The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios

This work explores the feasibility of using graphene as an effective synergist for intumescent flame retardant (IFR). The flammability test and fire behavior under different fire scenarios are investigated. The incorporation of graphene results in different responses of IFR/polypropylene (PP) compos...

Full description

Saved in:
Bibliographic Details
Published inPolymer degradation and stability Vol. 143; pp. 42 - 56
Main Authors Yuan, Bihe, Fan, Ao, Yang, Man, Chen, Xianfeng, Hu, Yuan, Bao, Chenlu, Jiang, Saihua, Niu, Yi, Zhang, Ying, He, Song, Dai, Huaming
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.09.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0141-3910
1873-2321
DOI10.1016/j.polymdegradstab.2017.06.015

Cover

Loading…
Abstract This work explores the feasibility of using graphene as an effective synergist for intumescent flame retardant (IFR). The flammability test and fire behavior under different fire scenarios are investigated. The incorporation of graphene results in different responses of IFR/polypropylene (PP) composites to small fire tests and burning under forced-flaming condition. The addition of graphene weakens the reaction of flame retardant PP to small flame. Lower loading of graphene is observed to improve the swelling of char, resulting in better insulation of the char and decrease in heat and smoke release. The further increase of graphene leads to the worsened fire safety. Flame retardant mechanism and model are proposed on the basis of the analyses of thermal decomposition products and process, and melt viscosity change. This works provides a solution to comprehensively assess the synergistic or antagonistic effect of graphene, and will be beneficial to developing its flame retardant mechanism.
AbstractList This work explores the feasibility of using graphene as an effective synergist for intumescent flame retardant (IFR). The flammability test and fire behavior under different fire scenarios are investigated. The incorporation of graphene results in different responses of IFR/polypropylene (PP) composites to small fire tests and burning under forced-flaming condition. The addition of graphene weakens the reaction of flame retardant PP to small flame. Lower loading of graphene is observed to improve the swelling of char, resulting in better insulation of the char and decrease in heat and smoke release. The further increase of graphene leads to the worsened fire safety. Flame retardant mechanism and model are proposed on the basis of the analyses of thermal decomposition products and process, and melt viscosity change. This works provides a solution to comprehensively assess the synergistic or antagonistic effect of graphene, and will be beneficial to developing its flame retardant mechanism.
Author Chen, Xianfeng
Bao, Chenlu
Niu, Yi
Yuan, Bihe
Dai, Huaming
Fan, Ao
Jiang, Saihua
Zhang, Ying
Hu, Yuan
Yang, Man
He, Song
Author_xml – sequence: 1
  givenname: Bihe
  surname: Yuan
  fullname: Yuan, Bihe
  email: yuanbh@whut.edu.cn
  organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
– sequence: 2
  givenname: Ao
  surname: Fan
  fullname: Fan, Ao
  organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
– sequence: 3
  givenname: Man
  surname: Yang
  fullname: Yang, Man
  organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
– sequence: 4
  givenname: Xianfeng
  surname: Chen
  fullname: Chen, Xianfeng
  email: cxf618@whut.edu.cn
  organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
– sequence: 5
  givenname: Yuan
  surname: Hu
  fullname: Hu, Yuan
  email: yuanhu@ustc.edu.cn
  organization: State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
– sequence: 6
  givenname: Chenlu
  surname: Bao
  fullname: Bao, Chenlu
  organization: School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
– sequence: 7
  givenname: Saihua
  surname: Jiang
  fullname: Jiang, Saihua
  organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
– sequence: 8
  givenname: Yi
  surname: Niu
  fullname: Niu, Yi
  organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
– sequence: 9
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
– sequence: 10
  givenname: Song
  surname: He
  fullname: He, Song
  organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
– sequence: 11
  givenname: Huaming
  surname: Dai
  fullname: Dai, Huaming
  organization: School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
BookMark eNqNkcGKFDEURYOMYM_oPwREcFNlUulOVRYupNFRGHAzrsOr5MVOU5WUSXqgf8MvNmULQq8mmxBy73mXd2_JTYgBCXnHWcsZlx-O7RKn82zxZwKbC4xtx3jfMtkyvntBNnzoRdOJjt-QDeNb3gjF2Stym_OR1bPd8Q35_XhAis6hKZlGRytqOWBAGgMt9ctNMM8w-smXM4VgqfMJ6YgHePIxrQ4fymnGbDCUv2qkCQskC_W95ltSXM7TijRxXmL2BTOFQq2vU9N_10qA5GN-TV46mDK--XffkR9fPj_uvzYP3--_7T89NEaobWnMIOw4CKjhwbKR9XxwzqlxNLbbgZJ917mOiwFw56zsrRzYsHVSjtAxJpgSd-T9hVsT_jphLnr2NcQ0QcB4yrpbd9QrJWSVvr2SHuMphZpOcyV3TLFe9VX18aIyKeac0Okl-RnSWXOm18b0UV81ptfGNJO6Nlb9-yu_8QWKj6Ek8NOzKfcXCtbdPXlMOhuPwaCtzZmibfTPJP0BOELGLg
CitedBy_id crossref_primary_10_1016_j_jclepro_2024_141417
crossref_primary_10_1016_j_compositesa_2018_03_022
crossref_primary_10_1016_j_jhazmat_2020_123645
crossref_primary_10_1016_j_coco_2020_100488
crossref_primary_10_1016_j_polymdegradstab_2018_03_007
crossref_primary_10_1016_j_eurpolymj_2021_110601
crossref_primary_10_1002_pat_4687
crossref_primary_10_1016_j_porgcoat_2019_05_043
crossref_primary_10_1002_pat_4689
crossref_primary_10_1002_pen_25384
crossref_primary_10_1002_pc_25077
crossref_primary_10_3390_ma16134759
crossref_primary_10_1016_j_polymdegradstab_2024_110730
crossref_primary_10_1016_j_carbon_2020_10_042
crossref_primary_10_1134_S0965545X20010095
crossref_primary_10_1016_j_firesaf_2023_103757
crossref_primary_10_1002_fam_3011
crossref_primary_10_1016_j_jhazmat_2020_123653
crossref_primary_10_1007_s10973_020_10228_6
crossref_primary_10_1016_j_psep_2021_01_001
crossref_primary_10_1016_j_jlp_2020_104263
crossref_primary_10_1016_j_cej_2024_153162
crossref_primary_10_1016_j_polymdegradstab_2021_109684
crossref_primary_10_1002_pat_5402
crossref_primary_10_1016_j_compscitech_2020_108457
crossref_primary_10_3390_polym16010045
crossref_primary_10_1002_app_53819
crossref_primary_10_1007_s10973_018_7810_x
crossref_primary_10_1016_j_mtchem_2022_101127
crossref_primary_10_1016_j_mtcomm_2020_101792
crossref_primary_10_1021_acssuschemeng_3c03984
crossref_primary_10_1515_chem_2018_0013
crossref_primary_10_1016_j_ijbiomac_2023_123472
crossref_primary_10_1016_j_mtcomm_2020_101446
crossref_primary_10_1016_j_cej_2022_138350
crossref_primary_10_1016_j_polymdegradstab_2019_109019
crossref_primary_10_1002_pc_25091
crossref_primary_10_3390_molecules26154670
crossref_primary_10_3390_ma13245756
crossref_primary_10_1007_s13726_020_00864_y
crossref_primary_10_1021_acsapm_2c00146
crossref_primary_10_1007_s11998_018_0069_0
crossref_primary_10_1007_s00289_020_03281_6
crossref_primary_10_1016_j_cjche_2020_04_014
crossref_primary_10_1002_pat_4461
crossref_primary_10_1016_j_polymer_2023_126475
crossref_primary_10_1007_s10965_022_03220_1
crossref_primary_10_1007_s10570_020_03669_7
crossref_primary_10_1016_j_colsurfa_2022_129472
crossref_primary_10_1016_j_ijbiomac_2021_02_148
crossref_primary_10_1007_s13726_018_0664_z
crossref_primary_10_1002_app_55463
crossref_primary_10_1016_j_jhazmat_2019_121645
crossref_primary_10_1007_s10973_019_08466_4
crossref_primary_10_1016_j_powtec_2018_12_056
crossref_primary_10_1016_j_jcis_2018_06_038
crossref_primary_10_1016_j_matpr_2023_11_030
crossref_primary_10_1016_j_clay_2020_105600
crossref_primary_10_1016_j_psep_2022_02_025
crossref_primary_10_1520_MPC20190256
crossref_primary_10_1016_j_energy_2022_124767
crossref_primary_10_1002_pc_25703
crossref_primary_10_1016_j_jaap_2022_105466
crossref_primary_10_2139_ssrn_3969862
crossref_primary_10_3390_polym12071487
crossref_primary_10_1021_acsaenm_3c00253
crossref_primary_10_1016_j_porgcoat_2023_107554
crossref_primary_10_1016_j_fuel_2022_125014
crossref_primary_10_1016_j_cej_2024_158016
crossref_primary_10_1016_j_polymdegradstab_2022_110084
crossref_primary_10_1002_pat_4355
crossref_primary_10_1002_pat_4235
crossref_primary_10_1016_j_clay_2024_107297
crossref_primary_10_1016_j_tws_2024_112870
crossref_primary_10_1016_j_polymdegradstab_2025_111197
crossref_primary_10_1002_pi_6595
crossref_primary_10_1016_j_heliyon_2019_e02053
crossref_primary_10_1016_j_tca_2022_179271
crossref_primary_10_1016_j_porgcoat_2024_108613
crossref_primary_10_1002_app_51206
crossref_primary_10_1016_j_clay_2019_105408
crossref_primary_10_1016_j_jhazmat_2018_09_009
crossref_primary_10_1039_C8RA09680E
crossref_primary_10_1016_j_powtec_2022_117193
crossref_primary_10_1016_j_ijbiomac_2024_136908
crossref_primary_10_1177_07349041231175344
crossref_primary_10_1177_08927057231202954
crossref_primary_10_1007_s13726_024_01303_y
crossref_primary_10_1016_j_jcis_2021_06_153
crossref_primary_10_3390_molecules26134094
crossref_primary_10_1002_pat_5231
crossref_primary_10_3390_en15114014
crossref_primary_10_1016_j_jlp_2020_104089
crossref_primary_10_1016_j_jmrt_2020_10_055
crossref_primary_10_1016_j_jmrt_2022_04_097
crossref_primary_10_1002_pat_4931
crossref_primary_10_1007_s00289_019_02759_2
crossref_primary_10_1016_j_compositesa_2018_11_005
crossref_primary_10_1016_j_polymdegradstab_2020_109083
crossref_primary_10_1080_25740881_2022_2121220
crossref_primary_10_1007_s10973_021_11051_3
crossref_primary_10_1016_j_ijbiomac_2023_124740
crossref_primary_10_1016_j_jhazmat_2018_03_003
crossref_primary_10_1002_pc_24702
crossref_primary_10_1016_j_jaap_2022_105499
crossref_primary_10_1016_j_jhazmat_2019_05_018
crossref_primary_10_3390_molecules29081858
crossref_primary_10_1016_j_pmatsci_2020_100687
crossref_primary_10_1177_0892705720930782
crossref_primary_10_1002_pat_4844
crossref_primary_10_1016_j_powtec_2019_08_034
crossref_primary_10_1016_j_diamond_2022_109113
crossref_primary_10_1515_epoly_2019_0007
crossref_primary_10_1186_s40712_019_0106_5
crossref_primary_10_1007_s42464_022_00148_5
crossref_primary_10_1016_j_colsurfa_2023_131625
crossref_primary_10_1007_s10973_023_12371_2
crossref_primary_10_1007_s00289_021_03810_x
crossref_primary_10_1016_j_fuel_2021_120831
crossref_primary_10_1016_j_powtec_2020_04_026
crossref_primary_10_1016_j_polymdegradstab_2018_05_022
crossref_primary_10_3390_polym11050772
crossref_primary_10_1007_s10570_023_05506_z
crossref_primary_10_3390_polym12081701
crossref_primary_10_1002_pat_4830
crossref_primary_10_3390_polym11121964
crossref_primary_10_1016_j_diamond_2020_107964
crossref_primary_10_1007_s10973_019_08298_2
crossref_primary_10_1002_app_48036
crossref_primary_10_1002_pat_4278
crossref_primary_10_1016_j_compscitech_2018_12_029
crossref_primary_10_1002_pat_5246
crossref_primary_10_1016_j_jhazmat_2018_03_021
crossref_primary_10_3390_polym15020374
crossref_primary_10_1002_pat_4837
crossref_primary_10_1016_j_cjche_2020_03_034
crossref_primary_10_1016_j_radphyschem_2022_110016
crossref_primary_10_1016_j_compositesa_2018_12_006
crossref_primary_10_1016_j_jhazmat_2019_05_116
crossref_primary_10_1039_C8RA07418F
crossref_primary_10_1016_j_porgcoat_2018_05_016
crossref_primary_10_1016_j_jcis_2019_06_015
crossref_primary_10_1002_pat_4502
crossref_primary_10_1002_pat_4744
crossref_primary_10_1016_j_powtec_2024_119491
crossref_primary_10_1016_j_compositesb_2019_107371
crossref_primary_10_1007_s10965_021_02804_7
crossref_primary_10_1007_s10965_022_02980_0
crossref_primary_10_1021_acsanm_5c00033
crossref_primary_10_1002_pc_25922
crossref_primary_10_1016_j_polymdegradstab_2018_01_024
crossref_primary_10_1016_j_cej_2018_05_053
crossref_primary_10_1007_s10853_017_1970_0
crossref_primary_10_1155_2021_6627743
crossref_primary_10_1002_pat_5155
crossref_primary_10_1007_s00170_024_13026_8
crossref_primary_10_1016_j_jaap_2018_06_008
crossref_primary_10_1016_j_jmrt_2021_07_103
crossref_primary_10_1016_j_matdes_2019_108068
crossref_primary_10_1016_j_sna_2020_112111
crossref_primary_10_3389_fmats_2021_778485
crossref_primary_10_1002_pat_6398
crossref_primary_10_1016_j_polymdegradstab_2020_109376
crossref_primary_10_1016_j_fuel_2022_125401
crossref_primary_10_1002_pol_20230032
crossref_primary_10_1007_s10973_019_09250_0
crossref_primary_10_1002_pat_5059
crossref_primary_10_1155_2019_4273253
crossref_primary_10_1007_s10853_023_09312_7
crossref_primary_10_1016_j_compositesa_2018_10_027
crossref_primary_10_1016_j_colsurfa_2022_130195
crossref_primary_10_1177_14750902221095321
crossref_primary_10_1021_acs_chemmater_1c01408
crossref_primary_10_1002_vnl_21728
crossref_primary_10_1134_S1560090420030173
crossref_primary_10_1016_j_polymdegradstab_2019_109064
crossref_primary_10_3390_polym12071518
crossref_primary_10_1016_j_mseb_2021_115460
crossref_primary_10_1080_02773813_2019_1601740
crossref_primary_10_1002_pc_24922
crossref_primary_10_1080_25740881_2021_1930048
crossref_primary_10_1016_j_cej_2020_126209
crossref_primary_10_1016_j_eurpolymj_2022_111479
crossref_primary_10_1016_j_jlp_2020_104374
crossref_primary_10_1520_JTE20180336
crossref_primary_10_1016_j_porgcoat_2020_105572
crossref_primary_10_1007_s10853_021_06507_8
crossref_primary_10_1002_pat_5516
crossref_primary_10_1002_vnl_22162
crossref_primary_10_1016_j_cej_2017_11_102
crossref_primary_10_1007_s42114_024_01152_6
crossref_primary_10_1016_j_compositesb_2019_107588
crossref_primary_10_1016_j_polymdegradstab_2020_109365
crossref_primary_10_1002_app_52945
crossref_primary_10_3390_polym13071162
crossref_primary_10_1177_0021955X221144564
crossref_primary_10_1016_j_apsusc_2019_143775
crossref_primary_10_1016_j_cartre_2021_100076
crossref_primary_10_1016_j_jhazmat_2019_04_016
crossref_primary_10_1080_14658011_2021_2024647
crossref_primary_10_3390_coatings9020094
crossref_primary_10_1016_j_powtec_2019_10_039
crossref_primary_10_1016_j_matchemphys_2020_123292
Cites_doi 10.1002/pat.3129
10.1002/pat.1502
10.1016/j.polymdegradstab.2012.05.025
10.1021/acsami.6b11101
10.1016/j.mser.2008.09.002
10.1016/j.polymdegradstab.2012.01.001
10.1016/j.polymer.2011.06.045
10.1002/app.34993
10.1016/j.polymdegradstab.2009.11.011
10.1103/PhysRevLett.97.187401
10.1002/pat.1082
10.1021/ie060040x
10.1016/j.matlet.2015.10.011
10.1002/pat.3170
10.1039/c2jm16203b
10.1016/j.polymdegradstab.2008.01.016
10.1016/j.polymdegradstab.2012.01.031
10.1002/pat.3165
10.1016/j.polymdegradstab.2012.09.012
10.1021/ie500178u
10.1016/j.polymdegradstab.2014.06.008
10.1002/pc.21250
10.1016/j.polymdegradstab.2008.11.015
10.3390/polym6112875
10.1007/s10973-014-4078-7
10.1021/acs.iecr.7b01293
10.1021/ie102566y
10.1016/S0141-3910(02)00069-1
10.1016/j.progpolymsci.2009.06.002
10.1016/j.progpolymsci.2015.04.010
10.1016/j.cej.2013.10.030
10.1016/j.compscitech.2016.12.015
10.1002/pat.1335
10.1002/pat.3036
10.1016/j.radphyschem.2011.10.021
10.1002/mame.200400007
10.1007/s10853-011-5572-y
10.1002/pc.23027
10.1016/j.compositesa.2016.12.014
10.1002/adfm.201402129
10.1016/j.polymdegradstab.2013.06.018
10.1039/C3RA45945D
10.1016/j.carbon.2012.08.024
10.1039/C5RA04699H
10.1021/ie102394q
10.1002/mame.201200433
10.1016/j.progpolymsci.2010.03.001
10.1016/j.polymdegradstab.2014.08.019
10.1002/pat.3089
10.1016/j.surfcoat.2006.01.026
10.1016/j.matchemphys.2011.11.064
10.1039/C3PY00963G
10.1016/j.polymdegradstab.2013.03.023
10.1088/0957-4484/23/8/085704
10.1002/pat.1590
10.1002/pat.3319
10.1080/03602550802675645
10.1021/ma100669g
10.1016/j.compositesa.2017.04.012
10.1016/j.jaap.2009.06.007
10.1002/app.32512
10.1002/pat.1679
10.1016/j.polymdegradstab.2013.04.009
10.1016/j.compositesa.2013.12.010
10.1021/ie101737n
10.1039/b702511d
10.1007/s10853-015-9083-0
10.1016/j.polymdegradstab.2004.01.026
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Sep 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 2017
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.polymdegradstab.2017.06.015
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2321
EndPage 56
ExternalDocumentID 10_1016_j_polymdegradstab_2017_06_015
S0141391017301799
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADECG
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSH
SSK
SSM
SSZ
T5K
WH7
WUQ
XPP
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7SR
8FD
EFKBS
JG9
7S9
L.6
ID FETCH-LOGICAL-c394t-c83db83aeffad0b0718fff9bbcd25a96722f2138ae5fd67d68084f66ba2003093
IEDL.DBID .~1
ISSN 0141-3910
IngestDate Fri Jul 11 16:09:09 EDT 2025
Fri Jul 25 08:22:54 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
Tue Jul 01 02:29:46 EDT 2025
Sun Apr 06 06:53:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Flame retardant
Antagonism
Synergy
Graphene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-c83db83aeffad0b0718fff9bbcd25a96722f2138ae5fd67d68084f66ba2003093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1965090797
PQPubID 2045418
PageCount 15
ParticipantIDs proquest_miscellaneous_2000479936
proquest_journals_1965090797
crossref_primary_10_1016_j_polymdegradstab_2017_06_015
crossref_citationtrail_10_1016_j_polymdegradstab_2017_06_015
elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2017_06_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2017
2017-09-00
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Polymer degradation and stability
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yuan, Song, Liew, Hu (bib21) 2015; 5
Yuan, Bao, Song, Hong, Liew, Hu (bib48) 2014; 237
Nana, Xin, Jiang, Li, Jian, Tao (bib27) 2013; 24
Nie, Song, Bao, Qian, Guo, Hong, Hu (bib38) 2011; 22
Bourbigot, Le Bras, Duquesne, Rochery (bib68) 2004; 289
Wen, Wang, Wang, Yuan, Zhou, Song, Hu, Yuen (bib25) 2014; 110
Wang, Wang, Shi, Tang, Tang, Song, Hu (bib41) 2012; 81
Wang, Wang, Pan, Liew, Mohamed, Song, Hu (bib47) 2017; 56
Yuan, Sheng, Mu, Song, Tai, Shi, Liew, Hu (bib6) 2015; 50
Wang, Song, Yang, Lu, Hu (bib22) 2011; 50
Jimenez, Duquesne, Bourbigot (bib67) 2006; 201
Dittrich, Wartig, Mülhaupt, Schartel (bib14) 2014; 6
Bourbigot, Duquesne (bib8) 2007; 17
Muller, Bourbigot, Duquesne, Klein, Giannini, Lindsay, Vlassenbroeck (bib60) 2013; 98
Wang, Lv, Hu, Hu (bib36) 2009; 86
Yuan, Shi, Mu, Wang, Xing, Liew, Hu (bib20) 2016; 162
Vannier, Duquesne, Bourbigot, Castrovinci, Camino, Delobel (bib39) 2008; 93
Laoutid, Bonnaud, Alexandre, Lopez-Cuesta, Dubois (bib10) 2009; 63
Wang, Xing, Feng, Yu, Song, Hu (bib43) 2014; 5
Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth, Geim (bib42) 2006; 97
Alongi, Han, Bourbigot (bib9) 2015; 51
Li, Zhong (bib55) 2011; 46
Yuan, Hu, Chen, Shi, Niu, Zhang, He, Dai (bib7) 2017; 100
Liu, Wang, Deng, Wang, Song, Wang (bib17) 2010; 21
Gerard, Fontaine, Bellayer, Bourbigot (bib58) 2012; 97
Dittrich, Wartig, Hofmann, Mülhaupt, Schartel (bib12) 2013; 24
Zhang, Li, Yang (bib63) 2013; 24
Wang, Tai, Nie, Zhou, Tang, Hu, Song (bib34) 2011; 50
Pack, Kashiwagi, Cao, Korach, Lewin, Rafailovich (bib61) 2010; 43
Ni, Chen, Zhao, Hu, Song (bib28) 2011; 22
Qiu, Xing, Mu, Feng, Ma, Yuen, Hu (bib50) 2016; 8
Dittrich, Wartig, Hofmann, Mülhaupt, Schartel (bib5) 2013; 98
Pei, Li, Sun, Zhang, Shan, Yang, Wen (bib52) 2013; 51
Guobo, Huading, Yong, Xu, Jianrong, Zhengdong (bib46) 2012; 132
Li, Zhu, Shen, Wan, Han, Dai, Dai, Hu (bib44) 2014; 24
Ribeiro, Estevão, Pereira, Rodrigues, Nascimento (bib11) 2009; 94
Fang, Chen, Wang, Lu (bib51) 2012; 23
Nie, Hu, Song, He, Yang, Chen (bib18) 2008; 19
Yang, Xu, Li (bib30) 2013; 98
Xing, Song, Lu, Hu, Zhou (bib35) 2009; 20
Chattopadhyay, Webster (bib62) 2009; 34
Duquesne, Delobel, Le Bras, Camino (bib64) 2002; 77
Bao, Song, Xing, Yuan, Wilkie, Huang, Guo, Hu (bib19) 2012; 22
Cheng-Liang, Cong, Jing, Wen-Han, Ling, Yu-Zhong (bib29) 2014; 25
Song, Cao, Cai, Zhao, Fang, Fu (bib4) 2011; 52
Jimenez, Duquesne, Bourbigot (bib65) 2006; 45
Yu, Wang, Qian, Xing, Yang, Ma, Lin, Jiang, Song, Hu, Lo (bib26) 2014; 4
Enescu, Frache, Lavaselli, Monticelli, Marino (bib40) 2013; 98
Dittrich, Wartig, Hofmann, Mülhaupt, Schartel (bib13) 2015; 36
Lai, Zeng, Li, Liao, Yin, Zhang (bib24) 2012; 33
Liu, Zhao, Deng, Chen, Wang, Wang (bib1) 2011; 50
Hu, Zhang (bib53) 2014; 118
Hofmann, Wartig, Thomann, Dittrich, Schartel, Mülhaupt (bib15) 2013; 298
Dong, Gu, Zhang (bib45) 2014; 53
Wen, Wang, Gong, Liu, Tian, Wang, Jiang, Qiu, Tang (bib54) 2012; 97
Gu, Liang, Zhao, Gan, Qiu, Guo, Yang, Zhang, Wang (bib3) 2017; 139
Jiang, Hao, Han (bib33) 2012; 97
Guo, Wang, Bai (bib49) 2013; 24
Gu, Lv, Wu, Guo, Tian, Qiu, Li, Zhang (bib32) 2017; 94
Kiliaris, Papaspyrides (bib59) 2010; 35
Huang, Wang, Song, Wu, Chen, Wang (bib16) 2014; 59
Duquesne, Magnet, Jama, Delobel (bib66) 2005; 88
Bourbigot, Samyn, Turf, Duquesne (bib57) 2010; 95
Deng, Du, Zhao, Shen, Deng, Wang (bib23) 2014; 108
Caimin, Yi, Siwei, Zhenguo, Jiarui (bib31) 2012; 123
Wu, Kan, Song, Hu (bib37) 2012; 23
Schartel, Weiß, Mohr, Kleemeier, Hartwig, Braun (bib56) 2010; 118
Wang, Wang, Xiao (bib2) 2009; 48
Guobo (10.1016/j.polymdegradstab.2017.06.015_bib46) 2012; 132
Huang (10.1016/j.polymdegradstab.2017.06.015_bib16) 2014; 59
Yuan (10.1016/j.polymdegradstab.2017.06.015_bib20) 2016; 162
Jimenez (10.1016/j.polymdegradstab.2017.06.015_bib67) 2006; 201
Yuan (10.1016/j.polymdegradstab.2017.06.015_bib48) 2014; 237
Gu (10.1016/j.polymdegradstab.2017.06.015_bib3) 2017; 139
Li (10.1016/j.polymdegradstab.2017.06.015_bib55) 2011; 46
Dittrich (10.1016/j.polymdegradstab.2017.06.015_bib14) 2014; 6
Nie (10.1016/j.polymdegradstab.2017.06.015_bib38) 2011; 22
Wang (10.1016/j.polymdegradstab.2017.06.015_bib22) 2011; 50
Caimin (10.1016/j.polymdegradstab.2017.06.015_bib31) 2012; 123
Liu (10.1016/j.polymdegradstab.2017.06.015_bib1) 2011; 50
Kiliaris (10.1016/j.polymdegradstab.2017.06.015_bib59) 2010; 35
Hofmann (10.1016/j.polymdegradstab.2017.06.015_bib15) 2013; 298
Enescu (10.1016/j.polymdegradstab.2017.06.015_bib40) 2013; 98
Dittrich (10.1016/j.polymdegradstab.2017.06.015_bib13) 2015; 36
Duquesne (10.1016/j.polymdegradstab.2017.06.015_bib66) 2005; 88
Muller (10.1016/j.polymdegradstab.2017.06.015_bib60) 2013; 98
Nana (10.1016/j.polymdegradstab.2017.06.015_bib27) 2013; 24
Bourbigot (10.1016/j.polymdegradstab.2017.06.015_bib68) 2004; 289
Deng (10.1016/j.polymdegradstab.2017.06.015_bib23) 2014; 108
Duquesne (10.1016/j.polymdegradstab.2017.06.015_bib64) 2002; 77
Yang (10.1016/j.polymdegradstab.2017.06.015_bib30) 2013; 98
Yuan (10.1016/j.polymdegradstab.2017.06.015_bib7) 2017; 100
Dittrich (10.1016/j.polymdegradstab.2017.06.015_bib5) 2013; 98
Wang (10.1016/j.polymdegradstab.2017.06.015_bib34) 2011; 50
Gu (10.1016/j.polymdegradstab.2017.06.015_bib32) 2017; 94
Fang (10.1016/j.polymdegradstab.2017.06.015_bib51) 2012; 23
Wang (10.1016/j.polymdegradstab.2017.06.015_bib41) 2012; 81
Alongi (10.1016/j.polymdegradstab.2017.06.015_bib9) 2015; 51
Song (10.1016/j.polymdegradstab.2017.06.015_bib4) 2011; 52
Yu (10.1016/j.polymdegradstab.2017.06.015_bib26) 2014; 4
Schartel (10.1016/j.polymdegradstab.2017.06.015_bib56) 2010; 118
Laoutid (10.1016/j.polymdegradstab.2017.06.015_bib10) 2009; 63
Vannier (10.1016/j.polymdegradstab.2017.06.015_bib39) 2008; 93
Bao (10.1016/j.polymdegradstab.2017.06.015_bib19) 2012; 22
Wang (10.1016/j.polymdegradstab.2017.06.015_bib47) 2017; 56
Lai (10.1016/j.polymdegradstab.2017.06.015_bib24) 2012; 33
Yuan (10.1016/j.polymdegradstab.2017.06.015_bib6) 2015; 50
Bourbigot (10.1016/j.polymdegradstab.2017.06.015_bib57) 2010; 95
Guo (10.1016/j.polymdegradstab.2017.06.015_bib49) 2013; 24
Ribeiro (10.1016/j.polymdegradstab.2017.06.015_bib11) 2009; 94
Wu (10.1016/j.polymdegradstab.2017.06.015_bib37) 2012; 23
Ferrari (10.1016/j.polymdegradstab.2017.06.015_bib42) 2006; 97
Wen (10.1016/j.polymdegradstab.2017.06.015_bib25) 2014; 110
Pei (10.1016/j.polymdegradstab.2017.06.015_bib52) 2013; 51
Zhang (10.1016/j.polymdegradstab.2017.06.015_bib63) 2013; 24
Bourbigot (10.1016/j.polymdegradstab.2017.06.015_bib8) 2007; 17
Jimenez (10.1016/j.polymdegradstab.2017.06.015_bib65) 2006; 45
Dittrich (10.1016/j.polymdegradstab.2017.06.015_bib12) 2013; 24
Wang (10.1016/j.polymdegradstab.2017.06.015_bib43) 2014; 5
Hu (10.1016/j.polymdegradstab.2017.06.015_bib53) 2014; 118
Wen (10.1016/j.polymdegradstab.2017.06.015_bib54) 2012; 97
Li (10.1016/j.polymdegradstab.2017.06.015_bib44) 2014; 24
Cheng-Liang (10.1016/j.polymdegradstab.2017.06.015_bib29) 2014; 25
Dong (10.1016/j.polymdegradstab.2017.06.015_bib45) 2014; 53
Chattopadhyay (10.1016/j.polymdegradstab.2017.06.015_bib62) 2009; 34
Ni (10.1016/j.polymdegradstab.2017.06.015_bib28) 2011; 22
Jiang (10.1016/j.polymdegradstab.2017.06.015_bib33) 2012; 97
Xing (10.1016/j.polymdegradstab.2017.06.015_bib35) 2009; 20
Wang (10.1016/j.polymdegradstab.2017.06.015_bib2) 2009; 48
Nie (10.1016/j.polymdegradstab.2017.06.015_bib18) 2008; 19
Wang (10.1016/j.polymdegradstab.2017.06.015_bib36) 2009; 86
Yuan (10.1016/j.polymdegradstab.2017.06.015_bib21) 2015; 5
Gerard (10.1016/j.polymdegradstab.2017.06.015_bib58) 2012; 97
Pack (10.1016/j.polymdegradstab.2017.06.015_bib61) 2010; 43
Qiu (10.1016/j.polymdegradstab.2017.06.015_bib50) 2016; 8
Liu (10.1016/j.polymdegradstab.2017.06.015_bib17) 2010; 21
References_xml – volume: 23
  start-page: 085704
  year: 2012
  ident: bib51
  article-title: The deposition of iron and silver nanoparticles in graphene-polyelectrolyte brushes
  publication-title: Nanotechnology
– volume: 52
  start-page: 4001
  year: 2011
  end-page: 4010
  ident: bib4
  article-title: Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties
  publication-title: Polymer
– volume: 95
  start-page: 320
  year: 2010
  end-page: 326
  ident: bib57
  article-title: Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants
  publication-title: Polym. Degrad. Stabil.
– volume: 139
  start-page: 83
  year: 2017
  end-page: 89
  ident: bib3
  article-title: Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities
  publication-title: Compos. Sci. Technol.
– volume: 81
  start-page: 308
  year: 2012
  end-page: 315
  ident: bib41
  article-title: Effect of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of intumescent flame retardant ethylene-vinyl acetate copolymer
  publication-title: Radiat. Phys. Chem.
– volume: 45
  start-page: 4500
  year: 2006
  end-page: 4508
  ident: bib65
  article-title: Multiscale experimental approach for developing high-performance intumescent coatings
  publication-title: Ind. Eng. Chem. Res.
– volume: 20
  start-page: 696
  year: 2009
  end-page: 702
  ident: bib35
  article-title: Flame retardancy and thermal degradation of intumescent flame retardant polypropylene with MP/TPMP
  publication-title: Polym. Adv. Technol.
– volume: 50
  start-page: 2047
  year: 2011
  end-page: 2054
  ident: bib1
  article-title: Flame-retardant effect of sepiolite on an intumescent flame-retardant polypropylene system
  publication-title: Ind. Eng. Chem. Res.
– volume: 23
  start-page: 1612
  year: 2012
  end-page: 1619
  ident: bib37
  article-title: The application of Ce-doped titania nanotubes in the intumescent flame-retardant PS/MAPP/PER systems
  publication-title: Polym. Adv. Technol.
– volume: 50
  start-page: 5596
  year: 2011
  end-page: 5605
  ident: bib34
  article-title: Electron beam irradiation cross linking of halogen-free flame-retardant ethylene vinyl acetate (EVA) copolymer by silica gel microencapsulated ammonium polyphosphate and char-forming agent
  publication-title: Ind. Eng. Chem. Res.
– volume: 289
  start-page: 499
  year: 2004
  end-page: 511
  ident: bib68
  article-title: Recent advances for intumescent polymers
  publication-title: Macromol. Mater. Eng.
– volume: 46
  start-page: 5595
  year: 2011
  end-page: 5614
  ident: bib55
  article-title: Review on polymer/graphite nanoplatelet nanocomposites
  publication-title: J. Mater. Sci.
– volume: 24
  start-page: 653
  year: 2013
  end-page: 659
  ident: bib27
  article-title: Synthesis and characterization of a novel organophosphorus flame retardant and its application in polypropylene
  publication-title: Polym. Adv. Technol.
– volume: 50
  start-page: 5389
  year: 2015
  end-page: 5401
  ident: bib6
  article-title: Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide
  publication-title: J. Mater. Sci.
– volume: 5
  start-page: 1145
  year: 2014
  end-page: 1154
  ident: bib43
  article-title: Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism
  publication-title: Polym. Chem.
– volume: 17
  start-page: 2283
  year: 2007
  end-page: 2300
  ident: bib8
  article-title: Fire retardant polymers: recent developments and opportunities
  publication-title: J. Mater. Chem.
– volume: 22
  start-page: 6088
  year: 2012
  end-page: 6096
  ident: bib19
  article-title: Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending
  publication-title: J. Mater. Chem.
– volume: 110
  start-page: 165
  year: 2014
  end-page: 174
  ident: bib25
  article-title: One-pot synthesis of a novel s-triazine-based hyperbranched charring foaming agent and its enhancement on flame retardancy and water resistance of polypropylene
  publication-title: Polym. Degrad. Stabil.
– volume: 22
  start-page: 1824
  year: 2011
  end-page: 1831
  ident: bib28
  article-title: Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites
  publication-title: Polym. Adv. Technol.
– volume: 6
  start-page: 2875
  year: 2014
  end-page: 2895
  ident: bib14
  article-title: Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene
  publication-title: Polymers
– volume: 25
  start-page: 861
  year: 2014
  end-page: 871
  ident: bib29
  article-title: Water resistance, thermal stability, and flame retardation of polypropylene composites containing a novel ammonium polyphosphate microencapsulated by UV-curable epoxy acrylate resin
  publication-title: Polym. Adv. Technol.
– volume: 4
  start-page: 31782
  year: 2014
  end-page: 31794
  ident: bib26
  article-title: Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene
  publication-title: RSC Adv.
– volume: 24
  start-page: 339
  year: 2013
  end-page: 347
  ident: bib49
  article-title: Poly(vinyl alcohol)/melamine phosphate composites prepared through thermal processing: thermal stability and flame retardancy
  publication-title: Polym. Adv. Technol.
– volume: 24
  start-page: 7366
  year: 2014
  end-page: 7372
  ident: bib44
  article-title: Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose
  publication-title: Adv. Funct. Mater
– volume: 94
  start-page: 209
  year: 2017
  end-page: 216
  ident: bib32
  article-title: Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method
  publication-title: Compos. Part A-Appl. S
– volume: 43
  start-page: 5338
  year: 2010
  end-page: 5351
  ident: bib61
  article-title: Role of surface interactions in the synergizing polymer/clay flame retardant properties
  publication-title: Macromolecules
– volume: 36
  start-page: 1230
  year: 2015
  end-page: 1241
  ident: bib13
  article-title: The influence of layered, spherical, and tubular carbon nanomaterials' concentration on the flame retardancy of polypropylene
  publication-title: Polym. Compos
– volume: 19
  start-page: 1077
  year: 2008
  end-page: 1083
  ident: bib18
  article-title: Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene
  publication-title: Polym. Adv. Technol.
– volume: 35
  start-page: 902
  year: 2010
  end-page: 958
  ident: bib59
  article-title: Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy
  publication-title: Prog. Polym. Sci.
– volume: 162
  start-page: 154
  year: 2016
  end-page: 156
  ident: bib20
  article-title: A facile method to prepare reduced graphene oxide with a large pore volume
  publication-title: Mater. Lett.
– volume: 21
  start-page: 789
  year: 2010
  end-page: 796
  ident: bib17
  article-title: The synergistic flame-retardant effect of O-MMT on the intumescent flame-retardant PP/CA/APP systems
  publication-title: Polym. Adv. Technol.
– volume: 33
  start-page: 35
  year: 2012
  end-page: 43
  ident: bib24
  article-title: Synergistic effect between a triazine-based macromolecule and melamine pyrophosphate in flame retardant polypropylene
  publication-title: Polym. Compos
– volume: 237
  start-page: 411
  year: 2014
  end-page: 420
  ident: bib48
  article-title: Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties
  publication-title: Chem. Eng. J.
– volume: 53
  start-page: 8062
  year: 2014
  end-page: 8068
  ident: bib45
  article-title: Effects of compound oxides on the fire performance of polypropylene composite
  publication-title: Ind. Eng. Chem. Res.
– volume: 34
  start-page: 1068
  year: 2009
  end-page: 1133
  ident: bib62
  article-title: Thermal stability and flame retardancy of polyurethanes
  publication-title: Prog. Polym. Sci.
– volume: 100
  start-page: 106
  year: 2017
  end-page: 117
  ident: bib7
  article-title: Dual modification of graphene by polymeric flame retardant and Ni(OH) 2 nanosheets for improving flame retardancy of polypropylene
  publication-title: Compos. Part A-Appl. S
– volume: 118
  start-page: 1134
  year: 2010
  end-page: 1143
  ident: bib56
  article-title: Flame retarded epoxy resins by adding layered silicate in combination with the conventional protection-layer-building flame retardants melamine borate and ammonium polyphosphate
  publication-title: J. Appl. Polym. Sci.
– volume: 97
  start-page: 632
  year: 2012
  end-page: 637
  ident: bib33
  article-title: Study on the thermal degradation of mixtures of ammonium polyphosphate and a novel caged bicyclic phosphate and their flame retardant effect in polypropylene
  publication-title: Polym. Degrad. Stabil.
– volume: 132
  start-page: 520
  year: 2012
  end-page: 528
  ident: bib46
  article-title: Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol)
  publication-title: Mater. Chem. Phys.
– volume: 93
  start-page: 818
  year: 2008
  end-page: 826
  ident: bib39
  article-title: The use of POSS as synergist in intumescent recycled poly(ethylene terephthalate)
  publication-title: Polym. Degrad. Stabil.
– volume: 298
  start-page: 1322
  year: 2013
  end-page: 1334
  ident: bib15
  article-title: Functionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene
  publication-title: Macromol. Mater. Eng.
– volume: 8
  start-page: 32528
  year: 2016
  end-page: 32540
  ident: bib50
  article-title: A 3D nanostructure based on transition-metal phosphide decorated heteroatom-doped mesoporous nanospheres interconnected with graphene: synthesis and applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 98
  start-page: 1397
  year: 2013
  end-page: 1406
  ident: bib30
  article-title: Synthesis of N-ethyl triazine-piperazine copolymer and flame retardancy and water resistance of intumescent flame retardant polypropylene
  publication-title: Polym. Degrad. Stabil.
– volume: 123
  start-page: 3208
  year: 2012
  end-page: 3216
  ident: bib31
  article-title: Synthesis of novel triazine charring agent and its effect in intumescent flame-retardant polypropylene
  publication-title: J. Appl. Polym. Sci.
– volume: 22
  start-page: 870
  year: 2011
  end-page: 876
  ident: bib38
  article-title: Synergistic effects of ferric pyrophosphate (FePP) in intumescent flame-retardant polypropylene
  publication-title: Polym. Adv. Technol.
– volume: 63
  start-page: 100
  year: 2009
  end-page: 125
  ident: bib10
  article-title: New prospects in flame retardant polymer materials: from fundamentals to nanocomposites
  publication-title: Mat. Sci. Eng. R.
– volume: 50
  start-page: 5376
  year: 2011
  end-page: 5383
  ident: bib22
  article-title: Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites
  publication-title: Ind. Eng. Chem. Res.
– volume: 51
  start-page: 28
  year: 2015
  end-page: 73
  ident: bib9
  article-title: Intumescence: tradition versus novelty. A comprehensive review
  publication-title: Prog. Polym. Sci.
– volume: 59
  start-page: 18
  year: 2014
  end-page: 25
  ident: bib16
  article-title: Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites
  publication-title: Compos. Part A-Appl. S
– volume: 56
  start-page: 6664
  year: 2017
  end-page: 6670
  ident: bib47
  article-title: Synthesis of phosphorylated graphene oxide based multilayer coating: self-assembly method and application for improving the fire safety of cotton fabrics
  publication-title: Ind. Eng. Chem. Res.
– volume: 24
  start-page: 951
  year: 2013
  end-page: 961
  ident: bib63
  article-title: Blowing-out effect and temperature profile in condensed phase in flame retarding epoxy resins by phosphorus-containing oligomeric silsesquioxane
  publication-title: Polym. Adv. Technol.
– volume: 97
  year: 2006
  ident: bib42
  article-title: Raman spectrum of graphene and graphene layers
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 916
  year: 2013
  end-page: 926
  ident: bib12
  article-title: Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites
  publication-title: Polym. Adv. Technol.
– volume: 118
  start-page: 1561
  year: 2014
  end-page: 1568
  ident: bib53
  article-title: Self-assembled fabrication and flame-retardant properties of reduced graphene oxide/waterborne polyurethane nanocomposites
  publication-title: J. Therm. Anal. Calorim.
– volume: 97
  start-page: 793
  year: 2012
  end-page: 801
  ident: bib54
  article-title: Thermal and flammability properties of polypropylene/carbon black nanocomposites
  publication-title: Polym. Degrad. Stabil.
– volume: 48
  start-page: 297
  year: 2009
  end-page: 302
  ident: bib2
  article-title: Recent research progress on the flame-retardant mechanism of halogen-free flame retardant polypropylene
  publication-title: Polym.-Plast. Technol. Eng.
– volume: 98
  start-page: 1495
  year: 2013
  end-page: 1505
  ident: bib5
  article-title: Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene
  publication-title: Polym. Degrad. Stabil.
– volume: 94
  start-page: 421
  year: 2009
  end-page: 431
  ident: bib11
  article-title: Influence of clays on the flame retardancy and high temperature viscoelastic properties of polymeric intumescent formulations
  publication-title: Polym. Degrad. Stabil.
– volume: 88
  start-page: 63
  year: 2005
  end-page: 69
  ident: bib66
  article-title: Thermoplastic resins for thin film intumescent coatings - towards a better understanding of their effect on intumescence efficiency
  publication-title: Polym. Degrad. Stabil.
– volume: 98
  start-page: 297
  year: 2013
  end-page: 305
  ident: bib40
  article-title: Novel phosphorous-nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene
  publication-title: Polym. Degrad. Stabil.
– volume: 97
  start-page: 1366
  year: 2012
  end-page: 1386
  ident: bib58
  article-title: Reaction to fire of an intumescent epoxy resin: protection mechanisms and synergy
  publication-title: Polym. Degrad. Stabil.
– volume: 201
  start-page: 979
  year: 2006
  end-page: 987
  ident: bib67
  article-title: Characterization of the performance of an intumescent fire protective coating
  publication-title: Surf. Coat. Tech.
– volume: 77
  start-page: 333
  year: 2002
  end-page: 344
  ident: bib64
  article-title: A comparative study of the mechanism of action of ammonium polyphosphate and expandable graphite in polyurethane
  publication-title: Polym. Degrad. Stabil.
– volume: 5
  start-page: 41307
  year: 2015
  end-page: 41316
  ident: bib21
  article-title: Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene
  publication-title: RSC Adv.
– volume: 98
  start-page: 1638
  year: 2013
  end-page: 1647
  ident: bib60
  article-title: Investigation of the synergy in intumescent polyurethane by 3D computed tomography
  publication-title: Polym. Degrad. Stabil.
– volume: 86
  start-page: 207
  year: 2009
  end-page: 214
  ident: bib36
  article-title: Thermal degradation study of intumescent flame retardants by TG and FTIR: melamine phosphate and its mixture with pentaerythritol
  publication-title: J. Anal. Appl. Pyrol
– volume: 108
  start-page: 97
  year: 2014
  end-page: 107
  ident: bib23
  article-title: An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance
  publication-title: Polym. Degrad. Stabil.
– volume: 51
  start-page: 156
  year: 2013
  end-page: 163
  ident: bib52
  article-title: Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide
  publication-title: Carbon
– volume: 24
  start-page: 653
  year: 2013
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib27
  article-title: Synthesis and characterization of a novel organophosphorus flame retardant and its application in polypropylene
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3129
– volume: 21
  start-page: 789
  year: 2010
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib17
  article-title: The synergistic flame-retardant effect of O-MMT on the intumescent flame-retardant PP/CA/APP systems
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1502
– volume: 97
  start-page: 1366
  year: 2012
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib58
  article-title: Reaction to fire of an intumescent epoxy resin: protection mechanisms and synergy
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2012.05.025
– volume: 8
  start-page: 32528
  year: 2016
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib50
  article-title: A 3D nanostructure based on transition-metal phosphide decorated heteroatom-doped mesoporous nanospheres interconnected with graphene: synthesis and applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11101
– volume: 63
  start-page: 100
  year: 2009
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib10
  article-title: New prospects in flame retardant polymer materials: from fundamentals to nanocomposites
  publication-title: Mat. Sci. Eng. R.
  doi: 10.1016/j.mser.2008.09.002
– volume: 97
  start-page: 632
  year: 2012
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib33
  article-title: Study on the thermal degradation of mixtures of ammonium polyphosphate and a novel caged bicyclic phosphate and their flame retardant effect in polypropylene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2012.01.001
– volume: 52
  start-page: 4001
  year: 2011
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib4
  article-title: Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties
  publication-title: Polymer
  doi: 10.1016/j.polymer.2011.06.045
– volume: 123
  start-page: 3208
  year: 2012
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib31
  article-title: Synthesis of novel triazine charring agent and its effect in intumescent flame-retardant polypropylene
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.34993
– volume: 95
  start-page: 320
  year: 2010
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib57
  article-title: Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2009.11.011
– volume: 97
  year: 2006
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib42
  article-title: Raman spectrum of graphene and graphene layers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 19
  start-page: 1077
  year: 2008
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib18
  article-title: Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1082
– volume: 45
  start-page: 4500
  year: 2006
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib65
  article-title: Multiscale experimental approach for developing high-performance intumescent coatings
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie060040x
– volume: 162
  start-page: 154
  year: 2016
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib20
  article-title: A facile method to prepare reduced graphene oxide with a large pore volume
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.10.011
– volume: 24
  start-page: 951
  year: 2013
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib63
  article-title: Blowing-out effect and temperature profile in condensed phase in flame retarding epoxy resins by phosphorus-containing oligomeric silsesquioxane
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3170
– volume: 22
  start-page: 6088
  year: 2012
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib19
  article-title: Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16203b
– volume: 93
  start-page: 818
  year: 2008
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib39
  article-title: The use of POSS as synergist in intumescent recycled poly(ethylene terephthalate)
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2008.01.016
– volume: 97
  start-page: 793
  year: 2012
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib54
  article-title: Thermal and flammability properties of polypropylene/carbon black nanocomposites
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2012.01.031
– volume: 24
  start-page: 916
  year: 2013
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib12
  article-title: Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3165
– volume: 98
  start-page: 297
  year: 2013
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib40
  article-title: Novel phosphorous-nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2012.09.012
– volume: 53
  start-page: 8062
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib45
  article-title: Effects of compound oxides on the fire performance of polypropylene composite
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie500178u
– volume: 108
  start-page: 97
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib23
  article-title: An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2014.06.008
– volume: 33
  start-page: 35
  year: 2012
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib24
  article-title: Synergistic effect between a triazine-based macromolecule and melamine pyrophosphate in flame retardant polypropylene
  publication-title: Polym. Compos
  doi: 10.1002/pc.21250
– volume: 94
  start-page: 421
  year: 2009
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib11
  article-title: Influence of clays on the flame retardancy and high temperature viscoelastic properties of polymeric intumescent formulations
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2008.11.015
– volume: 6
  start-page: 2875
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib14
  article-title: Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene
  publication-title: Polymers
  doi: 10.3390/polym6112875
– volume: 118
  start-page: 1561
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib53
  article-title: Self-assembled fabrication and flame-retardant properties of reduced graphene oxide/waterborne polyurethane nanocomposites
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-014-4078-7
– volume: 56
  start-page: 6664
  year: 2017
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib47
  article-title: Synthesis of phosphorylated graphene oxide based multilayer coating: self-assembly method and application for improving the fire safety of cotton fabrics
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b01293
– volume: 50
  start-page: 5376
  year: 2011
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib22
  article-title: Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie102566y
– volume: 77
  start-page: 333
  year: 2002
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib64
  article-title: A comparative study of the mechanism of action of ammonium polyphosphate and expandable graphite in polyurethane
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/S0141-3910(02)00069-1
– volume: 34
  start-page: 1068
  year: 2009
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib62
  article-title: Thermal stability and flame retardancy of polyurethanes
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2009.06.002
– volume: 51
  start-page: 28
  year: 2015
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib9
  article-title: Intumescence: tradition versus novelty. A comprehensive review
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2015.04.010
– volume: 237
  start-page: 411
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib48
  article-title: Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.10.030
– volume: 139
  start-page: 83
  year: 2017
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib3
  article-title: Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2016.12.015
– volume: 20
  start-page: 696
  year: 2009
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib35
  article-title: Flame retardancy and thermal degradation of intumescent flame retardant polypropylene with MP/TPMP
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1335
– volume: 23
  start-page: 1612
  year: 2012
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib37
  article-title: The application of Ce-doped titania nanotubes in the intumescent flame-retardant PS/MAPP/PER systems
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3036
– volume: 81
  start-page: 308
  year: 2012
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib41
  article-title: Effect of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of intumescent flame retardant ethylene-vinyl acetate copolymer
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2011.10.021
– volume: 289
  start-page: 499
  year: 2004
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib68
  article-title: Recent advances for intumescent polymers
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.200400007
– volume: 46
  start-page: 5595
  year: 2011
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib55
  article-title: Review on polymer/graphite nanoplatelet nanocomposites
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-011-5572-y
– volume: 36
  start-page: 1230
  year: 2015
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib13
  article-title: The influence of layered, spherical, and tubular carbon nanomaterials' concentration on the flame retardancy of polypropylene
  publication-title: Polym. Compos
  doi: 10.1002/pc.23027
– volume: 94
  start-page: 209
  year: 2017
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib32
  article-title: Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method
  publication-title: Compos. Part A-Appl. S
  doi: 10.1016/j.compositesa.2016.12.014
– volume: 24
  start-page: 7366
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib44
  article-title: Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.201402129
– volume: 98
  start-page: 1638
  year: 2013
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib60
  article-title: Investigation of the synergy in intumescent polyurethane by 3D computed tomography
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2013.06.018
– volume: 4
  start-page: 31782
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib26
  article-title: Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene
  publication-title: RSC Adv.
  doi: 10.1039/C3RA45945D
– volume: 51
  start-page: 156
  year: 2013
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib52
  article-title: Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.08.024
– volume: 5
  start-page: 41307
  year: 2015
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib21
  article-title: Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene
  publication-title: RSC Adv.
  doi: 10.1039/C5RA04699H
– volume: 50
  start-page: 5596
  year: 2011
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib34
  article-title: Electron beam irradiation cross linking of halogen-free flame-retardant ethylene vinyl acetate (EVA) copolymer by silica gel microencapsulated ammonium polyphosphate and char-forming agent
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie102394q
– volume: 298
  start-page: 1322
  year: 2013
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib15
  article-title: Functionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201200433
– volume: 35
  start-page: 902
  year: 2010
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib59
  article-title: Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2010.03.001
– volume: 110
  start-page: 165
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib25
  article-title: One-pot synthesis of a novel s-triazine-based hyperbranched charring foaming agent and its enhancement on flame retardancy and water resistance of polypropylene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2014.08.019
– volume: 24
  start-page: 339
  year: 2013
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib49
  article-title: Poly(vinyl alcohol)/melamine phosphate composites prepared through thermal processing: thermal stability and flame retardancy
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3089
– volume: 201
  start-page: 979
  year: 2006
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib67
  article-title: Characterization of the performance of an intumescent fire protective coating
  publication-title: Surf. Coat. Tech.
  doi: 10.1016/j.surfcoat.2006.01.026
– volume: 132
  start-page: 520
  year: 2012
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib46
  article-title: Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol)
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.11.064
– volume: 5
  start-page: 1145
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib43
  article-title: Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism
  publication-title: Polym. Chem.
  doi: 10.1039/C3PY00963G
– volume: 98
  start-page: 1397
  year: 2013
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib30
  article-title: Synthesis of N-ethyl triazine-piperazine copolymer and flame retardancy and water resistance of intumescent flame retardant polypropylene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2013.03.023
– volume: 23
  start-page: 085704
  year: 2012
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib51
  article-title: The deposition of iron and silver nanoparticles in graphene-polyelectrolyte brushes
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/8/085704
– volume: 22
  start-page: 870
  year: 2011
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib38
  article-title: Synergistic effects of ferric pyrophosphate (FePP) in intumescent flame-retardant polypropylene
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1590
– volume: 25
  start-page: 861
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib29
  article-title: Water resistance, thermal stability, and flame retardation of polypropylene composites containing a novel ammonium polyphosphate microencapsulated by UV-curable epoxy acrylate resin
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3319
– volume: 48
  start-page: 297
  year: 2009
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib2
  article-title: Recent research progress on the flame-retardant mechanism of halogen-free flame retardant polypropylene
  publication-title: Polym.-Plast. Technol. Eng.
  doi: 10.1080/03602550802675645
– volume: 43
  start-page: 5338
  year: 2010
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib61
  article-title: Role of surface interactions in the synergizing polymer/clay flame retardant properties
  publication-title: Macromolecules
  doi: 10.1021/ma100669g
– volume: 100
  start-page: 106
  year: 2017
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib7
  article-title: Dual modification of graphene by polymeric flame retardant and Ni(OH) 2 nanosheets for improving flame retardancy of polypropylene
  publication-title: Compos. Part A-Appl. S
  doi: 10.1016/j.compositesa.2017.04.012
– volume: 86
  start-page: 207
  year: 2009
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib36
  article-title: Thermal degradation study of intumescent flame retardants by TG and FTIR: melamine phosphate and its mixture with pentaerythritol
  publication-title: J. Anal. Appl. Pyrol
  doi: 10.1016/j.jaap.2009.06.007
– volume: 118
  start-page: 1134
  year: 2010
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib56
  article-title: Flame retarded epoxy resins by adding layered silicate in combination with the conventional protection-layer-building flame retardants melamine borate and ammonium polyphosphate
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.32512
– volume: 22
  start-page: 1824
  year: 2011
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib28
  article-title: Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1679
– volume: 98
  start-page: 1495
  year: 2013
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib5
  article-title: Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2013.04.009
– volume: 59
  start-page: 18
  year: 2014
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib16
  article-title: Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites
  publication-title: Compos. Part A-Appl. S
  doi: 10.1016/j.compositesa.2013.12.010
– volume: 50
  start-page: 2047
  year: 2011
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib1
  article-title: Flame-retardant effect of sepiolite on an intumescent flame-retardant polypropylene system
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie101737n
– volume: 17
  start-page: 2283
  year: 2007
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib8
  article-title: Fire retardant polymers: recent developments and opportunities
  publication-title: J. Mater. Chem.
  doi: 10.1039/b702511d
– volume: 50
  start-page: 5389
  year: 2015
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib6
  article-title: Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-015-9083-0
– volume: 88
  start-page: 63
  year: 2005
  ident: 10.1016/j.polymdegradstab.2017.06.015_bib66
  article-title: Thermoplastic resins for thin film intumescent coatings - towards a better understanding of their effect on intumescence efficiency
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2004.01.026
SSID ssj0000451
Score 2.6017215
Snippet This work explores the feasibility of using graphene as an effective synergist for intumescent flame retardant (IFR). The flammability test and fire behavior...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42
SubjectTerms Antagonism
burning
Effects
fire behavior
Fire protection
fire safety
fire testing
Flame retardant
flame retardants
Flammability
Graphene
heat
insulating materials
Insulation
melting
Polymer matrix composites
Polypropylene
polypropylenes
Smoke
Synergy
Thermal decomposition
thermal degradation
Viscosity
Title The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios
URI https://dx.doi.org/10.1016/j.polymdegradstab.2017.06.015
https://www.proquest.com/docview/1965090797
https://www.proquest.com/docview/2000479936
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VReLjgNoC6kJbGQmOYRMndmKJA9WKaguiJyr1ZtmxLS3aTVbN9rAXfgS_mJkkbqHiUIljEttyPJOZcfzmDcA7Z0WuPK8TI9IiKUprk6quZVLn3ClR1bgToh_63y7k_LL4ciWudmAWc2EIVjna_sGm99Z6vDMdV3O6XiymBEvC8IVUKie1oiQ-Yq9Dnf7w8w7mQfwpA4wxS6j1Y3h_h_Fat8vtyhErg-soQwG9YdnTeVKV3H_7qXsWu3dDZ3vwfIwf2ekwxX3Y8c0BPJnFsm0H8OwPhsEX8AvVgI2YDdYG1vNTo3ljbcMw9GMBFWI1UHVvmWkcC7gcLObuU48FOqXVwPnUt_aMEIrXDiXC6MVwouvtkoYkdDpBwHzHzIbFyiuxF42A-_K2ewmXZ5-_z-bJWIYBBaaKTVJXubNVbnCyxqUWY5IqhKCsrR0XRsmS88CzvDJeBCdLR8U8iiClNXw4aH0Fu03b-ENgMmC84zNjM4GRjBXKq4w7F3hhcN-Yugl8jIuu65GjnEplLHUEo_3Q92SmSWaawHmZmIC87b4eyDoe2vFTlLD-S_s0OpaHDnEUNUOPZqDTRNeYqrRU5QTe3j5GhaBTGdP49qajOqBE869y-fr_Z_EGntLVAII7gt3N9Y0_xqhpY0_6z-IEHp2ef51f_AYsth7K
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VrUThgKCAWChgJDhGmzh2EkscqFZUW9ruqZV6s-zYlhbtJqtme9i_0V_cmXy0UHGoxDXJWBPPZGYcP78B-OqsTJXnZWRkLCKRWxsVZZlFZcqdkkWJKyH6oX82z2YX4telvNyB6XAWhmCVfezvYnobrfsrk342J-vFYkKwJCxfyKVSciv1BHaJnUqMYPfw-GQ2vw_IQnZtCUUSkcBT-HYP81rXy-3KETGDa-iQAibEvGX0pEa5_05VD4J2m4mOXsKLvoRkh52Wr2DHV_uwNx06t-3D8z9IBl_DDXoC62EbrA6spajGCMfqimH1xwL6xKpj694yUzkWcEbYcHyfJBaYl1Yd7VP7tGcEUrxyaBRGL4aKrrdLGpIA6oQC8w0zGzY0XxmkaARcmtfNG7g4-nk-nUV9Jwa0mRKbqCxSZ4vUoLLGxRbLkiKEoKwtHZdGZTnngSdpYbwMLssd9fMQIcus4d1e61sYVXXl3wHLApY8PjE2kVjMWKm8SrhzgQuDS8fYjeH7MOm67GnKqVvGUg94tN_6gc002UwTPi-RY8juxNcdX8djBX8MFtZ_OaDG3PLYIQ4Gz9B9JGg0MTbGKs5VPoYvd7fRIWhjxlS-vm6oFSgx_as0e___WnyGvdn52ak-PZ6ffIBndKfDxB3AaHN17T9iEbWxn_qP5BbaFSF7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+graphene+on+the+flammability+and+fire+behavior+of+intumescent+flame+retardant+polypropylene+composites+at+different+flame+scenarios&rft.jtitle=Polymer+degradation+and+stability&rft.au=Yuan%2C+Bihe&rft.au=Fan%2C+Ao&rft.au=Yang%2C+Man&rft.au=Chen%2C+Xianfeng&rft.date=2017-09-01&rft.issn=0141-3910&rft.volume=143+p.42-56&rft.spage=42&rft.epage=56&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2017.06.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon