Synergistic enhancement of strength and ductility of cobalt-free maraging steel via nanometer-scaled microstructures

Maraging steel with ultra-high strength and good ductility is usually achieved via semi-coherent nanometer-sized precipitates and a dual-phase structure. In this work, we studied the effect of solution treatment parameters on the microstructural evolution and the mechanical properties of cobalt-free...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 842; p. 143099
Main Authors Li, Hu, Liu, Yong, Liu, Bin, Wei, Daixiu
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 11.05.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Maraging steel with ultra-high strength and good ductility is usually achieved via semi-coherent nanometer-sized precipitates and a dual-phase structure. In this work, we studied the effect of solution treatment parameters on the microstructural evolution and the mechanical properties of cobalt-free maraging steel, with high strength (1852 MPa) and satisfactory tensile elongation (11.5%) at room temperature was obtained. The nano-scaled precipitates in the martensite matrix were analyzed, in which the η-Ni3(Ti, Mo) precipitates were distributed in width of 7.1 nm and length of 19 nm. It was found that the needle-like Ni3Ti phase plays a predominant role in enhancing the strength of the maraging steel, while the ductility can be attributed to the nano laminated austenite structure, which could effectively prevent the propagation of microcracks in the martensite matrix. A heterogeneous microstructure of precipitates was formed in the martensite matrix. Besides, the size and number density of precipitates could be regulated by tuning the solution treatment conditions, in which a finer size and a larger number of precipitates could be gained by annealing at a high temperature for a short time.
AbstractList Maraging steel with ultra-high strength and good ductility is usually achieved via semi-coherent nanometer-sized precipitates and a dual-phase structure. In this work, we studied the effect of solution treatment parameters on the microstructural evolution and the mechanical properties of cobalt-free maraging steel, with high strength (1852 MPa) and satisfactory tensile elongation (11.5%) at room temperature was obtained. The nano-scaled precipitates in the martensite matrix were analyzed, in which the η-Ni3(Ti, Mo) precipitates were distributed in width of 7.1 nm and length of 19 nm. It was found that the needle-like Ni3Ti phase plays a predominant role in enhancing the strength of the maraging steel, while the ductility can be attributed to the nano laminated austenite structure, which could effectively prevent the propagation of microcracks in the martensite matrix. A heterogeneous microstructure of precipitates was formed in the martensite matrix. Besides, the size and number density of precipitates could be regulated by tuning the solution treatment conditions, in which a finer size and a larger number of precipitates could be gained by annealing at a high temperature for a short time.
Maraging steel with ultra-high strength and good ductility is usually achieved via semi-coherent nanometer-sized precipitates and a dual-phase structure. In this work, we studied the effect of solution treatment parameters on the microstructural evolution and the mechanical properties of cobalt-free maraging steel, with high strength (1852 MPa) and satisfactory tensile elongation (11.5%) at room temperature was obtained. The nano-scaled precipitates in the martensite matrix were analyzed, in which the η-Ni3(Ti, Mo) precipitates were distributed in width of 7.1 nm and length of 19 nm. It was found that the needle-like Ni3Ti phase plays a predominant role in enhancing the strength of the maraging steel, while the ductility can be attributed to the nano laminated austenite structure, which could effectively prevent the propagation of microcracks in the martensite matrix. A heterogeneous microstructure of precipitates was formed in the martensite matrix. Besides, the size and number density of precipitates could be regulated by tuning the solution treatment conditions, in which a finer size and a larger number of precipitates could be gained by annealing at a high temperature for a short time.
ArticleNumber 143099
Author Liu, Bin
Li, Hu
Liu, Yong
Wei, Daixiu
Author_xml – sequence: 1
  givenname: Hu
  surname: Li
  fullname: Li, Hu
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
– sequence: 2
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
  email: yonliu@csu.edu.cn
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
– sequence: 3
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
– sequence: 4
  givenname: Daixiu
  orcidid: 0000-0003-0264-462X
  surname: Wei
  fullname: Wei, Daixiu
  email: wei1987xiu@imr.tohoku.ac.jp
  organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi, 980-8577, Japan
BookMark eNp9kMtKAzEUhoNUsFZfwFXA9dRc5pKAGxFvUHChrkMmc6ZNmUlqkhb69maoKxeusjj_95-c7xLNnHeA0A0lS0pofbddjhH0khHGlrTkRMozNKei4UUpeT1DcyIZLSoi-QW6jHFLCKElqeYofRwdhLWNyRoMbqOdgRFcwr7HMQVw67TB2nW425tkB5uO08T4Vg-p6AMAHnXQa-vWOQ4w4IPV2GnnR0gQimj0AB0erQk-1-WOfYB4hc57PUS4_n0X6Ov56fPxtVi9v7w9PqwKw2WZCiNq2RpGtW4ZbxoQJfCq08BbUVddIysueta1PVAjwJRQl4xBYxj0JTGSaL5At6feXfDfe4hJbf0-uLxSsVrWFSVciJwSp9T0xxigV8Ymnax3KWg7KErU5Fht1eRYTY7VyXFG2R90F2wWcvwfuj9BkE8_WAgqGgvZe2cDmKQ6b__DfwA8f5rZ
CitedBy_id crossref_primary_10_1016_j_msea_2023_145975
crossref_primary_10_1360_SST_2022_0201
crossref_primary_10_1016_j_matchar_2024_114499
crossref_primary_10_1016_j_msea_2024_146605
crossref_primary_10_1016_j_jmrt_2022_12_177
crossref_primary_10_1016_j_addma_2024_104494
crossref_primary_10_1016_j_jallcom_2023_169053
crossref_primary_10_1016_j_jmrt_2023_10_279
crossref_primary_10_1016_j_msea_2023_146031
crossref_primary_10_1016_j_apmate_2023_100113
crossref_primary_10_31857_S0015323023601228
crossref_primary_10_1016_j_matchar_2024_113778
crossref_primary_10_1016_j_actamat_2023_119115
crossref_primary_10_1016_j_msea_2022_144032
crossref_primary_10_1016_j_msea_2024_146898
crossref_primary_10_1016_j_matdes_2023_112341
crossref_primary_10_1016_j_msea_2024_147201
crossref_primary_10_1134_S0031918X23601737
crossref_primary_10_54919_2415_8038_2022_52_46_55
crossref_primary_10_1016_j_msea_2023_145622
crossref_primary_10_7498_aps_74_20241483
crossref_primary_10_1016_j_jmrt_2024_03_088
crossref_primary_10_1016_j_msea_2022_143986
crossref_primary_10_1134_S0031918X24601069
crossref_primary_10_1016_j_jallcom_2023_171870
crossref_primary_10_1016_j_jmrt_2023_04_035
crossref_primary_10_1016_j_jmrt_2024_09_033
crossref_primary_10_1016_j_ijplas_2023_103612
crossref_primary_10_1016_j_mtla_2025_102383
crossref_primary_10_1016_j_jmrt_2024_11_029
crossref_primary_10_1007_s42243_024_01406_z
crossref_primary_10_1016_j_matchar_2024_114711
Cites_doi 10.1016/j.actamat.2019.08.042
10.1016/j.msea.2020.140134
10.1016/j.msea.2018.01.110
10.1179/026708309X12506933873503
10.1016/j.actamat.2012.01.045
10.1016/j.msea.2016.05.043
10.1016/j.msea.2003.11.084
10.1016/j.actamat.2021.116788
10.1038/nature22032
10.1016/j.actamat.2020.06.029
10.1016/j.msea.2011.03.058
10.1016/j.actamat.2021.116984
10.1016/j.msea.2020.140665
10.1016/j.msea.2017.09.059
10.1016/j.msea.2018.05.039
10.1016/j.actamat.2021.116878
10.1016/j.actamat.2014.10.010
10.1016/j.msea.2017.12.109
10.1016/S0921-5093(00)00796-6
10.1016/j.matlet.2019.126692
10.1038/s41586-020-2409-3
10.1016/j.msea.2021.141899
10.1016/j.msea.2018.10.069
10.1016/j.matdes.2017.08.026
10.1016/j.msea.2009.03.033
10.1016/j.actamat.2013.11.012
10.1038/nature17981
10.1016/j.actamat.2015.07.018
10.1016/j.msea.2006.05.071
10.1016/j.actamat.2018.07.060
10.1016/j.actamat.2011.04.053
10.1063/1.117951
10.1038/s41586-021-03607-y
10.1016/j.actamat.2021.117607
10.1016/j.actamat.2017.02.069
10.1016/j.actamat.2015.08.076
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV May 11, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV May 11, 2022
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.msea.2022.143099
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4936
ExternalDocumentID 10_1016_j_msea_2022_143099
S0921509322005044
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SSM
SSZ
T5K
~02
~G-
29M
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SSH
WUQ
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c394t-c869bc21aab2377e84e35dae3b865d79538f2dbfe1c8ec4e6422e7c2ef40c90a3
IEDL.DBID .~1
ISSN 0921-5093
IngestDate Fri Jul 25 04:19:27 EDT 2025
Tue Jul 01 01:26:48 EDT 2025
Thu Apr 24 22:58:28 EDT 2025
Fri Feb 23 02:39:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Precipitation strengthening
Maraging steel
Dual-phase structure
Refinement of precipitates
Solution annealing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-c869bc21aab2377e84e35dae3b865d79538f2dbfe1c8ec4e6422e7c2ef40c90a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0264-462X
PQID 2696510388
PQPubID 2045432
ParticipantIDs proquest_journals_2696510388
crossref_citationtrail_10_1016_j_msea_2022_143099
crossref_primary_10_1016_j_msea_2022_143099
elsevier_sciencedirect_doi_10_1016_j_msea_2022_143099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-11
PublicationDateYYYYMMDD 2022-05-11
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-11
  day: 11
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Materials science & engineering. A, Structural materials : properties, microstructure and processing
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Kürnsteiner, Wilms, Weisheit, Barriobero-Vila, Jägle, Raabe (bib7) 2017; 129
Jacob, Yadav, Dixit, Hohenwarter, Jaya (bib12) 2021; 802
Wang, Sun, Jiang, Sun, Guo, Liu (bib30) 2018; 158
Li, Shan, Wang, Tian (bib14) 2016; 669
Zhu, Zhao, Jiang, Lai (bib6) 2009; 516
Li, Wei, Yu, Misra (bib16) 2019; 257
Li, Yu, Misra, Han, Liu, Shang (bib17) 2018; 715
Zhang, Sun, Liu, Ma, Xu, Huang, Li, Li (bib25) 2021; 211
Zhang, Wang (bib37) 2000; 284
Yang, Chen, Tan, Poplawsky, An, Wang, Samolyuk, Littrell, Lupini, Borisevich, George (bib21) 2021; 595
Niu, Zhou, Wang, Shahzad, Shan, Yang (bib27) 2019; 179
Li, Yu, Misra, Han, Liu, Shen, Shang (bib18) 2018; 728
Ungár, Stoica, Tichy, Wang (bib34) 2014; 66
Zou, Xu, Hu, Chen, Han, Misra, Wang (bib39) 2017; 707
Jiang, Wang, Zhang, Dorin, Sun (bib35) 2021; 825
Zhao, Zhang, Chen, Wang, Xia, Lv (bib40) 2020; 798
Ungár, Borbély (bib23) 1996; 69
Kamikawa, Sato, Miyamoto, Murayama, Sekido, Tsuzaki, Furuhara (bib31) 2015; 83
Niu, Yin, Yang, Luan, Wang, Jiao (bib24) 2021; 209
He, Wang, Huang, Xu, Chen, Wu, Liu, Nieh, An, Lu (bib32) 2016; 102
Qi, Du, Hu, Misra (bib36) 2018; 718
Jiang, Wang, Wu, Liu, Chen, Yao, Gault, Ponge, Raabe, Hirata, Chen, Wang, Lu (bib2) 2017; 544
Leitner, Schnitzer, Schober, Zinner (bib4) 2011; 59
Fathy, Mattar, EI-Faramawy, Bleck (bib10) 2002; 12
Spencer, Embury, Conlon, Véron, Bréchet (bib20) 2004; 387–389
Gong, Wynne, Knowles, Turk, Ma, Galindo-Nava, Rainforth (bib1) 2020; 196
Tan, Zhou, Ma, Zhang, Liu, Kuang (bib33) 2017; 134
He, Yang, Sha (bib9) 2004; 36A
Leitner, Schober, Schnitzer, Zinner (bib13) 2011; 528
Xu, Xin, Zhang, Li (bib38) 2022; 225
S, G (bib29) 2009; 63
Erlach, Leitner, Bischof, Clemens, Danoix, Lemarchand, Siller (bib3) 2006; 429
Zhu, Yin, Faulkner (bib5) 2014; 27
Lide (bib41) 2008
Yuan, Ponge, Wittig, Choi, Jiménez, Raabe (bib19) 2012; 60
Li, Pradeep, Deng, Raabe, Tasan (bib22) 2016; 534
Galindo-Nava, Rivera-Díaz-del-Castillo (bib28) 2015; 98
Vasudevan, Kim, Wayman (bib11) 1990; 21A
Li, Wei, An, Yu, Misra (bib15) 2019; 739
Jiang, Xu, Li, Peng, Wu, Liu, Wang, Wang, Lu (bib26) 2021; 213
Kurnsteiner, Wilms, Weisheit, Gault, Jagle, Raabe (bib8) 2020; 582
Li (10.1016/j.msea.2022.143099_bib15) 2019; 739
Jiang (10.1016/j.msea.2022.143099_bib2) 2017; 544
Li (10.1016/j.msea.2022.143099_bib18) 2018; 728
Xu (10.1016/j.msea.2022.143099_bib38) 2022; 225
Gong (10.1016/j.msea.2022.143099_bib1) 2020; 196
Tan (10.1016/j.msea.2022.143099_bib33) 2017; 134
Wang (10.1016/j.msea.2022.143099_bib30) 2018; 158
Jacob (10.1016/j.msea.2022.143099_bib12) 2021; 802
Niu (10.1016/j.msea.2022.143099_bib24) 2021; 209
Kürnsteiner (10.1016/j.msea.2022.143099_bib7) 2017; 129
Yuan (10.1016/j.msea.2022.143099_bib19) 2012; 60
Ungár (10.1016/j.msea.2022.143099_bib23) 1996; 69
Leitner (10.1016/j.msea.2022.143099_bib13) 2011; 528
Zhu (10.1016/j.msea.2022.143099_bib5) 2014; 27
Kurnsteiner (10.1016/j.msea.2022.143099_bib8) 2020; 582
Jiang (10.1016/j.msea.2022.143099_bib35) 2021; 825
Erlach (10.1016/j.msea.2022.143099_bib3) 2006; 429
Galindo-Nava (10.1016/j.msea.2022.143099_bib28) 2015; 98
Qi (10.1016/j.msea.2022.143099_bib36) 2018; 718
Zhu (10.1016/j.msea.2022.143099_bib6) 2009; 516
Spencer (10.1016/j.msea.2022.143099_bib20) 2004; 387–389
Fathy (10.1016/j.msea.2022.143099_bib10) 2002; 12
Yang (10.1016/j.msea.2022.143099_bib21) 2021; 595
Jiang (10.1016/j.msea.2022.143099_bib26) 2021; 213
Leitner (10.1016/j.msea.2022.143099_bib4) 2011; 59
Zhang (10.1016/j.msea.2022.143099_bib37) 2000; 284
Li (10.1016/j.msea.2022.143099_bib16) 2019; 257
Zhao (10.1016/j.msea.2022.143099_bib40) 2020; 798
Niu (10.1016/j.msea.2022.143099_bib27) 2019; 179
Li (10.1016/j.msea.2022.143099_bib17) 2018; 715
He (10.1016/j.msea.2022.143099_bib32) 2016; 102
Li (10.1016/j.msea.2022.143099_bib14) 2016; 669
Li (10.1016/j.msea.2022.143099_bib22) 2016; 534
Zou (10.1016/j.msea.2022.143099_bib39) 2017; 707
Zhang (10.1016/j.msea.2022.143099_bib25) 2021; 211
Ungár (10.1016/j.msea.2022.143099_bib34) 2014; 66
S (10.1016/j.msea.2022.143099_bib29) 2009; 63
Lide (10.1016/j.msea.2022.143099_bib41) 2008
He (10.1016/j.msea.2022.143099_bib9) 2004; 36A
Vasudevan (10.1016/j.msea.2022.143099_bib11) 1990; 21A
Kamikawa (10.1016/j.msea.2022.143099_bib31) 2015; 83
References_xml – volume: 98
  start-page: 81
  year: 2015
  end-page: 93
  ident: bib28
  article-title: A model for the microstructure behaviour and strength evolution in lath martensite
  publication-title: Acta Mater.
– volume: 63
  start-page: 1
  year: 2009
  end-page: 203
  ident: bib29
  article-title: Maraging steels: modelling of microstructure, properties and application
  publication-title: Properties and Applications
– volume: 802
  year: 2021
  ident: bib12
  article-title: High pressure torsion processing of maraging steel 250: microstructure and mechanical behaviour evolution
  publication-title: Mater. Sci. Eng.A
– volume: 669
  start-page: 58
  year: 2016
  end-page: 65
  ident: bib14
  article-title: Influence of aging temperature on strength and toughness of laser-welded T-250 maraging steel joint
  publication-title: Mater. Sci. Eng., A
– volume: 209
  start-page: 116788
  year: 2021
  ident: bib24
  article-title: Synergistic alloying effects on nanoscale precipitation and mechanical properties of ultrahigh-strength steels strengthened by Ni
  publication-title: Acta Mater.
– volume: 60
  start-page: 2790
  year: 2012
  end-page: 2804
  ident: bib19
  article-title: Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: example of a ductile 2GPa Fe–Cr–C steel
  publication-title: Acta Mater.
– volume: 718
  start-page: 477
  year: 2018
  end-page: 482
  ident: bib36
  article-title: High-cycle fatigue behavior of low-C medium-Mn high strength steel with austenite-martensite submicron-sized lath-like structure
  publication-title: Mater. Sci. Eng., A
– volume: 36A
  start-page: 2005
  year: 2004
  end-page: 2273
  ident: bib9
  article-title: Microstructure and mechanical properties of a 2000 MPa grade Co-free maraging steel
  publication-title: Metall. Mater. Trans.
– volume: 12
  start-page: 549
  year: 2002
  end-page: 556
  ident: bib10
  article-title: Mechanical properties of new low-nickel cobalt-free maraging steels
  publication-title: Mater. Technol.
– volume: 595
  start-page: 245
  year: 2021
  end-page: 249
  ident: bib21
  article-title: Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy
  publication-title: Nature
– volume: 196
  start-page: 101
  year: 2020
  end-page: 121
  ident: bib1
  article-title: Effect of ageing on the microstructural evolution in a new design of maraging steels with carbon
  publication-title: Acta Mater.
– volume: 715
  start-page: 174
  year: 2018
  end-page: 185
  ident: bib17
  article-title: Strengthening of cobalt-free 19Ni3Mo1.5Ti maraging steel through high-density and low lattice misfit nanoscale precipitates
  publication-title: Mater. Sci. Eng.A
– volume: 516
  start-page: 201
  year: 2009
  end-page: 204
  ident: bib6
  article-title: Effect of aging temperature on modulated structures of 00Ni12Cr5Mo3TiAlV maraging steel
  publication-title: Mater. Sci. Eng.A
– volume: 211
  start-page: 116878
  year: 2021
  ident: bib25
  article-title: Ultrafine-grained dual-phase maraging steel with high strength and excellent cryogenic toughness
  publication-title: Acta Mater.
– volume: 707
  start-page: 270
  year: 2017
  end-page: 279
  ident: bib39
  article-title: High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite
  publication-title: Mater. Sci. Eng., A
– volume: 387–389
  start-page: 873
  year: 2004
  end-page: 881
  ident: bib20
  article-title: Strengthening via the formation of strain-induced martensite in stainless steels
  publication-title: Mater. Sci. Eng., A
– volume: 528
  start-page: 5264
  year: 2011
  end-page: 5270
  ident: bib13
  article-title: Strengthening behavior of Fe–Cr–Ni–Al–(Ti) maraging steels
  publication-title: Mater. Sci. Eng., A
– volume: 534
  start-page: 227
  year: 2016
  end-page: 230
  ident: bib22
  article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
  publication-title: Nature
– volume: 544
  start-page: 460
  year: 2017
  end-page: 464
  ident: bib2
  article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation
  publication-title: Nature
– volume: 179
  start-page: 296
  year: 2019
  end-page: 307
  ident: bib27
  article-title: Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel
  publication-title: Acta Mater.
– volume: 158
  start-page: 247
  year: 2018
  end-page: 256
  ident: bib30
  article-title: A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility
  publication-title: Acta Mater.
– volume: 582
  start-page: 515
  year: 2020
  end-page: 519
  ident: bib8
  article-title: High-strength Damascus steel by additive manufacturing
  publication-title: Nature
– volume: 798
  start-page: 140134
  year: 2020
  ident: bib40
  article-title: Cyclic deformation behavior of steels with a nanolamellar microstructure and tensile strength of 1500 MPa
  publication-title: Mater. Sci. Eng., A
– volume: 129
  start-page: 52
  year: 2017
  end-page: 60
  ident: bib7
  article-title: Massive nanoprecipitation in an Fe-19Ni-x Al maraging steel triggered by the intrinsic heat treatment during laser metal deposition
  publication-title: Acta Mater.
– volume: 27
  start-page: 395
  year: 2014
  end-page: 405
  ident: bib5
  article-title: Microstructural control of maraging steel C300
  publication-title: Mater. Sci. Technol.
– volume: 102
  start-page: 187
  year: 2016
  end-page: 196
  ident: bib32
  article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties
  publication-title: Acta Mater.
– volume: 728
  start-page: 208
  year: 2018
  end-page: 217
  ident: bib18
  article-title: On the origin and contribution of extended kinks and jogs and stacking fault ribbons to deformation behavior in an ultrahigh strength cobalt-free maraging steel with high density of low lattice misfit precipitates
  publication-title: Mater. Sci. Eng., A
– volume: 66
  start-page: 251
  year: 2014
  end-page: 261
  ident: bib34
  article-title: Orientation-dependent evolution of the dislocation density in grain populations with different crystallographic orientations relative to the tensile axis in a polycrystalline aggregate of stainless steel
  publication-title: Acta Mater.
– volume: 21A
  start-page: 1990
  year: 1990
  end-page: 2665
  ident: bib11
  article-title: Precipitation reactions and strengthening behavior in 18 wt pct Nickel maraging steels
  publication-title: Metall. Trans. A
– volume: 213
  year: 2021
  ident: bib26
  article-title: Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels
  publication-title: Acta Mater.
– volume: 825
  year: 2021
  ident: bib35
  article-title: Superior low temperature toughness in a newly designed low Mn and low Ni high strength steel
  publication-title: Mater. Sci. Eng.A
– volume: 134
  start-page: 23
  year: 2017
  end-page: 34
  ident: bib33
  article-title: Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel
  publication-title: Mater. Des.
– year: 2008
  ident: bib41
  article-title: CRC Handbook of Chemistry and Physics
– volume: 225
  start-page: 117607
  year: 2022
  ident: bib38
  article-title: Stress corrosion cracking resistant nanostructured Al-Mg alloy with low angle grain boundaries
  publication-title: Acta Mater.
– volume: 739
  start-page: 445
  year: 2019
  end-page: 454
  ident: bib15
  article-title: Aging phenomenon in low lattice-misfit cobalt-free maraging steel: microstructural evolution and strengthening behavior
  publication-title: Mater. Sci. Eng.A
– volume: 69
  start-page: 3173
  year: 1996
  end-page: 3175
  ident: bib23
  article-title: The effect of dislocation contrast on x‐ray line broadening: a new approach to line profile analysis
  publication-title: Appl. Phys. Lett.
– volume: 83
  start-page: 383
  year: 2015
  end-page: 396
  ident: bib31
  article-title: Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels
  publication-title: Acta Mater.
– volume: 429
  start-page: 96
  year: 2006
  end-page: 106
  ident: bib3
  article-title: Comparison of NiAl precipitation in a medium carbon secondary hardening steel and C-free PH13-8 maraging steel
  publication-title: Mater. Sci. Eng., A
– volume: 257
  year: 2019
  ident: bib16
  article-title: Reverted austenite with distinct characteristics in a new cobalt-free low lattice misfit precipitate-bearing 19Ni3Mo1.5Ti maraging steel
  publication-title: Mater. Lett.
– volume: 284
  start-page: 285
  year: 2000
  end-page: 291
  ident: bib37
  article-title: Comparison of fatigue cracking possibility along large- and low-angle grain boundaries
  publication-title: Mater. Sci. Eng.
– volume: 59
  start-page: 5012
  year: 2011
  end-page: 5022
  ident: bib4
  article-title: Precipitate modification in PH13-8 Mo type maraging steel
  publication-title: Acta Mater.
– volume: 179
  start-page: 296
  year: 2019
  ident: 10.1016/j.msea.2022.143099_bib27
  article-title: Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.08.042
– volume: 798
  start-page: 140134
  year: 2020
  ident: 10.1016/j.msea.2022.143099_bib40
  article-title: Cyclic deformation behavior of steels with a nanolamellar microstructure and tensile strength of 1500 MPa
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2020.140134
– volume: 718
  start-page: 477
  year: 2018
  ident: 10.1016/j.msea.2022.143099_bib36
  article-title: High-cycle fatigue behavior of low-C medium-Mn high strength steel with austenite-martensite submicron-sized lath-like structure
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2018.01.110
– volume: 27
  start-page: 395
  year: 2014
  ident: 10.1016/j.msea.2022.143099_bib5
  article-title: Microstructural control of maraging steel C300
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/026708309X12506933873503
– volume: 60
  start-page: 2790
  year: 2012
  ident: 10.1016/j.msea.2022.143099_bib19
  article-title: Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: example of a ductile 2GPa Fe–Cr–C steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.01.045
– volume: 36A
  start-page: 2005
  year: 2004
  ident: 10.1016/j.msea.2022.143099_bib9
  article-title: Microstructure and mechanical properties of a 2000 MPa grade Co-free maraging steel
  publication-title: Metall. Mater. Trans.
– volume: 669
  start-page: 58
  year: 2016
  ident: 10.1016/j.msea.2022.143099_bib14
  article-title: Influence of aging temperature on strength and toughness of laser-welded T-250 maraging steel joint
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2016.05.043
– volume: 387–389
  start-page: 873
  year: 2004
  ident: 10.1016/j.msea.2022.143099_bib20
  article-title: Strengthening via the formation of strain-induced martensite in stainless steels
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2003.11.084
– volume: 209
  start-page: 116788
  year: 2021
  ident: 10.1016/j.msea.2022.143099_bib24
  article-title: Synergistic alloying effects on nanoscale precipitation and mechanical properties of ultrahigh-strength steels strengthened by Ni3Ti, Mo-enriched, and Cr-rich co-precipitates
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.116788
– volume: 544
  start-page: 460
  year: 2017
  ident: 10.1016/j.msea.2022.143099_bib2
  article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation
  publication-title: Nature
  doi: 10.1038/nature22032
– volume: 196
  start-page: 101
  year: 2020
  ident: 10.1016/j.msea.2022.143099_bib1
  article-title: Effect of ageing on the microstructural evolution in a new design of maraging steels with carbon
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.06.029
– volume: 528
  start-page: 5264
  year: 2011
  ident: 10.1016/j.msea.2022.143099_bib13
  article-title: Strengthening behavior of Fe–Cr–Ni–Al–(Ti) maraging steels
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2011.03.058
– volume: 213
  year: 2021
  ident: 10.1016/j.msea.2022.143099_bib26
  article-title: Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.116984
– volume: 802
  year: 2021
  ident: 10.1016/j.msea.2022.143099_bib12
  article-title: High pressure torsion processing of maraging steel 250: microstructure and mechanical behaviour evolution
  publication-title: Mater. Sci. Eng.A
  doi: 10.1016/j.msea.2020.140665
– volume: 707
  start-page: 270
  year: 2017
  ident: 10.1016/j.msea.2022.143099_bib39
  article-title: High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2017.09.059
– volume: 728
  start-page: 208
  year: 2018
  ident: 10.1016/j.msea.2022.143099_bib18
  article-title: On the origin and contribution of extended kinks and jogs and stacking fault ribbons to deformation behavior in an ultrahigh strength cobalt-free maraging steel with high density of low lattice misfit precipitates
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2018.05.039
– volume: 211
  start-page: 116878
  year: 2021
  ident: 10.1016/j.msea.2022.143099_bib25
  article-title: Ultrafine-grained dual-phase maraging steel with high strength and excellent cryogenic toughness
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.116878
– volume: 83
  start-page: 383
  year: 2015
  ident: 10.1016/j.msea.2022.143099_bib31
  article-title: Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.10.010
– volume: 715
  start-page: 174
  year: 2018
  ident: 10.1016/j.msea.2022.143099_bib17
  article-title: Strengthening of cobalt-free 19Ni3Mo1.5Ti maraging steel through high-density and low lattice misfit nanoscale precipitates
  publication-title: Mater. Sci. Eng.A
  doi: 10.1016/j.msea.2017.12.109
– volume: 284
  start-page: 285
  year: 2000
  ident: 10.1016/j.msea.2022.143099_bib37
  article-title: Comparison of fatigue cracking possibility along large- and low-angle grain boundaries
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/S0921-5093(00)00796-6
– volume: 257
  year: 2019
  ident: 10.1016/j.msea.2022.143099_bib16
  article-title: Reverted austenite with distinct characteristics in a new cobalt-free low lattice misfit precipitate-bearing 19Ni3Mo1.5Ti maraging steel
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.126692
– volume: 582
  start-page: 515
  year: 2020
  ident: 10.1016/j.msea.2022.143099_bib8
  article-title: High-strength Damascus steel by additive manufacturing
  publication-title: Nature
  doi: 10.1038/s41586-020-2409-3
– volume: 825
  year: 2021
  ident: 10.1016/j.msea.2022.143099_bib35
  article-title: Superior low temperature toughness in a newly designed low Mn and low Ni high strength steel
  publication-title: Mater. Sci. Eng.A
  doi: 10.1016/j.msea.2021.141899
– volume: 739
  start-page: 445
  year: 2019
  ident: 10.1016/j.msea.2022.143099_bib15
  article-title: Aging phenomenon in low lattice-misfit cobalt-free maraging steel: microstructural evolution and strengthening behavior
  publication-title: Mater. Sci. Eng.A
  doi: 10.1016/j.msea.2018.10.069
– volume: 134
  start-page: 23
  year: 2017
  ident: 10.1016/j.msea.2022.143099_bib33
  article-title: Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.08.026
– volume: 516
  start-page: 201
  year: 2009
  ident: 10.1016/j.msea.2022.143099_bib6
  article-title: Effect of aging temperature on modulated structures of 00Ni12Cr5Mo3TiAlV maraging steel
  publication-title: Mater. Sci. Eng.A
  doi: 10.1016/j.msea.2009.03.033
– volume: 63
  start-page: 1
  year: 2009
  ident: 10.1016/j.msea.2022.143099_bib29
  article-title: Maraging steels: modelling of microstructure, properties and application
  publication-title: Properties and Applications
– volume: 66
  start-page: 251
  year: 2014
  ident: 10.1016/j.msea.2022.143099_bib34
  article-title: Orientation-dependent evolution of the dislocation density in grain populations with different crystallographic orientations relative to the tensile axis in a polycrystalline aggregate of stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.11.012
– volume: 534
  start-page: 227
  year: 2016
  ident: 10.1016/j.msea.2022.143099_bib22
  article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 21A
  start-page: 1990
  year: 1990
  ident: 10.1016/j.msea.2022.143099_bib11
  article-title: Precipitation reactions and strengthening behavior in 18 wt pct Nickel maraging steels
  publication-title: Metall. Trans. A
– volume: 98
  start-page: 81
  year: 2015
  ident: 10.1016/j.msea.2022.143099_bib28
  article-title: A model for the microstructure behaviour and strength evolution in lath martensite
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.07.018
– volume: 429
  start-page: 96
  year: 2006
  ident: 10.1016/j.msea.2022.143099_bib3
  article-title: Comparison of NiAl precipitation in a medium carbon secondary hardening steel and C-free PH13-8 maraging steel
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2006.05.071
– year: 2008
  ident: 10.1016/j.msea.2022.143099_bib41
– volume: 158
  start-page: 247
  year: 2018
  ident: 10.1016/j.msea.2022.143099_bib30
  article-title: A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.07.060
– volume: 59
  start-page: 5012
  year: 2011
  ident: 10.1016/j.msea.2022.143099_bib4
  article-title: Precipitate modification in PH13-8 Mo type maraging steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.04.053
– volume: 69
  start-page: 3173
  year: 1996
  ident: 10.1016/j.msea.2022.143099_bib23
  article-title: The effect of dislocation contrast on x‐ray line broadening: a new approach to line profile analysis
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.117951
– volume: 595
  start-page: 245
  year: 2021
  ident: 10.1016/j.msea.2022.143099_bib21
  article-title: Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy
  publication-title: Nature
  doi: 10.1038/s41586-021-03607-y
– volume: 225
  start-page: 117607
  year: 2022
  ident: 10.1016/j.msea.2022.143099_bib38
  article-title: Stress corrosion cracking resistant nanostructured Al-Mg alloy with low angle grain boundaries
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117607
– volume: 129
  start-page: 52
  year: 2017
  ident: 10.1016/j.msea.2022.143099_bib7
  article-title: Massive nanoprecipitation in an Fe-19Ni-x Al maraging steel triggered by the intrinsic heat treatment during laser metal deposition
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.069
– volume: 12
  start-page: 549
  year: 2002
  ident: 10.1016/j.msea.2022.143099_bib10
  article-title: Mechanical properties of new low-nickel cobalt-free maraging steels
  publication-title: Mater. Technol.
– volume: 102
  start-page: 187
  year: 2016
  ident: 10.1016/j.msea.2022.143099_bib32
  article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.076
SSID ssj0001405
Score 2.5615525
Snippet Maraging steel with ultra-high strength and good ductility is usually achieved via semi-coherent nanometer-sized precipitates and a dual-phase structure. In...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 143099
SubjectTerms Chemical precipitation
Cobalt
Dual-phase structure
Ductility
Elongation
Heat treating
High strength
High temperature
Maraging steel
Maraging steels
Martensite
Mechanical properties
Microcracks
Microstructure
Molybdenum
Precipitates
Precipitation strengthening
Refinement of precipitates
Room temperature
Solid phases
Solution annealing
Solution heat treatment
Titanium
Title Synergistic enhancement of strength and ductility of cobalt-free maraging steel via nanometer-scaled microstructures
URI https://dx.doi.org/10.1016/j.msea.2022.143099
https://www.proquest.com/docview/2696510388
Volume 842
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvZRDBRRU2gX5wA25m9hOnBzRCrSA4EKRuFkTZwJbsVkEaSUu_HZm8igPIQ49OhlH0cx4xmN981mIXYOFMzlUKiviVFlmb4UEQKWGxrR9DsFy7_DpWTq9sMeXyeWSmAy9MAyr7GN_F9PbaN0_GffaHN_OZuPzKKd0RQW55oORyDInqLWOvfzn4zPMgwqIFsZIwoql-8aZDuM1J3eiGlFrChgmavlf301Ob8J0m3sOV8WXftMo97v_WhNLWK-LlRdUgl9Fc_7AXXwt7bLE-pqNyQd_clFJ7gepr5prCXUpmd-V8bAP_CYwG0ijqjtEOYe79sYiEke8kX9nIGuoF3PGy6h7MiWWcs7wvY5y9g_V6Rvi4vDg12Sq-hsVVDC5bVTI0rwIOgYotHEOM4smKQFNkaVJ6XKKfpUuiwrjkGGwSMWJRhc0VjYKeQRmUyzXixq_CUnr2PHlMBkEsBBH4KiQM8aWEGPuQtgS8aBKH3q6cb714sYPuLLfntXvWf2-U_-W2Ps357Yj2_hQOhks5F-5jKds8OG80WBO3y_Ye6_TPGVywSz7_p-f_SE-84iRBXE8EstkC9ymDUtT7LQeuSM-7R-dTM-eAPtL7Dk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZgOZQeKkqLCqXUh96QtYntvI4IFS2vvQASN2viTGARm0UQkPj3zCQOaquKA8fE4yiasWc81jffCPHLYJmZAmqVl3GqLLO3QgKgUkPPdHz23nLt8Ok0nVzYo8vkcknsD7UwDKsMvr_36Z23Dm_GQZvju9lsfBYVFK4oIdd8MRJZuyxWmJ0qGYmVvcPjyfTVIVMO0SEZSV7xhFA708O85rSiKE3UmnyGiToK2P_Gp388dRd-DtbEp3BulHv9r30WS9isi49_sAl-Ee3ZMxfydczLEptrtiff_clFLbkkpLlqryU0lWSKV4bEPvOIZ0KQVtX3iHIO913TIhJHvJVPM5ANNIs5Q2bUA1kTKzlnBF_POvtIqfpXcXHw-3x_okJTBeVNYVvl87QovY4BSm2yDHOLJqkATZmnSZUV5ABrXZU1xj5Hb5HyE42Z11jbyBcRmA0xahYNfhOStnLG_WFy8GAhjiCjXM4YW0GMReb9pogHVTofGMe58cWtG6BlN47V71j9rlf_pth9nXPX8228KZ0MFnJ_rRpHAeHNeduDOV3Ysw9Op0XK_IJ5vvXOz_4UHybnpyfu5HB6_F2s8ggDDeJ4W4zILviDzi9tuRPW5wsTdO7q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+enhancement+of+strength+and+ductility+of+cobalt-free+maraging+steel+via+nanometer-scaled+microstructures&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Li%2C+Hu&rft.au=Liu%2C+Yong&rft.au=Liu%2C+Bin&rft.au=Wei%2C+Daixiu&rft.date=2022-05-11&rft.pub=Elsevier+BV&rft.issn=0921-5093&rft.eissn=1873-4936&rft.volume=842&rft.spage=1&rft_id=info:doi/10.1016%2Fj.msea.2022.143099&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon