The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios
This work explores the feasibility of using graphene as an effective synergist for intumescent flame retardant (IFR). The flammability test and fire behavior under different fire scenarios are investigated. The incorporation of graphene results in different responses of IFR/polypropylene (PP) compos...
Saved in:
Published in | Polymer degradation and stability Vol. 143; pp. 42 - 56 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.09.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0141-3910 1873-2321 |
DOI | 10.1016/j.polymdegradstab.2017.06.015 |
Cover
Loading…
Abstract | This work explores the feasibility of using graphene as an effective synergist for intumescent flame retardant (IFR). The flammability test and fire behavior under different fire scenarios are investigated. The incorporation of graphene results in different responses of IFR/polypropylene (PP) composites to small fire tests and burning under forced-flaming condition. The addition of graphene weakens the reaction of flame retardant PP to small flame. Lower loading of graphene is observed to improve the swelling of char, resulting in better insulation of the char and decrease in heat and smoke release. The further increase of graphene leads to the worsened fire safety. Flame retardant mechanism and model are proposed on the basis of the analyses of thermal decomposition products and process, and melt viscosity change. This works provides a solution to comprehensively assess the synergistic or antagonistic effect of graphene, and will be beneficial to developing its flame retardant mechanism. |
---|---|
AbstractList | This work explores the feasibility of using graphene as an effective synergist for intumescent flame retardant (IFR). The flammability test and fire behavior under different fire scenarios are investigated. The incorporation of graphene results in different responses of IFR/polypropylene (PP) composites to small fire tests and burning under forced-flaming condition. The addition of graphene weakens the reaction of flame retardant PP to small flame. Lower loading of graphene is observed to improve the swelling of char, resulting in better insulation of the char and decrease in heat and smoke release. The further increase of graphene leads to the worsened fire safety. Flame retardant mechanism and model are proposed on the basis of the analyses of thermal decomposition products and process, and melt viscosity change. This works provides a solution to comprehensively assess the synergistic or antagonistic effect of graphene, and will be beneficial to developing its flame retardant mechanism. |
Author | Chen, Xianfeng Bao, Chenlu Niu, Yi Yuan, Bihe Dai, Huaming Fan, Ao Jiang, Saihua Zhang, Ying Hu, Yuan Yang, Man He, Song |
Author_xml | – sequence: 1 givenname: Bihe surname: Yuan fullname: Yuan, Bihe email: yuanbh@whut.edu.cn organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 2 givenname: Ao surname: Fan fullname: Fan, Ao organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 3 givenname: Man surname: Yang fullname: Yang, Man organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 4 givenname: Xianfeng surname: Chen fullname: Chen, Xianfeng email: cxf618@whut.edu.cn organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 5 givenname: Yuan surname: Hu fullname: Hu, Yuan email: yuanhu@ustc.edu.cn organization: State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China – sequence: 6 givenname: Chenlu surname: Bao fullname: Bao, Chenlu organization: School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China – sequence: 7 givenname: Saihua surname: Jiang fullname: Jiang, Saihua organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China – sequence: 8 givenname: Yi surname: Niu fullname: Niu, Yi organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 9 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 10 givenname: Song surname: He fullname: He, Song organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 11 givenname: Huaming surname: Dai fullname: Dai, Huaming organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China |
BookMark | eNqNkcGKFDEURYOMYM_oPwREcFNlUulOVRYupNFRGHAzrsOr5MVOU5WUSXqgf8MvNmULQq8mmxBy73mXd2_JTYgBCXnHWcsZlx-O7RKn82zxZwKbC4xtx3jfMtkyvntBNnzoRdOJjt-QDeNb3gjF2Stym_OR1bPd8Q35_XhAis6hKZlGRytqOWBAGgMt9ctNMM8w-smXM4VgqfMJ6YgHePIxrQ4fymnGbDCUv2qkCQskC_W95ltSXM7TijRxXmL2BTOFQq2vU9N_10qA5GN-TV46mDK--XffkR9fPj_uvzYP3--_7T89NEaobWnMIOw4CKjhwbKR9XxwzqlxNLbbgZJ917mOiwFw56zsrRzYsHVSjtAxJpgSd-T9hVsT_jphLnr2NcQ0QcB4yrpbd9QrJWSVvr2SHuMphZpOcyV3TLFe9VX18aIyKeac0Okl-RnSWXOm18b0UV81ptfGNJO6Nlb9-yu_8QWKj6Ek8NOzKfcXCtbdPXlMOhuPwaCtzZmibfTPJP0BOELGLg |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2024_141417 crossref_primary_10_1016_j_compositesa_2018_03_022 crossref_primary_10_1016_j_jhazmat_2020_123645 crossref_primary_10_1016_j_coco_2020_100488 crossref_primary_10_1016_j_polymdegradstab_2018_03_007 crossref_primary_10_1016_j_eurpolymj_2021_110601 crossref_primary_10_1002_pat_4687 crossref_primary_10_1016_j_porgcoat_2019_05_043 crossref_primary_10_1002_pat_4689 crossref_primary_10_1002_pen_25384 crossref_primary_10_1002_pc_25077 crossref_primary_10_3390_ma16134759 crossref_primary_10_1016_j_polymdegradstab_2024_110730 crossref_primary_10_1016_j_carbon_2020_10_042 crossref_primary_10_1134_S0965545X20010095 crossref_primary_10_1016_j_firesaf_2023_103757 crossref_primary_10_1002_fam_3011 crossref_primary_10_1016_j_jhazmat_2020_123653 crossref_primary_10_1007_s10973_020_10228_6 crossref_primary_10_1016_j_psep_2021_01_001 crossref_primary_10_1016_j_jlp_2020_104263 crossref_primary_10_1016_j_cej_2024_153162 crossref_primary_10_1016_j_polymdegradstab_2021_109684 crossref_primary_10_1002_pat_5402 crossref_primary_10_1016_j_compscitech_2020_108457 crossref_primary_10_3390_polym16010045 crossref_primary_10_1002_app_53819 crossref_primary_10_1007_s10973_018_7810_x crossref_primary_10_1016_j_mtchem_2022_101127 crossref_primary_10_1016_j_mtcomm_2020_101792 crossref_primary_10_1021_acssuschemeng_3c03984 crossref_primary_10_1515_chem_2018_0013 crossref_primary_10_1016_j_ijbiomac_2023_123472 crossref_primary_10_1016_j_mtcomm_2020_101446 crossref_primary_10_1016_j_cej_2022_138350 crossref_primary_10_1016_j_polymdegradstab_2019_109019 crossref_primary_10_1002_pc_25091 crossref_primary_10_3390_molecules26154670 crossref_primary_10_3390_ma13245756 crossref_primary_10_1007_s13726_020_00864_y crossref_primary_10_1021_acsapm_2c00146 crossref_primary_10_1007_s11998_018_0069_0 crossref_primary_10_1007_s00289_020_03281_6 crossref_primary_10_1016_j_cjche_2020_04_014 crossref_primary_10_1002_pat_4461 crossref_primary_10_1016_j_polymer_2023_126475 crossref_primary_10_1007_s10965_022_03220_1 crossref_primary_10_1007_s10570_020_03669_7 crossref_primary_10_1016_j_colsurfa_2022_129472 crossref_primary_10_1016_j_ijbiomac_2021_02_148 crossref_primary_10_1007_s13726_018_0664_z crossref_primary_10_1002_app_55463 crossref_primary_10_1016_j_jhazmat_2019_121645 crossref_primary_10_1007_s10973_019_08466_4 crossref_primary_10_1016_j_powtec_2018_12_056 crossref_primary_10_1016_j_jcis_2018_06_038 crossref_primary_10_1016_j_matpr_2023_11_030 crossref_primary_10_1016_j_clay_2020_105600 crossref_primary_10_1016_j_psep_2022_02_025 crossref_primary_10_1520_MPC20190256 crossref_primary_10_1016_j_energy_2022_124767 crossref_primary_10_1002_pc_25703 crossref_primary_10_1016_j_jaap_2022_105466 crossref_primary_10_2139_ssrn_3969862 crossref_primary_10_3390_polym12071487 crossref_primary_10_1021_acsaenm_3c00253 crossref_primary_10_1016_j_porgcoat_2023_107554 crossref_primary_10_1016_j_fuel_2022_125014 crossref_primary_10_1016_j_cej_2024_158016 crossref_primary_10_1016_j_polymdegradstab_2022_110084 crossref_primary_10_1002_pat_4355 crossref_primary_10_1002_pat_4235 crossref_primary_10_1016_j_clay_2024_107297 crossref_primary_10_1016_j_tws_2024_112870 crossref_primary_10_1016_j_polymdegradstab_2025_111197 crossref_primary_10_1002_pi_6595 crossref_primary_10_1016_j_heliyon_2019_e02053 crossref_primary_10_1016_j_tca_2022_179271 crossref_primary_10_1016_j_porgcoat_2024_108613 crossref_primary_10_1002_app_51206 crossref_primary_10_1016_j_clay_2019_105408 crossref_primary_10_1016_j_jhazmat_2018_09_009 crossref_primary_10_1039_C8RA09680E crossref_primary_10_1016_j_powtec_2022_117193 crossref_primary_10_1016_j_ijbiomac_2024_136908 crossref_primary_10_1177_07349041231175344 crossref_primary_10_1177_08927057231202954 crossref_primary_10_1007_s13726_024_01303_y crossref_primary_10_1016_j_jcis_2021_06_153 crossref_primary_10_3390_molecules26134094 crossref_primary_10_1002_pat_5231 crossref_primary_10_3390_en15114014 crossref_primary_10_1016_j_jlp_2020_104089 crossref_primary_10_1016_j_jmrt_2020_10_055 crossref_primary_10_1016_j_jmrt_2022_04_097 crossref_primary_10_1002_pat_4931 crossref_primary_10_1007_s00289_019_02759_2 crossref_primary_10_1016_j_compositesa_2018_11_005 crossref_primary_10_1016_j_polymdegradstab_2020_109083 crossref_primary_10_1080_25740881_2022_2121220 crossref_primary_10_1007_s10973_021_11051_3 crossref_primary_10_1016_j_ijbiomac_2023_124740 crossref_primary_10_1016_j_jhazmat_2018_03_003 crossref_primary_10_1002_pc_24702 crossref_primary_10_1016_j_jaap_2022_105499 crossref_primary_10_1016_j_jhazmat_2019_05_018 crossref_primary_10_3390_molecules29081858 crossref_primary_10_1016_j_pmatsci_2020_100687 crossref_primary_10_1177_0892705720930782 crossref_primary_10_1002_pat_4844 crossref_primary_10_1016_j_powtec_2019_08_034 crossref_primary_10_1016_j_diamond_2022_109113 crossref_primary_10_1515_epoly_2019_0007 crossref_primary_10_1186_s40712_019_0106_5 crossref_primary_10_1007_s42464_022_00148_5 crossref_primary_10_1016_j_colsurfa_2023_131625 crossref_primary_10_1007_s10973_023_12371_2 crossref_primary_10_1007_s00289_021_03810_x crossref_primary_10_1016_j_fuel_2021_120831 crossref_primary_10_1016_j_powtec_2020_04_026 crossref_primary_10_1016_j_polymdegradstab_2018_05_022 crossref_primary_10_3390_polym11050772 crossref_primary_10_1007_s10570_023_05506_z crossref_primary_10_3390_polym12081701 crossref_primary_10_1002_pat_4830 crossref_primary_10_3390_polym11121964 crossref_primary_10_1016_j_diamond_2020_107964 crossref_primary_10_1007_s10973_019_08298_2 crossref_primary_10_1002_app_48036 crossref_primary_10_1002_pat_4278 crossref_primary_10_1016_j_compscitech_2018_12_029 crossref_primary_10_1002_pat_5246 crossref_primary_10_1016_j_jhazmat_2018_03_021 crossref_primary_10_3390_polym15020374 crossref_primary_10_1002_pat_4837 crossref_primary_10_1016_j_cjche_2020_03_034 crossref_primary_10_1016_j_radphyschem_2022_110016 crossref_primary_10_1016_j_compositesa_2018_12_006 crossref_primary_10_1016_j_jhazmat_2019_05_116 crossref_primary_10_1039_C8RA07418F crossref_primary_10_1016_j_porgcoat_2018_05_016 crossref_primary_10_1016_j_jcis_2019_06_015 crossref_primary_10_1002_pat_4502 crossref_primary_10_1002_pat_4744 crossref_primary_10_1016_j_powtec_2024_119491 crossref_primary_10_1016_j_compositesb_2019_107371 crossref_primary_10_1007_s10965_021_02804_7 crossref_primary_10_1007_s10965_022_02980_0 crossref_primary_10_1021_acsanm_5c00033 crossref_primary_10_1002_pc_25922 crossref_primary_10_1016_j_polymdegradstab_2018_01_024 crossref_primary_10_1016_j_cej_2018_05_053 crossref_primary_10_1007_s10853_017_1970_0 crossref_primary_10_1155_2021_6627743 crossref_primary_10_1002_pat_5155 crossref_primary_10_1007_s00170_024_13026_8 crossref_primary_10_1016_j_jaap_2018_06_008 crossref_primary_10_1016_j_jmrt_2021_07_103 crossref_primary_10_1016_j_matdes_2019_108068 crossref_primary_10_1016_j_sna_2020_112111 crossref_primary_10_3389_fmats_2021_778485 crossref_primary_10_1002_pat_6398 crossref_primary_10_1016_j_polymdegradstab_2020_109376 crossref_primary_10_1016_j_fuel_2022_125401 crossref_primary_10_1002_pol_20230032 crossref_primary_10_1007_s10973_019_09250_0 crossref_primary_10_1002_pat_5059 crossref_primary_10_1155_2019_4273253 crossref_primary_10_1007_s10853_023_09312_7 crossref_primary_10_1016_j_compositesa_2018_10_027 crossref_primary_10_1016_j_colsurfa_2022_130195 crossref_primary_10_1177_14750902221095321 crossref_primary_10_1021_acs_chemmater_1c01408 crossref_primary_10_1002_vnl_21728 crossref_primary_10_1134_S1560090420030173 crossref_primary_10_1016_j_polymdegradstab_2019_109064 crossref_primary_10_3390_polym12071518 crossref_primary_10_1016_j_mseb_2021_115460 crossref_primary_10_1080_02773813_2019_1601740 crossref_primary_10_1002_pc_24922 crossref_primary_10_1080_25740881_2021_1930048 crossref_primary_10_1016_j_cej_2020_126209 crossref_primary_10_1016_j_eurpolymj_2022_111479 crossref_primary_10_1016_j_jlp_2020_104374 crossref_primary_10_1520_JTE20180336 crossref_primary_10_1016_j_porgcoat_2020_105572 crossref_primary_10_1007_s10853_021_06507_8 crossref_primary_10_1002_pat_5516 crossref_primary_10_1002_vnl_22162 crossref_primary_10_1016_j_cej_2017_11_102 crossref_primary_10_1007_s42114_024_01152_6 crossref_primary_10_1016_j_compositesb_2019_107588 crossref_primary_10_1016_j_polymdegradstab_2020_109365 crossref_primary_10_1002_app_52945 crossref_primary_10_3390_polym13071162 crossref_primary_10_1177_0021955X221144564 crossref_primary_10_1016_j_apsusc_2019_143775 crossref_primary_10_1016_j_cartre_2021_100076 crossref_primary_10_1016_j_jhazmat_2019_04_016 crossref_primary_10_1080_14658011_2021_2024647 crossref_primary_10_3390_coatings9020094 crossref_primary_10_1016_j_powtec_2019_10_039 crossref_primary_10_1016_j_matchemphys_2020_123292 |
Cites_doi | 10.1002/pat.3129 10.1002/pat.1502 10.1016/j.polymdegradstab.2012.05.025 10.1021/acsami.6b11101 10.1016/j.mser.2008.09.002 10.1016/j.polymdegradstab.2012.01.001 10.1016/j.polymer.2011.06.045 10.1002/app.34993 10.1016/j.polymdegradstab.2009.11.011 10.1103/PhysRevLett.97.187401 10.1002/pat.1082 10.1021/ie060040x 10.1016/j.matlet.2015.10.011 10.1002/pat.3170 10.1039/c2jm16203b 10.1016/j.polymdegradstab.2008.01.016 10.1016/j.polymdegradstab.2012.01.031 10.1002/pat.3165 10.1016/j.polymdegradstab.2012.09.012 10.1021/ie500178u 10.1016/j.polymdegradstab.2014.06.008 10.1002/pc.21250 10.1016/j.polymdegradstab.2008.11.015 10.3390/polym6112875 10.1007/s10973-014-4078-7 10.1021/acs.iecr.7b01293 10.1021/ie102566y 10.1016/S0141-3910(02)00069-1 10.1016/j.progpolymsci.2009.06.002 10.1016/j.progpolymsci.2015.04.010 10.1016/j.cej.2013.10.030 10.1016/j.compscitech.2016.12.015 10.1002/pat.1335 10.1002/pat.3036 10.1016/j.radphyschem.2011.10.021 10.1002/mame.200400007 10.1007/s10853-011-5572-y 10.1002/pc.23027 10.1016/j.compositesa.2016.12.014 10.1002/adfm.201402129 10.1016/j.polymdegradstab.2013.06.018 10.1039/C3RA45945D 10.1016/j.carbon.2012.08.024 10.1039/C5RA04699H 10.1021/ie102394q 10.1002/mame.201200433 10.1016/j.progpolymsci.2010.03.001 10.1016/j.polymdegradstab.2014.08.019 10.1002/pat.3089 10.1016/j.surfcoat.2006.01.026 10.1016/j.matchemphys.2011.11.064 10.1039/C3PY00963G 10.1016/j.polymdegradstab.2013.03.023 10.1088/0957-4484/23/8/085704 10.1002/pat.1590 10.1002/pat.3319 10.1080/03602550802675645 10.1021/ma100669g 10.1016/j.compositesa.2017.04.012 10.1016/j.jaap.2009.06.007 10.1002/app.32512 10.1002/pat.1679 10.1016/j.polymdegradstab.2013.04.009 10.1016/j.compositesa.2013.12.010 10.1021/ie101737n 10.1039/b702511d 10.1007/s10853-015-9083-0 10.1016/j.polymdegradstab.2004.01.026 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Sep 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Sep 2017 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.polymdegradstab.2017.06.015 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2321 |
EndPage | 56 |
ExternalDocumentID | 10_1016_j_polymdegradstab_2017_06_015 S0141391017301799 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADECG ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSH SSK SSM SSZ T5K WH7 WUQ XPP ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7SR 8FD EFKBS JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c394t-c83db83aeffad0b0718fff9bbcd25a96722f2138ae5fd67d68084f66ba2003093 |
IEDL.DBID | .~1 |
ISSN | 0141-3910 |
IngestDate | Fri Jul 11 16:09:09 EDT 2025 Fri Jul 25 08:22:54 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Tue Jul 01 02:29:46 EDT 2025 Sun Apr 06 06:53:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Flame retardant Antagonism Synergy Graphene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-c83db83aeffad0b0718fff9bbcd25a96722f2138ae5fd67d68084f66ba2003093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1965090797 |
PQPubID | 2045418 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2000479936 proquest_journals_1965090797 crossref_primary_10_1016_j_polymdegradstab_2017_06_015 crossref_citationtrail_10_1016_j_polymdegradstab_2017_06_015 elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2017_06_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2017 2017-09-00 20170901 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Polymer degradation and stability |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Yuan, Song, Liew, Hu (bib21) 2015; 5 Yuan, Bao, Song, Hong, Liew, Hu (bib48) 2014; 237 Nana, Xin, Jiang, Li, Jian, Tao (bib27) 2013; 24 Nie, Song, Bao, Qian, Guo, Hong, Hu (bib38) 2011; 22 Bourbigot, Le Bras, Duquesne, Rochery (bib68) 2004; 289 Wen, Wang, Wang, Yuan, Zhou, Song, Hu, Yuen (bib25) 2014; 110 Wang, Wang, Shi, Tang, Tang, Song, Hu (bib41) 2012; 81 Wang, Wang, Pan, Liew, Mohamed, Song, Hu (bib47) 2017; 56 Yuan, Sheng, Mu, Song, Tai, Shi, Liew, Hu (bib6) 2015; 50 Wang, Song, Yang, Lu, Hu (bib22) 2011; 50 Jimenez, Duquesne, Bourbigot (bib67) 2006; 201 Dittrich, Wartig, Mülhaupt, Schartel (bib14) 2014; 6 Bourbigot, Duquesne (bib8) 2007; 17 Muller, Bourbigot, Duquesne, Klein, Giannini, Lindsay, Vlassenbroeck (bib60) 2013; 98 Wang, Lv, Hu, Hu (bib36) 2009; 86 Yuan, Shi, Mu, Wang, Xing, Liew, Hu (bib20) 2016; 162 Vannier, Duquesne, Bourbigot, Castrovinci, Camino, Delobel (bib39) 2008; 93 Laoutid, Bonnaud, Alexandre, Lopez-Cuesta, Dubois (bib10) 2009; 63 Wang, Xing, Feng, Yu, Song, Hu (bib43) 2014; 5 Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth, Geim (bib42) 2006; 97 Alongi, Han, Bourbigot (bib9) 2015; 51 Li, Zhong (bib55) 2011; 46 Yuan, Hu, Chen, Shi, Niu, Zhang, He, Dai (bib7) 2017; 100 Liu, Wang, Deng, Wang, Song, Wang (bib17) 2010; 21 Gerard, Fontaine, Bellayer, Bourbigot (bib58) 2012; 97 Dittrich, Wartig, Hofmann, Mülhaupt, Schartel (bib12) 2013; 24 Zhang, Li, Yang (bib63) 2013; 24 Wang, Tai, Nie, Zhou, Tang, Hu, Song (bib34) 2011; 50 Pack, Kashiwagi, Cao, Korach, Lewin, Rafailovich (bib61) 2010; 43 Ni, Chen, Zhao, Hu, Song (bib28) 2011; 22 Qiu, Xing, Mu, Feng, Ma, Yuen, Hu (bib50) 2016; 8 Dittrich, Wartig, Hofmann, Mülhaupt, Schartel (bib5) 2013; 98 Pei, Li, Sun, Zhang, Shan, Yang, Wen (bib52) 2013; 51 Guobo, Huading, Yong, Xu, Jianrong, Zhengdong (bib46) 2012; 132 Li, Zhu, Shen, Wan, Han, Dai, Dai, Hu (bib44) 2014; 24 Ribeiro, Estevão, Pereira, Rodrigues, Nascimento (bib11) 2009; 94 Fang, Chen, Wang, Lu (bib51) 2012; 23 Nie, Hu, Song, He, Yang, Chen (bib18) 2008; 19 Yang, Xu, Li (bib30) 2013; 98 Xing, Song, Lu, Hu, Zhou (bib35) 2009; 20 Chattopadhyay, Webster (bib62) 2009; 34 Duquesne, Delobel, Le Bras, Camino (bib64) 2002; 77 Bao, Song, Xing, Yuan, Wilkie, Huang, Guo, Hu (bib19) 2012; 22 Cheng-Liang, Cong, Jing, Wen-Han, Ling, Yu-Zhong (bib29) 2014; 25 Song, Cao, Cai, Zhao, Fang, Fu (bib4) 2011; 52 Jimenez, Duquesne, Bourbigot (bib65) 2006; 45 Yu, Wang, Qian, Xing, Yang, Ma, Lin, Jiang, Song, Hu, Lo (bib26) 2014; 4 Enescu, Frache, Lavaselli, Monticelli, Marino (bib40) 2013; 98 Dittrich, Wartig, Hofmann, Mülhaupt, Schartel (bib13) 2015; 36 Lai, Zeng, Li, Liao, Yin, Zhang (bib24) 2012; 33 Liu, Zhao, Deng, Chen, Wang, Wang (bib1) 2011; 50 Hu, Zhang (bib53) 2014; 118 Hofmann, Wartig, Thomann, Dittrich, Schartel, Mülhaupt (bib15) 2013; 298 Dong, Gu, Zhang (bib45) 2014; 53 Wen, Wang, Gong, Liu, Tian, Wang, Jiang, Qiu, Tang (bib54) 2012; 97 Gu, Liang, Zhao, Gan, Qiu, Guo, Yang, Zhang, Wang (bib3) 2017; 139 Jiang, Hao, Han (bib33) 2012; 97 Guo, Wang, Bai (bib49) 2013; 24 Gu, Lv, Wu, Guo, Tian, Qiu, Li, Zhang (bib32) 2017; 94 Kiliaris, Papaspyrides (bib59) 2010; 35 Huang, Wang, Song, Wu, Chen, Wang (bib16) 2014; 59 Duquesne, Magnet, Jama, Delobel (bib66) 2005; 88 Bourbigot, Samyn, Turf, Duquesne (bib57) 2010; 95 Deng, Du, Zhao, Shen, Deng, Wang (bib23) 2014; 108 Caimin, Yi, Siwei, Zhenguo, Jiarui (bib31) 2012; 123 Wu, Kan, Song, Hu (bib37) 2012; 23 Schartel, Weiß, Mohr, Kleemeier, Hartwig, Braun (bib56) 2010; 118 Wang, Wang, Xiao (bib2) 2009; 48 Guobo (10.1016/j.polymdegradstab.2017.06.015_bib46) 2012; 132 Huang (10.1016/j.polymdegradstab.2017.06.015_bib16) 2014; 59 Yuan (10.1016/j.polymdegradstab.2017.06.015_bib20) 2016; 162 Jimenez (10.1016/j.polymdegradstab.2017.06.015_bib67) 2006; 201 Yuan (10.1016/j.polymdegradstab.2017.06.015_bib48) 2014; 237 Gu (10.1016/j.polymdegradstab.2017.06.015_bib3) 2017; 139 Li (10.1016/j.polymdegradstab.2017.06.015_bib55) 2011; 46 Dittrich (10.1016/j.polymdegradstab.2017.06.015_bib14) 2014; 6 Nie (10.1016/j.polymdegradstab.2017.06.015_bib38) 2011; 22 Wang (10.1016/j.polymdegradstab.2017.06.015_bib22) 2011; 50 Caimin (10.1016/j.polymdegradstab.2017.06.015_bib31) 2012; 123 Liu (10.1016/j.polymdegradstab.2017.06.015_bib1) 2011; 50 Kiliaris (10.1016/j.polymdegradstab.2017.06.015_bib59) 2010; 35 Hofmann (10.1016/j.polymdegradstab.2017.06.015_bib15) 2013; 298 Enescu (10.1016/j.polymdegradstab.2017.06.015_bib40) 2013; 98 Dittrich (10.1016/j.polymdegradstab.2017.06.015_bib13) 2015; 36 Duquesne (10.1016/j.polymdegradstab.2017.06.015_bib66) 2005; 88 Muller (10.1016/j.polymdegradstab.2017.06.015_bib60) 2013; 98 Nana (10.1016/j.polymdegradstab.2017.06.015_bib27) 2013; 24 Bourbigot (10.1016/j.polymdegradstab.2017.06.015_bib68) 2004; 289 Deng (10.1016/j.polymdegradstab.2017.06.015_bib23) 2014; 108 Duquesne (10.1016/j.polymdegradstab.2017.06.015_bib64) 2002; 77 Yang (10.1016/j.polymdegradstab.2017.06.015_bib30) 2013; 98 Yuan (10.1016/j.polymdegradstab.2017.06.015_bib7) 2017; 100 Dittrich (10.1016/j.polymdegradstab.2017.06.015_bib5) 2013; 98 Wang (10.1016/j.polymdegradstab.2017.06.015_bib34) 2011; 50 Gu (10.1016/j.polymdegradstab.2017.06.015_bib32) 2017; 94 Fang (10.1016/j.polymdegradstab.2017.06.015_bib51) 2012; 23 Wang (10.1016/j.polymdegradstab.2017.06.015_bib41) 2012; 81 Alongi (10.1016/j.polymdegradstab.2017.06.015_bib9) 2015; 51 Song (10.1016/j.polymdegradstab.2017.06.015_bib4) 2011; 52 Yu (10.1016/j.polymdegradstab.2017.06.015_bib26) 2014; 4 Schartel (10.1016/j.polymdegradstab.2017.06.015_bib56) 2010; 118 Laoutid (10.1016/j.polymdegradstab.2017.06.015_bib10) 2009; 63 Vannier (10.1016/j.polymdegradstab.2017.06.015_bib39) 2008; 93 Bao (10.1016/j.polymdegradstab.2017.06.015_bib19) 2012; 22 Wang (10.1016/j.polymdegradstab.2017.06.015_bib47) 2017; 56 Lai (10.1016/j.polymdegradstab.2017.06.015_bib24) 2012; 33 Yuan (10.1016/j.polymdegradstab.2017.06.015_bib6) 2015; 50 Bourbigot (10.1016/j.polymdegradstab.2017.06.015_bib57) 2010; 95 Guo (10.1016/j.polymdegradstab.2017.06.015_bib49) 2013; 24 Ribeiro (10.1016/j.polymdegradstab.2017.06.015_bib11) 2009; 94 Wu (10.1016/j.polymdegradstab.2017.06.015_bib37) 2012; 23 Ferrari (10.1016/j.polymdegradstab.2017.06.015_bib42) 2006; 97 Wen (10.1016/j.polymdegradstab.2017.06.015_bib25) 2014; 110 Pei (10.1016/j.polymdegradstab.2017.06.015_bib52) 2013; 51 Zhang (10.1016/j.polymdegradstab.2017.06.015_bib63) 2013; 24 Bourbigot (10.1016/j.polymdegradstab.2017.06.015_bib8) 2007; 17 Jimenez (10.1016/j.polymdegradstab.2017.06.015_bib65) 2006; 45 Dittrich (10.1016/j.polymdegradstab.2017.06.015_bib12) 2013; 24 Wang (10.1016/j.polymdegradstab.2017.06.015_bib43) 2014; 5 Hu (10.1016/j.polymdegradstab.2017.06.015_bib53) 2014; 118 Wen (10.1016/j.polymdegradstab.2017.06.015_bib54) 2012; 97 Li (10.1016/j.polymdegradstab.2017.06.015_bib44) 2014; 24 Cheng-Liang (10.1016/j.polymdegradstab.2017.06.015_bib29) 2014; 25 Dong (10.1016/j.polymdegradstab.2017.06.015_bib45) 2014; 53 Chattopadhyay (10.1016/j.polymdegradstab.2017.06.015_bib62) 2009; 34 Ni (10.1016/j.polymdegradstab.2017.06.015_bib28) 2011; 22 Jiang (10.1016/j.polymdegradstab.2017.06.015_bib33) 2012; 97 Xing (10.1016/j.polymdegradstab.2017.06.015_bib35) 2009; 20 Wang (10.1016/j.polymdegradstab.2017.06.015_bib2) 2009; 48 Nie (10.1016/j.polymdegradstab.2017.06.015_bib18) 2008; 19 Wang (10.1016/j.polymdegradstab.2017.06.015_bib36) 2009; 86 Yuan (10.1016/j.polymdegradstab.2017.06.015_bib21) 2015; 5 Gerard (10.1016/j.polymdegradstab.2017.06.015_bib58) 2012; 97 Pack (10.1016/j.polymdegradstab.2017.06.015_bib61) 2010; 43 Qiu (10.1016/j.polymdegradstab.2017.06.015_bib50) 2016; 8 Liu (10.1016/j.polymdegradstab.2017.06.015_bib17) 2010; 21 |
References_xml | – volume: 23 start-page: 085704 year: 2012 ident: bib51 article-title: The deposition of iron and silver nanoparticles in graphene-polyelectrolyte brushes publication-title: Nanotechnology – volume: 52 start-page: 4001 year: 2011 end-page: 4010 ident: bib4 article-title: Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties publication-title: Polymer – volume: 95 start-page: 320 year: 2010 end-page: 326 ident: bib57 article-title: Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants publication-title: Polym. Degrad. Stabil. – volume: 139 start-page: 83 year: 2017 end-page: 89 ident: bib3 article-title: Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities publication-title: Compos. Sci. Technol. – volume: 81 start-page: 308 year: 2012 end-page: 315 ident: bib41 article-title: Effect of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of intumescent flame retardant ethylene-vinyl acetate copolymer publication-title: Radiat. Phys. Chem. – volume: 45 start-page: 4500 year: 2006 end-page: 4508 ident: bib65 article-title: Multiscale experimental approach for developing high-performance intumescent coatings publication-title: Ind. Eng. Chem. Res. – volume: 20 start-page: 696 year: 2009 end-page: 702 ident: bib35 article-title: Flame retardancy and thermal degradation of intumescent flame retardant polypropylene with MP/TPMP publication-title: Polym. Adv. Technol. – volume: 50 start-page: 2047 year: 2011 end-page: 2054 ident: bib1 article-title: Flame-retardant effect of sepiolite on an intumescent flame-retardant polypropylene system publication-title: Ind. Eng. Chem. Res. – volume: 23 start-page: 1612 year: 2012 end-page: 1619 ident: bib37 article-title: The application of Ce-doped titania nanotubes in the intumescent flame-retardant PS/MAPP/PER systems publication-title: Polym. Adv. Technol. – volume: 50 start-page: 5596 year: 2011 end-page: 5605 ident: bib34 article-title: Electron beam irradiation cross linking of halogen-free flame-retardant ethylene vinyl acetate (EVA) copolymer by silica gel microencapsulated ammonium polyphosphate and char-forming agent publication-title: Ind. Eng. Chem. Res. – volume: 289 start-page: 499 year: 2004 end-page: 511 ident: bib68 article-title: Recent advances for intumescent polymers publication-title: Macromol. Mater. Eng. – volume: 46 start-page: 5595 year: 2011 end-page: 5614 ident: bib55 article-title: Review on polymer/graphite nanoplatelet nanocomposites publication-title: J. Mater. Sci. – volume: 24 start-page: 653 year: 2013 end-page: 659 ident: bib27 article-title: Synthesis and characterization of a novel organophosphorus flame retardant and its application in polypropylene publication-title: Polym. Adv. Technol. – volume: 50 start-page: 5389 year: 2015 end-page: 5401 ident: bib6 article-title: Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide publication-title: J. Mater. Sci. – volume: 5 start-page: 1145 year: 2014 end-page: 1154 ident: bib43 article-title: Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism publication-title: Polym. Chem. – volume: 17 start-page: 2283 year: 2007 end-page: 2300 ident: bib8 article-title: Fire retardant polymers: recent developments and opportunities publication-title: J. Mater. Chem. – volume: 22 start-page: 6088 year: 2012 end-page: 6096 ident: bib19 article-title: Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending publication-title: J. Mater. Chem. – volume: 110 start-page: 165 year: 2014 end-page: 174 ident: bib25 article-title: One-pot synthesis of a novel s-triazine-based hyperbranched charring foaming agent and its enhancement on flame retardancy and water resistance of polypropylene publication-title: Polym. Degrad. Stabil. – volume: 22 start-page: 1824 year: 2011 end-page: 1831 ident: bib28 article-title: Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites publication-title: Polym. Adv. Technol. – volume: 6 start-page: 2875 year: 2014 end-page: 2895 ident: bib14 article-title: Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene publication-title: Polymers – volume: 25 start-page: 861 year: 2014 end-page: 871 ident: bib29 article-title: Water resistance, thermal stability, and flame retardation of polypropylene composites containing a novel ammonium polyphosphate microencapsulated by UV-curable epoxy acrylate resin publication-title: Polym. Adv. Technol. – volume: 4 start-page: 31782 year: 2014 end-page: 31794 ident: bib26 article-title: Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene publication-title: RSC Adv. – volume: 24 start-page: 339 year: 2013 end-page: 347 ident: bib49 article-title: Poly(vinyl alcohol)/melamine phosphate composites prepared through thermal processing: thermal stability and flame retardancy publication-title: Polym. Adv. Technol. – volume: 24 start-page: 7366 year: 2014 end-page: 7372 ident: bib44 article-title: Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose publication-title: Adv. Funct. Mater – volume: 94 start-page: 209 year: 2017 end-page: 216 ident: bib32 article-title: Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method publication-title: Compos. Part A-Appl. S – volume: 43 start-page: 5338 year: 2010 end-page: 5351 ident: bib61 article-title: Role of surface interactions in the synergizing polymer/clay flame retardant properties publication-title: Macromolecules – volume: 36 start-page: 1230 year: 2015 end-page: 1241 ident: bib13 article-title: The influence of layered, spherical, and tubular carbon nanomaterials' concentration on the flame retardancy of polypropylene publication-title: Polym. Compos – volume: 19 start-page: 1077 year: 2008 end-page: 1083 ident: bib18 article-title: Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene publication-title: Polym. Adv. Technol. – volume: 35 start-page: 902 year: 2010 end-page: 958 ident: bib59 article-title: Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy publication-title: Prog. Polym. Sci. – volume: 162 start-page: 154 year: 2016 end-page: 156 ident: bib20 article-title: A facile method to prepare reduced graphene oxide with a large pore volume publication-title: Mater. Lett. – volume: 21 start-page: 789 year: 2010 end-page: 796 ident: bib17 article-title: The synergistic flame-retardant effect of O-MMT on the intumescent flame-retardant PP/CA/APP systems publication-title: Polym. Adv. Technol. – volume: 33 start-page: 35 year: 2012 end-page: 43 ident: bib24 article-title: Synergistic effect between a triazine-based macromolecule and melamine pyrophosphate in flame retardant polypropylene publication-title: Polym. Compos – volume: 237 start-page: 411 year: 2014 end-page: 420 ident: bib48 article-title: Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties publication-title: Chem. Eng. J. – volume: 53 start-page: 8062 year: 2014 end-page: 8068 ident: bib45 article-title: Effects of compound oxides on the fire performance of polypropylene composite publication-title: Ind. Eng. Chem. Res. – volume: 34 start-page: 1068 year: 2009 end-page: 1133 ident: bib62 article-title: Thermal stability and flame retardancy of polyurethanes publication-title: Prog. Polym. Sci. – volume: 100 start-page: 106 year: 2017 end-page: 117 ident: bib7 article-title: Dual modification of graphene by polymeric flame retardant and Ni(OH) 2 nanosheets for improving flame retardancy of polypropylene publication-title: Compos. Part A-Appl. S – volume: 118 start-page: 1134 year: 2010 end-page: 1143 ident: bib56 article-title: Flame retarded epoxy resins by adding layered silicate in combination with the conventional protection-layer-building flame retardants melamine borate and ammonium polyphosphate publication-title: J. Appl. Polym. Sci. – volume: 97 start-page: 632 year: 2012 end-page: 637 ident: bib33 article-title: Study on the thermal degradation of mixtures of ammonium polyphosphate and a novel caged bicyclic phosphate and their flame retardant effect in polypropylene publication-title: Polym. Degrad. Stabil. – volume: 132 start-page: 520 year: 2012 end-page: 528 ident: bib46 article-title: Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol) publication-title: Mater. Chem. Phys. – volume: 93 start-page: 818 year: 2008 end-page: 826 ident: bib39 article-title: The use of POSS as synergist in intumescent recycled poly(ethylene terephthalate) publication-title: Polym. Degrad. Stabil. – volume: 298 start-page: 1322 year: 2013 end-page: 1334 ident: bib15 article-title: Functionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene publication-title: Macromol. Mater. Eng. – volume: 8 start-page: 32528 year: 2016 end-page: 32540 ident: bib50 article-title: A 3D nanostructure based on transition-metal phosphide decorated heteroatom-doped mesoporous nanospheres interconnected with graphene: synthesis and applications publication-title: ACS Appl. Mater. Interfaces – volume: 98 start-page: 1397 year: 2013 end-page: 1406 ident: bib30 article-title: Synthesis of N-ethyl triazine-piperazine copolymer and flame retardancy and water resistance of intumescent flame retardant polypropylene publication-title: Polym. Degrad. Stabil. – volume: 123 start-page: 3208 year: 2012 end-page: 3216 ident: bib31 article-title: Synthesis of novel triazine charring agent and its effect in intumescent flame-retardant polypropylene publication-title: J. Appl. Polym. Sci. – volume: 22 start-page: 870 year: 2011 end-page: 876 ident: bib38 article-title: Synergistic effects of ferric pyrophosphate (FePP) in intumescent flame-retardant polypropylene publication-title: Polym. Adv. Technol. – volume: 63 start-page: 100 year: 2009 end-page: 125 ident: bib10 article-title: New prospects in flame retardant polymer materials: from fundamentals to nanocomposites publication-title: Mat. Sci. Eng. R. – volume: 50 start-page: 5376 year: 2011 end-page: 5383 ident: bib22 article-title: Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites publication-title: Ind. Eng. Chem. Res. – volume: 51 start-page: 28 year: 2015 end-page: 73 ident: bib9 article-title: Intumescence: tradition versus novelty. A comprehensive review publication-title: Prog. Polym. Sci. – volume: 59 start-page: 18 year: 2014 end-page: 25 ident: bib16 article-title: Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites publication-title: Compos. Part A-Appl. S – volume: 56 start-page: 6664 year: 2017 end-page: 6670 ident: bib47 article-title: Synthesis of phosphorylated graphene oxide based multilayer coating: self-assembly method and application for improving the fire safety of cotton fabrics publication-title: Ind. Eng. Chem. Res. – volume: 24 start-page: 951 year: 2013 end-page: 961 ident: bib63 article-title: Blowing-out effect and temperature profile in condensed phase in flame retarding epoxy resins by phosphorus-containing oligomeric silsesquioxane publication-title: Polym. Adv. Technol. – volume: 97 year: 2006 ident: bib42 article-title: Raman spectrum of graphene and graphene layers publication-title: Phys. Rev. Lett. – volume: 24 start-page: 916 year: 2013 end-page: 926 ident: bib12 article-title: Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites publication-title: Polym. Adv. Technol. – volume: 118 start-page: 1561 year: 2014 end-page: 1568 ident: bib53 article-title: Self-assembled fabrication and flame-retardant properties of reduced graphene oxide/waterborne polyurethane nanocomposites publication-title: J. Therm. Anal. Calorim. – volume: 97 start-page: 793 year: 2012 end-page: 801 ident: bib54 article-title: Thermal and flammability properties of polypropylene/carbon black nanocomposites publication-title: Polym. Degrad. Stabil. – volume: 48 start-page: 297 year: 2009 end-page: 302 ident: bib2 article-title: Recent research progress on the flame-retardant mechanism of halogen-free flame retardant polypropylene publication-title: Polym.-Plast. Technol. Eng. – volume: 98 start-page: 1495 year: 2013 end-page: 1505 ident: bib5 article-title: Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene publication-title: Polym. Degrad. Stabil. – volume: 94 start-page: 421 year: 2009 end-page: 431 ident: bib11 article-title: Influence of clays on the flame retardancy and high temperature viscoelastic properties of polymeric intumescent formulations publication-title: Polym. Degrad. Stabil. – volume: 88 start-page: 63 year: 2005 end-page: 69 ident: bib66 article-title: Thermoplastic resins for thin film intumescent coatings - towards a better understanding of their effect on intumescence efficiency publication-title: Polym. Degrad. Stabil. – volume: 98 start-page: 297 year: 2013 end-page: 305 ident: bib40 article-title: Novel phosphorous-nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene publication-title: Polym. Degrad. Stabil. – volume: 97 start-page: 1366 year: 2012 end-page: 1386 ident: bib58 article-title: Reaction to fire of an intumescent epoxy resin: protection mechanisms and synergy publication-title: Polym. Degrad. Stabil. – volume: 201 start-page: 979 year: 2006 end-page: 987 ident: bib67 article-title: Characterization of the performance of an intumescent fire protective coating publication-title: Surf. Coat. Tech. – volume: 77 start-page: 333 year: 2002 end-page: 344 ident: bib64 article-title: A comparative study of the mechanism of action of ammonium polyphosphate and expandable graphite in polyurethane publication-title: Polym. Degrad. Stabil. – volume: 5 start-page: 41307 year: 2015 end-page: 41316 ident: bib21 article-title: Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene publication-title: RSC Adv. – volume: 98 start-page: 1638 year: 2013 end-page: 1647 ident: bib60 article-title: Investigation of the synergy in intumescent polyurethane by 3D computed tomography publication-title: Polym. Degrad. Stabil. – volume: 86 start-page: 207 year: 2009 end-page: 214 ident: bib36 article-title: Thermal degradation study of intumescent flame retardants by TG and FTIR: melamine phosphate and its mixture with pentaerythritol publication-title: J. Anal. Appl. Pyrol – volume: 108 start-page: 97 year: 2014 end-page: 107 ident: bib23 article-title: An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance publication-title: Polym. Degrad. Stabil. – volume: 51 start-page: 156 year: 2013 end-page: 163 ident: bib52 article-title: Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide publication-title: Carbon – volume: 24 start-page: 653 year: 2013 ident: 10.1016/j.polymdegradstab.2017.06.015_bib27 article-title: Synthesis and characterization of a novel organophosphorus flame retardant and its application in polypropylene publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3129 – volume: 21 start-page: 789 year: 2010 ident: 10.1016/j.polymdegradstab.2017.06.015_bib17 article-title: The synergistic flame-retardant effect of O-MMT on the intumescent flame-retardant PP/CA/APP systems publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1502 – volume: 97 start-page: 1366 year: 2012 ident: 10.1016/j.polymdegradstab.2017.06.015_bib58 article-title: Reaction to fire of an intumescent epoxy resin: protection mechanisms and synergy publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2012.05.025 – volume: 8 start-page: 32528 year: 2016 ident: 10.1016/j.polymdegradstab.2017.06.015_bib50 article-title: A 3D nanostructure based on transition-metal phosphide decorated heteroatom-doped mesoporous nanospheres interconnected with graphene: synthesis and applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11101 – volume: 63 start-page: 100 year: 2009 ident: 10.1016/j.polymdegradstab.2017.06.015_bib10 article-title: New prospects in flame retardant polymer materials: from fundamentals to nanocomposites publication-title: Mat. Sci. Eng. R. doi: 10.1016/j.mser.2008.09.002 – volume: 97 start-page: 632 year: 2012 ident: 10.1016/j.polymdegradstab.2017.06.015_bib33 article-title: Study on the thermal degradation of mixtures of ammonium polyphosphate and a novel caged bicyclic phosphate and their flame retardant effect in polypropylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2012.01.001 – volume: 52 start-page: 4001 year: 2011 ident: 10.1016/j.polymdegradstab.2017.06.015_bib4 article-title: Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties publication-title: Polymer doi: 10.1016/j.polymer.2011.06.045 – volume: 123 start-page: 3208 year: 2012 ident: 10.1016/j.polymdegradstab.2017.06.015_bib31 article-title: Synthesis of novel triazine charring agent and its effect in intumescent flame-retardant polypropylene publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.34993 – volume: 95 start-page: 320 year: 2010 ident: 10.1016/j.polymdegradstab.2017.06.015_bib57 article-title: Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2009.11.011 – volume: 97 year: 2006 ident: 10.1016/j.polymdegradstab.2017.06.015_bib42 article-title: Raman spectrum of graphene and graphene layers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 19 start-page: 1077 year: 2008 ident: 10.1016/j.polymdegradstab.2017.06.015_bib18 article-title: Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1082 – volume: 45 start-page: 4500 year: 2006 ident: 10.1016/j.polymdegradstab.2017.06.015_bib65 article-title: Multiscale experimental approach for developing high-performance intumescent coatings publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060040x – volume: 162 start-page: 154 year: 2016 ident: 10.1016/j.polymdegradstab.2017.06.015_bib20 article-title: A facile method to prepare reduced graphene oxide with a large pore volume publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.10.011 – volume: 24 start-page: 951 year: 2013 ident: 10.1016/j.polymdegradstab.2017.06.015_bib63 article-title: Blowing-out effect and temperature profile in condensed phase in flame retarding epoxy resins by phosphorus-containing oligomeric silsesquioxane publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3170 – volume: 22 start-page: 6088 year: 2012 ident: 10.1016/j.polymdegradstab.2017.06.015_bib19 article-title: Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending publication-title: J. Mater. Chem. doi: 10.1039/c2jm16203b – volume: 93 start-page: 818 year: 2008 ident: 10.1016/j.polymdegradstab.2017.06.015_bib39 article-title: The use of POSS as synergist in intumescent recycled poly(ethylene terephthalate) publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2008.01.016 – volume: 97 start-page: 793 year: 2012 ident: 10.1016/j.polymdegradstab.2017.06.015_bib54 article-title: Thermal and flammability properties of polypropylene/carbon black nanocomposites publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2012.01.031 – volume: 24 start-page: 916 year: 2013 ident: 10.1016/j.polymdegradstab.2017.06.015_bib12 article-title: Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3165 – volume: 98 start-page: 297 year: 2013 ident: 10.1016/j.polymdegradstab.2017.06.015_bib40 article-title: Novel phosphorous-nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2012.09.012 – volume: 53 start-page: 8062 year: 2014 ident: 10.1016/j.polymdegradstab.2017.06.015_bib45 article-title: Effects of compound oxides on the fire performance of polypropylene composite publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie500178u – volume: 108 start-page: 97 year: 2014 ident: 10.1016/j.polymdegradstab.2017.06.015_bib23 article-title: An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2014.06.008 – volume: 33 start-page: 35 year: 2012 ident: 10.1016/j.polymdegradstab.2017.06.015_bib24 article-title: Synergistic effect between a triazine-based macromolecule and melamine pyrophosphate in flame retardant polypropylene publication-title: Polym. Compos doi: 10.1002/pc.21250 – volume: 94 start-page: 421 year: 2009 ident: 10.1016/j.polymdegradstab.2017.06.015_bib11 article-title: Influence of clays on the flame retardancy and high temperature viscoelastic properties of polymeric intumescent formulations publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2008.11.015 – volume: 6 start-page: 2875 year: 2014 ident: 10.1016/j.polymdegradstab.2017.06.015_bib14 article-title: Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene publication-title: Polymers doi: 10.3390/polym6112875 – volume: 118 start-page: 1561 year: 2014 ident: 10.1016/j.polymdegradstab.2017.06.015_bib53 article-title: Self-assembled fabrication and flame-retardant properties of reduced graphene oxide/waterborne polyurethane nanocomposites publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-014-4078-7 – volume: 56 start-page: 6664 year: 2017 ident: 10.1016/j.polymdegradstab.2017.06.015_bib47 article-title: Synthesis of phosphorylated graphene oxide based multilayer coating: self-assembly method and application for improving the fire safety of cotton fabrics publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b01293 – volume: 50 start-page: 5376 year: 2011 ident: 10.1016/j.polymdegradstab.2017.06.015_bib22 article-title: Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie102566y – volume: 77 start-page: 333 year: 2002 ident: 10.1016/j.polymdegradstab.2017.06.015_bib64 article-title: A comparative study of the mechanism of action of ammonium polyphosphate and expandable graphite in polyurethane publication-title: Polym. Degrad. Stabil. doi: 10.1016/S0141-3910(02)00069-1 – volume: 34 start-page: 1068 year: 2009 ident: 10.1016/j.polymdegradstab.2017.06.015_bib62 article-title: Thermal stability and flame retardancy of polyurethanes publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2009.06.002 – volume: 51 start-page: 28 year: 2015 ident: 10.1016/j.polymdegradstab.2017.06.015_bib9 article-title: Intumescence: tradition versus novelty. A comprehensive review publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2015.04.010 – volume: 237 start-page: 411 year: 2014 ident: 10.1016/j.polymdegradstab.2017.06.015_bib48 article-title: Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.10.030 – volume: 139 start-page: 83 year: 2017 ident: 10.1016/j.polymdegradstab.2017.06.015_bib3 article-title: Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.12.015 – volume: 20 start-page: 696 year: 2009 ident: 10.1016/j.polymdegradstab.2017.06.015_bib35 article-title: Flame retardancy and thermal degradation of intumescent flame retardant polypropylene with MP/TPMP publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1335 – volume: 23 start-page: 1612 year: 2012 ident: 10.1016/j.polymdegradstab.2017.06.015_bib37 article-title: The application of Ce-doped titania nanotubes in the intumescent flame-retardant PS/MAPP/PER systems publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3036 – volume: 81 start-page: 308 year: 2012 ident: 10.1016/j.polymdegradstab.2017.06.015_bib41 article-title: Effect of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of intumescent flame retardant ethylene-vinyl acetate copolymer publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2011.10.021 – volume: 289 start-page: 499 year: 2004 ident: 10.1016/j.polymdegradstab.2017.06.015_bib68 article-title: Recent advances for intumescent polymers publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.200400007 – volume: 46 start-page: 5595 year: 2011 ident: 10.1016/j.polymdegradstab.2017.06.015_bib55 article-title: Review on polymer/graphite nanoplatelet nanocomposites publication-title: J. Mater. Sci. doi: 10.1007/s10853-011-5572-y – volume: 36 start-page: 1230 year: 2015 ident: 10.1016/j.polymdegradstab.2017.06.015_bib13 article-title: The influence of layered, spherical, and tubular carbon nanomaterials' concentration on the flame retardancy of polypropylene publication-title: Polym. Compos doi: 10.1002/pc.23027 – volume: 94 start-page: 209 year: 2017 ident: 10.1016/j.polymdegradstab.2017.06.015_bib32 article-title: Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method publication-title: Compos. Part A-Appl. S doi: 10.1016/j.compositesa.2016.12.014 – volume: 24 start-page: 7366 year: 2014 ident: 10.1016/j.polymdegradstab.2017.06.015_bib44 article-title: Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose publication-title: Adv. Funct. Mater doi: 10.1002/adfm.201402129 – volume: 98 start-page: 1638 year: 2013 ident: 10.1016/j.polymdegradstab.2017.06.015_bib60 article-title: Investigation of the synergy in intumescent polyurethane by 3D computed tomography publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2013.06.018 – volume: 4 start-page: 31782 year: 2014 ident: 10.1016/j.polymdegradstab.2017.06.015_bib26 article-title: Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene publication-title: RSC Adv. doi: 10.1039/C3RA45945D – volume: 51 start-page: 156 year: 2013 ident: 10.1016/j.polymdegradstab.2017.06.015_bib52 article-title: Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide publication-title: Carbon doi: 10.1016/j.carbon.2012.08.024 – volume: 5 start-page: 41307 year: 2015 ident: 10.1016/j.polymdegradstab.2017.06.015_bib21 article-title: Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene publication-title: RSC Adv. doi: 10.1039/C5RA04699H – volume: 50 start-page: 5596 year: 2011 ident: 10.1016/j.polymdegradstab.2017.06.015_bib34 article-title: Electron beam irradiation cross linking of halogen-free flame-retardant ethylene vinyl acetate (EVA) copolymer by silica gel microencapsulated ammonium polyphosphate and char-forming agent publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie102394q – volume: 298 start-page: 1322 year: 2013 ident: 10.1016/j.polymdegradstab.2017.06.015_bib15 article-title: Functionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201200433 – volume: 35 start-page: 902 year: 2010 ident: 10.1016/j.polymdegradstab.2017.06.015_bib59 article-title: Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2010.03.001 – volume: 110 start-page: 165 year: 2014 ident: 10.1016/j.polymdegradstab.2017.06.015_bib25 article-title: One-pot synthesis of a novel s-triazine-based hyperbranched charring foaming agent and its enhancement on flame retardancy and water resistance of polypropylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2014.08.019 – volume: 24 start-page: 339 year: 2013 ident: 10.1016/j.polymdegradstab.2017.06.015_bib49 article-title: Poly(vinyl alcohol)/melamine phosphate composites prepared through thermal processing: thermal stability and flame retardancy publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3089 – volume: 201 start-page: 979 year: 2006 ident: 10.1016/j.polymdegradstab.2017.06.015_bib67 article-title: Characterization of the performance of an intumescent fire protective coating publication-title: Surf. Coat. Tech. doi: 10.1016/j.surfcoat.2006.01.026 – volume: 132 start-page: 520 year: 2012 ident: 10.1016/j.polymdegradstab.2017.06.015_bib46 article-title: Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol) publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.11.064 – volume: 5 start-page: 1145 year: 2014 ident: 10.1016/j.polymdegradstab.2017.06.015_bib43 article-title: Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism publication-title: Polym. Chem. doi: 10.1039/C3PY00963G – volume: 98 start-page: 1397 year: 2013 ident: 10.1016/j.polymdegradstab.2017.06.015_bib30 article-title: Synthesis of N-ethyl triazine-piperazine copolymer and flame retardancy and water resistance of intumescent flame retardant polypropylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2013.03.023 – volume: 23 start-page: 085704 year: 2012 ident: 10.1016/j.polymdegradstab.2017.06.015_bib51 article-title: The deposition of iron and silver nanoparticles in graphene-polyelectrolyte brushes publication-title: Nanotechnology doi: 10.1088/0957-4484/23/8/085704 – volume: 22 start-page: 870 year: 2011 ident: 10.1016/j.polymdegradstab.2017.06.015_bib38 article-title: Synergistic effects of ferric pyrophosphate (FePP) in intumescent flame-retardant polypropylene publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1590 – volume: 25 start-page: 861 year: 2014 ident: 10.1016/j.polymdegradstab.2017.06.015_bib29 article-title: Water resistance, thermal stability, and flame retardation of polypropylene composites containing a novel ammonium polyphosphate microencapsulated by UV-curable epoxy acrylate resin publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3319 – volume: 48 start-page: 297 year: 2009 ident: 10.1016/j.polymdegradstab.2017.06.015_bib2 article-title: Recent research progress on the flame-retardant mechanism of halogen-free flame retardant polypropylene publication-title: Polym.-Plast. Technol. Eng. doi: 10.1080/03602550802675645 – volume: 43 start-page: 5338 year: 2010 ident: 10.1016/j.polymdegradstab.2017.06.015_bib61 article-title: Role of surface interactions in the synergizing polymer/clay flame retardant properties publication-title: Macromolecules doi: 10.1021/ma100669g – volume: 100 start-page: 106 year: 2017 ident: 10.1016/j.polymdegradstab.2017.06.015_bib7 article-title: Dual modification of graphene by polymeric flame retardant and Ni(OH) 2 nanosheets for improving flame retardancy of polypropylene publication-title: Compos. Part A-Appl. S doi: 10.1016/j.compositesa.2017.04.012 – volume: 86 start-page: 207 year: 2009 ident: 10.1016/j.polymdegradstab.2017.06.015_bib36 article-title: Thermal degradation study of intumescent flame retardants by TG and FTIR: melamine phosphate and its mixture with pentaerythritol publication-title: J. Anal. Appl. Pyrol doi: 10.1016/j.jaap.2009.06.007 – volume: 118 start-page: 1134 year: 2010 ident: 10.1016/j.polymdegradstab.2017.06.015_bib56 article-title: Flame retarded epoxy resins by adding layered silicate in combination with the conventional protection-layer-building flame retardants melamine borate and ammonium polyphosphate publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.32512 – volume: 22 start-page: 1824 year: 2011 ident: 10.1016/j.polymdegradstab.2017.06.015_bib28 article-title: Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1679 – volume: 98 start-page: 1495 year: 2013 ident: 10.1016/j.polymdegradstab.2017.06.015_bib5 article-title: Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2013.04.009 – volume: 59 start-page: 18 year: 2014 ident: 10.1016/j.polymdegradstab.2017.06.015_bib16 article-title: Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites publication-title: Compos. Part A-Appl. S doi: 10.1016/j.compositesa.2013.12.010 – volume: 50 start-page: 2047 year: 2011 ident: 10.1016/j.polymdegradstab.2017.06.015_bib1 article-title: Flame-retardant effect of sepiolite on an intumescent flame-retardant polypropylene system publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie101737n – volume: 17 start-page: 2283 year: 2007 ident: 10.1016/j.polymdegradstab.2017.06.015_bib8 article-title: Fire retardant polymers: recent developments and opportunities publication-title: J. Mater. Chem. doi: 10.1039/b702511d – volume: 50 start-page: 5389 year: 2015 ident: 10.1016/j.polymdegradstab.2017.06.015_bib6 article-title: Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-9083-0 – volume: 88 start-page: 63 year: 2005 ident: 10.1016/j.polymdegradstab.2017.06.015_bib66 article-title: Thermoplastic resins for thin film intumescent coatings - towards a better understanding of their effect on intumescence efficiency publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2004.01.026 |
SSID | ssj0000451 |
Score | 2.6017215 |
Snippet | This work explores the feasibility of using graphene as an effective synergist for intumescent flame retardant (IFR). The flammability test and fire behavior... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 42 |
SubjectTerms | Antagonism burning Effects fire behavior Fire protection fire safety fire testing Flame retardant flame retardants Flammability Graphene heat insulating materials Insulation melting Polymer matrix composites Polypropylene polypropylenes Smoke Synergy Thermal decomposition thermal degradation Viscosity |
Title | The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios |
URI | https://dx.doi.org/10.1016/j.polymdegradstab.2017.06.015 https://www.proquest.com/docview/1965090797 https://www.proquest.com/docview/2000479936 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VReLjgNoC6kJbGQmOYRMndmKJA9WKaguiJyr1ZtmxLS3aTVbN9rAXfgS_mJkkbqHiUIljEttyPJOZcfzmDcA7Z0WuPK8TI9IiKUprk6quZVLn3ClR1bgToh_63y7k_LL4ciWudmAWc2EIVjna_sGm99Z6vDMdV3O6XiymBEvC8IVUKie1oiQ-Yq9Dnf7w8w7mQfwpA4wxS6j1Y3h_h_Fat8vtyhErg-soQwG9YdnTeVKV3H_7qXsWu3dDZ3vwfIwf2ekwxX3Y8c0BPJnFsm0H8OwPhsEX8AvVgI2YDdYG1vNTo3ljbcMw9GMBFWI1UHVvmWkcC7gcLObuU48FOqXVwPnUt_aMEIrXDiXC6MVwouvtkoYkdDpBwHzHzIbFyiuxF42A-_K2ewmXZ5-_z-bJWIYBBaaKTVJXubNVbnCyxqUWY5IqhKCsrR0XRsmS88CzvDJeBCdLR8U8iiClNXw4aH0Fu03b-ENgMmC84zNjM4GRjBXKq4w7F3hhcN-Yugl8jIuu65GjnEplLHUEo_3Q92SmSWaawHmZmIC87b4eyDoe2vFTlLD-S_s0OpaHDnEUNUOPZqDTRNeYqrRU5QTe3j5GhaBTGdP49qajOqBE869y-fr_Z_EGntLVAII7gt3N9Y0_xqhpY0_6z-IEHp2ef51f_AYsth7K |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VrUThgKCAWChgJDhGmzh2EkscqFZUW9ruqZV6s-zYlhbtJqtme9i_0V_cmXy0UHGoxDXJWBPPZGYcP78B-OqsTJXnZWRkLCKRWxsVZZlFZcqdkkWJKyH6oX82z2YX4telvNyB6XAWhmCVfezvYnobrfsrk342J-vFYkKwJCxfyKVSciv1BHaJnUqMYPfw-GQ2vw_IQnZtCUUSkcBT-HYP81rXy-3KETGDa-iQAibEvGX0pEa5_05VD4J2m4mOXsKLvoRkh52Wr2DHV_uwNx06t-3D8z9IBl_DDXoC62EbrA6spajGCMfqimH1xwL6xKpj694yUzkWcEbYcHyfJBaYl1Yd7VP7tGcEUrxyaBRGL4aKrrdLGpIA6oQC8w0zGzY0XxmkaARcmtfNG7g4-nk-nUV9Jwa0mRKbqCxSZ4vUoLLGxRbLkiKEoKwtHZdGZTnngSdpYbwMLssd9fMQIcus4d1e61sYVXXl3wHLApY8PjE2kVjMWKm8SrhzgQuDS8fYjeH7MOm67GnKqVvGUg94tN_6gc002UwTPi-RY8juxNcdX8djBX8MFtZ_OaDG3PLYIQ4Gz9B9JGg0MTbGKs5VPoYvd7fRIWhjxlS-vm6oFSgx_as0e___WnyGvdn52ak-PZ6ffIBndKfDxB3AaHN17T9iEbWxn_qP5BbaFSF7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+graphene+on+the+flammability+and+fire+behavior+of+intumescent+flame+retardant+polypropylene+composites+at+different+flame+scenarios&rft.jtitle=Polymer+degradation+and+stability&rft.au=Yuan%2C+Bihe&rft.au=Fan%2C+Ao&rft.au=Yang%2C+Man&rft.au=Chen%2C+Xianfeng&rft.date=2017-09-01&rft.issn=0141-3910&rft.volume=143+p.42-56&rft.spage=42&rft.epage=56&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2017.06.015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon |