essential oil.•Films showed remarkable responses against water vapor and oxygen permeability. Improvement of innovative biopolymers obtained from agricultural sources or food-waste products is one of the leading technologies to preserve quality, freshness and safety of food materials. The use of biopolymers in the packaging applications and their film forming ability reveal the idea of edible films which are also environment friendly. Starch, cellulose derivatives, chitosan/chitin, gums, and animal or plant-based proteins can be accepted as an option to obtain edible films for extending the shelf life of the foods. Film forming proteins provide mechanical stability and can be obtained from animals (casein, whey, gelatin, egg albumin) or plant sources (corn, wheat, rice). Flexibility of the protein network can be enhanced with plasticizers, additionally water permeability can be altered by the addition of oils or beeswax which are hydrophobic materials. Essential oils, in the concentration range of 0.05–0.1%, have demonstrated activity against pathogens. Whey protein isolate of 96% protein ratio (at 8% (w/v)), glycerol, lemon and bergamot essential oils were used for film preparation. Optimum concentrations of constituents of edible film were determined with response surface methodology as 39.2% for glycerol and 4.5% for essential oil. Essential oil concentration is higher than the value which was determined after MIC determination so this amount is effective against S. aureus and E. coli. |
ArticleNumber | 109285 |
Author | Turan, Osman Yağız Özselek, Yeşim Fıratlıgil, Ebru Karbancioğlu-Güler, Funda Çakmak, Hülya |
Author_xml | – sequence: 1 givenname: Hülya surname: Çakmak fullname: Çakmak, Hülya – sequence: 2 givenname: Yeşim surname: Özselek fullname: Özselek, Yeşim – sequence: 3 givenname: Osman Yağız surname: Turan fullname: Turan, Osman Yağız email: turanos@itu.edu.tr – sequence: 4 givenname: Ebru surname: Fıratlıgil fullname: Fıratlıgil, Ebru – sequence: 5 givenname: Funda surname: Karbancioğlu-Güler fullname: Karbancioğlu-Güler, Funda |
BookMark | eNqNkU-LFDEQxRtZwdnV7xAQwUuPSTqd7hY8LMO6CgteFI8hf6rdGtLJbJJZmW9vmvE0p80lJPXqVfJ-181ViAGa5gOjW0aZ_LTfHqI_LQ7-JO1y0WbLKV9rEx_7V82GjUPX8o6zq2ZDmWBtNzH6prnOeU_rEj3bNE-_H-FEDikWwEAwR68LEHBoPJAZ_ZIJBhvTIaZacOQvlkcCOUMoqD2J6PNnclsPC9oUzXqnbcFnLCeigyNGp4SQ1gkHSAUhv21ez9pnePd_v2l-fb37ufvWPvy4_767fWhtN4nSWmt6Sc1suHFz57SUwJgZZ8fkMDLthmmm1E2SGTGMsjeCm0lLOoKeDQAbupvm49m3jn46Qi5qwWzBex0gHrPiPRdcdIMUVfr-QrqPxxTq6xQXYuKy5raqdmdV_WjOCWZlseiCMZSk0StG1YpF7dUFFrViUWcs1eXLhcsh4aLT6cX99-d-qNk912hVtgjBVmQJbFEu4gud_gE_q7nc |
CitedBy_id | crossref_primary_10_3390_foods12142779 crossref_primary_10_1016_j_ijbiomac_2023_126566 crossref_primary_10_3390_foods13162638 crossref_primary_10_1039_D2TB01544G crossref_primary_10_5219_1580 crossref_primary_10_1016_j_foodhyd_2020_106470 crossref_primary_10_3389_fsufs_2021_643208 crossref_primary_10_3390_foods14010119 crossref_primary_10_1080_10942912_2023_2200606 crossref_primary_10_3390_coatings11111364 crossref_primary_10_3390_pr12102115 crossref_primary_10_3390_microorganisms11082023 crossref_primary_10_5219_1736 crossref_primary_10_1016_j_fpsl_2022_100887 crossref_primary_10_1080_10408398_2021_1971154 crossref_primary_10_21603_2074_9414_2024_3_2532 crossref_primary_10_3390_foods13050674 crossref_primary_10_3390_molecules27175604 crossref_primary_10_5812_jjnpp_117046 crossref_primary_10_1016_j_afres_2022_100118 crossref_primary_10_1016_j_fhfh_2024_100182 crossref_primary_10_1016_j_fufo_2025_100590 crossref_primary_10_1038_s41598_023_44905_x crossref_primary_10_1016_j_ijbiomac_2024_132354 crossref_primary_10_3390_foods12224169 crossref_primary_10_3390_polym14101981 crossref_primary_10_3390_foods12152969 crossref_primary_10_3390_polym13162729 crossref_primary_10_53365_nrfhh_149622 crossref_primary_10_1007_s00289_020_03482_z crossref_primary_10_3390_polym15132800 crossref_primary_10_1016_j_focha_2022_100135 crossref_primary_10_47836_ifrj_31_2_15 crossref_primary_10_3390_polym13172925 crossref_primary_10_1111_1541_4337_13251 crossref_primary_10_1016_j_foodchem_2023_137715 crossref_primary_10_1016_j_fbio_2022_101730 crossref_primary_10_1016_j_foodres_2020_109625 crossref_primary_10_1016_j_lwt_2025_117646 crossref_primary_10_1007_s10924_023_02894_y crossref_primary_10_1016_j_ijbiomac_2023_123708 crossref_primary_10_1016_j_jafr_2022_100316 crossref_primary_10_1016_j_carbpol_2020_117221 crossref_primary_10_1021_acsfoodscitech_4c00554 crossref_primary_10_3390_coatings11111344 crossref_primary_10_1007_s11947_020_02528_4 crossref_primary_10_1016_j_foodres_2022_112114 crossref_primary_10_1016_j_heliyon_2022_e12472 crossref_primary_10_1016_j_foodhyd_2021_107419 crossref_primary_10_1155_2024_9112555 crossref_primary_10_1111_1471_0307_12858 crossref_primary_10_1016_j_fbio_2023_102378 crossref_primary_10_3390_coatings11070745 crossref_primary_10_1002_macp_202300437 crossref_primary_10_1016_j_cofs_2024_101127 crossref_primary_10_1007_s13197_022_05465_6 crossref_primary_10_1007_s11947_023_03178_y crossref_primary_10_1007_s10924_024_03269_7 crossref_primary_10_1007_s00210_024_03173_w crossref_primary_10_1016_j_foodchem_2022_132618 crossref_primary_10_3168_jds_2021_21395 crossref_primary_10_1007_s10311_021_01339_z crossref_primary_10_1021_acsfoodscitech_4c00009 crossref_primary_10_1016_j_tifs_2021_01_084 |
Cites_doi | 10.1080/10408398.2011.599504 10.17113/ftb.54.01.16.3889 10.1016/j.foodhyd.2015.06.013 10.1016/j.foodhyd.2014.12.020 10.1007/s13205-014-0197-x 10.1016/j.foodhyd.2004.04.017 10.1002/app.42631 10.1007/s12393-015-9135-x 10.1016/j.foodhyd.2016.03.023 10.1016/S0378-8741(03)00149-1 10.1016/j.lwt.2009.08.017 10.3390/medicines4030058 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Sep 2020 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Sep 2020 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.polymdegradstab.2020.109285 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2321 |
ExternalDocumentID | 10_1016_j_polymdegradstab_2020_109285 S0141391020302172 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSK SSM SSZ T5K WH7 WUQ XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8FD EFKBS JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c394t-ccb560bfb2bdf3da66e11b8fd16781ad79f00d961b47865b42b9a608eafbee173 |
IEDL.DBID | .~1 |
ISSN | 0141-3910 |
IngestDate | Fri Jul 11 01:46:54 EDT 2025 Sun Jul 13 05:06:15 EDT 2025 Tue Jul 01 02:29:50 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 Fri Feb 23 02:46:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Antimicrobial Response surface methodology Whey protein Essential oils Edible films |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-ccb560bfb2bdf3da66e11b8fd16781ad79f00d961b47865b42b9a608eafbee173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2449269104 |
PQPubID | 2045418 |
ParticipantIDs | proquest_miscellaneous_2524243764 proquest_journals_2449269104 crossref_citationtrail_10_1016_j_polymdegradstab_2020_109285 crossref_primary_10_1016_j_polymdegradstab_2020_109285 elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2020_109285 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Polymer degradation and stability |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Galus, Kadzińska (bib3) 2016; 54 Candan, Unlu, Tepe, Daferera, Polissiou, Sökmen, Akpulat (bib8) 2003; 87 Astm E 96 (bib10) 1995 Lee, Lee, Bin Song (bib11) 2015; 46 Bertan, Tanada-Palmu, Siani, Grosso (bib14) 2005; 19 Galus, Kadzińska (bib13) 2016; 52 Avila-Sosa, Palou, López-Malo (bib5) 2015 Mellinas, Valdés, Ramos, Burgos, Garrigós, Jiménez (bib1) 2016; 133 Firatligil-Durmus, Evranuz (bib9) 2010; 43 Galus, Kadzińska (bib4) 2016; 52 Sukhija, Singh, Riar (bib12) 2016; 60 Seow, Yeo, Chung, Yuk (bib15) 2014; 54 Chouhan, Sharma, Guleria (bib6) 2017; 4 Alfatemi, Sharifi-Rad, Rad, Mohsenzadeh, da Silva (bib7) 2015; 5 Flores-Lopez, Cerqueira, de Rodriguez, Vicente (bib2) 2016; 8 Alfatemi (10.1016/j.polymdegradstab.2020.109285_bib7) 2015; 5 Lee (10.1016/j.polymdegradstab.2020.109285_bib11) 2015; 46 Chouhan (10.1016/j.polymdegradstab.2020.109285_bib6) 2017; 4 Astm E 96 (10.1016/j.polymdegradstab.2020.109285_bib10) 1995 Mellinas (10.1016/j.polymdegradstab.2020.109285_bib1) 2016; 133 Flores-Lopez (10.1016/j.polymdegradstab.2020.109285_bib2) 2016; 8 Galus (10.1016/j.polymdegradstab.2020.109285_bib13) 2016; 52 Galus (10.1016/j.polymdegradstab.2020.109285_bib3) 2016; 54 Bertan (10.1016/j.polymdegradstab.2020.109285_bib14) 2005; 19 Seow (10.1016/j.polymdegradstab.2020.109285_bib15) 2014; 54 Galus (10.1016/j.polymdegradstab.2020.109285_bib4) 2016; 52 Avila-Sosa (10.1016/j.polymdegradstab.2020.109285_bib5) 2015 Candan (10.1016/j.polymdegradstab.2020.109285_bib8) 2003; 87 Sukhija (10.1016/j.polymdegradstab.2020.109285_bib12) 2016; 60 Firatligil-Durmus (10.1016/j.polymdegradstab.2020.109285_bib9) 2010; 43 |
References_xml | – start-page: 1 year: 1995 end-page: 8 ident: bib10 article-title: Standard Test Methods for Water Vapor Transmission of Materials – volume: 52 start-page: 78 year: 2016 end-page: 86 ident: bib13 article-title: Whey protein edible films modified with almond and walnut oils publication-title: Food Hydrocolloids – volume: 4 start-page: 58 year: 2017 ident: bib6 article-title: Antimicrobial activity of some essential oils—present status and future perspectives publication-title: Medicines – volume: 8 start-page: 292 year: 2016 end-page: 305 ident: bib2 article-title: Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables publication-title: Food Eng. Rev. – volume: 133 year: 2016 ident: bib1 article-title: Active edible flms: current state and future trends publication-title: J. Appl. Polym. Sci. – volume: 19 start-page: 73 year: 2005 end-page: 82 ident: bib14 article-title: Effect of fatty acids and “Brazilian elemi” on composite films based on gelatin publication-title: Food Hydrocolloids – volume: 54 start-page: 625 year: 2014 end-page: 644 ident: bib15 article-title: Plant essential oils as active antimicrobial agents publication-title: Crit. Rev. Food Sci. Nutr. – volume: 87 start-page: 215 year: 2003 end-page: 220 ident: bib8 article-title: Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae) publication-title: J. Ethnopharmacol. – volume: 52 start-page: 78 year: 2016 end-page: 86 ident: bib4 article-title: Whey protein edible films modified with almond and walnut oils publication-title: Food Hydrocolloids – volume: 43 start-page: 226 year: 2010 end-page: 231 ident: bib9 article-title: Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens) publication-title: LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) – volume: 60 start-page: 128 year: 2016 end-page: 137 ident: bib12 article-title: Analyzing the effect of whey protein concentrate and psyllium husk on various characteristics of biodegradable film from lotus (Nelumbo nucifera) rhizome starch publication-title: Food Hydrocolloids – volume: 5 start-page: 39 year: 2015 end-page: 44 ident: bib7 article-title: Chemical composition, antioxidant activity and in vitro antibacterial activity of Achillea wilhelmsii C. Koch essential oil on methicillin-susceptible and methicillin-resistant Staphylococcus aureus spp publication-title: 3 Biotech. – volume: 54 start-page: 78 year: 2016 end-page: 89 ident: bib3 article-title: Moisture sensitivity, optical, mechanical and structural properties of whey protein-based edible films incorporated with rapeseed oil publication-title: Food Technol. Biotechnol. – year: 2015 ident: bib5 article-title: Essential Oils Added to Edible Films – volume: 46 start-page: 208 year: 2015 end-page: 215 ident: bib11 article-title: Development of a chicken feet protein film containing essential oils publication-title: Food Hydrocolloids – volume: 54 start-page: 625 year: 2014 ident: 10.1016/j.polymdegradstab.2020.109285_bib15 article-title: Plant essential oils as active antimicrobial agents publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2011.599504 – volume: 54 start-page: 78 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109285_bib3 article-title: Moisture sensitivity, optical, mechanical and structural properties of whey protein-based edible films incorporated with rapeseed oil publication-title: Food Technol. Biotechnol. doi: 10.17113/ftb.54.01.16.3889 – year: 2015 ident: 10.1016/j.polymdegradstab.2020.109285_bib5 – volume: 52 start-page: 78 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109285_bib4 article-title: Whey protein edible films modified with almond and walnut oils publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2015.06.013 – volume: 46 start-page: 208 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109285_bib11 article-title: Development of a chicken feet protein film containing essential oils publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.12.020 – volume: 5 start-page: 39 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109285_bib7 article-title: Chemical composition, antioxidant activity and in vitro antibacterial activity of Achillea wilhelmsii C. Koch essential oil on methicillin-susceptible and methicillin-resistant Staphylococcus aureus spp publication-title: 3 Biotech. doi: 10.1007/s13205-014-0197-x – volume: 19 start-page: 73 year: 2005 ident: 10.1016/j.polymdegradstab.2020.109285_bib14 article-title: Effect of fatty acids and “Brazilian elemi” on composite films based on gelatin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2004.04.017 – volume: 133 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109285_bib1 article-title: Active edible flms: current state and future trends publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.42631 – volume: 52 start-page: 78 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109285_bib13 article-title: Whey protein edible films modified with almond and walnut oils publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2015.06.013 – volume: 8 start-page: 292 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109285_bib2 article-title: Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables publication-title: Food Eng. Rev. doi: 10.1007/s12393-015-9135-x – volume: 60 start-page: 128 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109285_bib12 article-title: Analyzing the effect of whey protein concentrate and psyllium husk on various characteristics of biodegradable film from lotus (Nelumbo nucifera) rhizome starch publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.03.023 – start-page: 1 year: 1995 ident: 10.1016/j.polymdegradstab.2020.109285_bib10 – volume: 87 start-page: 215 year: 2003 ident: 10.1016/j.polymdegradstab.2020.109285_bib8 article-title: Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae) publication-title: J. Ethnopharmacol. doi: 10.1016/S0378-8741(03)00149-1 – volume: 43 start-page: 226 year: 2010 ident: 10.1016/j.polymdegradstab.2020.109285_bib9 article-title: Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens) publication-title: LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) doi: 10.1016/j.lwt.2009.08.017 – volume: 4 start-page: 58 year: 2017 ident: 10.1016/j.polymdegradstab.2020.109285_bib6 article-title: Antimicrobial activity of some essential oils—present status and future perspectives publication-title: Medicines doi: 10.3390/medicines4030058 |
SSID | ssj0000451 |
Score | 2.5445342 |
Snippet | Improvement of innovative biopolymers obtained from agricultural sources or food-waste products is one of the leading technologies to preserve quality,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109285 |
SubjectTerms | Agricultural wastes Albumins animals Antiinfectives and antibacterials Antimicrobial antimicrobial properties Beeswax Biopolymers Casein cellulose Chitin Chitosan corn degradation E coli Edible films egg albumen Escherichia coli Essential oils Food food safety food waste freshness Gelatin Glycerol hydrophobicity Lemons Oils & fats permeability Proteins Response surface methodology rice Shelf life starch Thin films Vegetable oils wheat Whey Whey protein whey protein isolate |
Title | Whey protein isolate edible films incorporated with essential oils: Antimicrobial activity and barrier properties |
URI | https://dx.doi.org/10.1016/j.polymdegradstab.2020.109285 https://www.proquest.com/docview/2449269104 https://www.proquest.com/docview/2524243764 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VReJxQFBALJTKSHAMGyeOEyMOrFZUC4ieqNSb5YkdKSibXZrtoRd-OzN5tFBxqMQxfsXxjMej-JtvAN5kTukYszKKyV2NVKkwMhWyQJxJK1kWec8z--1Er07Vl7PsbA-WUywMwypH2z_Y9N5ajyXzcTXn27qeMyyJ3BfJV2l9miWOYFc5a_m7X9cwD-ZPGWCMMuLWd-HtNcZru2ku155ZGXzHEQoJDcYESwmnVv73OXXDYvfH0PEjeDj6j2IxTPEx7IX2AO4tp7RtB_DgD4bBJ_CTjO2l6MkY6lbUpGjkWwr6aGyCqOpm3QmmZxjYjIMX_FtWMJ14Szu_EZu66d6LBT2s656xico4EoITTgjXeoHunFPe8Ru2jNAO3VM4Pf70fbmKxiwLUZkatYvKEsnrwQoT9FXqndZBSiwqL-kck87npopjb7RElRc6Q5WgcTougqswBJmnz2C_3bThOQiqTasiNoGjc-M8FAFRmhBrbxSSazODD9Oa2nKkIOdMGI2dsGY_7A2RWBaJHUQyA33VfTtwcdy248dJgPYv5bJ0btx2iMNJ8Hbc5Z0l18gkmpRKzeD1VTXJmy9dXBs2F9Qm4wAcMuPqxf_P4iXc56cB43YI-7vzi_CKnKIdHvVafwR3Fp-_rk5-A-pMEb4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VrUThUEEBsdCCkeAYbZw4Tow4sFpRbWm7p1bqzYpjW0qVzS7N9tB_z0w-Wlr1UIlj7DhxPPb4KZ55D-BrkgsZmqQIQoSrgSiECZQ3ZJBcxZ4XWdryzJ4u5Pxc_L5ILrZgNuTCUFhl7_s7n956675k0o_mZF2WEwpLQvjC6SitlVl6BtvETpWMYHt6dDxf3DlkkXSyhIIH1OA5fLsL81qvqpulJWIG21CSQoTPI46liNSVH9-qHjjtdic6fAW7PYRk066Xr2HL1XuwMxuU2_bg5T8kg2_gD_rbG9byMZQ1K3GuIbxk-N2mcsyX1bJhxNDQERo7y-jPLCNG8RoXf8VWZdV8Z1O8WJYtaROWUTIEaU6wvLbM5FekekdvWFOQtmvewvnhr7PZPOiFFoIiVmITFIVB4GO8iYz1sc2ldJybzFuOWxnPbap8GFoluRFpJhMjIqNyGWYu98Y5nsbvYFSvavceGNbGPguVowTdMHWZM4YrF0qrhEF0M4Yfw5jqomchJzGMSg_hZpf6gUk0mUR3JhmDvG2-7ug4ntrw52BAfW9-adw6nvqI_cHwul_ojUZ0pCKJk0qM4cttNdqbzl3y2q2u8Z6EcnDQk4sP_9-Lz7AzPzs90SdHi-OP8IJqupC3fRhtrq7dAWKkjfnUr4G_Lw0Ubw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whey+protein+isolate+edible+films+incorporated+with+essential+oils%3A+Antimicrobial+activity+and+barrier+properties&rft.jtitle=Polymer+degradation+and+stability&rft.au=%C3%87akmak%2C+H%C3%BClya&rft.au=%C3%96zselek%2C+Ye%C5%9Fim&rft.au=Turan%2C+Osman+Ya%C4%9F%C4%B1z&rft.au=F%C4%B1ratl%C4%B1gil%2C+Ebru&rft.date=2020-09-01&rft.issn=0141-3910&rft.volume=179+p.109285-&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2020.109285&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon |