Synergistic enhancement of strength and ductility of cobalt-free maraging steel via nanometer-scaled microstructures
Maraging steel with ultra-high strength and good ductility is usually achieved via semi-coherent nanometer-sized precipitates and a dual-phase structure. In this work, we studied the effect of solution treatment parameters on the microstructural evolution and the mechanical properties of cobalt-free...
Saved in:
Published in | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 842; p. 143099 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
11.05.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Maraging steel with ultra-high strength and good ductility is usually achieved via semi-coherent nanometer-sized precipitates and a dual-phase structure. In this work, we studied the effect of solution treatment parameters on the microstructural evolution and the mechanical properties of cobalt-free maraging steel, with high strength (1852 MPa) and satisfactory tensile elongation (11.5%) at room temperature was obtained. The nano-scaled precipitates in the martensite matrix were analyzed, in which the η-Ni3(Ti, Mo) precipitates were distributed in width of 7.1 nm and length of 19 nm. It was found that the needle-like Ni3Ti phase plays a predominant role in enhancing the strength of the maraging steel, while the ductility can be attributed to the nano laminated austenite structure, which could effectively prevent the propagation of microcracks in the martensite matrix. A heterogeneous microstructure of precipitates was formed in the martensite matrix. Besides, the size and number density of precipitates could be regulated by tuning the solution treatment conditions, in which a finer size and a larger number of precipitates could be gained by annealing at a high temperature for a short time. |
---|---|
AbstractList | Maraging steel with ultra-high strength and good ductility is usually achieved via semi-coherent nanometer-sized precipitates and a dual-phase structure. In this work, we studied the effect of solution treatment parameters on the microstructural evolution and the mechanical properties of cobalt-free maraging steel, with high strength (1852 MPa) and satisfactory tensile elongation (11.5%) at room temperature was obtained. The nano-scaled precipitates in the martensite matrix were analyzed, in which the η-Ni3(Ti, Mo) precipitates were distributed in width of 7.1 nm and length of 19 nm. It was found that the needle-like Ni3Ti phase plays a predominant role in enhancing the strength of the maraging steel, while the ductility can be attributed to the nano laminated austenite structure, which could effectively prevent the propagation of microcracks in the martensite matrix. A heterogeneous microstructure of precipitates was formed in the martensite matrix. Besides, the size and number density of precipitates could be regulated by tuning the solution treatment conditions, in which a finer size and a larger number of precipitates could be gained by annealing at a high temperature for a short time. Maraging steel with ultra-high strength and good ductility is usually achieved via semi-coherent nanometer-sized precipitates and a dual-phase structure. In this work, we studied the effect of solution treatment parameters on the microstructural evolution and the mechanical properties of cobalt-free maraging steel, with high strength (1852 MPa) and satisfactory tensile elongation (11.5%) at room temperature was obtained. The nano-scaled precipitates in the martensite matrix were analyzed, in which the η-Ni3(Ti, Mo) precipitates were distributed in width of 7.1 nm and length of 19 nm. It was found that the needle-like Ni3Ti phase plays a predominant role in enhancing the strength of the maraging steel, while the ductility can be attributed to the nano laminated austenite structure, which could effectively prevent the propagation of microcracks in the martensite matrix. A heterogeneous microstructure of precipitates was formed in the martensite matrix. Besides, the size and number density of precipitates could be regulated by tuning the solution treatment conditions, in which a finer size and a larger number of precipitates could be gained by annealing at a high temperature for a short time. |
ArticleNumber | 143099 |
Author | Liu, Bin Li, Hu Liu, Yong Wei, Daixiu |
Author_xml | – sequence: 1 givenname: Hu surname: Li fullname: Li, Hu organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China – sequence: 2 givenname: Yong surname: Liu fullname: Liu, Yong email: yonliu@csu.edu.cn organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China – sequence: 3 givenname: Bin surname: Liu fullname: Liu, Bin organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China – sequence: 4 givenname: Daixiu orcidid: 0000-0003-0264-462X surname: Wei fullname: Wei, Daixiu email: wei1987xiu@imr.tohoku.ac.jp organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi, 980-8577, Japan |
BookMark | eNp9kMtKAzEUhoNUsFZfwFXA9dRc5pKAGxFvUHChrkMmc6ZNmUlqkhb69maoKxeusjj_95-c7xLNnHeA0A0lS0pofbddjhH0khHGlrTkRMozNKei4UUpeT1DcyIZLSoi-QW6jHFLCKElqeYofRwdhLWNyRoMbqOdgRFcwr7HMQVw67TB2nW425tkB5uO08T4Vg-p6AMAHnXQa-vWOQ4w4IPV2GnnR0gQimj0AB0erQk-1-WOfYB4hc57PUS4_n0X6Ov56fPxtVi9v7w9PqwKw2WZCiNq2RpGtW4ZbxoQJfCq08BbUVddIysueta1PVAjwJRQl4xBYxj0JTGSaL5At6feXfDfe4hJbf0-uLxSsVrWFSVciJwSp9T0xxigV8Ymnax3KWg7KErU5Fht1eRYTY7VyXFG2R90F2wWcvwfuj9BkE8_WAgqGgvZe2cDmKQ6b__DfwA8f5rZ |
CitedBy_id | crossref_primary_10_1016_j_msea_2023_145975 crossref_primary_10_1360_SST_2022_0201 crossref_primary_10_1016_j_matchar_2024_114499 crossref_primary_10_1016_j_msea_2024_146605 crossref_primary_10_1016_j_jmrt_2022_12_177 crossref_primary_10_1016_j_addma_2024_104494 crossref_primary_10_1016_j_jallcom_2023_169053 crossref_primary_10_1016_j_jmrt_2023_10_279 crossref_primary_10_1016_j_msea_2023_146031 crossref_primary_10_1016_j_apmate_2023_100113 crossref_primary_10_31857_S0015323023601228 crossref_primary_10_1016_j_matchar_2024_113778 crossref_primary_10_1016_j_actamat_2023_119115 crossref_primary_10_1016_j_msea_2022_144032 crossref_primary_10_1016_j_msea_2024_146898 crossref_primary_10_1016_j_matdes_2023_112341 crossref_primary_10_1016_j_msea_2024_147201 crossref_primary_10_1134_S0031918X23601737 crossref_primary_10_54919_2415_8038_2022_52_46_55 crossref_primary_10_1016_j_msea_2023_145622 crossref_primary_10_7498_aps_74_20241483 crossref_primary_10_1016_j_jmrt_2024_03_088 crossref_primary_10_1016_j_msea_2022_143986 crossref_primary_10_1134_S0031918X24601069 crossref_primary_10_1016_j_jallcom_2023_171870 crossref_primary_10_1016_j_jmrt_2023_04_035 crossref_primary_10_1016_j_jmrt_2024_09_033 crossref_primary_10_1016_j_ijplas_2023_103612 crossref_primary_10_1016_j_mtla_2025_102383 crossref_primary_10_1016_j_jmrt_2024_11_029 crossref_primary_10_1007_s42243_024_01406_z crossref_primary_10_1016_j_matchar_2024_114711 |
Cites_doi | 10.1016/j.actamat.2019.08.042 10.1016/j.msea.2020.140134 10.1016/j.msea.2018.01.110 10.1179/026708309X12506933873503 10.1016/j.actamat.2012.01.045 10.1016/j.msea.2016.05.043 10.1016/j.msea.2003.11.084 10.1016/j.actamat.2021.116788 10.1038/nature22032 10.1016/j.actamat.2020.06.029 10.1016/j.msea.2011.03.058 10.1016/j.actamat.2021.116984 10.1016/j.msea.2020.140665 10.1016/j.msea.2017.09.059 10.1016/j.msea.2018.05.039 10.1016/j.actamat.2021.116878 10.1016/j.actamat.2014.10.010 10.1016/j.msea.2017.12.109 10.1016/S0921-5093(00)00796-6 10.1016/j.matlet.2019.126692 10.1038/s41586-020-2409-3 10.1016/j.msea.2021.141899 10.1016/j.msea.2018.10.069 10.1016/j.matdes.2017.08.026 10.1016/j.msea.2009.03.033 10.1016/j.actamat.2013.11.012 10.1038/nature17981 10.1016/j.actamat.2015.07.018 10.1016/j.msea.2006.05.071 10.1016/j.actamat.2018.07.060 10.1016/j.actamat.2011.04.053 10.1063/1.117951 10.1038/s41586-021-03607-y 10.1016/j.actamat.2021.117607 10.1016/j.actamat.2017.02.069 10.1016/j.actamat.2015.08.076 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier BV May 11, 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV May 11, 2022 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.msea.2022.143099 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4936 |
ExternalDocumentID | 10_1016_j_msea_2022_143099 S0921509322005044 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SMS SPC SPCBC SSM SSZ T5K ~02 ~G- 29M 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SSH WUQ 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c394t-c869bc21aab2377e84e35dae3b865d79538f2dbfe1c8ec4e6422e7c2ef40c90a3 |
IEDL.DBID | .~1 |
ISSN | 0921-5093 |
IngestDate | Fri Jul 25 04:19:27 EDT 2025 Tue Jul 01 01:26:48 EDT 2025 Thu Apr 24 22:58:28 EDT 2025 Fri Feb 23 02:39:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Precipitation strengthening Maraging steel Dual-phase structure Refinement of precipitates Solution annealing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-c869bc21aab2377e84e35dae3b865d79538f2dbfe1c8ec4e6422e7c2ef40c90a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0264-462X |
PQID | 2696510388 |
PQPubID | 2045432 |
ParticipantIDs | proquest_journals_2696510388 crossref_citationtrail_10_1016_j_msea_2022_143099 crossref_primary_10_1016_j_msea_2022_143099 elsevier_sciencedirect_doi_10_1016_j_msea_2022_143099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-11 |
PublicationDateYYYYMMDD | 2022-05-11 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Kürnsteiner, Wilms, Weisheit, Barriobero-Vila, Jägle, Raabe (bib7) 2017; 129 Jacob, Yadav, Dixit, Hohenwarter, Jaya (bib12) 2021; 802 Wang, Sun, Jiang, Sun, Guo, Liu (bib30) 2018; 158 Li, Shan, Wang, Tian (bib14) 2016; 669 Zhu, Zhao, Jiang, Lai (bib6) 2009; 516 Li, Wei, Yu, Misra (bib16) 2019; 257 Li, Yu, Misra, Han, Liu, Shang (bib17) 2018; 715 Zhang, Sun, Liu, Ma, Xu, Huang, Li, Li (bib25) 2021; 211 Zhang, Wang (bib37) 2000; 284 Yang, Chen, Tan, Poplawsky, An, Wang, Samolyuk, Littrell, Lupini, Borisevich, George (bib21) 2021; 595 Niu, Zhou, Wang, Shahzad, Shan, Yang (bib27) 2019; 179 Li, Yu, Misra, Han, Liu, Shen, Shang (bib18) 2018; 728 Ungár, Stoica, Tichy, Wang (bib34) 2014; 66 Zou, Xu, Hu, Chen, Han, Misra, Wang (bib39) 2017; 707 Jiang, Wang, Zhang, Dorin, Sun (bib35) 2021; 825 Zhao, Zhang, Chen, Wang, Xia, Lv (bib40) 2020; 798 Ungár, Borbély (bib23) 1996; 69 Kamikawa, Sato, Miyamoto, Murayama, Sekido, Tsuzaki, Furuhara (bib31) 2015; 83 Niu, Yin, Yang, Luan, Wang, Jiao (bib24) 2021; 209 He, Wang, Huang, Xu, Chen, Wu, Liu, Nieh, An, Lu (bib32) 2016; 102 Qi, Du, Hu, Misra (bib36) 2018; 718 Jiang, Wang, Wu, Liu, Chen, Yao, Gault, Ponge, Raabe, Hirata, Chen, Wang, Lu (bib2) 2017; 544 Leitner, Schnitzer, Schober, Zinner (bib4) 2011; 59 Fathy, Mattar, EI-Faramawy, Bleck (bib10) 2002; 12 Spencer, Embury, Conlon, Véron, Bréchet (bib20) 2004; 387–389 Gong, Wynne, Knowles, Turk, Ma, Galindo-Nava, Rainforth (bib1) 2020; 196 Tan, Zhou, Ma, Zhang, Liu, Kuang (bib33) 2017; 134 He, Yang, Sha (bib9) 2004; 36A Leitner, Schober, Schnitzer, Zinner (bib13) 2011; 528 Xu, Xin, Zhang, Li (bib38) 2022; 225 S, G (bib29) 2009; 63 Erlach, Leitner, Bischof, Clemens, Danoix, Lemarchand, Siller (bib3) 2006; 429 Zhu, Yin, Faulkner (bib5) 2014; 27 Lide (bib41) 2008 Yuan, Ponge, Wittig, Choi, Jiménez, Raabe (bib19) 2012; 60 Li, Pradeep, Deng, Raabe, Tasan (bib22) 2016; 534 Galindo-Nava, Rivera-Díaz-del-Castillo (bib28) 2015; 98 Vasudevan, Kim, Wayman (bib11) 1990; 21A Li, Wei, An, Yu, Misra (bib15) 2019; 739 Jiang, Xu, Li, Peng, Wu, Liu, Wang, Wang, Lu (bib26) 2021; 213 Kurnsteiner, Wilms, Weisheit, Gault, Jagle, Raabe (bib8) 2020; 582 Li (10.1016/j.msea.2022.143099_bib15) 2019; 739 Jiang (10.1016/j.msea.2022.143099_bib2) 2017; 544 Li (10.1016/j.msea.2022.143099_bib18) 2018; 728 Xu (10.1016/j.msea.2022.143099_bib38) 2022; 225 Gong (10.1016/j.msea.2022.143099_bib1) 2020; 196 Tan (10.1016/j.msea.2022.143099_bib33) 2017; 134 Wang (10.1016/j.msea.2022.143099_bib30) 2018; 158 Jacob (10.1016/j.msea.2022.143099_bib12) 2021; 802 Niu (10.1016/j.msea.2022.143099_bib24) 2021; 209 Kürnsteiner (10.1016/j.msea.2022.143099_bib7) 2017; 129 Yuan (10.1016/j.msea.2022.143099_bib19) 2012; 60 Ungár (10.1016/j.msea.2022.143099_bib23) 1996; 69 Leitner (10.1016/j.msea.2022.143099_bib13) 2011; 528 Zhu (10.1016/j.msea.2022.143099_bib5) 2014; 27 Kurnsteiner (10.1016/j.msea.2022.143099_bib8) 2020; 582 Jiang (10.1016/j.msea.2022.143099_bib35) 2021; 825 Erlach (10.1016/j.msea.2022.143099_bib3) 2006; 429 Galindo-Nava (10.1016/j.msea.2022.143099_bib28) 2015; 98 Qi (10.1016/j.msea.2022.143099_bib36) 2018; 718 Zhu (10.1016/j.msea.2022.143099_bib6) 2009; 516 Spencer (10.1016/j.msea.2022.143099_bib20) 2004; 387–389 Fathy (10.1016/j.msea.2022.143099_bib10) 2002; 12 Yang (10.1016/j.msea.2022.143099_bib21) 2021; 595 Jiang (10.1016/j.msea.2022.143099_bib26) 2021; 213 Leitner (10.1016/j.msea.2022.143099_bib4) 2011; 59 Zhang (10.1016/j.msea.2022.143099_bib37) 2000; 284 Li (10.1016/j.msea.2022.143099_bib16) 2019; 257 Zhao (10.1016/j.msea.2022.143099_bib40) 2020; 798 Niu (10.1016/j.msea.2022.143099_bib27) 2019; 179 Li (10.1016/j.msea.2022.143099_bib17) 2018; 715 He (10.1016/j.msea.2022.143099_bib32) 2016; 102 Li (10.1016/j.msea.2022.143099_bib14) 2016; 669 Li (10.1016/j.msea.2022.143099_bib22) 2016; 534 Zou (10.1016/j.msea.2022.143099_bib39) 2017; 707 Zhang (10.1016/j.msea.2022.143099_bib25) 2021; 211 Ungár (10.1016/j.msea.2022.143099_bib34) 2014; 66 S (10.1016/j.msea.2022.143099_bib29) 2009; 63 Lide (10.1016/j.msea.2022.143099_bib41) 2008 He (10.1016/j.msea.2022.143099_bib9) 2004; 36A Vasudevan (10.1016/j.msea.2022.143099_bib11) 1990; 21A Kamikawa (10.1016/j.msea.2022.143099_bib31) 2015; 83 |
References_xml | – volume: 98 start-page: 81 year: 2015 end-page: 93 ident: bib28 article-title: A model for the microstructure behaviour and strength evolution in lath martensite publication-title: Acta Mater. – volume: 63 start-page: 1 year: 2009 end-page: 203 ident: bib29 article-title: Maraging steels: modelling of microstructure, properties and application publication-title: Properties and Applications – volume: 802 year: 2021 ident: bib12 article-title: High pressure torsion processing of maraging steel 250: microstructure and mechanical behaviour evolution publication-title: Mater. Sci. Eng.A – volume: 669 start-page: 58 year: 2016 end-page: 65 ident: bib14 article-title: Influence of aging temperature on strength and toughness of laser-welded T-250 maraging steel joint publication-title: Mater. Sci. Eng., A – volume: 209 start-page: 116788 year: 2021 ident: bib24 article-title: Synergistic alloying effects on nanoscale precipitation and mechanical properties of ultrahigh-strength steels strengthened by Ni publication-title: Acta Mater. – volume: 60 start-page: 2790 year: 2012 end-page: 2804 ident: bib19 article-title: Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: example of a ductile 2GPa Fe–Cr–C steel publication-title: Acta Mater. – volume: 718 start-page: 477 year: 2018 end-page: 482 ident: bib36 article-title: High-cycle fatigue behavior of low-C medium-Mn high strength steel with austenite-martensite submicron-sized lath-like structure publication-title: Mater. Sci. Eng., A – volume: 36A start-page: 2005 year: 2004 end-page: 2273 ident: bib9 article-title: Microstructure and mechanical properties of a 2000 MPa grade Co-free maraging steel publication-title: Metall. Mater. Trans. – volume: 12 start-page: 549 year: 2002 end-page: 556 ident: bib10 article-title: Mechanical properties of new low-nickel cobalt-free maraging steels publication-title: Mater. Technol. – volume: 595 start-page: 245 year: 2021 end-page: 249 ident: bib21 article-title: Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy publication-title: Nature – volume: 196 start-page: 101 year: 2020 end-page: 121 ident: bib1 article-title: Effect of ageing on the microstructural evolution in a new design of maraging steels with carbon publication-title: Acta Mater. – volume: 715 start-page: 174 year: 2018 end-page: 185 ident: bib17 article-title: Strengthening of cobalt-free 19Ni3Mo1.5Ti maraging steel through high-density and low lattice misfit nanoscale precipitates publication-title: Mater. Sci. Eng.A – volume: 516 start-page: 201 year: 2009 end-page: 204 ident: bib6 article-title: Effect of aging temperature on modulated structures of 00Ni12Cr5Mo3TiAlV maraging steel publication-title: Mater. Sci. Eng.A – volume: 211 start-page: 116878 year: 2021 ident: bib25 article-title: Ultrafine-grained dual-phase maraging steel with high strength and excellent cryogenic toughness publication-title: Acta Mater. – volume: 707 start-page: 270 year: 2017 end-page: 279 ident: bib39 article-title: High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite publication-title: Mater. Sci. Eng., A – volume: 387–389 start-page: 873 year: 2004 end-page: 881 ident: bib20 article-title: Strengthening via the formation of strain-induced martensite in stainless steels publication-title: Mater. Sci. Eng., A – volume: 528 start-page: 5264 year: 2011 end-page: 5270 ident: bib13 article-title: Strengthening behavior of Fe–Cr–Ni–Al–(Ti) maraging steels publication-title: Mater. Sci. Eng., A – volume: 534 start-page: 227 year: 2016 end-page: 230 ident: bib22 article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off publication-title: Nature – volume: 544 start-page: 460 year: 2017 end-page: 464 ident: bib2 article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation publication-title: Nature – volume: 179 start-page: 296 year: 2019 end-page: 307 ident: bib27 article-title: Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel publication-title: Acta Mater. – volume: 158 start-page: 247 year: 2018 end-page: 256 ident: bib30 article-title: A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility publication-title: Acta Mater. – volume: 582 start-page: 515 year: 2020 end-page: 519 ident: bib8 article-title: High-strength Damascus steel by additive manufacturing publication-title: Nature – volume: 798 start-page: 140134 year: 2020 ident: bib40 article-title: Cyclic deformation behavior of steels with a nanolamellar microstructure and tensile strength of 1500 MPa publication-title: Mater. Sci. Eng., A – volume: 129 start-page: 52 year: 2017 end-page: 60 ident: bib7 article-title: Massive nanoprecipitation in an Fe-19Ni-x Al maraging steel triggered by the intrinsic heat treatment during laser metal deposition publication-title: Acta Mater. – volume: 27 start-page: 395 year: 2014 end-page: 405 ident: bib5 article-title: Microstructural control of maraging steel C300 publication-title: Mater. Sci. Technol. – volume: 102 start-page: 187 year: 2016 end-page: 196 ident: bib32 article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties publication-title: Acta Mater. – volume: 728 start-page: 208 year: 2018 end-page: 217 ident: bib18 article-title: On the origin and contribution of extended kinks and jogs and stacking fault ribbons to deformation behavior in an ultrahigh strength cobalt-free maraging steel with high density of low lattice misfit precipitates publication-title: Mater. Sci. Eng., A – volume: 66 start-page: 251 year: 2014 end-page: 261 ident: bib34 article-title: Orientation-dependent evolution of the dislocation density in grain populations with different crystallographic orientations relative to the tensile axis in a polycrystalline aggregate of stainless steel publication-title: Acta Mater. – volume: 21A start-page: 1990 year: 1990 end-page: 2665 ident: bib11 article-title: Precipitation reactions and strengthening behavior in 18 wt pct Nickel maraging steels publication-title: Metall. Trans. A – volume: 213 year: 2021 ident: bib26 article-title: Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels publication-title: Acta Mater. – volume: 825 year: 2021 ident: bib35 article-title: Superior low temperature toughness in a newly designed low Mn and low Ni high strength steel publication-title: Mater. Sci. Eng.A – volume: 134 start-page: 23 year: 2017 end-page: 34 ident: bib33 article-title: Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel publication-title: Mater. Des. – year: 2008 ident: bib41 article-title: CRC Handbook of Chemistry and Physics – volume: 225 start-page: 117607 year: 2022 ident: bib38 article-title: Stress corrosion cracking resistant nanostructured Al-Mg alloy with low angle grain boundaries publication-title: Acta Mater. – volume: 739 start-page: 445 year: 2019 end-page: 454 ident: bib15 article-title: Aging phenomenon in low lattice-misfit cobalt-free maraging steel: microstructural evolution and strengthening behavior publication-title: Mater. Sci. Eng.A – volume: 69 start-page: 3173 year: 1996 end-page: 3175 ident: bib23 article-title: The effect of dislocation contrast on x‐ray line broadening: a new approach to line profile analysis publication-title: Appl. Phys. Lett. – volume: 83 start-page: 383 year: 2015 end-page: 396 ident: bib31 article-title: Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels publication-title: Acta Mater. – volume: 429 start-page: 96 year: 2006 end-page: 106 ident: bib3 article-title: Comparison of NiAl precipitation in a medium carbon secondary hardening steel and C-free PH13-8 maraging steel publication-title: Mater. Sci. Eng., A – volume: 257 year: 2019 ident: bib16 article-title: Reverted austenite with distinct characteristics in a new cobalt-free low lattice misfit precipitate-bearing 19Ni3Mo1.5Ti maraging steel publication-title: Mater. Lett. – volume: 284 start-page: 285 year: 2000 end-page: 291 ident: bib37 article-title: Comparison of fatigue cracking possibility along large- and low-angle grain boundaries publication-title: Mater. Sci. Eng. – volume: 59 start-page: 5012 year: 2011 end-page: 5022 ident: bib4 article-title: Precipitate modification in PH13-8 Mo type maraging steel publication-title: Acta Mater. – volume: 179 start-page: 296 year: 2019 ident: 10.1016/j.msea.2022.143099_bib27 article-title: Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.08.042 – volume: 798 start-page: 140134 year: 2020 ident: 10.1016/j.msea.2022.143099_bib40 article-title: Cyclic deformation behavior of steels with a nanolamellar microstructure and tensile strength of 1500 MPa publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2020.140134 – volume: 718 start-page: 477 year: 2018 ident: 10.1016/j.msea.2022.143099_bib36 article-title: High-cycle fatigue behavior of low-C medium-Mn high strength steel with austenite-martensite submicron-sized lath-like structure publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2018.01.110 – volume: 27 start-page: 395 year: 2014 ident: 10.1016/j.msea.2022.143099_bib5 article-title: Microstructural control of maraging steel C300 publication-title: Mater. Sci. Technol. doi: 10.1179/026708309X12506933873503 – volume: 60 start-page: 2790 year: 2012 ident: 10.1016/j.msea.2022.143099_bib19 article-title: Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: example of a ductile 2GPa Fe–Cr–C steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.01.045 – volume: 36A start-page: 2005 year: 2004 ident: 10.1016/j.msea.2022.143099_bib9 article-title: Microstructure and mechanical properties of a 2000 MPa grade Co-free maraging steel publication-title: Metall. Mater. Trans. – volume: 669 start-page: 58 year: 2016 ident: 10.1016/j.msea.2022.143099_bib14 article-title: Influence of aging temperature on strength and toughness of laser-welded T-250 maraging steel joint publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2016.05.043 – volume: 387–389 start-page: 873 year: 2004 ident: 10.1016/j.msea.2022.143099_bib20 article-title: Strengthening via the formation of strain-induced martensite in stainless steels publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2003.11.084 – volume: 209 start-page: 116788 year: 2021 ident: 10.1016/j.msea.2022.143099_bib24 article-title: Synergistic alloying effects on nanoscale precipitation and mechanical properties of ultrahigh-strength steels strengthened by Ni3Ti, Mo-enriched, and Cr-rich co-precipitates publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116788 – volume: 544 start-page: 460 year: 2017 ident: 10.1016/j.msea.2022.143099_bib2 article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation publication-title: Nature doi: 10.1038/nature22032 – volume: 196 start-page: 101 year: 2020 ident: 10.1016/j.msea.2022.143099_bib1 article-title: Effect of ageing on the microstructural evolution in a new design of maraging steels with carbon publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.06.029 – volume: 528 start-page: 5264 year: 2011 ident: 10.1016/j.msea.2022.143099_bib13 article-title: Strengthening behavior of Fe–Cr–Ni–Al–(Ti) maraging steels publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2011.03.058 – volume: 213 year: 2021 ident: 10.1016/j.msea.2022.143099_bib26 article-title: Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116984 – volume: 802 year: 2021 ident: 10.1016/j.msea.2022.143099_bib12 article-title: High pressure torsion processing of maraging steel 250: microstructure and mechanical behaviour evolution publication-title: Mater. Sci. Eng.A doi: 10.1016/j.msea.2020.140665 – volume: 707 start-page: 270 year: 2017 ident: 10.1016/j.msea.2022.143099_bib39 article-title: High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2017.09.059 – volume: 728 start-page: 208 year: 2018 ident: 10.1016/j.msea.2022.143099_bib18 article-title: On the origin and contribution of extended kinks and jogs and stacking fault ribbons to deformation behavior in an ultrahigh strength cobalt-free maraging steel with high density of low lattice misfit precipitates publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2018.05.039 – volume: 211 start-page: 116878 year: 2021 ident: 10.1016/j.msea.2022.143099_bib25 article-title: Ultrafine-grained dual-phase maraging steel with high strength and excellent cryogenic toughness publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116878 – volume: 83 start-page: 383 year: 2015 ident: 10.1016/j.msea.2022.143099_bib31 article-title: Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.10.010 – volume: 715 start-page: 174 year: 2018 ident: 10.1016/j.msea.2022.143099_bib17 article-title: Strengthening of cobalt-free 19Ni3Mo1.5Ti maraging steel through high-density and low lattice misfit nanoscale precipitates publication-title: Mater. Sci. Eng.A doi: 10.1016/j.msea.2017.12.109 – volume: 284 start-page: 285 year: 2000 ident: 10.1016/j.msea.2022.143099_bib37 article-title: Comparison of fatigue cracking possibility along large- and low-angle grain boundaries publication-title: Mater. Sci. Eng. doi: 10.1016/S0921-5093(00)00796-6 – volume: 257 year: 2019 ident: 10.1016/j.msea.2022.143099_bib16 article-title: Reverted austenite with distinct characteristics in a new cobalt-free low lattice misfit precipitate-bearing 19Ni3Mo1.5Ti maraging steel publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.126692 – volume: 582 start-page: 515 year: 2020 ident: 10.1016/j.msea.2022.143099_bib8 article-title: High-strength Damascus steel by additive manufacturing publication-title: Nature doi: 10.1038/s41586-020-2409-3 – volume: 825 year: 2021 ident: 10.1016/j.msea.2022.143099_bib35 article-title: Superior low temperature toughness in a newly designed low Mn and low Ni high strength steel publication-title: Mater. Sci. Eng.A doi: 10.1016/j.msea.2021.141899 – volume: 739 start-page: 445 year: 2019 ident: 10.1016/j.msea.2022.143099_bib15 article-title: Aging phenomenon in low lattice-misfit cobalt-free maraging steel: microstructural evolution and strengthening behavior publication-title: Mater. Sci. Eng.A doi: 10.1016/j.msea.2018.10.069 – volume: 134 start-page: 23 year: 2017 ident: 10.1016/j.msea.2022.143099_bib33 article-title: Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.08.026 – volume: 516 start-page: 201 year: 2009 ident: 10.1016/j.msea.2022.143099_bib6 article-title: Effect of aging temperature on modulated structures of 00Ni12Cr5Mo3TiAlV maraging steel publication-title: Mater. Sci. Eng.A doi: 10.1016/j.msea.2009.03.033 – volume: 63 start-page: 1 year: 2009 ident: 10.1016/j.msea.2022.143099_bib29 article-title: Maraging steels: modelling of microstructure, properties and application publication-title: Properties and Applications – volume: 66 start-page: 251 year: 2014 ident: 10.1016/j.msea.2022.143099_bib34 article-title: Orientation-dependent evolution of the dislocation density in grain populations with different crystallographic orientations relative to the tensile axis in a polycrystalline aggregate of stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.11.012 – volume: 534 start-page: 227 year: 2016 ident: 10.1016/j.msea.2022.143099_bib22 article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off publication-title: Nature doi: 10.1038/nature17981 – volume: 21A start-page: 1990 year: 1990 ident: 10.1016/j.msea.2022.143099_bib11 article-title: Precipitation reactions and strengthening behavior in 18 wt pct Nickel maraging steels publication-title: Metall. Trans. A – volume: 98 start-page: 81 year: 2015 ident: 10.1016/j.msea.2022.143099_bib28 article-title: A model for the microstructure behaviour and strength evolution in lath martensite publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.07.018 – volume: 429 start-page: 96 year: 2006 ident: 10.1016/j.msea.2022.143099_bib3 article-title: Comparison of NiAl precipitation in a medium carbon secondary hardening steel and C-free PH13-8 maraging steel publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2006.05.071 – year: 2008 ident: 10.1016/j.msea.2022.143099_bib41 – volume: 158 start-page: 247 year: 2018 ident: 10.1016/j.msea.2022.143099_bib30 article-title: A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.07.060 – volume: 59 start-page: 5012 year: 2011 ident: 10.1016/j.msea.2022.143099_bib4 article-title: Precipitate modification in PH13-8 Mo type maraging steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.04.053 – volume: 69 start-page: 3173 year: 1996 ident: 10.1016/j.msea.2022.143099_bib23 article-title: The effect of dislocation contrast on x‐ray line broadening: a new approach to line profile analysis publication-title: Appl. Phys. Lett. doi: 10.1063/1.117951 – volume: 595 start-page: 245 year: 2021 ident: 10.1016/j.msea.2022.143099_bib21 article-title: Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy publication-title: Nature doi: 10.1038/s41586-021-03607-y – volume: 225 start-page: 117607 year: 2022 ident: 10.1016/j.msea.2022.143099_bib38 article-title: Stress corrosion cracking resistant nanostructured Al-Mg alloy with low angle grain boundaries publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117607 – volume: 129 start-page: 52 year: 2017 ident: 10.1016/j.msea.2022.143099_bib7 article-title: Massive nanoprecipitation in an Fe-19Ni-x Al maraging steel triggered by the intrinsic heat treatment during laser metal deposition publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.069 – volume: 12 start-page: 549 year: 2002 ident: 10.1016/j.msea.2022.143099_bib10 article-title: Mechanical properties of new low-nickel cobalt-free maraging steels publication-title: Mater. Technol. – volume: 102 start-page: 187 year: 2016 ident: 10.1016/j.msea.2022.143099_bib32 article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.076 |
SSID | ssj0001405 |
Score | 2.5615525 |
Snippet | Maraging steel with ultra-high strength and good ductility is usually achieved via semi-coherent nanometer-sized precipitates and a dual-phase structure. In... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 143099 |
SubjectTerms | Chemical precipitation Cobalt Dual-phase structure Ductility Elongation Heat treating High strength High temperature Maraging steel Maraging steels Martensite Mechanical properties Microcracks Microstructure Molybdenum Precipitates Precipitation strengthening Refinement of precipitates Room temperature Solid phases Solution annealing Solution heat treatment Titanium |
Title | Synergistic enhancement of strength and ductility of cobalt-free maraging steel via nanometer-scaled microstructures |
URI | https://dx.doi.org/10.1016/j.msea.2022.143099 https://www.proquest.com/docview/2696510388 |
Volume | 842 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvZRDBRRU2gX5wA25m9hOnBzRCrSA4EKRuFkTZwJbsVkEaSUu_HZm8igPIQ49OhlH0cx4xmN981mIXYOFMzlUKiviVFlmb4UEQKWGxrR9DsFy7_DpWTq9sMeXyeWSmAy9MAyr7GN_F9PbaN0_GffaHN_OZuPzKKd0RQW55oORyDInqLWOvfzn4zPMgwqIFsZIwoql-8aZDuM1J3eiGlFrChgmavlf301Ob8J0m3sOV8WXftMo97v_WhNLWK-LlRdUgl9Fc_7AXXwt7bLE-pqNyQd_clFJ7gepr5prCXUpmd-V8bAP_CYwG0ijqjtEOYe79sYiEke8kX9nIGuoF3PGy6h7MiWWcs7wvY5y9g_V6Rvi4vDg12Sq-hsVVDC5bVTI0rwIOgYotHEOM4smKQFNkaVJ6XKKfpUuiwrjkGGwSMWJRhc0VjYKeQRmUyzXixq_CUnr2PHlMBkEsBBH4KiQM8aWEGPuQtgS8aBKH3q6cb714sYPuLLfntXvWf2-U_-W2Ps357Yj2_hQOhks5F-5jKds8OG80WBO3y_Ye6_TPGVywSz7_p-f_SE-84iRBXE8EstkC9ymDUtT7LQeuSM-7R-dTM-eAPtL7Dk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZgOZQeKkqLCqXUh96QtYntvI4IFS2vvQASN2viTGARm0UQkPj3zCQOaquKA8fE4yiasWc81jffCPHLYJmZAmqVl3GqLLO3QgKgUkPPdHz23nLt8Ok0nVzYo8vkcknsD7UwDKsMvr_36Z23Dm_GQZvju9lsfBYVFK4oIdd8MRJZuyxWmJ0qGYmVvcPjyfTVIVMO0SEZSV7xhFA708O85rSiKE3UmnyGiToK2P_Gp388dRd-DtbEp3BulHv9r30WS9isi49_sAl-Ee3ZMxfydczLEptrtiff_clFLbkkpLlqryU0lWSKV4bEPvOIZ0KQVtX3iHIO913TIhJHvJVPM5ANNIs5Q2bUA1kTKzlnBF_POvtIqfpXcXHw-3x_okJTBeVNYVvl87QovY4BSm2yDHOLJqkATZmnSZUV5ABrXZU1xj5Hb5HyE42Z11jbyBcRmA0xahYNfhOStnLG_WFy8GAhjiCjXM4YW0GMReb9pogHVTofGMe58cWtG6BlN47V71j9rlf_pth9nXPX8228KZ0MFnJ_rRpHAeHNeduDOV3Ysw9Op0XK_IJ5vvXOz_4UHybnpyfu5HB6_F2s8ggDDeJ4W4zILviDzi9tuRPW5wsTdO7q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+enhancement+of+strength+and+ductility+of+cobalt-free+maraging+steel+via+nanometer-scaled+microstructures&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Li%2C+Hu&rft.au=Liu%2C+Yong&rft.au=Liu%2C+Bin&rft.au=Wei%2C+Daixiu&rft.date=2022-05-11&rft.pub=Elsevier+BV&rft.issn=0921-5093&rft.eissn=1873-4936&rft.volume=842&rft.spage=1&rft_id=info:doi/10.1016%2Fj.msea.2022.143099&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon |