CASNet: A Cross-Attention Siamese Network for Video Salient Object Detection
Recent works on video salient object detection have demonstrated that directly transferring the generalization ability of image-based models to video data without modeling spatial-temporal information remains nontrivial and challenging. Considering both intraframe accuracy and interframe consistency...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 6; pp. 2676 - 2690 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2020.3007534 |
Cover
Loading…
Abstract | Recent works on video salient object detection have demonstrated that directly transferring the generalization ability of image-based models to video data without modeling spatial-temporal information remains nontrivial and challenging. Considering both intraframe accuracy and interframe consistency of saliency detection, this article presents a novel cross-attention based encoder-decoder model under the Siamese framework (CASNet) for video salient object detection. A baseline encoder-decoder model trained with Lovász softmax loss function is adopted as a backbone network to guarantee the accuracy of intraframe salient object detection. Self- and cross-attention modules are incorporated into our model in order to preserve the saliency correlation and improve intraframe salient detection consistency. Extensive experimental results obtained by ablation analysis and cross-data set validation demonstrate the effectiveness of our proposed method. Quantitative results indicate that our CASNet model outperforms 19 state-of-the-art image- and video-based methods on six benchmark data sets. |
---|---|
AbstractList | Recent works on video salient object detection have demonstrated that directly transferring the generalization ability of image-based models to video data without modeling spatial-temporal information remains nontrivial and challenging. Considering both intraframe accuracy and interframe consistency of saliency detection, this article presents a novel cross-attention based encoder–decoder model under the Siamese framework (CASNet) for video salient object detection. A baseline encoder–decoder model trained with Lovász softmax loss function is adopted as a backbone network to guarantee the accuracy of intraframe salient object detection. Self- and cross-attention modules are incorporated into our model in order to preserve the saliency correlation and improve intraframe salient detection consistency. Extensive experimental results obtained by ablation analysis and cross-data set validation demonstrate the effectiveness of our proposed method. Quantitative results indicate that our CASNet model outperforms 19 state-of-the-art image- and video-based methods on six benchmark data sets. Recent works on video salient object detection have demonstrated that directly transferring the generalization ability of image-based models to video data without modeling spatial-temporal information remains nontrivial and challenging. Considering both intraframe accuracy and interframe consistency of saliency detection, this article presents a novel cross-attention based encoder-decoder model under the Siamese framework (CASNet) for video salient object detection. A baseline encoder-decoder model trained with Lovász softmax loss function is adopted as a backbone network to guarantee the accuracy of intraframe salient object detection. Self- and cross-attention modules are incorporated into our model in order to preserve the saliency correlation and improve intraframe salient detection consistency. Extensive experimental results obtained by ablation analysis and cross-data set validation demonstrate the effectiveness of our proposed method. Quantitative results indicate that our CASNet model outperforms 19 state-of-the-art image- and video-based methods on six benchmark data sets.Recent works on video salient object detection have demonstrated that directly transferring the generalization ability of image-based models to video data without modeling spatial-temporal information remains nontrivial and challenging. Considering both intraframe accuracy and interframe consistency of saliency detection, this article presents a novel cross-attention based encoder-decoder model under the Siamese framework (CASNet) for video salient object detection. A baseline encoder-decoder model trained with Lovász softmax loss function is adopted as a backbone network to guarantee the accuracy of intraframe salient object detection. Self- and cross-attention modules are incorporated into our model in order to preserve the saliency correlation and improve intraframe salient detection consistency. Extensive experimental results obtained by ablation analysis and cross-data set validation demonstrate the effectiveness of our proposed method. Quantitative results indicate that our CASNet model outperforms 19 state-of-the-art image- and video-based methods on six benchmark data sets. |
Author | Ma, Lin Jonathan Wu, Q. M. Jie, Zequn Zhang, Haijun Ji, Yuzhu |
Author_xml | – sequence: 1 givenname: Yuzhu orcidid: 0000-0003-3589-3884 surname: Ji fullname: Ji, Yuzhu organization: Harbin Institute of Technology, Shenzhen, China – sequence: 2 givenname: Haijun orcidid: 0000-0002-1648-0227 surname: Zhang fullname: Zhang, Haijun email: hjzhang@hit.edu.cn organization: Harbin Institute of Technology, Shenzhen, China – sequence: 3 givenname: Zequn orcidid: 0000-0002-3038-5891 surname: Jie fullname: Jie, Zequn organization: Tencent AI Lab, Shenzhen, China – sequence: 4 givenname: Lin orcidid: 0000-0002-7331-6132 surname: Ma fullname: Ma, Lin organization: Tencent AI Lab, Shenzhen, China – sequence: 5 givenname: Q. M. orcidid: 0000-0002-5208-7975 surname: Jonathan Wu fullname: Jonathan Wu, Q. M. organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada |
BookMark | eNp9kM1qGzEUhUVxaP78Au1GkE034-p_pOyMk7QF4yzslu6EZnwH5IxHjiQT-vaVa5OFF9XmCvQd3cN3jUZDGAChT5RMKCXm62qxmC8njDAy4YTUkosP6IpRxSrGtR693-vfl2ic0oaUo4hUwnxEl5wpw5QWV2g-my4XkO_xFM9iSKma5gxD9mHAS--2kACX57cQX3AXIv7l1xDw0vW-QPi52UCb8QPkMkrkFl10rk8wPs0b9PPpcTX7Xs2fv_2YTedVy43IVeN0w6kEKQVvRL0WpX0tCGjKddPWLUgna8KAOtV1a2NKZynWRDlOWiN4x2_Ql-O_uxhe95Cy3frUQt-7AcI-WSaYorU2si7o3Rm6Cfs4lHaWSa4IJ5LoQrEj1R4cROjsLvqti38sJfag2_7TbQ-67Ul3CemzUOuzO3jI0fn-_9HPx6gHgPddhgqpueZ_AZHniuY |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1007_s10489_022_03813_9 crossref_primary_10_1007_s11633_023_1388_x crossref_primary_10_1016_j_jbi_2024_104757 crossref_primary_10_1109_TMM_2023_3264883 crossref_primary_10_1109_TNNLS_2023_3264551 crossref_primary_10_3390_electronics12041043 crossref_primary_10_1109_TNNLS_2022_3209918 crossref_primary_10_1007_s11227_024_06753_y crossref_primary_10_1007_s00521_021_05966_z crossref_primary_10_3390_a17030109 crossref_primary_10_1007_s00521_021_05908_9 crossref_primary_10_1109_TNNLS_2024_3376563 crossref_primary_10_1016_j_eswa_2023_120739 crossref_primary_10_1016_j_ins_2022_05_092 crossref_primary_10_1016_j_jag_2023_103366 crossref_primary_10_1016_j_neucom_2022_03_029 crossref_primary_10_1109_TPAMI_2021_3122139 crossref_primary_10_1007_s00521_023_08956_5 crossref_primary_10_1109_TNNLS_2022_3230084 crossref_primary_10_1007_s11042_023_17614_w crossref_primary_10_1007_s11760_024_03599_y crossref_primary_10_1049_ipr2_12845 crossref_primary_10_1109_TETCI_2024_3353674 crossref_primary_10_3390_math12243984 crossref_primary_10_1109_TNNLS_2023_3298638 crossref_primary_10_1109_ACCESS_2022_3140215 crossref_primary_10_1007_s00530_024_01307_x crossref_primary_10_1109_TNNLS_2020_3043808 crossref_primary_10_1080_03772063_2024_2370952 crossref_primary_10_1016_j_ijepes_2022_108567 crossref_primary_10_1016_j_neunet_2021_08_010 crossref_primary_10_1007_s00521_021_06857_z crossref_primary_10_1007_s13735_024_00320_0 crossref_primary_10_1109_JBHI_2024_3407116 crossref_primary_10_1007_s11042_024_19006_0 crossref_primary_10_1016_j_engappai_2022_105108 crossref_primary_10_1109_ACCESS_2022_3185409 crossref_primary_10_2139_ssrn_4048771 crossref_primary_10_32604_cmc_2024_057859 crossref_primary_10_1109_TCSVT_2023_3278410 crossref_primary_10_1109_TII_2023_3327341 crossref_primary_10_1007_s13735_024_00331_x crossref_primary_10_1016_j_ins_2022_07_013 crossref_primary_10_1016_j_eswa_2022_117924 crossref_primary_10_1016_j_eswa_2023_121642 crossref_primary_10_1007_s00521_020_05545_8 crossref_primary_10_1007_s11760_024_03319_6 crossref_primary_10_1016_j_patcog_2023_109816 crossref_primary_10_1007_s00521_021_06559_6 crossref_primary_10_1109_TMM_2024_3369922 crossref_primary_10_1007_s11845_023_03570_9 crossref_primary_10_1007_s00521_021_06221_1 crossref_primary_10_1109_TNNLS_2021_3113657 crossref_primary_10_1142_S0218001422520024 crossref_primary_10_1109_TNNLS_2023_3332065 crossref_primary_10_1007_s00521_020_05630_y crossref_primary_10_1007_s13369_022_06843_0 crossref_primary_10_1007_s11042_023_17009_x crossref_primary_10_1007_s00521_020_05669_x crossref_primary_10_1016_j_engappai_2023_106474 crossref_primary_10_1109_TNNLS_2024_3357118 crossref_primary_10_1007_s13735_025_00361_z crossref_primary_10_1016_j_ins_2021_10_055 crossref_primary_10_1007_s11263_021_01490_8 crossref_primary_10_1109_TNNLS_2023_3243246 crossref_primary_10_1109_JSEN_2024_3519153 crossref_primary_10_3389_fcvm_2021_785523 crossref_primary_10_1109_TIM_2022_3169567 crossref_primary_10_1109_TNNLS_2023_3319323 crossref_primary_10_1016_j_eswa_2022_117420 crossref_primary_10_1109_TETCI_2022_3220250 crossref_primary_10_1007_s11042_024_18126_x crossref_primary_10_3390_machines12110786 crossref_primary_10_1016_j_ijepes_2024_109951 crossref_primary_10_1109_LSP_2021_3103666 crossref_primary_10_1016_j_eswa_2023_120970 |
Cites_doi | 10.1109/CVPR.2018.00342 10.1109/TIP.2017.2754941 10.1109/CVPR.2019.00875 10.1109/CVPR.2016.85 10.1109/CVPR.2017.106 10.1016/j.neucom.2018.09.061 10.1109/CVPR.2017.667 10.1109/TCSVT.2016.2595324 10.1007/978-3-030-01267-0_12 10.1109/CVPR.2014.360 10.1109/TPAMI.2018.2815688 10.1109/ICCV.2019.00736 10.1109/CVPR.2018.00326 10.1007/978-3-030-01228-1_26 10.1109/CVPR.2018.00388 10.1109/ICCV.2017.433 10.1109/CVPR.2018.00813 10.1109/TIP.2016.2602079 10.1109/ICCV.2019.00390 10.24963/ijcai.2018/97 10.1109/ICCV.2015.165 10.1109/CVPR.2016.78 10.1109/CVPR.2018.00184 10.1109/CVPR.2017.441 10.1109/CVPR.2017.660 10.1109/ICCV.2013.273 10.1109/CVPR.2019.00326 10.1007/s11263-016-0977-3 10.18653/v1/D16-1244 10.1109/CVPR.2018.00514 10.1109/ICCV.2017.31 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2015.7298731 10.1109/CVPR.2013.407 10.1109/TIP.2017.2762594 10.1007/978-3-030-01252-6_44 10.1109/TPAMI.2016.2572683 10.1007/978-3-642-15555-0_21 10.1109/ICCV.2015.316 10.1109/CVPR.2016.58 10.1109/TIP.2018.2851672 10.1109/TPAMI.2016.2599174 10.1109/CVPR.2018.00081 10.1109/CVPR.2017.683 10.1109/ICCV.2017.32 10.1109/CVPR.2017.404 10.1007/s41095-019-0149-9 10.1109/CVPR.2018.00745 10.1109/TPAMI.2017.2699184 10.1109/TIP.2017.2670143 10.1109/TPAMI.2010.70 10.1007/s11263-017-1004-z 10.1109/ICCV.2017.487 10.18653/v1/D16-1053 10.1109/CVPR.2013.87 10.1109/CVPR.2016.80 10.1109/TIP.2015.2460013 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2020.3007534 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 2690 |
ExternalDocumentID | 10_1109_TNNLS_2020_3007534 9145838 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61972112; 61832004 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2018YFB1003800; 2018YFB1003805 funderid: 10.13039/501100012166 – fundername: Shenzhen Science and Technology Program grantid: JCYJ20170413105929681; JCYJ20170811161545863 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c394t-ba8b315e5543b47d4753740e8138bc7ce5a5702e1a6ffd9964954d06a30c943f3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 03:40:41 EDT 2025 Mon Jun 30 03:29:06 EDT 2025 Tue Jul 01 00:27:34 EDT 2025 Thu Apr 24 23:00:10 EDT 2025 Wed Aug 27 02:29:54 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-ba8b315e5543b47d4753740e8138bc7ce5a5702e1a6ffd9964954d06a30c943f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5208-7975 0000-0003-3589-3884 0000-0002-1648-0227 0000-0002-7331-6132 0000-0002-3038-5891 |
PMID | 32692684 |
PQID | 2536030508 |
PQPubID | 85436 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2020_3007534 proquest_miscellaneous_2426178957 proquest_journals_2536030508 crossref_primary_10_1109_TNNLS_2020_3007534 ieee_primary_9145838 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 xingjian (ref21) 2015 ref55 ref11 ref54 ref10 vaswani (ref39) 2017 ref17 ref16 ref19 ref18 ref50 zhang (ref45) 2019 ref46 qin (ref61) 2015 ref47 jiang (ref30) 2017 yuan (ref38) 2018 ref41 ref44 ref43 berman (ref51) 2018 mnih (ref1) 2014 ref49 ref7 ref9 ref4 ref3 ref6 ref5 simonyan (ref28) 2014 ref40 ref35 ref34 liu (ref24) 2011; 33 ref37 ref36 ref31 ref33 ref2 ref70 ref68 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref27 ref29 chen (ref8) 2015 ref60 liu (ref48) 2015 ref62 paulus (ref42) 2018 bahdanau (ref32) 2015 |
References_xml | – year: 2017 ident: ref30 article-title: Predicting video saliency with object-to-motion CNN and two-layer convolutional LSTM publication-title: arXiv 1709 06316 – start-page: 5998 year: 2017 ident: ref39 article-title: Attention is all you need publication-title: Proc NIPS – ident: ref7 doi: 10.1109/CVPR.2018.00342 – ident: ref25 doi: 10.1109/TIP.2017.2754941 – ident: ref26 doi: 10.1109/CVPR.2019.00875 – ident: ref53 doi: 10.1109/CVPR.2016.85 – ident: ref52 doi: 10.1109/CVPR.2017.106 – ident: ref16 doi: 10.1016/j.neucom.2018.09.061 – ident: ref33 doi: 10.1109/CVPR.2017.667 – ident: ref54 doi: 10.1109/TCSVT.2016.2595324 – ident: ref3 doi: 10.1007/978-3-030-01267-0_12 – ident: ref58 doi: 10.1109/CVPR.2014.360 – start-page: 568 year: 2014 ident: ref28 article-title: Two-stream convolutional networks for action recognition in videos publication-title: Proc NIPS – ident: ref18 doi: 10.1109/TPAMI.2018.2815688 – ident: ref5 doi: 10.1109/ICCV.2019.00736 – ident: ref6 doi: 10.1109/CVPR.2018.00326 – ident: ref47 doi: 10.1007/978-3-030-01228-1_26 – start-page: 802 year: 2015 ident: ref21 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Proc NIPS – ident: ref37 doi: 10.1109/CVPR.2018.00388 – ident: ref67 doi: 10.1109/ICCV.2017.433 – ident: ref43 doi: 10.1109/CVPR.2018.00813 – ident: ref65 doi: 10.1109/TIP.2016.2602079 – ident: ref4 doi: 10.1109/ICCV.2019.00390 – start-page: 4413 year: 2018 ident: ref51 article-title: The Lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks publication-title: Proc CVPR – ident: ref70 doi: 10.24963/ijcai.2018/97 – ident: ref63 doi: 10.1109/ICCV.2015.165 – ident: ref23 doi: 10.1109/CVPR.2016.78 – ident: ref20 doi: 10.1109/CVPR.2018.00184 – ident: ref27 doi: 10.1109/CVPR.2017.441 – ident: ref46 doi: 10.1109/CVPR.2017.660 – start-page: 1 year: 2015 ident: ref8 article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs publication-title: Proc ICLR – ident: ref56 doi: 10.1109/ICCV.2013.273 – start-page: 2204 year: 2014 ident: ref1 article-title: Recurrent models of visual attention publication-title: Proc NIPS – ident: ref44 doi: 10.1109/CVPR.2019.00326 – ident: ref62 doi: 10.1007/s11263-016-0977-3 – ident: ref41 doi: 10.18653/v1/D16-1244 – ident: ref13 doi: 10.1109/CVPR.2018.00514 – ident: ref66 doi: 10.1109/ICCV.2017.31 – ident: ref9 doi: 10.1007/978-3-319-24574-4_28 – ident: ref22 doi: 10.1109/CVPR.2015.7298731 – ident: ref60 doi: 10.1109/CVPR.2013.407 – ident: ref55 doi: 10.1109/TIP.2017.2762594 – ident: ref68 doi: 10.1007/978-3-030-01252-6_44 – ident: ref10 doi: 10.1109/TPAMI.2016.2572683 – ident: ref57 doi: 10.1007/978-3-642-15555-0_21 – ident: ref31 doi: 10.1109/ICCV.2015.316 – ident: ref64 doi: 10.1109/CVPR.2016.58 – ident: ref49 doi: 10.1109/TIP.2018.2851672 – ident: ref12 doi: 10.1109/TPAMI.2016.2599174 – ident: ref34 doi: 10.1109/CVPR.2018.00081 – ident: ref35 doi: 10.1109/CVPR.2017.683 – ident: ref50 doi: 10.1109/ICCV.2017.32 – ident: ref59 doi: 10.1109/CVPR.2017.404 – ident: ref2 doi: 10.1007/s41095-019-0149-9 – ident: ref36 doi: 10.1109/CVPR.2018.00745 – ident: ref11 doi: 10.1109/TPAMI.2017.2699184 – ident: ref14 doi: 10.1109/TIP.2017.2670143 – start-page: 362 year: 2015 ident: ref48 article-title: Predicting eye fixations using convolutional neural networks publication-title: Proc CVPR – start-page: 1 year: 2015 ident: ref32 article-title: Neural machine translation by jointly learning to align and translate publication-title: Proc ICLR – volume: 33 start-page: 353 year: 2011 ident: ref24 article-title: Learning to detect a salient object publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.70 – ident: ref19 doi: 10.1007/s11263-017-1004-z – ident: ref69 doi: 10.1109/ICCV.2017.487 – start-page: 7354 year: 2019 ident: ref45 article-title: Self-attention generative adversarial networks publication-title: Proc ICML – ident: ref40 doi: 10.18653/v1/D16-1053 – ident: ref29 doi: 10.1109/CVPR.2013.87 – ident: ref17 doi: 10.1109/CVPR.2016.80 – start-page: 110 year: 2015 ident: ref61 article-title: Saliency detection via cellular automata publication-title: Proc CVPR – ident: ref15 doi: 10.1109/TIP.2015.2460013 – start-page: 1 year: 2018 ident: ref42 article-title: A deep reinforced model for abstractive summarization publication-title: Proc ICLR – year: 2018 ident: ref38 article-title: OCNet: Object context network for scene parsing publication-title: arXiv 1809 00916 |
SSID | ssj0000605649 |
Score | 2.6172154 |
Snippet | Recent works on video salient object detection have demonstrated that directly transferring the generalization ability of image-based models to video data... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2676 |
SubjectTerms | Ablation Artificial neural networks Coders Computational modeling Computer networks Consistency Cross attention Data models Datasets Feature extraction inter and intraframe saliency Object detection Object oriented modeling Object recognition Optical imaging Salience Saliency detection salient object Spatial data Video data video saliency |
Title | CASNet: A Cross-Attention Siamese Network for Video Salient Object Detection |
URI | https://ieeexplore.ieee.org/document/9145838 https://www.proquest.com/docview/2536030508 https://www.proquest.com/docview/2426178957 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrhQoEUsFORK3Eq2dpzEMbfVQlVVbThsW-0t8mMiVUVZBNkLv54Z5yGVVohbJE8Sx2Nnvm8842Hso0itVgFCYiyl5KBNTcqQukSY0DhQ1kpHucNXVXF-k12s8_UO-zTlwgBADD6DOV3Gvfyw8VtylZ0aGXf5dtkuErc-V2vypwjE5UVEu6nEt6ZKr8ccGWFOr6vqcoVsMEWSSlZSUT0eRC6GDjt5YJJijZVHP-Zobc722dXYzz7I5H6-7dzc__7rCMf__ZAX7PkAO_minycv2Q60r9j-WNKBDyv8gF0uF6sKus98wZfU2WTRdX1AJF_dUUAt8KoPHOeIdvntXYANXyGWRyH-zZFTh3-BLsZ3tYfs5uzr9fI8GQouJF6ZrEucLZ2SOSDEUC7TIcOB0pmAUqrSee0ht7kWKUhbNE1ApoTsKguisEp4k6lGvWZ77aaFN4yXyktQeYb4SSEDFE4CUj-VN1YKl3o9Y3Ic89oPp5FTUYzvdWQlwtRRZTWprB5UNmMn0z0_-rM4_il9QAM_SQ5jPmNHo2rrYbn-qrGTBf35BDYfT8240Gj3xLaw2aIMkU1dmly_ffrJ79izlAJeoovmiO11P7fwHhFL5z7EqfoHmizibA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBQrqllKMxA2yteO8zG21UC2wGw67RXuL_JhIFSiLIHvpr2fsPCQeQr1F8iRxZuzMN-N5ALzisc6lQxcp7VNySKdGhYtNxJWrDUqthfG5w6syW1wlH7fp9gDejLkwiBiCz3DqL8NZvtvZvXeVXSgRTvnuwF3S-6nosrVGjwonZJ4FvBsLem8s8-2QJcPVxaYsl2uyB2MyU72elL4jD2EX5cud_KaUQpeVv37NQd9cHsFqmGkXZvJ1um_N1N78UcTxtp_yEB70wJPNupXyCA6weQxHQ1MH1u_xY1jOZ-sS27dsxuZ-stGsbbuQSLa-9iG1yMoudJwR3mVfrh3u2JrQPBGxz8a7ddg7bEOEV_MEri7fb-aLqG-5EFmpkjYyujBSpEggQ5okdwkxKk84FkIWxuYWU53mPEahs7p2ZCuRfZU4nmnJrUpkLZ_CYbNr8ARYIa1AmSaEoCTZgNwIJONPprUW3MQ2n4AYeF7Zvh65b4vxrQp2CVdVEFnlRVb1IpvA6_Ge7101jv9SH3vGj5Q9zydwNoi26jfsz4ommfl_H6fhl-MwbTV_fqIb3O2JxpubeaHS_PTfT34B9xab1bJafig_PYP7sQ9_CQ6bMzhsf-zxOeGX1pyHZfsLl93ltQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CASNet%3A+A+Cross-Attention+Siamese+Network+for+Video+Salient+Object+Detection&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Ji%2C+Yuzhu&rft.au=Zhang%2C+Haijun&rft.au=Jie%2C+Zequn&rft.au=Ma%2C+Lin&rft.date=2021-06-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=32&rft.issue=6&rft.spage=2676&rft.epage=2690&rft_id=info:doi/10.1109%2FTNNLS.2020.3007534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2020_3007534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |