The Legendre condition of the fractional calculus of variations

Fractional operators play an important role in modelling nonlocal phenomena and problems involving coarse-grained and fractal spaces. The fractional calculus of variations with functionals depending on derivatives and/or integrals of noninteger order is a rather recent subject that is currently in f...

Full description

Saved in:
Bibliographic Details
Published inOptimization Vol. 63; no. 8; pp. 1157 - 1165
Main Authors Lazo, Matheus J., Torres, Delfim F.M.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.08.2014
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN0233-1934
1029-4945
DOI10.1080/02331934.2013.877908

Cover

Loading…
Abstract Fractional operators play an important role in modelling nonlocal phenomena and problems involving coarse-grained and fractal spaces. The fractional calculus of variations with functionals depending on derivatives and/or integrals of noninteger order is a rather recent subject that is currently in fast development due to its applications in physics and other sciences. In the last decade, several approaches to fractional variational calculus were proposed by using different notions of fractional derivatives and integrals. Although the literature of the fractional calculus of variations is already vast, much remains to be done in obtaining necessary and sufficient conditions for the optimization of fractional variational functionals, existence and regularity of solutions. Regarding necessary optimality conditions, all works available in the literature concern the derivation of first-order fractional conditions of Euler-Lagrange type. In this work, we obtain a Legendre second-order necessary optimality condition for weak extremizers of a variational functional that depends on fractional derivatives.
AbstractList Fractional operators play an important role in modelling nonlocal phenomena and problems involving coarse-grained and fractal spaces. The fractional calculus of variations with functionals depending on derivatives and/or integrals of noninteger order is a rather recent subject that is currently in fast development due to its applications in physics and other sciences. In the last decade, several approaches to fractional variational calculus were proposed by using different notions of fractional derivatives and integrals. Although the literature of the fractional calculus of variations is already vast, much remains to be done in obtaining necessary and sufficient conditions for the optimization of fractional variational functionals, existence and regularity of solutions. Regarding necessary optimality conditions, all works available in the literature concern the derivation of first-order fractional conditions of Euler-Lagrange type. In this work, we obtain a Legendre second-order necessary optimality condition for weak extremizers of a variational functional that depends on fractional derivatives.
Author Lazo, Matheus J.
Torres, Delfim F.M.
Author_xml – sequence: 1
  givenname: Matheus J.
  surname: Lazo
  fullname: Lazo, Matheus J.
  organization: Instituto de Matemática, Estatística e Física, Fundação Universidade Federal do Rio Grande (FURG)
– sequence: 2
  givenname: Delfim F.M.
  surname: Torres
  fullname: Torres, Delfim F.M.
  email: delfim@ua.pt
  organization: Department of Mathematics, Center for Research and Development in Mathematics and Applications (CIDMA), University of Aveiro
BookMark eNqFkD1PwzAQhi1UJNrCP2CIxMKSYsdOHLNUqOJLqsTS3bo4Drhy42InoP57YgJLB5hOd_e8J90zQ5PWtRqhS4IXBJf4BmeUEkHZIsOELkrOBS5P0JTgTKRMsHyCphFJI3OGZiFsMc5IkbEpWm7edLLWr7qtvU6Ua2vTGdcmrkm6YdN4ULEHmyiwqrd9iKsP8AbiPJyj0wZs0Bc_dY42D_eb1VO6fnl8Xt2tU0UF69KKMYWrnFdEEK4KTUSlCga1how2kNecN4XOa6UrWhaNrjAHUoqKQA1Q8ZLO0fV4du_de69DJ3cmKG0ttNr1QZI8F0UuSswG9OoI3breDx9EilEqCsHFQLGRUt6F4HUj997swB8kwTJKlb9SZZQqR6lD7PYopkz3baLzYOx_4eUYNm3j_A4-nbe17OBgnR9Et8oESf-88AVjmJF7
CODEN OPTZDQ
CitedBy_id crossref_primary_10_1016_j_cam_2019_04_010
crossref_primary_10_1177_1077546315597815
crossref_primary_10_1155_2018_4197673
crossref_primary_10_3934_dcdss_2018001
crossref_primary_10_1007_s10957_021_01908_w
crossref_primary_10_1007_s10957_016_0883_4
crossref_primary_10_1051_ro_2022035
crossref_primary_10_1016_j_amc_2018_03_022
crossref_primary_10_1080_02331934_2014_926140
Cites_doi 10.1016/j.cnsns.2013.04.001
10.1016/j.cnsns.2010.07.016
10.2307/44152475
10.1016/j.na.2011.01.010
10.2478/s11534-013-0250-0
10.1016/j.physleta.2011.08.033
10.1016/S0370-1573(00)00070-3
10.1063/1.166197
10.1103/PhysRevE.53.1890
10.1007/978-1-4020-6042-7
10.1016/S0034-4877(13)60034-8
10.1142/9789812817747
10.1007/JHEP01(2012)065
10.1142/S0217732306020974
10.1007/b97436
10.1007/s10773-011-1010-9
10.1002/9783527622979
10.1016/j.chaos.2011.03.002
10.1007/s10957-012-0203-6
10.1016/j.sigpro.2010.05.001
10.1073/pnas.17.5.311
10.1016/j.jmaa.2007.01.013
10.1016/j.na.2011.02.028
10.2478/s13540-012-0029-9
10.1103/PhysRevE.55.3581
10.1088/0305-4470/37/31/R01
10.2478/s11534-013-0208-2
10.1142/p871
10.1007/s10582-006-0406-x
ContentType Journal Article
Copyright 2014 Taylor & Francis 2014
Copyright Taylor & Francis Group 2014
Copyright_xml – notice: 2014 Taylor & Francis 2014
– notice: Copyright Taylor & Francis Group 2014
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
KR7
DOI 10.1080/02331934.2013.877908
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Civil Engineering Abstracts
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Civil Engineering Abstracts
DatabaseTitleList
Aerospace Database
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 1165
ExternalDocumentID 3365204631
10_1080_02331934_2013_877908
877908
Genre Article
Feature
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
TASJS
KR7
ID FETCH-LOGICAL-c394t-b44c0b57b1917c6e19bc64adea23fa5d77f6e5dceb386feb07a189b1adaab783
ISSN 0233-1934
IngestDate Fri Jul 11 04:40:51 EDT 2025
Wed Aug 13 08:14:33 EDT 2025
Thu Apr 24 22:57:08 EDT 2025
Tue Jul 01 03:52:11 EDT 2025
Wed Dec 25 09:04:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-b44c0b57b1917c6e19bc64adea23fa5d77f6e5dceb386feb07a189b1adaab783
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink http://hdl.handle.net/10773/12519
PQID 1543396979
PQPubID 27961
PageCount 9
ParticipantIDs proquest_journals_1543396979
proquest_miscellaneous_1559659804
crossref_primary_10_1080_02331934_2013_877908
informaworld_taylorfrancis_310_1080_02331934_2013_877908
crossref_citationtrail_10_1080_02331934_2013_877908
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140803
PublicationDateYYYYMMDD 2014-08-03
PublicationDate_xml – month: 08
  year: 2014
  text: 20140803
  day: 03
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0030
CIT0010
CIT0034
CIT0011
CIT0033
Magin RL (CIT0005) 2006
Oldham KB (CIT0001) 1974
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0015
Bourdin L (CIT0031) 2013; 8
Calcagni G (CIT0012) 2010; 2010
CIT0018
Sagan H (CIT0039) 1992
CIT0017
CIT0019
Samko SG (CIT0007) 1993
Cresson J (CIT0027) 2007; 48
Malinowska AB (CIT0032) 2012
CIT0021
CIT0023
CIT0022
Kilbas AA (CIT0004) 2006
CIT0003
CIT0025
CIT0024
CIT0026
Ross B (CIT0037) 1994; 20
Brunt B (CIT0038) 2004
Diethelm K (CIT0002) 2010
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
Odzijewicz T (CIT0020) 2013; 42
References_xml – ident: CIT0034
  doi: 10.1016/j.cnsns.2013.04.001
– volume: 42
  start-page: 443
  year: 2013
  ident: CIT0020
  publication-title: Control Cybernet
– ident: CIT0025
  doi: 10.1016/j.cnsns.2010.07.016
– volume: 20
  start-page: 140
  year: 1994
  ident: CIT0037
  publication-title: Real Anal. Exchange
  doi: 10.2307/44152475
– ident: CIT0030
  doi: 10.1016/j.na.2011.01.010
– ident: CIT0033
  doi: 10.2478/s11534-013-0250-0
– ident: CIT0014
  doi: 10.1016/j.physleta.2011.08.033
– ident: CIT0009
  doi: 10.1016/S0370-1573(00)00070-3
– volume-title: Introduction to the calculus of variations, corrected reprint of the 1969 original
  year: 1992
  ident: CIT0039
– ident: CIT0036
  doi: 10.1063/1.166197
– ident: CIT0017
  doi: 10.1103/PhysRevE.53.1890
– ident: CIT0006
  doi: 10.1007/978-1-4020-6042-7
– volume-title: Fractional integrals and derivatives, translated from the 1987 Russian original
  year: 1993
  ident: CIT0007
– ident: CIT0022
  doi: 10.1016/S0034-4877(13)60034-8
– ident: CIT0003
  doi: 10.1142/9789812817747
– ident: CIT0013
  doi: 10.1007/JHEP01(2012)065
– volume-title: The analysis of fractional differential equations. Vol. 2004, Lecture Notes in Mathematics
  year: 2010
  ident: CIT0002
– ident: CIT0015
  doi: 10.1142/S0217732306020974
– volume-title: The calculus of variations. Universitext
  year: 2004
  ident: CIT0038
  doi: 10.1007/b97436
– ident: CIT0016
  doi: 10.1007/s10773-011-1010-9
– ident: CIT0008
  doi: 10.1002/9783527622979
– ident: CIT0011
  doi: 10.1016/j.chaos.2011.03.002
– ident: CIT0028
  doi: 10.1007/s10957-012-0203-6
– ident: CIT0035
  doi: 10.1016/j.sigpro.2010.05.001
– ident: CIT0019
  doi: 10.1073/pnas.17.5.311
– volume: 2010
  year: 2010
  ident: CIT0012
  publication-title: J. High Energy Phys
– volume: 8
  start-page: 3
  year: 2013
  ident: CIT0031
  publication-title: Adv. Dyn. Syst. Appl
– ident: CIT0021
  doi: 10.1016/j.jmaa.2007.01.013
– volume-title: Theory and applications of fractional differential equations. Vol. 204, North-Holland Mathematics Studies
  year: 2006
  ident: CIT0004
– ident: CIT0024
  doi: 10.1016/j.na.2011.02.028
– volume-title: Fractional calculus in bioengineering
  year: 2006
  ident: CIT0005
– ident: CIT0029
  doi: 10.2478/s13540-012-0029-9
– ident: CIT0018
  doi: 10.1103/PhysRevE.55.3581
– volume: 48
  year: 2007
  ident: CIT0027
  publication-title: J. Math. Phys
– volume-title: The fractional calculus
  year: 1974
  ident: CIT0001
– ident: CIT0010
  doi: 10.1088/0305-4470/37/31/R01
– ident: CIT0023
  doi: 10.2478/s11534-013-0208-2
– volume-title: Introduction to the fractional calculus of variations
  year: 2012
  ident: CIT0032
  doi: 10.1142/p871
– ident: CIT0026
  doi: 10.1007/s10582-006-0406-x
SSID ssj0021624
Score 2.0537453
Snippet Fractional operators play an important role in modelling nonlocal phenomena and problems involving coarse-grained and fractal spaces. The fractional calculus...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1157
SubjectTerms Calculus
Calculus of variations
calculus of variations and optimal control
Derivation
Derivatives
Eulers equations
Fractal analysis
fractional calculus
Functionals
Integer programming
Integrals
Lagrange multiplier
Legendre condition
Mathematical analysis
Mathematical models
Mathematical problems
Optimization
Riemann-Liouville and Caputo derivatives
second-order optimality condition
Studies
Title The Legendre condition of the fractional calculus of variations
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2013.877908
https://www.proquest.com/docview/1543396979
https://www.proquest.com/docview/1559659804
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4FDRXmILaUKEjfkKIkdP06oAqpVReGyiIpLZCe2VGm7i0rKob-emdh5FFaFcolWSTzJeibjmfHMN4S8brTTBtwMqmwhKbe5p9ZLTZ22pvQ6M1mHs336SSy-8JOz8mzssdlVl7Q2ra-31pX8D1fhHPAVq2TvwNmBKJyA38BfOAKH4fjPPP4Ibj8mJWL-eHPe239oTvrLULSACCBmhWG-Lm3jJ3jHkzBdNEw_g-q4iDWZQ5KOud6Eeh4gB4NP0jEmjT09gr5a-fOLN8fpaToNIOS8S19jEz1TMEbBjgt-vQt6ELNiuA5Ij72iFGwiEGqi9RCwZ7KCIqLPVu0c0xnhefg4zKtjqULAQzWuRv0O_G-L1JA6mPeYppFKhVSqQOU-2SnAWyhmZOdo8f7b18HzzkXX3Xj4p30NJYKsb3mbGzbKDQTbP1bszgxZPiK70X9IjoIw7JF7bv2YPJygSj4hb0Eskl4skkEsko1PgI_JKBZJLxZ4aRSLp2R5_GH5bkFjnwxaM81bajmvM1tKi753LVyubS24aZwpmDdlI6UXrmxqZ5kS3tlMmlxpm5vGGCsVe0Zm683aPScJzxzuq9rSOMktzw3MnQN7xjZlozkTc8L6ianqiCGPrUxW1W1smRM6jPoeMFT-cr-aznnVdrErHxrNVOz2oQc9f6r4of6owEtgTAst9Zy8Gi6DGsW9MbN2myu8p0RoTZXx_Tu-7QvyYPyqDsisvbxyL8FQbe1hFMNfk4aIKQ
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOQCH8hahBRaJq8Nu_VqfqgpRBUhzChI3y7O2L1QJSjYc-PXM7CNqQYAEZ3u8u-OZnYfH3wC8ji65QGGGqPHECoVVFpitE8lh0NmVoexwti8WZvZJffisx2rC7VBWyTF07oEiun81Kzcno8eSuDdkZ0hyJKdEKjmtGTKvvgm3tDOWmxjIcrGPuSrT9bVlCsEk4-2536xyzTpdwy795V_dGaDze4Djq_d1J1-muxanzfefUB3_69vuw-HgnhZnvTw9gBtp9RDuXgEtfASnJFnFPJHgxU0qKJyOXdVXsc4FOZNF3vRXJWgV2n5OLm556BvF5H1y8DEsz98t387E0IZBNNKpVqBSTYnaIod2jUmVw8aoEFM4kTnoaG02SceGwvLa5ISlDVXtsAoxBLS1fAIHq_UqPYVClYmP7VCHZBWqKtAGJTKXGHV0SpoJyJH7vhkgyrlTxqWvRiTTgTueueN77kxA7Km-9hAdf5lfX91Y33apkdz3MfHyz6THoxD4Qde3npxQKZ1x1k3g1X6YtJSPXsIqrXc8RzNyY12qZ__-9Jdwe7a8mPv5-8XHI7hDI6orRZTHcNBuduk5uUctvugU4AeWhQE2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkCo4AH0glleD1Ku3CXbs-IQQsAJKVxyoxM2yY_sC2kVLlgO_npk8VktRW6mc7XGS8Tjz8Mw3AN-8Dtqim8EKd6iYcFlkLirNgnY2jzq1aY2z_XMoz3-Jy9v8dq6Kn9IqyYeODVBE_a-mw_3gY5cR9x3VDAoOp4hIxvsFIeYVi7AsCTucijjS4czlymTd1pYoGJF0xXN_WOWVcnoFXfrmV13rn8E62O7Nm7STu_60cv3y-TdQx_d82gastcZpctxI00dYCKNPsDoHWfgZjlCukquAYucnIUFn2tc5X8k4JmhKJnHSFErgKrj5FFp8pKEn9Mib0OAXuBmc3Zycs7YJAyu5FhVzQpSpy5Ujx66UIdOulML6YA95tLlXKsqQ-xKd8kLG4FJls0K7zHprnSr4JiyNxqOwBYlIA13audwGJZzILO5PQGXpfO614LIHvGO-KVuAcuqTcW-yDse05Y4h7piGOz1gM6qHBqDjH_OL-X01VR0YiU0XE8P_TrrbyYBpT_qjQROUcy210j04mA3jGaWLFzsK4ynNyQm3sUjF9v8__St8uD4dmKuL4Y8dWMEBUech8l1YqibTsIe2UeX2a_F_AWB9_8s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Legendre+condition+of+the+fractional+calculus+of+variations&rft.jtitle=Optimization&rft.au=Lazo%2C+Matheus+J.&rft.au=Torres%2C+Delfim+F.M.&rft.date=2014-08-03&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=63&rft.issue=8&rft.spage=1157&rft.epage=1165&rft_id=info:doi/10.1080%2F02331934.2013.877908&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2013_877908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon