Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder
•The (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O nanocrystalline powder was synthesizes by SCS method.•Synthesis temperature of single-phase rock-salt structure was above 1123 K.•The material exhibits long-range antiferromagnetic behavior below TN.•The material shows lower TN. A facile solution combustion synthesi...
Saved in:
Published in | Journal of magnetism and magnetic materials Vol. 484; pp. 245 - 252 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.08.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O nanocrystalline powder was synthesizes by SCS method.•Synthesis temperature of single-phase rock-salt structure was above 1123 K.•The material exhibits long-range antiferromagnetic behavior below TN.•The material shows lower TN.
A facile solution combustion synthesis method was successfully applied to synthesize single rock-salt structural (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide (HEO) nanocrystalline powder with chemical homogeneity. The XRD patterns with Rietveld refinement reveal the formation of single-phase rock-salt structure occurs only at the synthesis temperatures ≥ 1123 K, and the average nanocrystalline size is about 43 nm. Moreover, two series of experiments confirm the effect of configurational entropy on phase stabilization. Furthermore, the as-synthesized single-phase (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O nanocrystalline powder exhibits long-range antiferromagnetic behavior below Néel temperature (TN = 106 K), which can be well understood by the super-exchange interactions in the rock-salt HEO. The powder also shows lower TN due to the significant amount of nonmagnetic ions suppressing the antiferromagnetic order. |
---|---|
AbstractList | •The (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O nanocrystalline powder was synthesizes by SCS method.•Synthesis temperature of single-phase rock-salt structure was above 1123 K.•The material exhibits long-range antiferromagnetic behavior below TN.•The material shows lower TN.
A facile solution combustion synthesis method was successfully applied to synthesize single rock-salt structural (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide (HEO) nanocrystalline powder with chemical homogeneity. The XRD patterns with Rietveld refinement reveal the formation of single-phase rock-salt structure occurs only at the synthesis temperatures ≥ 1123 K, and the average nanocrystalline size is about 43 nm. Moreover, two series of experiments confirm the effect of configurational entropy on phase stabilization. Furthermore, the as-synthesized single-phase (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O nanocrystalline powder exhibits long-range antiferromagnetic behavior below Néel temperature (TN = 106 K), which can be well understood by the super-exchange interactions in the rock-salt HEO. The powder also shows lower TN due to the significant amount of nonmagnetic ions suppressing the antiferromagnetic order. A facile solution combustion synthesis method was successfully applied to synthesize single rock-salt structural (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide (HEO) nanocrystalline powder with chemical homogeneity. The XRD patterns with Rietveld refinement reveal the formation of single-phase rock-salt structure occurs only at the synthesis temperatures ≥ 1123 K, and the average nanocrystalline size is about 43 nm. Moreover, two series of experiments confirm the effect of configurational entropy on phase stabilization. Furthermore, the as-synthesized single-phase (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O nanocrystalline powder exhibits long-range antiferromagnetic behavior below Néel temperature (TN = 106 K), which can be well understood by the super-exchange interactions in the rock-salt HEO. The powder also shows lower TN due to the significant amount of nonmagnetic ions suppressing the antiferromagnetic order. |
Author | Ran, Songlin Zhang, Zhan-Guo Mao, Aiqin Kuramoto, Koji Xiang, Hou-Zheng Yu, Haiyun |
Author_xml | – sequence: 1 givenname: Aiqin surname: Mao fullname: Mao, Aiqin email: maoaiqinmaq@163.com organization: School of Materials Science and Engineering, Anhui University of Technology, Maxiang Road, Ma’anshan 243002, China – sequence: 2 givenname: Hou-Zheng surname: Xiang fullname: Xiang, Hou-Zheng organization: School of Materials Science and Engineering, Anhui University of Technology, Maxiang Road, Ma’anshan 243002, China – sequence: 3 givenname: Zhan-Guo surname: Zhang fullname: Zhang, Zhan-Guo email: z.zhang@aist.go.jp organization: National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan – sequence: 4 givenname: Koji surname: Kuramoto fullname: Kuramoto, Koji organization: National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan – sequence: 5 givenname: Haiyun surname: Yu fullname: Yu, Haiyun organization: School of Materials Science and Engineering, Anhui University of Technology, Maxiang Road, Ma’anshan 243002, China – sequence: 6 givenname: Songlin surname: Ran fullname: Ran, Songlin organization: Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology) Ministry of Education, No. 59 Hudong Road, Ma’anshan 243002, China |
BookMark | eNp9kL1uFDEURi2USGwCL0BliQaKGa5_dmZWokGrQCIFUiQ0NJbXvrPrYcZebA-wT8Brx8tSUaT5rovvXOueC3Lmg0dCXjGoGbDm3VAP0zTVHNiqBlkDF8_IgnWtqGTbNGdkAQJk1XVL8ZxcpDQAAJNdsyB_7sM4Zxc8NWHazOnvMx183mFyiWpv6aS3HrMzdB_DHmM-0NDTGMz3Kukx0zfrADVfzyU-b0t8cSW--RJv7-jObXcV-lzIgv12FqnXPph4SFmPo_NI9-GXxfiCnPd6TPjy37wkXz9ePayvq9u7TzfrD7eVESuZq43kBtH2gMy2WvaWQdu0nTZcay2gbzojDUcmhLCNXcml0SuJjMuN6C1nTFyS16e95ZgfM6ashjBHX75UnMvSgHbZlBY_tUwMKUXs1T66SceDYqCOwtWgjsLVUbgCqYrwAnX_QcZlfRSao3bj0-j7E4rl9J8Oo0rGoTdoXUSTlQ3uKfwRFyCfHA |
CitedBy_id | crossref_primary_10_1007_s10853_022_07625_7 crossref_primary_10_1016_j_ceramint_2024_03_332 crossref_primary_10_1016_j_oceram_2024_100730 crossref_primary_10_1016_j_ceramint_2024_01_202 crossref_primary_10_1016_j_pmatsci_2024_101385 crossref_primary_10_1039_D0TA09578H crossref_primary_10_1016_j_apsusc_2024_161593 crossref_primary_10_1016_j_pmatsci_2024_101300 crossref_primary_10_1016_j_ceramint_2024_04_139 crossref_primary_10_1016_j_matt_2024_07_019 crossref_primary_10_1016_j_jmmm_2022_169142 crossref_primary_10_1016_j_jallcom_2024_174480 crossref_primary_10_1039_D4EE04442H crossref_primary_10_1016_j_scriptamat_2020_05_065 crossref_primary_10_3390_coatings12030366 crossref_primary_10_1016_j_mser_2021_100644 crossref_primary_10_1080_10643389_2024_2379028 crossref_primary_10_1080_10408436_2021_1886047 crossref_primary_10_1016_j_ceramint_2023_07_058 crossref_primary_10_1063_5_0123794 crossref_primary_10_1016_j_jallcom_2020_156716 crossref_primary_10_2139_ssrn_3910599 crossref_primary_10_1016_j_ceramint_2020_12_272 crossref_primary_10_1016_j_jmrt_2023_03_060 crossref_primary_10_1016_j_inoche_2023_110547 crossref_primary_10_3390_pr10010049 crossref_primary_10_1002_advs_202401034 crossref_primary_10_1016_j_ceramint_2021_10_109 crossref_primary_10_1016_j_fmre_2022_01_030 crossref_primary_10_1149_1945_7111_ac3e49 crossref_primary_10_1016_j_jssc_2024_125172 crossref_primary_10_1021_acsami_1c20055 crossref_primary_10_1111_ijac_14021 crossref_primary_10_1016_j_est_2023_107419 crossref_primary_10_1007_s11661_021_06250_4 crossref_primary_10_1016_j_ceramint_2022_10_258 crossref_primary_10_1016_j_jeurceramsoc_2020_08_044 crossref_primary_10_1111_jace_17029 crossref_primary_10_1016_j_scriptamat_2020_02_006 crossref_primary_10_1039_D3DT00909B crossref_primary_10_1016_j_ceramint_2022_08_122 crossref_primary_10_1016_j_jeurceramsoc_2024_116673 crossref_primary_10_1016_j_jmrt_2025_01_015 crossref_primary_10_1021_acs_energyfuels_4c02061 crossref_primary_10_3139_146_111874 crossref_primary_10_3390_ma17081883 crossref_primary_10_1016_j_ceramint_2023_12_031 crossref_primary_10_1016_j_jmst_2021_07_028 crossref_primary_10_1007_s12274_021_3860_7 crossref_primary_10_1016_j_jallcom_2021_162108 crossref_primary_10_1016_j_jeurceramsoc_2023_07_062 crossref_primary_10_1021_acsnano_4c12538 crossref_primary_10_1016_j_jallcom_2024_178068 crossref_primary_10_1039_C9TA12846H crossref_primary_10_1016_j_ceramint_2023_06_228 crossref_primary_10_1016_j_ceramint_2023_08_233 crossref_primary_10_1039_D2TA06101E crossref_primary_10_3390_ma16062219 crossref_primary_10_1016_j_actamat_2020_10_061 crossref_primary_10_1016_j_ceramint_2024_08_073 crossref_primary_10_1016_j_molstruc_2019_05_073 crossref_primary_10_1007_s40145_022_0649_4 crossref_primary_10_1002_adfm_202416673 crossref_primary_10_1080_00150193_2024_2324701 crossref_primary_10_1007_s40145_021_0477_y crossref_primary_10_1088_2053_1591_ad5bc2 crossref_primary_10_15541_jim20200388 crossref_primary_10_1016_j_cej_2022_138659 crossref_primary_10_1016_j_ceramint_2024_04_054 crossref_primary_10_1016_j_ijhydene_2024_12_430 crossref_primary_10_1016_j_jeurceramsoc_2019_12_011 crossref_primary_10_1111_jace_19252 crossref_primary_10_1016_j_jeurceramsoc_2023_01_063 crossref_primary_10_1039_D1CP03946F crossref_primary_10_1016_j_jmrt_2024_07_153 crossref_primary_10_1016_j_ceramint_2023_11_249 crossref_primary_10_1002_smll_202307284 crossref_primary_10_1016_j_jcis_2024_11_068 crossref_primary_10_1007_s12666_022_02808_x crossref_primary_10_1016_j_jmmm_2020_166594 crossref_primary_10_1039_D3YA00326D crossref_primary_10_1016_j_mattod_2024_06_005 crossref_primary_10_26599_JAC_2024_9220982 crossref_primary_10_1016_j_jallcom_2024_177719 crossref_primary_10_1016_j_scriptamat_2020_05_019 crossref_primary_10_1016_j_jpowsour_2024_234289 crossref_primary_10_1039_D5TA00849B crossref_primary_10_1080_09593330_2023_2283054 crossref_primary_10_1007_s10854_022_09596_6 crossref_primary_10_1016_j_cej_2024_149791 crossref_primary_10_1016_j_jpcs_2024_112249 crossref_primary_10_1039_D1TC03287A crossref_primary_10_1016_j_jpowsour_2025_236463 crossref_primary_10_1016_j_ceramint_2022_03_310 crossref_primary_10_1016_j_matchemphys_2021_124265 crossref_primary_10_1016_j_scriptamat_2022_114655 crossref_primary_10_1103_PhysRevMaterials_4_014404 crossref_primary_10_26599_JAC_2023_9220666 crossref_primary_10_1007_s10853_020_04583_w crossref_primary_10_1111_jace_19518 crossref_primary_10_1016_j_actamat_2020_09_034 crossref_primary_10_1016_j_jmmm_2021_168063 crossref_primary_10_1016_j_jallcom_2023_169430 crossref_primary_10_1016_j_jallcom_2023_172135 crossref_primary_10_3390_ma13245798 crossref_primary_10_1007_s00339_024_07655_9 crossref_primary_10_1016_j_ceramint_2022_06_291 crossref_primary_10_1016_j_fuel_2024_133044 crossref_primary_10_1016_j_jmrt_2024_09_063 crossref_primary_10_1016_j_jmmm_2019_165884 crossref_primary_10_1016_j_jmrt_2022_11_161 crossref_primary_10_1016_j_mtla_2021_101250 crossref_primary_10_1016_j_jallcom_2022_166933 crossref_primary_10_15541_jim20200374 crossref_primary_10_1016_j_matchemphys_2020_124014 crossref_primary_10_1016_j_checat_2022_05_003 crossref_primary_10_1016_j_mattod_2024_02_005 crossref_primary_10_1016_j_mtadv_2020_100114 crossref_primary_10_1039_D0DT04154H crossref_primary_10_1038_s41578_019_0170_8 crossref_primary_10_1016_j_ceramint_2025_03_091 crossref_primary_10_1088_2752_5724_ac5e0c crossref_primary_10_1016_j_ceramint_2023_03_290 crossref_primary_10_1021_acsnano_4c18277 crossref_primary_10_1016_j_scriptamat_2021_114091 crossref_primary_10_1111_ijac_13762 crossref_primary_10_1007_s10853_020_05183_4 |
Cites_doi | 10.1016/j.surfcoat.2011.09.033 10.1016/j.jmmm.2018.07.017 10.1021/acs.chemmater.9b00624 10.1039/C7TA00460E 10.1103/PhysRevB.92.224201 10.1016/j.jeurceramsoc.2016.09.018 10.1149/2.028311jes 10.1016/j.jeurceramsoc.2017.12.058 10.1039/C7TC05362B 10.1016/j.actamat.2016.11.016 10.1063/1.4962135 10.1039/C6TA03249D 10.1016/0022-4596(81)90044-X 10.1016/j.pecs.2017.07.002 10.1021/acs.chemrev.6b00279 10.1080/21663831.2016.1220433 10.1016/j.jallcom.2017.11.233 10.1021/acs.nanolett.6b04716 10.1016/j.jmmm.2013.12.033 10.1016/j.matlet.2017.12.148 10.1103/PhysRevB.64.174420 10.1103/PhysRev.110.1333 10.1016/j.ijrmhm.2016.04.011 10.1038/s41598-017-13810-5 10.1103/PhysRevB.80.140408 10.1016/j.cej.2015.01.012 10.1016/j.jallcom.2018.10.170 10.1002/pssr.201600043 10.1038/ncomms9485 10.1126/science.1254581 10.1038/s41467-018-05774-5 10.1016/j.scriptamat.2017.12.025 10.1016/j.moem.2017.10.001 10.1111/j.1151-2916.1986.tb07444.x 10.1007/s10853-018-2168-9 10.1016/j.molstruc.2017.09.104 10.1016/j.matlet.2018.04.079 10.1016/j.surfcoat.2013.01.036 10.1039/C7DT02077E 10.1111/jace.14756 10.1039/c2cp40326a 10.1016/j.jeurceramsoc.2018.04.010 10.1016/j.jallcom.2017.02.070 10.1038/srep37946 10.1016/j.actamat.2017.12.037 10.1016/j.scriptamat.2018.02.008 10.1016/j.scriptamat.2017.08.040 10.1016/j.apcata.2012.11.024 10.1016/j.jallcom.2017.06.020 10.1016/j.jeurceramsoc.2018.04.063 10.1016/j.jallcom.2018.11.049 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Aug 15, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Aug 15, 2019 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.jmmm.2019.04.023 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-4766 |
EndPage | 252 |
ExternalDocumentID | 10_1016_j_jmmm_2019_04_023 S0304885319310133 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M24 M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SPD SSQ SSZ T5K XPP ZMT ~02 ~G- 29K 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I FGOYB G-2 HMV HZ~ NDZJH R2- SEW SMS SPG SSH WUQ XXG 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c394t-b42ceedf0e1d7a4fd107678ac2aaa30f68c4c2e1333d6d945ca94e124b3fd2113 |
IEDL.DBID | .~1 |
ISSN | 0304-8853 |
IngestDate | Fri Jul 25 03:51:21 EDT 2025 Tue Jul 01 01:55:59 EDT 2025 Thu Apr 24 23:07:17 EDT 2025 Fri Feb 23 02:49:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Antiferromagnetism (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O Nanocrystalline powder Solution combustion synthesis High-entropy oxide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-b42ceedf0e1d7a4fd107678ac2aaa30f68c4c2e1333d6d945ca94e124b3fd2113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2242110756 |
PQPubID | 2045450 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2242110756 crossref_primary_10_1016_j_jmmm_2019_04_023 crossref_citationtrail_10_1016_j_jmmm_2019_04_023 elsevier_sciencedirect_doi_10_1016_j_jmmm_2019_04_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-15 |
PublicationDateYYYYMMDD | 2019-08-15 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of magnetism and magnetic materials |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Murty, Yeh, Ranganathan (b0025) 2014 Kumar, Cross, Manukyan, Bhosale, van den Broeke, Miller, Mukasyan, Wolf (b0160) 2015; 278 Lu, Gao, Jiang, Chen, Wang, Jie, Kang, Zhang, Guo, Ruan, Zhao, Cao, Li (b0005) 2017; 124 Bularzik, Davies, Navrotsky (b0210) 1986; 69 de la Obra, Avilés, Torres, Chicardi, Gotor (b0045) 2017; 63 Dąbrowa, Stygar, Mikuła, Knapik, Mroczka, Tejchman, Danielewski, Martin (b0085) 2018; 216 Punnoose, Magnone, Seehra, Bonevich (b0230) 2001; 64 Hsieh, Tsai, Shen, Yeh (b0030) 2013; 221 Peralta, Puggioni, Filippetti, Fiorentini (b0200) 2009; 80 Mao, Xiang, Ran, Li, Jin, Yu, Gu (b0260) 2019; 775 Gild, Zhang, Harrington, Jiang, Hu, Quinn, Mellor, Zhou, Vecchio, Luo (b0050) 2016; 6 Nersisyan, Lee, Ding, Kim, Manukyan, Mukasyan (b0165) 2017; 63 Chandekar, Kant (b0195) 2018; 1154 Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (b0020) 2014; 345 Ding, Mao, Zhang, Jin, Wang, Liu, Gu, Preparation (b0010) 2017; 721 Sarkar, Loho, Velasco, Thomas, Bhattacharya, Hahn, Djenadic (b0155) 2017; 46 Zou, Wheeler, Ma, Okle, Spolenak (b0015) 2017; 17 Varma, Mukasyan, Rogachev, Manukyan (b0170) 2016; 116 Davies, Navrotsky (b0205) 1981; 38 Meisenheimer, Kratofil, Heron (b0095) 2017; 7 Shen, Tsai, Tsai, Juan, Tsai, Yeh, Chang (b0035) 2013; 160 Gild, Samiee, Braun, Harrington, Vega, Hopkins, Vecchio, Luo (b0065) 2018; 38 Liu, Cui, Yu, Sun, Xia (b0180) 2018; 225 Mao, Ding, Quan, Zhang, Ran, Li, Jin, Gu (b0265) 2018; 735 Ding, Li, Fang, Sun, Zhang (b0150) 2017; 5 Mayrhofer, Kirnbauer, Ertelthaler, Koller (b0220) 2018; 149 Huixia, Baiyi, Deyi, Jianqiang, Lin (b0255) 2014; 356 Zheng, Liu, Diao, Gu, Zhang (b0245) 2012; 14 Anand, Wynn, Handley, Freeman (b0120) 2018; 146 Berardan, Meena, Franger, Herrero, Dragoe (b0125) 2017; 704 Biesuz, Spiridigliozzi, Dell’Agli, Bortolotti, Sglavo (b0105) 2018; 53 Braic, Vladescu, Balaceanu, Luculescu, Braic (b0040) 2012; 211 Jiang, Hu, Gild, Zhou, Nie, Qin, Harrington, Vecchio, Luo (b0080) 2018; 142 Sarkar, Djenadic, Wang, Hein, Kautenburger, Clemens, Hahn (b0075) 2018; 38 Lei, Liu, Li, Wang, Wu, Lu (b0090) 2018; 146 González-Cortés, Imbert (b0175) 2013; 452 Chiang, Birnie, Kingery (b0225) 1997 Djenadic, Sarkar, Clemens, Loho, Botros, Chakravadhanula, Kübel, Bhattacharya, Gandhi, Hahn (b0060) 2017; 5 Anand, Amaliya, Janifer, Pauline (b0185) 2017; 3 Roth (b0235) 1958; 110 Sonia, Anand, Vinosel, Janifer, Pauline, Manikandan (b0190) 2018; 466 Rak, Rost, Lim, Sarker, Toher, Curtarolo, Maria, Brenner (b0110) 2016; 120 Lužnik, Koželj, Vrtnik, Jelen, Jagličić, Meden, Feuerbacher, Dolinšek (b0215) 2015; 92 Bérardan, Franger, Meena, Dragoe (b0130) 2016; 4 Patel, Lee, Kim, Bhoi, Kim (b0250) 2018; 6 Bérardan, Franger, Dragoe, Meena, Dragoe (b0135) 2016; 10 Sarkar, Velasco, Wang, Wang, Talasila, de Biasi, Kübel, Brezesinski, Bhattacharya, Hahn, Breitung (b0140) 2018; 9 Qiu, Chen, Yang, Sun, Wang, Cui (b0145) 2019; 777 Chen, Pei, Tang, Cheng, Li, Li, Zhang, An (b0070) 2018; 38 J. Zhang, J. Yan, S. Calder, Q. Zheng, M.A. McGuire, D.L. Abernathy, Long range antiferromagnetic order in a rocksalt high entropy oxide, arXiv:1902.00833 (2019). Rost, Rak, Brenner, Maria (b0100) 2017; 100 Sarkar, Djenadic, Usharani, Sanghvi, Chakravadhanula, Gandhi, Hahn, Bhattacharya (b0115) 2017; 37 Rost, Sachet, Borman, Moballegh, Dickey, Hou, Jones, Curtarolo, Maria (b0055) 2015; 6 Lužnik (10.1016/j.jmmm.2019.04.023_b0215) 2015; 92 Biesuz (10.1016/j.jmmm.2019.04.023_b0105) 2018; 53 Zheng (10.1016/j.jmmm.2019.04.023_b0245) 2012; 14 Lei (10.1016/j.jmmm.2019.04.023_b0090) 2018; 146 Rak (10.1016/j.jmmm.2019.04.023_b0110) 2016; 120 Bérardan (10.1016/j.jmmm.2019.04.023_b0135) 2016; 10 Anand (10.1016/j.jmmm.2019.04.023_b0185) 2017; 3 Huixia (10.1016/j.jmmm.2019.04.023_b0255) 2014; 356 Patel (10.1016/j.jmmm.2019.04.023_b0250) 2018; 6 González-Cortés (10.1016/j.jmmm.2019.04.023_b0175) 2013; 452 Kumar (10.1016/j.jmmm.2019.04.023_b0160) 2015; 278 Peralta (10.1016/j.jmmm.2019.04.023_b0200) 2009; 80 Qiu (10.1016/j.jmmm.2019.04.023_b0145) 2019; 777 Sarkar (10.1016/j.jmmm.2019.04.023_b0140) 2018; 9 Gludovatz (10.1016/j.jmmm.2019.04.023_b0020) 2014; 345 de la Obra (10.1016/j.jmmm.2019.04.023_b0045) 2017; 63 Shen (10.1016/j.jmmm.2019.04.023_b0035) 2013; 160 Ding (10.1016/j.jmmm.2019.04.023_b0010) 2017; 721 Dąbrowa (10.1016/j.jmmm.2019.04.023_b0085) 2018; 216 Berardan (10.1016/j.jmmm.2019.04.023_b0125) 2017; 704 Punnoose (10.1016/j.jmmm.2019.04.023_b0230) 2001; 64 Rost (10.1016/j.jmmm.2019.04.023_b0100) 2017; 100 10.1016/j.jmmm.2019.04.023_b0240 Mao (10.1016/j.jmmm.2019.04.023_b0265) 2018; 735 Braic (10.1016/j.jmmm.2019.04.023_b0040) 2012; 211 Liu (10.1016/j.jmmm.2019.04.023_b0180) 2018; 225 Mao (10.1016/j.jmmm.2019.04.023_b0260) 2019; 775 Mayrhofer (10.1016/j.jmmm.2019.04.023_b0220) 2018; 149 Roth (10.1016/j.jmmm.2019.04.023_b0235) 1958; 110 Jiang (10.1016/j.jmmm.2019.04.023_b0080) 2018; 142 Chen (10.1016/j.jmmm.2019.04.023_b0070) 2018; 38 Sonia (10.1016/j.jmmm.2019.04.023_b0190) 2018; 466 Murty (10.1016/j.jmmm.2019.04.023_b0025) 2014 Gild (10.1016/j.jmmm.2019.04.023_b0050) 2016; 6 Varma (10.1016/j.jmmm.2019.04.023_b0170) 2016; 116 Bérardan (10.1016/j.jmmm.2019.04.023_b0130) 2016; 4 Anand (10.1016/j.jmmm.2019.04.023_b0120) 2018; 146 Zou (10.1016/j.jmmm.2019.04.023_b0015) 2017; 17 Chiang (10.1016/j.jmmm.2019.04.023_b0225) 1997 Djenadic (10.1016/j.jmmm.2019.04.023_b0060) 2017; 5 Sarkar (10.1016/j.jmmm.2019.04.023_b0075) 2018; 38 Nersisyan (10.1016/j.jmmm.2019.04.023_b0165) 2017; 63 Sarkar (10.1016/j.jmmm.2019.04.023_b0115) 2017; 37 Sarkar (10.1016/j.jmmm.2019.04.023_b0155) 2017; 46 Chandekar (10.1016/j.jmmm.2019.04.023_b0195) 2018; 1154 Davies (10.1016/j.jmmm.2019.04.023_b0205) 1981; 38 Hsieh (10.1016/j.jmmm.2019.04.023_b0030) 2013; 221 Lu (10.1016/j.jmmm.2019.04.023_b0005) 2017; 124 Meisenheimer (10.1016/j.jmmm.2019.04.023_b0095) 2017; 7 Rost (10.1016/j.jmmm.2019.04.023_b0055) 2015; 6 Gild (10.1016/j.jmmm.2019.04.023_b0065) 2018; 38 Ding (10.1016/j.jmmm.2019.04.023_b0150) 2017; 5 Bularzik (10.1016/j.jmmm.2019.04.023_b0210) 1986; 69 |
References_xml | – volume: 124 start-page: 143 year: 2017 end-page: 150 ident: b0005 article-title: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range publication-title: Acta Mater. – volume: 80 start-page: 140408 year: 2009 end-page: 140411 ident: b0200 article-title: Jahn-Teller stabilization of magnetic and orbital ordering in rocksalt CuO publication-title: Phys. Rew. B – volume: 53 start-page: 8074 year: 2018 end-page: 8085 ident: b0105 article-title: Synthesis and sintering of (Mg Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods publication-title: J. Mater. Sci. – year: 2014 ident: b0025 article-title: High-entropy alloys – volume: 7 start-page: 13344 year: 2017 end-page: 13349 ident: b0095 article-title: Giant Enhancement of Exchange Coupling in Entropy-Stabilized Oxide Heterostructures publication-title: Sci. Rep. – volume: 160 start-page: C531 year: 2013 end-page: C535 ident: b0035 article-title: Superior oxidation resistance of (Al publication-title: J. Electrochem. Soc. – volume: 466 start-page: 238 year: 2018 end-page: 251 ident: b0190 article-title: Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGd publication-title: J. Magn. Magn. Mater. – volume: 120 start-page: 095105 year: 2016 end-page: 095111 ident: b0110 article-title: Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations publication-title: J. Appl. Phys. – volume: 64 year: 2001 ident: b0230 article-title: Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles publication-title: Phys. Rew. B – volume: 721 start-page: 609 year: 2017 end-page: 614 ident: b0010 article-title: characterization and properties of multicomponent AlCoCrFeNi publication-title: J. Alloys Compd. – volume: 14 start-page: 8376 year: 2012 end-page: 8381 ident: b0245 article-title: A separation mechanism of photogenerated charges and magnetic properties for BiFeO publication-title: Phys. Chem. Chem. Phys. – volume: 735 start-page: 1167 year: 2018 end-page: 1175 ident: b0265 article-title: Effect of aluminum element on microstructure evolution and properties of multicomponent Al-Co-Cr-Cu-Fe-Ni nanoparticles publication-title: J. Alloys Compd. – volume: 10 start-page: 328 year: 2016 end-page: 333 ident: b0135 article-title: Colossal dielectric constant in high entropy oxides publication-title: Phys. Status Solidi−Rapid Res. Lett. – volume: 1154 start-page: 418 year: 2018 end-page: 427 ident: b0195 article-title: Size-strain analysis and elastic properties of CoFe publication-title: J. Mol. Struct. – volume: 775 start-page: 1177 year: 2019 end-page: 1183 ident: b0260 article-title: Plasma arc discharge synthesis of multicomponent Co-Cr-Cu-Fe-Ni nanoparticles publication-title: J. Alloys Compd. – volume: 452 start-page: 117 year: 2013 end-page: 131 ident: b0175 article-title: Fundamentals properties and applications of solid catalysts prepared by solution combustion synthesis (SCS) publication-title: Appl. Catal., A – volume: 116 start-page: 14493 year: 2016 end-page: 14586 ident: b0170 article-title: Solution Combustion Synthesis of Nanoscale Materials publication-title: Chem. Rev. – volume: 6 start-page: 526 year: 2018 end-page: 534 ident: b0250 article-title: Single-crystalline Gd-doped BiFeO publication-title: J. Mater. Chem. C – volume: 6 start-page: 37946 year: 2016 ident: b0050 article-title: High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics publication-title: Sci. Rep. – volume: 46 start-page: 12167 year: 2017 end-page: 12176 ident: b0155 article-title: Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency publication-title: Dalton Trans. – volume: 345 start-page: 1153 year: 2014 end-page: 1158 ident: b0020 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science – volume: 100 start-page: 2732 year: 2017 end-page: 2738 ident: b0100 article-title: Local structure of the Mg publication-title: J. Am. Ceram. Soc. – volume: 63 start-page: 17 year: 2017 end-page: 25 ident: b0045 article-title: A new family of cermets: Chemically complex but microstructurally simple publication-title: Int. J. Refract. Met. Hard Mater. – volume: 777 start-page: 767 year: 2019 end-page: 774 ident: b0145 article-title: A high entropy oxide (Mg publication-title: J. Alloys Compd. – volume: 9 start-page: 3400 year: 2018 end-page: 3409 ident: b0140 article-title: High entropy oxides for reversible energy storage publication-title: Nat. Commun. – volume: 63 start-page: 79 year: 2017 end-page: 118 ident: b0165 article-title: Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: current trends and future perspectives publication-title: Prog. Energy Combust. Sci. – volume: 278 start-page: 46 year: 2015 end-page: 54 ident: b0160 article-title: Combustion synthesis of copper–nickel catalysts for hydrogen production from ethanol publication-title: Chem. Eng. J. – volume: 704 start-page: 693 year: 2017 end-page: 700 ident: b0125 article-title: Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides publication-title: J. Alloys Compd. – volume: 142 start-page: 116 year: 2018 end-page: 120 ident: b0080 article-title: A new class of high-entropy perovskite oxides publication-title: Scripta Mater. – reference: J. Zhang, J. Yan, S. Calder, Q. Zheng, M.A. McGuire, D.L. Abernathy, Long range antiferromagnetic order in a rocksalt high entropy oxide, arXiv:1902.00833 (2019). – volume: 5 start-page: 102 year: 2017 end-page: 109 ident: b0060 article-title: Multicomponent equiatomic rare earth oxides publication-title: Mater. Res. Lett. – volume: 110 start-page: 1333 year: 1958 end-page: 1341 ident: b0235 article-title: Magnetic Structures of MnO, FeO, CoO, and NiO publication-title: Phys. Rev. – volume: 211 start-page: 117 year: 2012 end-page: 121 ident: b0040 article-title: Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings publication-title: Surf. Coat. Technol. – volume: 5 start-page: 5067 year: 2017 end-page: 5076 ident: b0150 article-title: Hydrogen-induced magnesium–zirconium interfacial coupling: enabling fast hydrogen sorption at lower temperatures publication-title: J. Mater. Chem. A – volume: 146 start-page: 340 year: 2018 end-page: 343 ident: b0090 article-title: Ultrastable metal oxide nanotube arrays achieved by entropy-stabilization engineering publication-title: Scripta Mater. – volume: 37 start-page: 747 year: 2017 end-page: 754 ident: b0115 article-title: Nanocrystalline multicomponent entropy stabilised transition metal oxides publication-title: J. Eur. Ceram. Soc. – volume: 17 start-page: 1569 year: 2017 end-page: 1574 ident: b0015 article-title: Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability publication-title: Nano Lett. – volume: 38 start-page: 4161 year: 2018 end-page: 4164 ident: b0070 article-title: A five-component entropy-stabilized fluorite oxide publication-title: J. Eur. Ceram. Soc. – volume: 225 start-page: 1 year: 2018 end-page: 4 ident: b0180 article-title: Ag publication-title: Mater. Lett. – year: 1997 ident: b0225 article-title: Physical Ceramics: Principles for Ceramic Science and Engineering – volume: 146 start-page: 119 year: 2018 end-page: 125 ident: b0120 article-title: Phase stability and distortion in high-entropy oxides publication-title: Acta Mater. – volume: 38 start-page: 3578 year: 2018 end-page: 3584 ident: b0065 article-title: High-entropy fluorite oxides publication-title: J. Eur. Ceram. Soc. – volume: 216 start-page: 32 year: 2018 end-page: 36 ident: b0085 article-title: Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure publication-title: Mater. Lett. – volume: 38 start-page: 264 year: 1981 end-page: 276 ident: b0205 article-title: Thermodynamics of solid solution formation in NiO-MgO and NiO-ZnO publication-title: J. Solid State Chem. – volume: 149 start-page: 93 year: 2018 end-page: 97 ident: b0220 article-title: High-entropy ceramic thin films; A case study on transition metal diborides publication-title: Scripta Mater. – volume: 38 start-page: 2318 year: 2018 end-page: 2327 ident: b0075 article-title: Rare earth and transition metal based entropy stabilised perovskite type oxides publication-title: J. Eur. Ceram. Soc. – volume: 3 start-page: 168 year: 2017 end-page: 173 ident: b0185 article-title: Structural, morphological and dielectric studies of zirconium substituted CoFe publication-title: Modern Electronic Mater. – volume: 69 start-page: 453 year: 1986 end-page: 457 ident: b0210 article-title: Thermodynamics of Solid-Solution Formation in NiO-CuO publication-title: J. Am. Ceram. Soc. – volume: 221 start-page: 118 year: 2013 end-page: 123 ident: b0030 article-title: Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings publication-title: Surf. Coat. Technol. – volume: 4 start-page: 9536 year: 2016 end-page: 9541 ident: b0130 article-title: Room temperature lithium superionic conductivity in high entropy oxides publication-title: J. Mater. Chem. A – volume: 6 start-page: 8485 year: 2015 end-page: 8491 ident: b0055 article-title: Entropy-stabilized oxides publication-title: Nat. Commun. – volume: 356 start-page: 68 year: 2014 end-page: 72 ident: b0255 article-title: Preparation and characterization of the cobalt ferrite nano-particles by reverse coprecipitation publication-title: J. Magn. Magn. Mater. – volume: 92 year: 2015 ident: b0215 article-title: Complex magnetism of Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy publication-title: Phys. Rew. B – volume: 211 start-page: 117 year: 2012 ident: 10.1016/j.jmmm.2019.04.023_b0040 article-title: Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2011.09.033 – volume: 466 start-page: 238 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0190 article-title: Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2−xO4 ferrite nano-crystallites synthesized by sol-gel route publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.07.017 – ident: 10.1016/j.jmmm.2019.04.023_b0240 doi: 10.1021/acs.chemmater.9b00624 – volume: 5 start-page: 5067 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0150 article-title: Hydrogen-induced magnesium–zirconium interfacial coupling: enabling fast hydrogen sorption at lower temperatures publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00460E – volume: 92 year: 2015 ident: 10.1016/j.jmmm.2019.04.023_b0215 article-title: Complex magnetism of Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy publication-title: Phys. Rew. B doi: 10.1103/PhysRevB.92.224201 – volume: 37 start-page: 747 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0115 article-title: Nanocrystalline multicomponent entropy stabilised transition metal oxides publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.09.018 – volume: 160 start-page: C531 year: 2013 ident: 10.1016/j.jmmm.2019.04.023_b0035 article-title: Superior oxidation resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride publication-title: J. Electrochem. Soc. doi: 10.1149/2.028311jes – volume: 38 start-page: 2318 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0075 article-title: Rare earth and transition metal based entropy stabilised perovskite type oxides publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.12.058 – volume: 6 start-page: 526 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0250 article-title: Single-crystalline Gd-doped BiFeO3 nanowires: R3c-to-Pn21a phase transition and enhancement in high-coercivity ferromagnetism publication-title: J. Mater. Chem. C doi: 10.1039/C7TC05362B – volume: 124 start-page: 143 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0005 article-title: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.11.016 – volume: 120 start-page: 095105 year: 2016 ident: 10.1016/j.jmmm.2019.04.023_b0110 article-title: Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations publication-title: J. Appl. Phys. doi: 10.1063/1.4962135 – volume: 4 start-page: 9536 year: 2016 ident: 10.1016/j.jmmm.2019.04.023_b0130 article-title: Room temperature lithium superionic conductivity in high entropy oxides publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03249D – volume: 38 start-page: 264 year: 1981 ident: 10.1016/j.jmmm.2019.04.023_b0205 article-title: Thermodynamics of solid solution formation in NiO-MgO and NiO-ZnO publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(81)90044-X – volume: 63 start-page: 79 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0165 article-title: Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: current trends and future perspectives publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2017.07.002 – volume: 116 start-page: 14493 year: 2016 ident: 10.1016/j.jmmm.2019.04.023_b0170 article-title: Solution Combustion Synthesis of Nanoscale Materials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00279 – volume: 5 start-page: 102 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0060 article-title: Multicomponent equiatomic rare earth oxides publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2016.1220433 – volume: 735 start-page: 1167 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0265 article-title: Effect of aluminum element on microstructure evolution and properties of multicomponent Al-Co-Cr-Cu-Fe-Ni nanoparticles publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.11.233 – year: 1997 ident: 10.1016/j.jmmm.2019.04.023_b0225 – volume: 17 start-page: 1569 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0015 article-title: Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04716 – volume: 356 start-page: 68 year: 2014 ident: 10.1016/j.jmmm.2019.04.023_b0255 article-title: Preparation and characterization of the cobalt ferrite nano-particles by reverse coprecipitation publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2013.12.033 – volume: 216 start-page: 32 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0085 article-title: Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.12.148 – volume: 64 year: 2001 ident: 10.1016/j.jmmm.2019.04.023_b0230 article-title: Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles publication-title: Phys. Rew. B doi: 10.1103/PhysRevB.64.174420 – volume: 110 start-page: 1333 year: 1958 ident: 10.1016/j.jmmm.2019.04.023_b0235 article-title: Magnetic Structures of MnO, FeO, CoO, and NiO publication-title: Phys. Rev. doi: 10.1103/PhysRev.110.1333 – volume: 63 start-page: 17 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0045 article-title: A new family of cermets: Chemically complex but microstructurally simple publication-title: Int. J. Refract. Met. Hard Mater. doi: 10.1016/j.ijrmhm.2016.04.011 – volume: 7 start-page: 13344 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0095 article-title: Giant Enhancement of Exchange Coupling in Entropy-Stabilized Oxide Heterostructures publication-title: Sci. Rep. doi: 10.1038/s41598-017-13810-5 – volume: 80 start-page: 140408 year: 2009 ident: 10.1016/j.jmmm.2019.04.023_b0200 article-title: Jahn-Teller stabilization of magnetic and orbital ordering in rocksalt CuO publication-title: Phys. Rew. B doi: 10.1103/PhysRevB.80.140408 – volume: 278 start-page: 46 year: 2015 ident: 10.1016/j.jmmm.2019.04.023_b0160 article-title: Combustion synthesis of copper–nickel catalysts for hydrogen production from ethanol publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.01.012 – volume: 775 start-page: 1177 year: 2019 ident: 10.1016/j.jmmm.2019.04.023_b0260 article-title: Plasma arc discharge synthesis of multicomponent Co-Cr-Cu-Fe-Ni nanoparticles publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.10.170 – volume: 10 start-page: 328 year: 2016 ident: 10.1016/j.jmmm.2019.04.023_b0135 article-title: Colossal dielectric constant in high entropy oxides publication-title: Phys. Status Solidi−Rapid Res. Lett. doi: 10.1002/pssr.201600043 – volume: 6 start-page: 8485 year: 2015 ident: 10.1016/j.jmmm.2019.04.023_b0055 article-title: Entropy-stabilized oxides publication-title: Nat. Commun. doi: 10.1038/ncomms9485 – volume: 345 start-page: 1153 year: 2014 ident: 10.1016/j.jmmm.2019.04.023_b0020 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science doi: 10.1126/science.1254581 – volume: 9 start-page: 3400 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0140 article-title: High entropy oxides for reversible energy storage publication-title: Nat. Commun. doi: 10.1038/s41467-018-05774-5 – volume: 146 start-page: 340 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0090 article-title: Ultrastable metal oxide nanotube arrays achieved by entropy-stabilization engineering publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2017.12.025 – volume: 3 start-page: 168 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0185 article-title: Structural, morphological and dielectric studies of zirconium substituted CoFe2O4 nanoparticles publication-title: Modern Electronic Mater. doi: 10.1016/j.moem.2017.10.001 – volume: 69 start-page: 453 year: 1986 ident: 10.1016/j.jmmm.2019.04.023_b0210 article-title: Thermodynamics of Solid-Solution Formation in NiO-CuO publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1986.tb07444.x – volume: 53 start-page: 8074 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0105 article-title: Synthesis and sintering of (Mg Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2168-9 – volume: 1154 start-page: 418 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0195 article-title: Size-strain analysis and elastic properties of CoFe2O4 nanoplatelets by hydrothermal method publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2017.09.104 – volume: 225 start-page: 1 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0180 article-title: Ag3PO4 sub-microcubic/SrFe12O19 hexagon nanoflake heterostructure for broadband electromagnetic absorber at GHz frequency publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.04.079 – volume: 221 start-page: 118 year: 2013 ident: 10.1016/j.jmmm.2019.04.023_b0030 article-title: Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2013.01.036 – volume: 46 start-page: 12167 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0155 article-title: Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency publication-title: Dalton Trans. doi: 10.1039/C7DT02077E – volume: 100 start-page: 2732 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0100 article-title: Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy–stabilized oxide: An EXAFS study publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.14756 – volume: 14 start-page: 8376 year: 2012 ident: 10.1016/j.jmmm.2019.04.023_b0245 article-title: A separation mechanism of photogenerated charges and magnetic properties for BiFeO3 microspheres synthesized by a facile hydrothermal method publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp40326a – volume: 38 start-page: 3578 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0065 article-title: High-entropy fluorite oxides publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.04.010 – volume: 704 start-page: 693 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0125 article-title: Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.02.070 – volume: 6 start-page: 37946 year: 2016 ident: 10.1016/j.jmmm.2019.04.023_b0050 article-title: High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics publication-title: Sci. Rep. doi: 10.1038/srep37946 – volume: 146 start-page: 119 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0120 article-title: Phase stability and distortion in high-entropy oxides publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.12.037 – volume: 149 start-page: 93 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0220 article-title: High-entropy ceramic thin films; A case study on transition metal diborides publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2018.02.008 – volume: 142 start-page: 116 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0080 article-title: A new class of high-entropy perovskite oxides publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2017.08.040 – volume: 452 start-page: 117 year: 2013 ident: 10.1016/j.jmmm.2019.04.023_b0175 article-title: Fundamentals properties and applications of solid catalysts prepared by solution combustion synthesis (SCS) publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2012.11.024 – year: 2014 ident: 10.1016/j.jmmm.2019.04.023_b0025 – volume: 721 start-page: 609 year: 2017 ident: 10.1016/j.jmmm.2019.04.023_b0010 article-title: characterization and properties of multicomponent AlCoCrFeNi2.1 powder by gas atomization method publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.06.020 – volume: 38 start-page: 4161 year: 2018 ident: 10.1016/j.jmmm.2019.04.023_b0070 article-title: A five-component entropy-stabilized fluorite oxide publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.04.063 – volume: 777 start-page: 767 year: 2019 ident: 10.1016/j.jmmm.2019.04.023_b0145 article-title: A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.11.049 |
SSID | ssj0001486 ssib019626450 |
Score | 2.605109 |
Snippet | •The (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O nanocrystalline powder was synthesizes by SCS method.•Synthesis temperature of single-phase rock-salt structure was above... A facile solution combustion synthesis method was successfully applied to synthesize single rock-salt structural (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 245 |
SubjectTerms | (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O Antiferromagnetism Combustion synthesis Crystals Entropy High-entropy oxide Magnetic properties Nanocrystalline powder Nanocrystals Organic chemistry Solution combustion synthesis |
Title | Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder |
URI | https://dx.doi.org/10.1016/j.jmmm.2019.04.023 https://www.proquest.com/docview/2242110756 |
Volume | 484 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS9xAFB_EIngpbVVqa2UOPVgkbiaZbDJHWbpsK7seWkF6GeYrEutOwiaie-m1_3bfy0eLQj14GZKQCcl7L_N-73MI-Yg9srRhNlApmKuc6ThQVoGVYlVqQhUznmNEd74Yzy7418vkcoNMhloYTKvs1_5uTW9X6_7KqKfmqCqK0TcM6mUZyhBAFDC1sIKdpyjlJ7_-pXkA3O_ilSEP8O6-cKbL8bpeLrEanYm23WkU_085PVqmW90zfUVe9qCRnnbv9ZpsOP-GbLXJm6beIb8H3xaFr9C4PRcc1msP2K4uaqq8pUt15bFckVbofF81a1rmFHTXz6BWNw09mpThSTS5hWF-BcOigOGHh-HTOcWOxgE6gcsKpt0X1lGvfGlWa0CW2NLb0aq8s261Sy6mn79PZkG_wUJgYsGbQPMIdWQeOmZTxXMLtiAoL2UipVQc5uPMcBM5oG1sx1bwxCjBHSACHecWLMd4j2z60ru3hKYiFQh9NDOIcbQwYGglykVaMJdlYp-wgbLS9N3HcROMGzmkmV1L5IZEbsiQS-DGPjn-O6fqem88eXcyMEw-kCAJyuHJeQcDd2X__9Yywkg5UCMZv3vmY9-TbTxD9zNLDshms7p1HwC_NPqwFdBD8uL0y9ls8QeI6e8Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoqGovFX2ptEB96IGqChsnziY-ohVoS9ntAZBQL5ZfQaGsE22C2r302r_NTB5UVCqHXqwosaNkxp75xp4HIR8wR5Y2zAYqBXOVMx0HyiqwUqxKTahixnM80Z3Nx9NzfnyRXKyRyRALg26VvezvZHorrfs7o56ao6ooRqd4qJdlOIcAooCp9YhscFi-WMZg_9cfPw_A-92BZcgD7N5HznROXleLBYajM9HmO43if2mnv-R0q3yONsmzHjXSg-7DnpM151-Qx633pqlfkt_D5haF39BYnwsu65UHcFcXNVXe0oW69BivSCvcfV82K1rmFJTX96BW1w3dm5ThfjS5gWZ2Cc28gOabh-bjV4opjQPcBS4rGPazsI565UuzXAG0xJzejlblD-uWr8j50eHZZBr0FRYCEwveBJpHqCTz0DGbKp5bMAZBeykTKaXiMB9nhpvIAXFjO7aCJ0YJ7gAS6Di3YDrGr8m6L717Q2gqUoHYRzODIEcLA5ZWolykBXNZJrYIGygrTZ9-HKtgXMvBz-xKIjckckOGXAI3tsinuzFVl3zjwd7JwDB5bwpJ0A4PjtseuCv7BVzLCI_KgRrJ-O1_vvY9eTI9m53Ik8_zL-_IU3yCe9Es2SbrzfLG7QCYafRuO1lvAQWN8J4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+combustion+synthesis+and+magnetic+property+of+rock-salt+%28Co0.2Cu0.2Mg0.2Ni0.2Zn0.2%29O+high-entropy+oxide+nanocrystalline+powder&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Mao%2C+Aiqin&rft.au=Xiang%2C+Hou-Zheng&rft.au=Zhang%2C+Zhan-Guo&rft.au=Kuramoto%2C+Koji&rft.date=2019-08-15&rft.issn=0304-8853&rft.volume=484&rft.spage=245&rft.epage=252&rft_id=info:doi/10.1016%2Fj.jmmm.2019.04.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmmm_2019_04_023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon |