CASNet: A Cross-Attention Siamese Network for Video Salient Object Detection

Recent works on video salient object detection have demonstrated that directly transferring the generalization ability of image-based models to video data without modeling spatial-temporal information remains nontrivial and challenging. Considering both intraframe accuracy and interframe consistency...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 6; pp. 2676 - 2690
Main Authors Ji, Yuzhu, Zhang, Haijun, Jie, Zequn, Ma, Lin, Jonathan Wu, Q. M.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2020.3007534

Cover

Loading…
Abstract Recent works on video salient object detection have demonstrated that directly transferring the generalization ability of image-based models to video data without modeling spatial-temporal information remains nontrivial and challenging. Considering both intraframe accuracy and interframe consistency of saliency detection, this article presents a novel cross-attention based encoder-decoder model under the Siamese framework (CASNet) for video salient object detection. A baseline encoder-decoder model trained with Lovász softmax loss function is adopted as a backbone network to guarantee the accuracy of intraframe salient object detection. Self- and cross-attention modules are incorporated into our model in order to preserve the saliency correlation and improve intraframe salient detection consistency. Extensive experimental results obtained by ablation analysis and cross-data set validation demonstrate the effectiveness of our proposed method. Quantitative results indicate that our CASNet model outperforms 19 state-of-the-art image- and video-based methods on six benchmark data sets.
AbstractList Recent works on video salient object detection have demonstrated that directly transferring the generalization ability of image-based models to video data without modeling spatial-temporal information remains nontrivial and challenging. Considering both intraframe accuracy and interframe consistency of saliency detection, this article presents a novel cross-attention based encoder–decoder model under the Siamese framework (CASNet) for video salient object detection. A baseline encoder–decoder model trained with Lovász softmax loss function is adopted as a backbone network to guarantee the accuracy of intraframe salient object detection. Self- and cross-attention modules are incorporated into our model in order to preserve the saliency correlation and improve intraframe salient detection consistency. Extensive experimental results obtained by ablation analysis and cross-data set validation demonstrate the effectiveness of our proposed method. Quantitative results indicate that our CASNet model outperforms 19 state-of-the-art image- and video-based methods on six benchmark data sets.
Recent works on video salient object detection have demonstrated that directly transferring the generalization ability of image-based models to video data without modeling spatial-temporal information remains nontrivial and challenging. Considering both intraframe accuracy and interframe consistency of saliency detection, this article presents a novel cross-attention based encoder-decoder model under the Siamese framework (CASNet) for video salient object detection. A baseline encoder-decoder model trained with Lovász softmax loss function is adopted as a backbone network to guarantee the accuracy of intraframe salient object detection. Self- and cross-attention modules are incorporated into our model in order to preserve the saliency correlation and improve intraframe salient detection consistency. Extensive experimental results obtained by ablation analysis and cross-data set validation demonstrate the effectiveness of our proposed method. Quantitative results indicate that our CASNet model outperforms 19 state-of-the-art image- and video-based methods on six benchmark data sets.Recent works on video salient object detection have demonstrated that directly transferring the generalization ability of image-based models to video data without modeling spatial-temporal information remains nontrivial and challenging. Considering both intraframe accuracy and interframe consistency of saliency detection, this article presents a novel cross-attention based encoder-decoder model under the Siamese framework (CASNet) for video salient object detection. A baseline encoder-decoder model trained with Lovász softmax loss function is adopted as a backbone network to guarantee the accuracy of intraframe salient object detection. Self- and cross-attention modules are incorporated into our model in order to preserve the saliency correlation and improve intraframe salient detection consistency. Extensive experimental results obtained by ablation analysis and cross-data set validation demonstrate the effectiveness of our proposed method. Quantitative results indicate that our CASNet model outperforms 19 state-of-the-art image- and video-based methods on six benchmark data sets.
Author Ma, Lin
Jonathan Wu, Q. M.
Jie, Zequn
Zhang, Haijun
Ji, Yuzhu
Author_xml – sequence: 1
  givenname: Yuzhu
  orcidid: 0000-0003-3589-3884
  surname: Ji
  fullname: Ji, Yuzhu
  organization: Harbin Institute of Technology, Shenzhen, China
– sequence: 2
  givenname: Haijun
  orcidid: 0000-0002-1648-0227
  surname: Zhang
  fullname: Zhang, Haijun
  email: hjzhang@hit.edu.cn
  organization: Harbin Institute of Technology, Shenzhen, China
– sequence: 3
  givenname: Zequn
  orcidid: 0000-0002-3038-5891
  surname: Jie
  fullname: Jie, Zequn
  organization: Tencent AI Lab, Shenzhen, China
– sequence: 4
  givenname: Lin
  orcidid: 0000-0002-7331-6132
  surname: Ma
  fullname: Ma, Lin
  organization: Tencent AI Lab, Shenzhen, China
– sequence: 5
  givenname: Q. M.
  orcidid: 0000-0002-5208-7975
  surname: Jonathan Wu
  fullname: Jonathan Wu, Q. M.
  organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada
BookMark eNp9kM1qGzEUhUVxaP78Au1GkE034-p_pOyMk7QF4yzslu6EZnwH5IxHjiQT-vaVa5OFF9XmCvQd3cN3jUZDGAChT5RMKCXm62qxmC8njDAy4YTUkosP6IpRxSrGtR693-vfl2ic0oaUo4hUwnxEl5wpw5QWV2g-my4XkO_xFM9iSKma5gxD9mHAS--2kACX57cQX3AXIv7l1xDw0vW-QPi52UCb8QPkMkrkFl10rk8wPs0b9PPpcTX7Xs2fv_2YTedVy43IVeN0w6kEKQVvRL0WpX0tCGjKddPWLUgna8KAOtV1a2NKZynWRDlOWiN4x2_Ql-O_uxhe95Cy3frUQt-7AcI-WSaYorU2si7o3Rm6Cfs4lHaWSa4IJ5LoQrEj1R4cROjsLvqti38sJfag2_7TbQ-67Ul3CemzUOuzO3jI0fn-_9HPx6gHgPddhgqpueZ_AZHniuY
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s10489_022_03813_9
crossref_primary_10_1007_s11633_023_1388_x
crossref_primary_10_1016_j_jbi_2024_104757
crossref_primary_10_1109_TMM_2023_3264883
crossref_primary_10_1109_TNNLS_2023_3264551
crossref_primary_10_3390_electronics12041043
crossref_primary_10_1109_TNNLS_2022_3209918
crossref_primary_10_1007_s11227_024_06753_y
crossref_primary_10_1007_s00521_021_05966_z
crossref_primary_10_3390_a17030109
crossref_primary_10_1007_s00521_021_05908_9
crossref_primary_10_1109_TNNLS_2024_3376563
crossref_primary_10_1016_j_eswa_2023_120739
crossref_primary_10_1016_j_ins_2022_05_092
crossref_primary_10_1016_j_jag_2023_103366
crossref_primary_10_1016_j_neucom_2022_03_029
crossref_primary_10_1109_TPAMI_2021_3122139
crossref_primary_10_1007_s00521_023_08956_5
crossref_primary_10_1109_TNNLS_2022_3230084
crossref_primary_10_1007_s11042_023_17614_w
crossref_primary_10_1007_s11760_024_03599_y
crossref_primary_10_1049_ipr2_12845
crossref_primary_10_1109_TETCI_2024_3353674
crossref_primary_10_3390_math12243984
crossref_primary_10_1109_TNNLS_2023_3298638
crossref_primary_10_1109_ACCESS_2022_3140215
crossref_primary_10_1007_s00530_024_01307_x
crossref_primary_10_1109_TNNLS_2020_3043808
crossref_primary_10_1080_03772063_2024_2370952
crossref_primary_10_1016_j_ijepes_2022_108567
crossref_primary_10_1016_j_neunet_2021_08_010
crossref_primary_10_1007_s00521_021_06857_z
crossref_primary_10_1007_s13735_024_00320_0
crossref_primary_10_1109_JBHI_2024_3407116
crossref_primary_10_1007_s11042_024_19006_0
crossref_primary_10_1016_j_engappai_2022_105108
crossref_primary_10_1109_ACCESS_2022_3185409
crossref_primary_10_2139_ssrn_4048771
crossref_primary_10_32604_cmc_2024_057859
crossref_primary_10_1109_TCSVT_2023_3278410
crossref_primary_10_1109_TII_2023_3327341
crossref_primary_10_1007_s13735_024_00331_x
crossref_primary_10_1016_j_ins_2022_07_013
crossref_primary_10_1016_j_eswa_2022_117924
crossref_primary_10_1016_j_eswa_2023_121642
crossref_primary_10_1007_s00521_020_05545_8
crossref_primary_10_1007_s11760_024_03319_6
crossref_primary_10_1016_j_patcog_2023_109816
crossref_primary_10_1007_s00521_021_06559_6
crossref_primary_10_1109_TMM_2024_3369922
crossref_primary_10_1007_s11845_023_03570_9
crossref_primary_10_1007_s00521_021_06221_1
crossref_primary_10_1109_TNNLS_2021_3113657
crossref_primary_10_1142_S0218001422520024
crossref_primary_10_1109_TNNLS_2023_3332065
crossref_primary_10_1007_s00521_020_05630_y
crossref_primary_10_1007_s13369_022_06843_0
crossref_primary_10_1007_s11042_023_17009_x
crossref_primary_10_1007_s00521_020_05669_x
crossref_primary_10_1016_j_engappai_2023_106474
crossref_primary_10_1109_TNNLS_2024_3357118
crossref_primary_10_1007_s13735_025_00361_z
crossref_primary_10_1016_j_ins_2021_10_055
crossref_primary_10_1007_s11263_021_01490_8
crossref_primary_10_1109_TNNLS_2023_3243246
crossref_primary_10_1109_JSEN_2024_3519153
crossref_primary_10_3389_fcvm_2021_785523
crossref_primary_10_1109_TIM_2022_3169567
crossref_primary_10_1109_TNNLS_2023_3319323
crossref_primary_10_1016_j_eswa_2022_117420
crossref_primary_10_1109_TETCI_2022_3220250
crossref_primary_10_1007_s11042_024_18126_x
crossref_primary_10_3390_machines12110786
crossref_primary_10_1016_j_ijepes_2024_109951
crossref_primary_10_1109_LSP_2021_3103666
crossref_primary_10_1016_j_eswa_2023_120970
Cites_doi 10.1109/CVPR.2018.00342
10.1109/TIP.2017.2754941
10.1109/CVPR.2019.00875
10.1109/CVPR.2016.85
10.1109/CVPR.2017.106
10.1016/j.neucom.2018.09.061
10.1109/CVPR.2017.667
10.1109/TCSVT.2016.2595324
10.1007/978-3-030-01267-0_12
10.1109/CVPR.2014.360
10.1109/TPAMI.2018.2815688
10.1109/ICCV.2019.00736
10.1109/CVPR.2018.00326
10.1007/978-3-030-01228-1_26
10.1109/CVPR.2018.00388
10.1109/ICCV.2017.433
10.1109/CVPR.2018.00813
10.1109/TIP.2016.2602079
10.1109/ICCV.2019.00390
10.24963/ijcai.2018/97
10.1109/ICCV.2015.165
10.1109/CVPR.2016.78
10.1109/CVPR.2018.00184
10.1109/CVPR.2017.441
10.1109/CVPR.2017.660
10.1109/ICCV.2013.273
10.1109/CVPR.2019.00326
10.1007/s11263-016-0977-3
10.18653/v1/D16-1244
10.1109/CVPR.2018.00514
10.1109/ICCV.2017.31
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2015.7298731
10.1109/CVPR.2013.407
10.1109/TIP.2017.2762594
10.1007/978-3-030-01252-6_44
10.1109/TPAMI.2016.2572683
10.1007/978-3-642-15555-0_21
10.1109/ICCV.2015.316
10.1109/CVPR.2016.58
10.1109/TIP.2018.2851672
10.1109/TPAMI.2016.2599174
10.1109/CVPR.2018.00081
10.1109/CVPR.2017.683
10.1109/ICCV.2017.32
10.1109/CVPR.2017.404
10.1007/s41095-019-0149-9
10.1109/CVPR.2018.00745
10.1109/TPAMI.2017.2699184
10.1109/TIP.2017.2670143
10.1109/TPAMI.2010.70
10.1007/s11263-017-1004-z
10.1109/ICCV.2017.487
10.18653/v1/D16-1053
10.1109/CVPR.2013.87
10.1109/CVPR.2016.80
10.1109/TIP.2015.2460013
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3007534
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2690
ExternalDocumentID 10_1109_TNNLS_2020_3007534
9145838
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61972112; 61832004
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB1003800; 2018YFB1003805
  funderid: 10.13039/501100012166
– fundername: Shenzhen Science and Technology Program
  grantid: JCYJ20170413105929681; JCYJ20170811161545863
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c394t-ba8b315e5543b47d4753740e8138bc7ce5a5702e1a6ffd9964954d06a30c943f3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 03:40:41 EDT 2025
Mon Jun 30 03:29:06 EDT 2025
Tue Jul 01 00:27:34 EDT 2025
Thu Apr 24 23:00:10 EDT 2025
Wed Aug 27 02:29:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-ba8b315e5543b47d4753740e8138bc7ce5a5702e1a6ffd9964954d06a30c943f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5208-7975
0000-0003-3589-3884
0000-0002-1648-0227
0000-0002-7331-6132
0000-0002-3038-5891
PMID 32692684
PQID 2536030508
PQPubID 85436
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2020_3007534
proquest_miscellaneous_2426178957
proquest_journals_2536030508
crossref_primary_10_1109_TNNLS_2020_3007534
ieee_primary_9145838
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
xingjian (ref21) 2015
ref55
ref11
ref54
ref10
vaswani (ref39) 2017
ref17
ref16
ref19
ref18
ref50
zhang (ref45) 2019
ref46
qin (ref61) 2015
ref47
jiang (ref30) 2017
yuan (ref38) 2018
ref41
ref44
ref43
berman (ref51) 2018
mnih (ref1) 2014
ref49
ref7
ref9
ref4
ref3
ref6
ref5
simonyan (ref28) 2014
ref40
ref35
ref34
liu (ref24) 2011; 33
ref37
ref36
ref31
ref33
ref2
ref70
ref68
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref27
ref29
chen (ref8) 2015
ref60
liu (ref48) 2015
ref62
paulus (ref42) 2018
bahdanau (ref32) 2015
References_xml – year: 2017
  ident: ref30
  article-title: Predicting video saliency with object-to-motion CNN and two-layer convolutional LSTM
  publication-title: arXiv 1709 06316
– start-page: 5998
  year: 2017
  ident: ref39
  article-title: Attention is all you need
  publication-title: Proc NIPS
– ident: ref7
  doi: 10.1109/CVPR.2018.00342
– ident: ref25
  doi: 10.1109/TIP.2017.2754941
– ident: ref26
  doi: 10.1109/CVPR.2019.00875
– ident: ref53
  doi: 10.1109/CVPR.2016.85
– ident: ref52
  doi: 10.1109/CVPR.2017.106
– ident: ref16
  doi: 10.1016/j.neucom.2018.09.061
– ident: ref33
  doi: 10.1109/CVPR.2017.667
– ident: ref54
  doi: 10.1109/TCSVT.2016.2595324
– ident: ref3
  doi: 10.1007/978-3-030-01267-0_12
– ident: ref58
  doi: 10.1109/CVPR.2014.360
– start-page: 568
  year: 2014
  ident: ref28
  article-title: Two-stream convolutional networks for action recognition in videos
  publication-title: Proc NIPS
– ident: ref18
  doi: 10.1109/TPAMI.2018.2815688
– ident: ref5
  doi: 10.1109/ICCV.2019.00736
– ident: ref6
  doi: 10.1109/CVPR.2018.00326
– ident: ref47
  doi: 10.1007/978-3-030-01228-1_26
– start-page: 802
  year: 2015
  ident: ref21
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Proc NIPS
– ident: ref37
  doi: 10.1109/CVPR.2018.00388
– ident: ref67
  doi: 10.1109/ICCV.2017.433
– ident: ref43
  doi: 10.1109/CVPR.2018.00813
– ident: ref65
  doi: 10.1109/TIP.2016.2602079
– ident: ref4
  doi: 10.1109/ICCV.2019.00390
– start-page: 4413
  year: 2018
  ident: ref51
  article-title: The Lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks
  publication-title: Proc CVPR
– ident: ref70
  doi: 10.24963/ijcai.2018/97
– ident: ref63
  doi: 10.1109/ICCV.2015.165
– ident: ref23
  doi: 10.1109/CVPR.2016.78
– ident: ref20
  doi: 10.1109/CVPR.2018.00184
– ident: ref27
  doi: 10.1109/CVPR.2017.441
– ident: ref46
  doi: 10.1109/CVPR.2017.660
– start-page: 1
  year: 2015
  ident: ref8
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: Proc ICLR
– ident: ref56
  doi: 10.1109/ICCV.2013.273
– start-page: 2204
  year: 2014
  ident: ref1
  article-title: Recurrent models of visual attention
  publication-title: Proc NIPS
– ident: ref44
  doi: 10.1109/CVPR.2019.00326
– ident: ref62
  doi: 10.1007/s11263-016-0977-3
– ident: ref41
  doi: 10.18653/v1/D16-1244
– ident: ref13
  doi: 10.1109/CVPR.2018.00514
– ident: ref66
  doi: 10.1109/ICCV.2017.31
– ident: ref9
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref22
  doi: 10.1109/CVPR.2015.7298731
– ident: ref60
  doi: 10.1109/CVPR.2013.407
– ident: ref55
  doi: 10.1109/TIP.2017.2762594
– ident: ref68
  doi: 10.1007/978-3-030-01252-6_44
– ident: ref10
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref57
  doi: 10.1007/978-3-642-15555-0_21
– ident: ref31
  doi: 10.1109/ICCV.2015.316
– ident: ref64
  doi: 10.1109/CVPR.2016.58
– ident: ref49
  doi: 10.1109/TIP.2018.2851672
– ident: ref12
  doi: 10.1109/TPAMI.2016.2599174
– ident: ref34
  doi: 10.1109/CVPR.2018.00081
– ident: ref35
  doi: 10.1109/CVPR.2017.683
– ident: ref50
  doi: 10.1109/ICCV.2017.32
– ident: ref59
  doi: 10.1109/CVPR.2017.404
– ident: ref2
  doi: 10.1007/s41095-019-0149-9
– ident: ref36
  doi: 10.1109/CVPR.2018.00745
– ident: ref11
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref14
  doi: 10.1109/TIP.2017.2670143
– start-page: 362
  year: 2015
  ident: ref48
  article-title: Predicting eye fixations using convolutional neural networks
  publication-title: Proc CVPR
– start-page: 1
  year: 2015
  ident: ref32
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Proc ICLR
– volume: 33
  start-page: 353
  year: 2011
  ident: ref24
  article-title: Learning to detect a salient object
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.70
– ident: ref19
  doi: 10.1007/s11263-017-1004-z
– ident: ref69
  doi: 10.1109/ICCV.2017.487
– start-page: 7354
  year: 2019
  ident: ref45
  article-title: Self-attention generative adversarial networks
  publication-title: Proc ICML
– ident: ref40
  doi: 10.18653/v1/D16-1053
– ident: ref29
  doi: 10.1109/CVPR.2013.87
– ident: ref17
  doi: 10.1109/CVPR.2016.80
– start-page: 110
  year: 2015
  ident: ref61
  article-title: Saliency detection via cellular automata
  publication-title: Proc CVPR
– ident: ref15
  doi: 10.1109/TIP.2015.2460013
– start-page: 1
  year: 2018
  ident: ref42
  article-title: A deep reinforced model for abstractive summarization
  publication-title: Proc ICLR
– year: 2018
  ident: ref38
  article-title: OCNet: Object context network for scene parsing
  publication-title: arXiv 1809 00916
SSID ssj0000605649
Score 2.6172154
Snippet Recent works on video salient object detection have demonstrated that directly transferring the generalization ability of image-based models to video data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2676
SubjectTerms Ablation
Artificial neural networks
Coders
Computational modeling
Computer networks
Consistency
Cross attention
Data models
Datasets
Feature extraction
inter and intraframe saliency
Object detection
Object oriented modeling
Object recognition
Optical imaging
Salience
Saliency detection
salient object
Spatial data
Video data
video saliency
Title CASNet: A Cross-Attention Siamese Network for Video Salient Object Detection
URI https://ieeexplore.ieee.org/document/9145838
https://www.proquest.com/docview/2536030508
https://www.proquest.com/docview/2426178957
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrhQoEUsFORK3Eq2dpzEMbfVQlVVbThsW-0t8mMiVUVZBNkLv54Z5yGVVohbJE8Sx2Nnvm8842Hso0itVgFCYiyl5KBNTcqQukSY0DhQ1kpHucNXVXF-k12s8_UO-zTlwgBADD6DOV3Gvfyw8VtylZ0aGXf5dtkuErc-V2vypwjE5UVEu6nEt6ZKr8ccGWFOr6vqcoVsMEWSSlZSUT0eRC6GDjt5YJJijZVHP-Zobc722dXYzz7I5H6-7dzc__7rCMf__ZAX7PkAO_minycv2Q60r9j-WNKBDyv8gF0uF6sKus98wZfU2WTRdX1AJF_dUUAt8KoPHOeIdvntXYANXyGWRyH-zZFTh3-BLsZ3tYfs5uzr9fI8GQouJF6ZrEucLZ2SOSDEUC7TIcOB0pmAUqrSee0ht7kWKUhbNE1ApoTsKguisEp4k6lGvWZ77aaFN4yXyktQeYb4SSEDFE4CUj-VN1YKl3o9Y3Ic89oPp5FTUYzvdWQlwtRRZTWprB5UNmMn0z0_-rM4_il9QAM_SQ5jPmNHo2rrYbn-qrGTBf35BDYfT8240Gj3xLaw2aIMkU1dmly_ffrJ79izlAJeoovmiO11P7fwHhFL5z7EqfoHmizibA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBQrqllKMxA2yteO8zG21UC2wGw67RXuL_JhIFSiLIHvpr2fsPCQeQr1F8iRxZuzMN-N5ALzisc6lQxcp7VNySKdGhYtNxJWrDUqthfG5w6syW1wlH7fp9gDejLkwiBiCz3DqL8NZvtvZvXeVXSgRTvnuwF3S-6nosrVGjwonZJ4FvBsLem8s8-2QJcPVxaYsl2uyB2MyU72elL4jD2EX5cud_KaUQpeVv37NQd9cHsFqmGkXZvJ1um_N1N78UcTxtp_yEB70wJPNupXyCA6weQxHQ1MH1u_xY1jOZ-sS27dsxuZ-stGsbbuQSLa-9iG1yMoudJwR3mVfrh3u2JrQPBGxz8a7ddg7bEOEV_MEri7fb-aLqG-5EFmpkjYyujBSpEggQ5okdwkxKk84FkIWxuYWU53mPEahs7p2ZCuRfZU4nmnJrUpkLZ_CYbNr8ARYIa1AmSaEoCTZgNwIJONPprUW3MQ2n4AYeF7Zvh65b4vxrQp2CVdVEFnlRVb1IpvA6_Ge7101jv9SH3vGj5Q9zydwNoi26jfsz4ommfl_H6fhl-MwbTV_fqIb3O2JxpubeaHS_PTfT34B9xab1bJafig_PYP7sQ9_CQ6bMzhsf-zxOeGX1pyHZfsLl93ltQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CASNet%3A+A+Cross-Attention+Siamese+Network+for+Video+Salient+Object+Detection&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Ji%2C+Yuzhu&rft.au=Zhang%2C+Haijun&rft.au=Jie%2C+Zequn&rft.au=Ma%2C+Lin&rft.date=2021-06-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=32&rft.issue=6&rft.spage=2676&rft.epage=2690&rft_id=info:doi/10.1109%2FTNNLS.2020.3007534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2020_3007534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon