Accuracy of boundary layer treatments at different Reynolds scales

Resistive forces associated to boundary layers (‘friction’) are usually out of scale in physical models of hydraulic structures, especially in the case of hydraulically smooth walls, generating distortions in the model results known as , that can be problematic in some relevant engineering problems....

Full description

Saved in:
Bibliographic Details
Published inOpen Engineering (Warsaw) Vol. 10; no. 1; pp. 295 - 310
Main Authors Badano, Nicolás D., Menéndez, Angel N.
Format Journal Article
LanguageEnglish
Published De Gruyter 08.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resistive forces associated to boundary layers (‘friction’) are usually out of scale in physical models of hydraulic structures, especially in the case of hydraulically smooth walls, generating distortions in the model results known as , that can be problematic in some relevant engineering problems. These scale effects can be quantified and corrected using suitable numerical models. In this paper the accuracy of using numerical simulation through the Reynolds Averaged Navier-Stokes (RANS) approximation in order to represent the head losses introduced by friction in hydraulically smooth walls is evaluated for a wide range of Reynolds scales. This is performed by comparing the numerical results for fully developed flow on circular pipes and between parallel plates against experimental results, using the most popular wall treatments. The associated numerical errors, mesh requirements and ranges of application are established for each treatment. It is shown that, when properly applied, RANS models are able to simulate the head losses produced by smooth wall friction accurately enough as to quantify the scale effects present in physical models. A methodology for upscaling physical model results to prototype scale, free of scale effects, is proposed.
AbstractList Resistive forces associated to boundary layers (‘friction’) are usually out of scale in physical models of hydraulic structures, especially in the case of hydraulically smooth walls, generating distortions in the model results known as , that can be problematic in some relevant engineering problems. These scale effects can be quantified and corrected using suitable numerical models. In this paper the accuracy of using numerical simulation through the Reynolds Averaged Navier-Stokes (RANS) approximation in order to represent the head losses introduced by friction in hydraulically smooth walls is evaluated for a wide range of Reynolds scales. This is performed by comparing the numerical results for fully developed flow on circular pipes and between parallel plates against experimental results, using the most popular wall treatments. The associated numerical errors, mesh requirements and ranges of application are established for each treatment. It is shown that, when properly applied, RANS models are able to simulate the head losses produced by smooth wall friction accurately enough as to quantify the scale effects present in physical models. A methodology for upscaling physical model results to prototype scale, free of scale effects, is proposed.
Abstract Resistive forces associated to boundary layers (‘friction’) are usually out of scale in physical models of hydraulic structures, especially in the case of hydraulically smooth walls, generating distortions in the model results known as scale effects , that can be problematic in some relevant engineering problems. These scale effects can be quantified and corrected using suitable numerical models. In this paper the accuracy of using numerical simulation through the Reynolds Averaged Navier-Stokes (RANS) approximation in order to represent the head losses introduced by friction in hydraulically smooth walls is evaluated for a wide range of Reynolds scales. This is performed by comparing the numerical results for fully developed flow on circular pipes and between parallel plates against experimental results, using the most popular wall treatments. The associated numerical errors, mesh requirements and ranges of application are established for each treatment. It is shown that, when properly applied, RANS models are able to simulate the head losses produced by smooth wall friction accurately enough as to quantify the scale effects present in physical models. A methodology for upscaling physical model results to prototype scale, free of scale effects, is proposed.
Resistive forces associated to boundary layers (‘friction’) are usually out of scale in physical models of hydraulic structures, especially in the case of hydraulically smooth walls, generating distortions in the model results known as scale effects, that can be problematic in some relevant engineering problems. These scale effects can be quantified and corrected using suitable numerical models. In this paper the accuracy of using numerical simulation through the Reynolds Averaged Navier-Stokes (RANS) approximation in order to represent the head losses introduced by friction in hydraulically smooth walls is evaluated for a wide range of Reynolds scales. This is performed by comparing the numerical results for fully developed flow on circular pipes and between parallel plates against experimental results, using the most popular wall treatments. The associated numerical errors, mesh requirements and ranges of application are established for each treatment. It is shown that, when properly applied, RANS models are able to simulate the head losses produced by smooth wall friction accurately enough as to quantify the scale effects present in physical models. A methodology for upscaling physical model results to prototype scale, free of scale effects, is proposed.
Author Menéndez, Angel N.
Badano, Nicolás D.
Author_xml – sequence: 1
  givenname: Nicolás D.
  surname: Badano
  fullname: Badano, Nicolás D.
  email: nicolas.d.badano@gmail.com
  organization: Mathematical Modelling Laboratory, Faculty of Engineering, University of Buenos Aires, Buenos Aires Argentina
– sequence: 2
  givenname: Angel N.
  surname: Menéndez
  fullname: Menéndez, Angel N.
  email: anmenendez@gmail.com
  organization: Mathematical Modelling Laboratory, Faculty of Engineering, University of Buenos Aires, Buenos Aires Argentina
BookMark eNptUE1Lw0AUXKSCtfboPX8gup_ZLJ5q8aNQEETPy8t-lJQ0K7sJkn_v1op48PTmPWaGN3OJZn3oHULXBN8QQcSt63clxRSXGDN2huaUKVIKztTsD75Ay5T2GGMimFSSzNH9ypgxgpmK4IsmjL2FOBUdTC4WQ3QwHFw_pAKGwrbeu5i34tVNfehsKpKBzqUrdO6hS275Mxfo_fHhbf1cbl-eNuvVtjRM8aE0lReY2aqR3IiaKoW5BAVeWlorVwlsuHFGWNxgqJkXDaXEgPEN2JrzxrAF2px8bYC9_ojtIb-qA7T6-xDiTkMcWtM5LVnFpSSqyjKuoFGcQ5VDN5ZWlXQke5UnLxNDStH5Xz-C9bFPnfvUxz71sc_MvzvxP6EbXLRuF8cpA70PY-xz6v91BBOqBPsCA199WA
CitedBy_id crossref_primary_10_1061__ASCE_HY_1943_7900_0001989
crossref_primary_10_1016_j_wse_2021_03_006
Cites_doi 10.1061/(ASCE)HY.1943-7900.0000930
10.2514/3.51043
10.1002/aic.690030215
10.1061/(ASCE)0733-9429(2009)135:7(602)
10.1680/ijoti.1939.13150
10.1017/S0022112005005501
10.1007/BFb0112677
10.1007/s10652-008-9078-3
10.1007/BF02829067
10.1080/00221686.2011.578914
10.1115/1.3240815
10.1061/(ASCE)0733-9429(2004)130:7(635)
10.1080/19942060.2014.11015509
10.1080/00221686.2016.1211562
10.1061/(ASCE)HY.1943-7900.0001472
10.1061/(ASCE)HY.1943-7900.0001372
10.1016/0045-7825(74)90029-2
10.1016/0094-4548(74)90150-7
10.1061/(ASCE)HY.1943-7900.0000336
10.1061/(ASCE)HY.1943-7900.0000232
10.1007/978-3-642-56026-2
10.1063/1.168744
10.7551/mitpress/3014.001.0001
10.1016/0017-9310(73)90125-7
10.1061/(ASCE)0733-9429(2006)132:12(1353)
10.28991/cej-2019-03091231
10.1061/(ASCE)0733-9429(2005)131:5(347)
10.1098/rspa.1937.0150
10.1504/PCFD.2006.009486
10.1201/b15985-11
10.5772/28688
10.1017/CBO9780511840531
10.28991/cej-2017-00000091
10.1017/S0022112069000115
10.2514/3.8284
10.1061/(ASCE)0733-9429(2009)135:1(45)
10.1063/1.858424
10.1061/(ASCE)HY.1943-7900.0001289
10.1080/00221687809499623
10.2514/3.9086
10.1061/(ASCE)HY.1943-7900.0001186
10.1080/00221688909499111
10.1016/j.rinp.2018.06.011
10.1007/978-1-349-00245-0
10.1061/(ASCE)HY.1943-7900.0000903
10.1016/j.compfluid.2008.01.029
10.1080/00221686.2014.910277
10.28991/esj-2018-01125
10.1061/(ASCE)HY.1943-7900.0000871
10.1016/0045-7930(94)00032-T
10.1061/(ASCE)0733-9429(2006)132:9(899)
10.1061/(ASCE)HY.1943-7900.0001061
10.2298/TSCI1904131H
10.4319/lo.1990.35.7.1656
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/eng-2020-0033
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2391-5439
EndPage 310
ExternalDocumentID oai_doaj_org_article_736477196bc349ab944a6015bd2667e1
10_1515_eng_2020_0033
10_1515_eng_2020_0033101295
GroupedDBID 5VS
9WM
AAFWJ
ABFKT
ACGFS
ADBBV
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
EBS
F-.
GROUPED_DOAJ
KQ8
OK1
QD8
AAYXX
CITATION
M~E
ID FETCH-LOGICAL-c394t-c6f503d6b74c58299047a9af7d289e650c4cec5d0b0a83f5b221cacfbad844bc3
IEDL.DBID DOA
ISSN 2391-5439
IngestDate Thu Jul 04 21:10:48 EDT 2024
Fri Aug 23 03:46:27 EDT 2024
Fri Nov 25 00:38:28 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-c6f503d6b74c58299047a9af7d289e650c4cec5d0b0a83f5b221cacfbad844bc3
OpenAccessLink https://doaj.org/article/736477196bc349ab944a6015bd2667e1
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_736477196bc349ab944a6015bd2667e1
crossref_primary_10_1515_eng_2020_0033
walterdegruyter_journals_10_1515_eng_2020_0033101295
PublicationCentury 2000
PublicationDate 2020-04-08
PublicationDateYYYYMMDD 2020-04-08
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-08
  day: 08
PublicationDecade 2020
PublicationTitle Open Engineering (Warsaw)
PublicationYear 2020
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References Kim, J; Yadav, M; Kim, S (j_eng-2020-0033_ref_021) 2014; 8
Sinagra, M; Sammartano, V; Aricò, C; Collura, A (j_eng-2020-0033_ref_030) 2015; 142
Patel, V; Head, M (j_eng-2020-0033_ref_041) 1969; 38
Patel, V; Rodi, W; Scheuerer, G (j_eng-2020-0033_ref_037) 1985; 23
Tandalam, A; Balachandar, R; Barron, R (j_eng-2020-0033_ref_008) 2010; 136
He, S; Ariyaratne, C (j_eng-2020-0033_ref_049) 2011; 137
Jones, W; Launder, B (j_eng-2020-0033_ref_052) 1973; 16
Rhie, C; Chow, W (j_eng-2020-0033_ref_058) 1983; 21
Kheirkhah Gildeh, H; Mohammadian, A; Nistor, I; Qiblawey, H (j_eng-2020-0033_ref_028) 2014; 140
Kim, DG; Park, JH (j_eng-2020-0033_ref_016) 2005; 9
Heller, V; Hager, W; Minor, H (j_eng-2020-0033_ref_014) 2005; 131
Castro-Orgaz, O; Hager, WH (j_eng-2020-0033_ref_022) 2014; 52
Colebrook, CF; White, CM (j_eng-2020-0033_ref_038) 1937; 161
Launder, BE; Sharma, B (j_eng-2020-0033_ref_035) 1974; 1
Razavi, Alavi S.A.; Nemati, Lay E.; Alizadeh, Makhmali Z.S. (j_eng-2020-0033_ref_033) 2018; Vol. 2
Shih, T; Liou, W; Shabbir, A; Tang, Z (j_eng-2020-0033_ref_047) 1995; 24
Chien, KY (j_eng-2020-0033_ref_053) 1982; 20
Huang, W; Yang, Q; Xiao, H (j_eng-2020-0033_ref_017) 2009; 38
Savage, BM; Crookston, BM; Paxson, GS (j_eng-2020-0033_ref_029) 2016; 142
Pezzinga, G (j_eng-2020-0033_ref_048) 2008; 135
Heller, V (j_eng-2020-0033_ref_004) 2011; 49
Afrin, T; Kaye, NB; Khan, AA; Testik, FY (j_eng-2020-0033_ref_031) 2017; 143
Hager, W; Bremen, R (j_eng-2020-0033_ref_011) 1989; 27
Nosrati, K; Tahershamsi, A; Taheri, SH (j_eng-2020-0033_ref_032) 2017; 3
Etemad, S; Sundén, B; Daunius, O (j_eng-2020-0033_ref_062) 2006; Vol. 6
Weller, H; Tabor, G; Jasak, H; Fureby, C (j_eng-2020-0033_ref_056) 1998; 12
He, JH (j_eng-2020-0033_ref_024) 2018; 10
Colebrook, CF (j_eng-2020-0033_ref_039) 1938; 11
Lam, C; Bremhorst, K (j_eng-2020-0033_ref_054) 1980; 103
Launder, BE; Spalding, DB (j_eng-2020-0033_ref_036) 1974; 3
Guo, Y (j_eng-2020-0033_ref_027) 2014; 140
Hager, W (j_eng-2020-0033_ref_010) 1994; 86
Ansar, M; Chen, Z (j_eng-2020-0033_ref_009) 2009; 135
Johnson, MC; Savage, BM. (j_eng-2020-0033_ref_018) 2006; 132
Boroomand, MR; Mohammadi, A (j_eng-2020-0033_ref_034) 2019; 5
Erpicum, S; Tullis, BP; Lodomez, M; Archambeau, P; Dewals, BJ; Piroton, M (j_eng-2020-0033_ref_001) 2016; 54
Vardy, AE; Brown, JM; He, S; Ariyaratne, C; Gorji, S (j_eng-2020-0033_ref_050) 2015; 141
He, JH; Ji, FY (j_eng-2020-0033_ref_025) 2019; 23
Langhi, M; Hosoda, T; Dey, S (j_eng-2020-0033_ref_044) 2018; 144
Dargahi, B (j_eng-2020-0033_ref_026) 2006; 132
McKeon, BJ; Zagarola, MV; Smits, AJ (j_eng-2020-0033_ref_040) 2005; 538
Chanson, H (j_eng-2020-0033_ref_012) 2009; 9
Pfister, M; Battisacco, E; De Cesare, G; Scheleiss, AJ. (j_eng-2020-0033_ref_020) 2013; 2013
Rothfus, RR; Archer, DH; Klimas, IC; Sikchi, KG (j_eng-2020-0033_ref_042) 1957; 3
Yakhot, V; Orszag, S; Thangam, S; Gatski, T; Speziale, C (j_eng-2020-0033_ref_046) 1992; 4
Ettema, R; Muste, M (j_eng-2020-0033_ref_007) 2004; 130
Martins, NM; Brunone, B; Meniconi, S; Ramos, HM; Covas, DI (j_eng-2020-0033_ref_051) 2017; 143
Anwar, H; Weller, J; Amphlett, M (j_eng-2020-0033_ref_013) 1978; 16
2022042712083863778_j_eng-2020-0033_ref_059_w2aab3b7d769b1b6b1ab2ac59Aa
2022042712083863778_j_eng-2020-0033_ref_014_w2aab3b7d769b1b6b1ab2ac14Aa
2022042712083863778_j_eng-2020-0033_ref_021_w2aab3b7d769b1b6b1ab2ac21Aa
2022042712083863778_j_eng-2020-0033_ref_050_w2aab3b7d769b1b6b1ab2ac50Aa
2022042712083863778_j_eng-2020-0033_ref_036_w2aab3b7d769b1b6b1ab2ac36Aa
2022042712083863778_j_eng-2020-0033_ref_044_w2aab3b7d769b1b6b1ab2ac44Aa
2022042712083863778_j_eng-2020-0033_ref_003_w2aab3b7d769b1b6b1ab2ab3Aa
2022042712083863778_j_eng-2020-0033_ref_022_w2aab3b7d769b1b6b1ab2ac22Aa
2022042712083863778_j_eng-2020-0033_ref_015_w2aab3b7d769b1b6b1ab2ac15Aa
2022042712083863778_j_eng-2020-0033_ref_029_w2aab3b7d769b1b6b1ab2ac29Aa
2022042712083863778_j_eng-2020-0033_ref_045_w2aab3b7d769b1b6b1ab2ac45Aa
2022042712083863778_j_eng-2020-0033_ref_008_w2aab3b7d769b1b6b1ab2ab8Aa
2022042712083863778_j_eng-2020-0033_ref_037_w2aab3b7d769b1b6b1ab2ac37Aa
2022042712083863778_j_eng-2020-0033_ref_002_w2aab3b7d769b1b6b1ab2ab2Aa
2022042712083863778_j_eng-2020-0033_ref_052_w2aab3b7d769b1b6b1ab2ac52Aa
2022042712083863778_j_eng-2020-0033_ref_034_w2aab3b7d769b1b6b1ab2ac34Aa
2022042712083863778_j_eng-2020-0033_ref_057_w2aab3b7d769b1b6b1ab2ac57Aa
2022042712083863778_j_eng-2020-0033_ref_028_w2aab3b7d769b1b6b1ab2ac28Aa
2022042712083863778_j_eng-2020-0033_ref_027_w2aab3b7d769b1b6b1ab2ac27Aa
2022042712083863778_j_eng-2020-0033_ref_012_w2aab3b7d769b1b6b1ab2ac12Aa
2022042712083863778_j_eng-2020-0033_ref_042_w2aab3b7d769b1b6b1ab2ac42Aa
2022042712083863778_j_eng-2020-0033_ref_013_w2aab3b7d769b1b6b1ab2ac13Aa
2022042712083863778_j_eng-2020-0033_ref_051_w2aab3b7d769b1b6b1ab2ac51Aa
2022042712083863778_j_eng-2020-0033_ref_020_w2aab3b7d769b1b6b1ab2ac20Aa
2022042712083863778_j_eng-2020-0033_ref_001_w2aab3b7d769b1b6b1ab2ab1Aa
2022042712083863778_j_eng-2020-0033_ref_058_w2aab3b7d769b1b6b1ab2ac58Aa
2022042712083863778_j_eng-2020-0033_ref_035_w2aab3b7d769b1b6b1ab2ac35Aa
2022042712083863778_j_eng-2020-0033_ref_043_w2aab3b7d769b1b6b1ab2ac43Aa
2022042712083863778_j_eng-2020-0033_ref_032_w2aab3b7d769b1b6b1ab2ac32Aa
2022042712083863778_j_eng-2020-0033_ref_061_w2aab3b7d769b1b6b1ab2ac61Aa
2022042712083863778_j_eng-2020-0033_ref_004_w2aab3b7d769b1b6b1ab2ab4Aa
2022042712083863778_j_eng-2020-0033_ref_019_w2aab3b7d769b1b6b1ab2ac19Aa
2022042712083863778_j_eng-2020-0033_ref_048_w2aab3b7d769b1b6b1ab2ac48Aa
2022042712083863778_j_eng-2020-0033_ref_055_w2aab3b7d769b1b6b1ab2ac55Aa
2022042712083863778_j_eng-2020-0033_ref_009_w2aab3b7d769b1b6b1ab2ab9Aa
2022042712083863778_j_eng-2020-0033_ref_010_w2aab3b7d769b1b6b1ab2ac10Aa
2022042712083863778_j_eng-2020-0033_ref_025_w2aab3b7d769b1b6b1ab2ac25Aa
2022042712083863778_j_eng-2020-0033_ref_049_w2aab3b7d769b1b6b1ab2ac49Aa
2022042712083863778_j_eng-2020-0033_ref_060_w2aab3b7d769b1b6b1ab2ac60Aa
2022042712083863778_j_eng-2020-0033_ref_018_w2aab3b7d769b1b6b1ab2ac18Aa
2022042712083863778_j_eng-2020-0033_ref_033_w2aab3b7d769b1b6b1ab2ac33Aa
2022042712083863778_j_eng-2020-0033_ref_026_w2aab3b7d769b1b6b1ab2ac26Aa
2022042712083863778_j_eng-2020-0033_ref_056_w2aab3b7d769b1b6b1ab2ac56Aa
2022042712083863778_j_eng-2020-0033_ref_011_w2aab3b7d769b1b6b1ab2ac11Aa
2022042712083863778_j_eng-2020-0033_ref_030_w2aab3b7d769b1b6b1ab2ac30Aa
2022042712083863778_j_eng-2020-0033_ref_041_w2aab3b7d769b1b6b1ab2ac41Aa
2022042712083863778_j_eng-2020-0033_ref_039_w2aab3b7d769b1b6b1ab2ac39Aa
2022042712083863778_j_eng-2020-0033_ref_023_w2aab3b7d769b1b6b1ab2ac23Aa
2022042712083863778_j_eng-2020-0033_ref_016_w2aab3b7d769b1b6b1ab2ac16Aa
2022042712083863778_j_eng-2020-0033_ref_046_w2aab3b7d769b1b6b1ab2ac46Aa
2022042712083863778_j_eng-2020-0033_ref_017_w2aab3b7d769b1b6b1ab2ac17Aa
2022042712083863778_j_eng-2020-0033_ref_038_w2aab3b7d769b1b6b1ab2ac38Aa
2022042712083863778_j_eng-2020-0033_ref_040_w2aab3b7d769b1b6b1ab2ac40Aa
2022042712083863778_j_eng-2020-0033_ref_053_w2aab3b7d769b1b6b1ab2ac53Aa
2022042712083863778_j_eng-2020-0033_ref_007_w2aab3b7d769b1b6b1ab2ab7Aa
2022042712083863778_j_eng-2020-0033_ref_005_w2aab3b7d769b1b6b1ab2ab5Aa
2022042712083863778_j_eng-2020-0033_ref_031_w2aab3b7d769b1b6b1ab2ac31Aa
2022042712083863778_j_eng-2020-0033_ref_047_w2aab3b7d769b1b6b1ab2ac47Aa
2022042712083863778_j_eng-2020-0033_ref_062_w2aab3b7d769b1b6b1ab2ac62Aa
2022042712083863778_j_eng-2020-0033_ref_006_w2aab3b7d769b1b6b1ab2ab6Aa
2022042712083863778_j_eng-2020-0033_ref_024_w2aab3b7d769b1b6b1ab2ac24Aa
2022042712083863778_j_eng-2020-0033_ref_054_w2aab3b7d769b1b6b1ab2ac54Aa
References_xml – volume: 140
  start-page: 04014012
  issue: 6
  year: 2014
  ident: j_eng-2020-0033_ref_028
  article-title: Numerical Modeling of Turbulent Buoyant Wall Jets in Stationary Ambient Water
  publication-title: J Hydraul Eng
  contributor:
    fullname: Kheirkhah Gildeh, H; Mohammadian, A; Nistor, I; Qiblawey, H
– volume: 132
  start-page: 899
  issue: 9
  year: 2006
  end-page: 907
  ident: j_eng-2020-0033_ref_026
  article-title: Experimental Study and 3D Numerical Simulations for a Free-Overflow Spillway
  publication-title: J Hydraul Eng
  contributor:
    fullname: Dargahi, B
– volume: 1
  start-page: 131
  issue: 2
  year: 1974
  end-page: 8
  ident: j_eng-2020-0033_ref_035
  article-title: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc
  publication-title: Letters in Heat and Mass Transfer
  contributor:
    fullname: Launder, BE; Sharma, B
– volume: 3
  start-page: 208
  issue: 2
  year: 1957
  end-page: 12
  ident: j_eng-2020-0033_ref_042
  article-title: Simplified Flow Calculations for Tubes and Parallel Plates
  publication-title: AIChE J
  contributor:
    fullname: Rothfus, RR; Archer, DH; Klimas, IC; Sikchi, KG
– volume: 24
  start-page: 227
  issue: 3
  year: 1995
  end-page: 38
  ident: j_eng-2020-0033_ref_047
  article-title: A new k-ε eddy viscosity model for high Reynolds number turbulent flows
  publication-title: Comput Fluids
  contributor:
    fullname: Shih, T; Liou, W; Shabbir, A; Tang, Z
– volume: 86
  start-page: 363
  year: 1994
  end-page: 9
  ident: j_eng-2020-0033_ref_010
  article-title: Breitkroniger Überfall Broad crested spillways
  publication-title: Wasser Energie Luft
  contributor:
    fullname: Hager, W
– volume: 27
  start-page: 565
  issue: 5
  year: 1989
  end-page: 85
  ident: j_eng-2020-0033_ref_011
  article-title: Classical hydraulic jump: sequent depths
  publication-title: J Hydraul Res
  contributor:
    fullname: Hager, W; Bremen, R
– volume: 8
  start-page: 229
  issue: 2
  year: 2014
  end-page: 39
  ident: j_eng-2020-0033_ref_021
  article-title: Characteristics of Secondary Flow Induced by 90-Degree Elbow in Turbulent Pipe Flow
  publication-title: Eng Appl Comput Fluid Mech
  contributor:
    fullname: Kim, J; Yadav, M; Kim, S
– volume: 137
  start-page: 606
  issue: 5
  year: 2011
  end-page: 10
  ident: j_eng-2020-0033_ref_049
  article-title: Wall Shear Stress in the Early Stage of Unsteady Turbulent Pipe Flow
  publication-title: J Hydraul Eng
  contributor:
    fullname: He, S; Ariyaratne, C
– volume: 23
  start-page: 1308
  year: 1985
  end-page: 19
  ident: j_eng-2020-0033_ref_037
  article-title: Turbulence models for near-wall and low reynolds number Flows
  publication-title: AIAA J
  contributor:
    fullname: Patel, V; Rodi, W; Scheuerer, G
– volume: 38
  start-page: 1050
  issue: 5
  year: 2009
  end-page: 8
  ident: j_eng-2020-0033_ref_017
  article-title: CFD modeling of scale effects on turbulence flow and scour around bridge piers
  publication-title: Comput Fluids
  contributor:
    fullname: Huang, W; Yang, Q; Xiao, H
– volume: 135
  start-page: 602
  issue: 7
  year: 2009
  end-page: 8
  ident: j_eng-2020-0033_ref_009
  article-title: Generalized Flow Rating Equations at Prototype Gated Spillways
  publication-title: J Hydraul Eng
  contributor:
    fullname: Ansar, M; Chen, Z
– volume: 141
  start-page: 04014064
  issue: 1
  year: 2015
  ident: j_eng-2020-0033_ref_050
  article-title: Applicability of Frozen-Viscosity Models of Unsteady Wall Shear Stress
  publication-title: J Hydraul Eng
  contributor:
    fullname: Vardy, AE; Brown, JM; He, S; Ariyaratne, C; Gorji, S
– volume: 142
  start-page: 04015040
  issue: 1
  year: 2015
  ident: j_eng-2020-0033_ref_030
  article-title: Experimental and Numerical Analysis of a Cross-Flow Turbine
  publication-title: J Hydraul Eng
  contributor:
    fullname: Sinagra, M; Sammartano, V; Aricò, C; Collura, A
– volume: 54
  start-page: 692
  issue: 6
  year: 2016
  end-page: 8
  ident: j_eng-2020-0033_ref_001
  article-title: Scale effects in physical piano key weirs models
  publication-title: J Hydraul Res
  contributor:
    fullname: Erpicum, S; Tullis, BP; Lodomez, M; Archambeau, P; Dewals, BJ; Piroton, M
– volume: 49
  start-page: 293
  issue: 3
  year: 2011
  end-page: 306
  ident: j_eng-2020-0033_ref_004
  article-title: Scale effects in physical hydraulic engineering models
  publication-title: J Hydraul Res
  contributor:
    fullname: Heller, V
– volume: 3
  start-page: 288
  issue: 4
  year: 2017
  end-page: 300
  ident: j_eng-2020-0033_ref_032
  article-title: Numerical Analysis of Energy Loss Coeflcient in Pipe Contraction Using ANSYS CFX Software
  publication-title: Civil Engineering Journal
  contributor:
    fullname: Nosrati, K; Tahershamsi, A; Taheri, SH
– volume: 131
  start-page: 347
  issue: 5
  year: 2005
  end-page: 55
  ident: j_eng-2020-0033_ref_014
  article-title: Ski jump hydraulics
  publication-title: J Hydraul Eng
  contributor:
    fullname: Heller, V; Hager, W; Minor, H
– volume: 136
  start-page: 633
  issue: 9
  year: 2010
  end-page: 41
  ident: j_eng-2020-0033_ref_008
  article-title: Reynolds Number Effects on the Near-Exit Region of Turbulent Jets
  publication-title: J Hydraul Eng
  contributor:
    fullname: Tandalam, A; Balachandar, R; Barron, R
– volume: 16
  start-page: 95
  issue: 2
  year: 1978
  end-page: 105
  ident: j_eng-2020-0033_ref_013
  article-title: Similarity of free-vortex at horizontal intake
  publication-title: J Hydraul Res
  contributor:
    fullname: Anwar, H; Weller, J; Amphlett, M
– volume: 4
  start-page: 1510
  issue: 7
  year: 1992
  end-page: 20
  ident: j_eng-2020-0033_ref_046
  article-title: Development of turbulence models for shear flow by a double expansion technique
  publication-title: Phys Fluids A Fluid Dyn
  contributor:
    fullname: Yakhot, V; Orszag, S; Thangam, S; Gatski, T; Speziale, C
– volume: 132
  start-page: 1353
  issue: 12
  year: 2006
  end-page: 7
  ident: j_eng-2020-0033_ref_018
  article-title: Physical and Numerical Comparison of Flow over Ogee Spillway in the Presence of Tailwater
  publication-title: J Hydraul Eng
  contributor:
    fullname: Johnson, MC; Savage, BM.
– volume: 10
  start-page: 272
  year: 2018
  end-page: 6
  ident: j_eng-2020-0033_ref_024
  article-title: Fractal calculus and its geometrical explanation
  publication-title: Results Phys
  contributor:
    fullname: He, JH
– volume: 20
  start-page: 33
  issue: 1
  year: 1982
  end-page: 8
  ident: j_eng-2020-0033_ref_053
  article-title: Predictions of channel and boundary-layer flows with a low-reynolds-number turbulence model
  publication-title: AIAA J
  contributor:
    fullname: Chien, KY
– volume: 23
  start-page: 2131
  issue: 4
  year: 2019
  end-page: 3
  ident: j_eng-2020-0033_ref_025
  article-title: Two-scale mathematics and fractional calculus for thermodynamics
  publication-title: Therm Sci
  contributor:
    fullname: He, JH; Ji, FY
– volume: 142
  start-page: 04016046
  issue: 11
  year: 2016
  ident: j_eng-2020-0033_ref_029
  article-title: Physical and Numerical Modeling of Large Headwater Ratios for a 15∘ Labyrinth Spillway
  publication-title: J Hydraul Eng
  contributor:
    fullname: Savage, BM; Crookston, BM; Paxson, GS
– volume: 161
  start-page: 367
  issue: 904
  year: 1937
  end-page: 81
  ident: j_eng-2020-0033_ref_038
  article-title: Experiments with fluid friction in roughened pipes
  publication-title: Proc. Royal Society, Series A Math. &. Phys. Sci
  contributor:
    fullname: Colebrook, CF; White, CM
– volume: 140
  start-page: 04014034
  issue: 8
  year: 2014
  ident: j_eng-2020-0033_ref_027
  article-title: Numerical Simulation of the Spreading of Aerated and Nonaerated Turbulent Water Jet in a Tank with Finite Water Depth
  publication-title: J Hydraul Eng
  contributor:
    fullname: Guo, Y
– volume: 9
  start-page: 161
  issue: 2
  year: 2005
  end-page: 9
  ident: j_eng-2020-0033_ref_016
  article-title: Analysis of Flow Structure over Ogee-Spillway in Consideration of Scale and Roughness Effects by Using CFD Model
  publication-title: KSCE J Civ Eng
  contributor:
    fullname: Kim, DG; Park, JH
– volume: 103
  start-page: 456
  issue: 3
  year: 1980
  end-page: 60
  ident: j_eng-2020-0033_ref_054
  article-title: Modified form of the k–epsilon–model for predicting wall turbulence
  publication-title: J Fluids Eng
  contributor:
    fullname: Lam, C; Bremhorst, K
– volume: 143
  start-page: 04017004
  issue: 6
  year: 2017
  ident: j_eng-2020-0033_ref_031
  article-title: Numerical Investigation of Free Overfall from a Circular Pipe Flowing Full Upstream
  publication-title: J Hydraul Eng
  contributor:
    fullname: Afrin, T; Kaye, NB; Khan, AA; Testik, FY
– volume: 11
  start-page: 133
  year: 1938
  end-page: 56
  ident: j_eng-2020-0033_ref_039
  article-title: Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws
  publication-title: J. Inst. Civ Eng (Lond)
  contributor:
    fullname: Colebrook, CF
– volume: Vol. 6
  start-page: 89
  issue: 3
  year: 2006
  end-page: 100
  ident: j_eng-2020-0033_ref_062
  article-title: Turbulent flow and heat transfer in a square-sectioned U-bend
  publication-title: Progress in Computational Fluid Dynamics
  contributor:
    fullname: Etemad, S; Sundén, B; Daunius, O
– volume: 38
  start-page: 181
  issue: 1
  year: 1969
  end-page: 201
  ident: j_eng-2020-0033_ref_041
  article-title: Some observations on skin friction and velocity profiles in fully developed pipe and channel flows
  publication-title: J Fluid Mech
  contributor:
    fullname: Patel, V; Head, M
– volume: 21
  start-page: 1525
  issue: 11
  year: 1983
  end-page: 32
  ident: j_eng-2020-0033_ref_058
  article-title: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation
  publication-title: AIAA J
  contributor:
    fullname: Rhie, C; Chow, W
– volume: 538
  start-page: 429
  issue: -1
  year: 2005
  end-page: 43
  ident: j_eng-2020-0033_ref_040
  article-title: A new friction factor relationship for fully developed pipe flow
  publication-title: J Fluid Mech
  contributor:
    fullname: McKeon, BJ; Zagarola, MV; Smits, AJ
– volume: 130
  start-page: 635
  issue: 7
  year: 2004
  end-page: 46
  ident: j_eng-2020-0033_ref_007
  article-title: Scale Effects in Flume Experiments on Flow around a Spur Dike in Flatbed Channel
  publication-title: J Hydraul Eng
  contributor:
    fullname: Ettema, R; Muste, M
– volume: 144
  start-page: 04018033
  issue: 7
  year: 2018
  ident: j_eng-2020-0033_ref_044
  article-title: Analytical Solution of k-ε Model for Nonuniform Flows
  publication-title: J Hydraul Eng
  contributor:
    fullname: Langhi, M; Hosoda, T; Dey, S
– volume: 52
  start-page: 653
  issue: 5
  year: 2014
  end-page: 65
  ident: j_eng-2020-0033_ref_022
  article-title: Scale effects of round-crested weir flow
  publication-title: J Hydraul Res
  contributor:
    fullname: Castro-Orgaz, O; Hager, WH
– volume: 3
  start-page: 296
  issue: 2
  year: 1974
  end-page: 289
  ident: j_eng-2020-0033_ref_036
  article-title: The numerical computation of turbulent flows
  publication-title: Comput Methods Appl Mech Eng
  contributor:
    fullname: Launder, BE; Spalding, DB
– volume: 2013
  start-page: 73
  year: 2013
  end-page: 82
  ident: j_eng-2020-0033_ref_020
  article-title: Scale effects related to the rating curve of cylindrically crested Piano Key weirs
  publication-title: Proceedings of the 2nd International Workshop on Labyrinth and Piano Key Weirs - PKW
  contributor:
    fullname: Pfister, M; Battisacco, E; De Cesare, G; Scheleiss, AJ.
– volume: 143
  start-page: 04017050
  issue: 12
  year: 2017
  ident: j_eng-2020-0033_ref_051
  article-title: CFD and 1D Approaches for the Unsteady Friction Analysis of Low Reynolds Number Turbulent Flows
  publication-title: J Hydraul Eng
  contributor:
    fullname: Martins, NM; Brunone, B; Meniconi, S; Ramos, HM; Covas, DI
– volume: 135
  start-page: 45
  issue: 1
  year: 2008
  end-page: 6
  ident: j_eng-2020-0033_ref_048
  article-title: Local Balance Unsteady Friction Model
  publication-title: J Hydraul Eng
  contributor:
    fullname: Pezzinga, G
– volume: Vol. 2
  issue: No. 1
  year: 2018
  ident: j_eng-2020-0033_ref_033
  article-title: A CFD Study of Industrial Double-Cyclone in HDPE Drying Process
  publication-title: Emerging Science Journal
  contributor:
    fullname: Razavi, Alavi S.A.; Nemati, Lay E.; Alizadeh, Makhmali Z.S.
– volume: 5
  start-page: 127
  issue: 1
  year: 2019
  ident: j_eng-2020-0033_ref_034
  article-title: Investigation of k-ε Turbulent Models and Their Effects on Offset Jet Flow Simulation
  publication-title: Civil Engineering Journal
  contributor:
    fullname: Boroomand, MR; Mohammadi, A
– volume: 12
  start-page: 620
  issue: 6
  year: 1998
  end-page: 31
  ident: j_eng-2020-0033_ref_056
  article-title: A tensorial approach to computational continuum mechanics using object orientated techniques
  publication-title: Comput Phys
  contributor:
    fullname: Weller, H; Tabor, G; Jasak, H; Fureby, C
– volume: 9
  start-page: 125
  issue: 2
  year: 2009
  end-page: 42
  ident: j_eng-2020-0033_ref_012
  article-title: Turbulent air-water flows in hydraulic structures: dynamic similarity and scale effects
  publication-title: Environ Fluid Mech
  contributor:
    fullname: Chanson, H
– volume: 16
  start-page: 1119
  issue: 6
  year: 1973
  end-page: 30
  ident: j_eng-2020-0033_ref_052
  article-title: The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence
  publication-title: Int J Heat Mass Transf
  contributor:
    fullname: Jones, W; Launder, B
– ident: 2022042712083863778_j_eng-2020-0033_ref_050_w2aab3b7d769b1b6b1ab2ac50Aa
  doi: 10.1061/(ASCE)HY.1943-7900.0000930
– ident: 2022042712083863778_j_eng-2020-0033_ref_053_w2aab3b7d769b1b6b1ab2ac53Aa
  doi: 10.2514/3.51043
– ident: 2022042712083863778_j_eng-2020-0033_ref_042_w2aab3b7d769b1b6b1ab2ac42Aa
  doi: 10.1002/aic.690030215
– ident: 2022042712083863778_j_eng-2020-0033_ref_010_w2aab3b7d769b1b6b1ab2ac10Aa
– ident: 2022042712083863778_j_eng-2020-0033_ref_045_w2aab3b7d769b1b6b1ab2ac45Aa
– ident: 2022042712083863778_j_eng-2020-0033_ref_006_w2aab3b7d769b1b6b1ab2ab6Aa
– ident: 2022042712083863778_j_eng-2020-0033_ref_009_w2aab3b7d769b1b6b1ab2ab9Aa
  doi: 10.1061/(ASCE)0733-9429(2009)135:7(602)
– ident: 2022042712083863778_j_eng-2020-0033_ref_039_w2aab3b7d769b1b6b1ab2ac39Aa
  doi: 10.1680/ijoti.1939.13150
– ident: 2022042712083863778_j_eng-2020-0033_ref_040_w2aab3b7d769b1b6b1ab2ac40Aa
  doi: 10.1017/S0022112005005501
– ident: 2022042712083863778_j_eng-2020-0033_ref_059_w2aab3b7d769b1b6b1ab2ac59Aa
  doi: 10.1007/BFb0112677
– ident: 2022042712083863778_j_eng-2020-0033_ref_012_w2aab3b7d769b1b6b1ab2ac12Aa
  doi: 10.1007/s10652-008-9078-3
– ident: 2022042712083863778_j_eng-2020-0033_ref_016_w2aab3b7d769b1b6b1ab2ac16Aa
  doi: 10.1007/BF02829067
– ident: 2022042712083863778_j_eng-2020-0033_ref_055_w2aab3b7d769b1b6b1ab2ac55Aa
– ident: 2022042712083863778_j_eng-2020-0033_ref_004_w2aab3b7d769b1b6b1ab2ab4Aa
  doi: 10.1080/00221686.2011.578914
– ident: 2022042712083863778_j_eng-2020-0033_ref_054_w2aab3b7d769b1b6b1ab2ac54Aa
  doi: 10.1115/1.3240815
– ident: 2022042712083863778_j_eng-2020-0033_ref_007_w2aab3b7d769b1b6b1ab2ab7Aa
  doi: 10.1061/(ASCE)0733-9429(2004)130:7(635)
– ident: 2022042712083863778_j_eng-2020-0033_ref_021_w2aab3b7d769b1b6b1ab2ac21Aa
  doi: 10.1080/19942060.2014.11015509
– ident: 2022042712083863778_j_eng-2020-0033_ref_001_w2aab3b7d769b1b6b1ab2ab1Aa
  doi: 10.1080/00221686.2016.1211562
– ident: 2022042712083863778_j_eng-2020-0033_ref_044_w2aab3b7d769b1b6b1ab2ac44Aa
  doi: 10.1061/(ASCE)HY.1943-7900.0001472
– ident: 2022042712083863778_j_eng-2020-0033_ref_051_w2aab3b7d769b1b6b1ab2ac51Aa
  doi: 10.1061/(ASCE)HY.1943-7900.0001372
– ident: 2022042712083863778_j_eng-2020-0033_ref_019_w2aab3b7d769b1b6b1ab2ac19Aa
– ident: 2022042712083863778_j_eng-2020-0033_ref_036_w2aab3b7d769b1b6b1ab2ac36Aa
  doi: 10.1016/0045-7825(74)90029-2
– ident: 2022042712083863778_j_eng-2020-0033_ref_035_w2aab3b7d769b1b6b1ab2ac35Aa
  doi: 10.1016/0094-4548(74)90150-7
– ident: 2022042712083863778_j_eng-2020-0033_ref_049_w2aab3b7d769b1b6b1ab2ac49Aa
  doi: 10.1061/(ASCE)HY.1943-7900.0000336
– ident: 2022042712083863778_j_eng-2020-0033_ref_008_w2aab3b7d769b1b6b1ab2ab8Aa
  doi: 10.1061/(ASCE)HY.1943-7900.0000232
– ident: 2022042712083863778_j_eng-2020-0033_ref_023_w2aab3b7d769b1b6b1ab2ac23Aa
  doi: 10.1007/978-3-642-56026-2
– ident: 2022042712083863778_j_eng-2020-0033_ref_056_w2aab3b7d769b1b6b1ab2ac56Aa
  doi: 10.1063/1.168744
– ident: 2022042712083863778_j_eng-2020-0033_ref_060_w2aab3b7d769b1b6b1ab2ac60Aa
  doi: 10.7551/mitpress/3014.001.0001
– ident: 2022042712083863778_j_eng-2020-0033_ref_052_w2aab3b7d769b1b6b1ab2ac52Aa
  doi: 10.1016/0017-9310(73)90125-7
– ident: 2022042712083863778_j_eng-2020-0033_ref_018_w2aab3b7d769b1b6b1ab2ac18Aa
  doi: 10.1061/(ASCE)0733-9429(2006)132:12(1353)
– ident: 2022042712083863778_j_eng-2020-0033_ref_034_w2aab3b7d769b1b6b1ab2ac34Aa
  doi: 10.28991/cej-2019-03091231
– ident: 2022042712083863778_j_eng-2020-0033_ref_014_w2aab3b7d769b1b6b1ab2ac14Aa
  doi: 10.1061/(ASCE)0733-9429(2005)131:5(347)
– ident: 2022042712083863778_j_eng-2020-0033_ref_038_w2aab3b7d769b1b6b1ab2ac38Aa
  doi: 10.1098/rspa.1937.0150
– ident: 2022042712083863778_j_eng-2020-0033_ref_062_w2aab3b7d769b1b6b1ab2ac62Aa
  doi: 10.1504/PCFD.2006.009486
– ident: 2022042712083863778_j_eng-2020-0033_ref_020_w2aab3b7d769b1b6b1ab2ac20Aa
  doi: 10.1201/b15985-11
– ident: 2022042712083863778_j_eng-2020-0033_ref_015_w2aab3b7d769b1b6b1ab2ac15Aa
  doi: 10.5772/28688
– ident: 2022042712083863778_j_eng-2020-0033_ref_043_w2aab3b7d769b1b6b1ab2ac43Aa
  doi: 10.1017/CBO9780511840531
– ident: 2022042712083863778_j_eng-2020-0033_ref_032_w2aab3b7d769b1b6b1ab2ac32Aa
  doi: 10.28991/cej-2017-00000091
– ident: 2022042712083863778_j_eng-2020-0033_ref_041_w2aab3b7d769b1b6b1ab2ac41Aa
  doi: 10.1017/S0022112069000115
– ident: 2022042712083863778_j_eng-2020-0033_ref_058_w2aab3b7d769b1b6b1ab2ac58Aa
  doi: 10.2514/3.8284
– ident: 2022042712083863778_j_eng-2020-0033_ref_048_w2aab3b7d769b1b6b1ab2ac48Aa
  doi: 10.1061/(ASCE)0733-9429(2009)135:1(45)
– ident: 2022042712083863778_j_eng-2020-0033_ref_046_w2aab3b7d769b1b6b1ab2ac46Aa
  doi: 10.1063/1.858424
– ident: 2022042712083863778_j_eng-2020-0033_ref_031_w2aab3b7d769b1b6b1ab2ac31Aa
  doi: 10.1061/(ASCE)HY.1943-7900.0001289
– ident: 2022042712083863778_j_eng-2020-0033_ref_003_w2aab3b7d769b1b6b1ab2ab3Aa
– ident: 2022042712083863778_j_eng-2020-0033_ref_013_w2aab3b7d769b1b6b1ab2ac13Aa
  doi: 10.1080/00221687809499623
– ident: 2022042712083863778_j_eng-2020-0033_ref_037_w2aab3b7d769b1b6b1ab2ac37Aa
  doi: 10.2514/3.9086
– ident: 2022042712083863778_j_eng-2020-0033_ref_029_w2aab3b7d769b1b6b1ab2ac29Aa
  doi: 10.1061/(ASCE)HY.1943-7900.0001186
– ident: 2022042712083863778_j_eng-2020-0033_ref_011_w2aab3b7d769b1b6b1ab2ac11Aa
  doi: 10.1080/00221688909499111
– ident: 2022042712083863778_j_eng-2020-0033_ref_024_w2aab3b7d769b1b6b1ab2ac24Aa
  doi: 10.1016/j.rinp.2018.06.011
– ident: 2022042712083863778_j_eng-2020-0033_ref_002_w2aab3b7d769b1b6b1ab2ab2Aa
  doi: 10.1007/978-1-349-00245-0
– ident: 2022042712083863778_j_eng-2020-0033_ref_057_w2aab3b7d769b1b6b1ab2ac57Aa
– ident: 2022042712083863778_j_eng-2020-0033_ref_027_w2aab3b7d769b1b6b1ab2ac27Aa
  doi: 10.1061/(ASCE)HY.1943-7900.0000903
– ident: 2022042712083863778_j_eng-2020-0033_ref_017_w2aab3b7d769b1b6b1ab2ac17Aa
  doi: 10.1016/j.compfluid.2008.01.029
– ident: 2022042712083863778_j_eng-2020-0033_ref_022_w2aab3b7d769b1b6b1ab2ac22Aa
  doi: 10.1080/00221686.2014.910277
– ident: 2022042712083863778_j_eng-2020-0033_ref_033_w2aab3b7d769b1b6b1ab2ac33Aa
  doi: 10.28991/esj-2018-01125
– ident: 2022042712083863778_j_eng-2020-0033_ref_028_w2aab3b7d769b1b6b1ab2ac28Aa
  doi: 10.1061/(ASCE)HY.1943-7900.0000871
– ident: 2022042712083863778_j_eng-2020-0033_ref_061_w2aab3b7d769b1b6b1ab2ac61Aa
– ident: 2022042712083863778_j_eng-2020-0033_ref_047_w2aab3b7d769b1b6b1ab2ac47Aa
  doi: 10.1016/0045-7930(94)00032-T
– ident: 2022042712083863778_j_eng-2020-0033_ref_026_w2aab3b7d769b1b6b1ab2ac26Aa
  doi: 10.1061/(ASCE)0733-9429(2006)132:9(899)
– ident: 2022042712083863778_j_eng-2020-0033_ref_030_w2aab3b7d769b1b6b1ab2ac30Aa
  doi: 10.1061/(ASCE)HY.1943-7900.0001061
– ident: 2022042712083863778_j_eng-2020-0033_ref_025_w2aab3b7d769b1b6b1ab2ac25Aa
  doi: 10.2298/TSCI1904131H
– ident: 2022042712083863778_j_eng-2020-0033_ref_005_w2aab3b7d769b1b6b1ab2ab5Aa
  doi: 10.4319/lo.1990.35.7.1656
SSID ssj0001537971
Score 2.1943803
Snippet Resistive forces associated to boundary layers (‘friction’) are usually out of scale in physical models of hydraulic structures, especially in the case of...
Abstract Resistive forces associated to boundary layers (‘friction’) are usually out of scale in physical models of hydraulic structures, especially in the...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Publisher
StartPage 295
SubjectTerms cfd
physical models
rans models
scale effects
wall treatments
Title Accuracy of boundary layer treatments at different Reynolds scales
URI http://www.degruyter.com/doi/10.1515/eng-2020-0033
https://doaj.org/article/736477196bc349ab944a6015bd2667e1
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kXuyh-MT6KHsQb6FJdzebPbZiLYIKaqG3sM9eSipJivTfO5ukpYrgxdsSAhu-mcnMx-58g9ANdXFiHMQ3LBwQFBIHYmD8JUfhGPwwuQl9N_LTczyZ0scZm-2M-vJ3wmp54Bq4PvcC5xz8RGlChVSCUgkkgikDqYXbmvhEbIdM1f3BhAseNaKakLP7NpuDRwx8GzUh35JQpdXfRp3P6nza2Hm-Wpeb89AqzYwPUaepD_Gw_q4jtGezY9TeUQ08QaOh1qtc6jVeOqyqsUj5Gi8kFM94e2-8wLLEm-knJX6162y5MAUuwCa2OEXT8f373SRoRiEEmghaBjp2LCQmVpxqlvgUQrkU0nEDhMlClaWptpoBsKFMiGNqMIi01E5Jk1AK0J2hVrbM7DnCNLIGKmoWSaIo06GClRQAJfPaX5Z10e0Gm_SjVrxIPVMAECGS5qkH0SuKki4aeeS2L3mh6uoBmC9tzJf-Zb4uoj9wT5sgKn7f1euRCXbxH3tfooPaI2gQJleoVeYrew0lRql6aH84eXh76VVe9QUb3M3I
link.rule.ids 315,786,790,870,2115,27957,27958,67515,69299
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xcGA5IGBZbXd5-IC4RU1qO46PBQHlLbEgcYv87B5KgpJUq_77HbdpeZ72ZkWxYn0zk5mxx98AHDCfZtajfePAY4JC00j2bChylJ7jD1PYONxGvr5JBw_s4pHPqwnrtqzSumE1njQzhtSuLc04bJQtuAbQA3ddMUT59sKlaEq7f5qn0RdYSdHVo2Kv9Adnv29fNlo4FVIkLb_mh8lv_NGUtn8N1v9Oj6oX63jlcU43YL0NFUl_JttNWHLFFqy9IhD8Bkd9Y8aVMhNSeqKnHZKqCRkpjKPJooS8Jqoh80YoDblzk6Ic2ZrUKB5Xb8PD6cn98SBquyJEhkrWRCb1PKY21YIZngVvwoSSyguLuZPDgMsw4wxHjGOVUc91r5cYZbxWNmNMG_odlouycD-AsMRZDK55oqhm3MQaR0qmwvFAA-Z4Bw7n2OTPM_KLPCQNCCIa1TAPIAZyUdqBo4Dc4qXAWT19UFbDvDWBXASqeoEWj2tgUmnJmMJ0kGuLQYJwSQfYO9zz1p7qz78aqMkk__l_0_ZhdXB_fZVfnd9c_oKvM31gUZztwHJTjd0uxhqN3mu16R8eS9Af
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xRULbA-K1ojx2fUDcoia1HcfH8uh2X4DYReIW-dkLSlCSCvXfM25DKcue9mZFsWLNeDLf2DPfAJwwn2bWo33jwGOAQtNIDmxIcpSe4w9T2DhUI_-6Ssd37Ps9v1-p4g9pldZNqumsWTCk9m1ppuGgbMk1gB6474oJ6ncQiqIp7T9a_wHWEfomvAPrw_HX39ev5yycCimSll7z3dw37mjO2t-Fzaf5TfVyGSsOZ7QFmy1SJMOFardhzRU70F3hD9yFs6Ex00qZGSk90fMGSdWMPCiE0WSZQV4T1ZCXPigNuXWzonywNalRO67eg7vR5Z_zcdQ2RYgMlayJTOp5TG2qBTM8C86ECSWVFxZDJ4d4yzDjDEcRxyqjnuvBIDHKeK1sxpg29BN0irJw-0BY4ixia54oqhk3scaRkqlwPLCAOd6D0xfZ5I8L7os8xAwoRLSpSR6EGLhFaQ_OguSWLwXK6vmDsprkrQXkIjDVCzR4XAOTSkvGFEaDXFvECMIlPWB_yT1vzan-91cDM5nkB_837Qts3FyM8p_frn4cwsfFdmBRnB1Bp6mm7hiRRqM_t5vpGefCzzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+boundary+layer+treatments+at+different+Reynolds+scales&rft.jtitle=Open+Engineering+%28Warsaw%29&rft.au=Badano%2C+Nicol%C3%A1s+D.&rft.au=Men%C3%A9ndez%2C+Angel+N.&rft.date=2020-04-08&rft.issn=2391-5439&rft.eissn=2391-5439&rft.volume=10&rft.issue=1&rft.spage=295&rft.epage=310&rft_id=info:doi/10.1515%2Feng-2020-0033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_eng_2020_0033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5439&client=summon