Built-Up Area Mapping for the Greater Bay Area in China from Spaceborne SAR Data Based on the PSDNet and Spatial Statistical Features
Built-up areas (BAs) information acquisition is essential to urban planning and sustainable development in the Greater Bay Area in China. In this paper, a pseudo-Siamese dense convolutional network, namely PSDNet, is proposed to automatically extract BAs from the spaceborne synthetic aperture radar...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 14; p. 3428 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Built-up areas (BAs) information acquisition is essential to urban planning and sustainable development in the Greater Bay Area in China. In this paper, a pseudo-Siamese dense convolutional network, namely PSDNet, is proposed to automatically extract BAs from the spaceborne synthetic aperture radar (SAR) data in the Greater Bay Area, which considers the spatial statistical features and speckle features in SAR images. The local indicators of spatial association, including Moran’s, Geary’s, and Getis’ together with the speckle divergence feature, are calculated for the SAR data, which can indicate the potential BAs. The amplitude SAR images and the corresponding features are then regarded as the inputs for PSDNet. In this framework, a pseudo-Siamese network can independently learn the BAs discrimination ability from the SAR original amplitude image and the features. The DenseNet is adopted as the backbone network of each channel, which can improve the efficiency while extracting the deep features of the BAs. Moreover, it also has the ability to extract the BAs with multi-scale sizes by using a multi-scale decoder. The Sentinel-1 (S1) SAR data for the Greater Bay Area in China are used for the experimental validation. Our method of BA extraction can achieve above 90% accuracy, which is similar to the current urban extraction product, demonstrating that our method can achieve BA mapping for spaceborne SAR data. |
---|---|
AbstractList | Built-up areas (BAs) information acquisition is essential to urban planning and sustainable development in the Greater Bay Area in China. In this paper, a pseudo-Siamese dense convolutional network, namely PSDNet, is proposed to automatically extract BAs from the spaceborne synthetic aperture radar (SAR) data in the Greater Bay Area, which considers the spatial statistical features and speckle features in SAR images. The local indicators of spatial association, including Moran’s, Geary’s, and Getis’ together with the speckle divergence feature, are calculated for the SAR data, which can indicate the potential BAs. The amplitude SAR images and the corresponding features are then regarded as the inputs for PSDNet. In this framework, a pseudo-Siamese network can independently learn the BAs discrimination ability from the SAR original amplitude image and the features. The DenseNet is adopted as the backbone network of each channel, which can improve the efficiency while extracting the deep features of the BAs. Moreover, it also has the ability to extract the BAs with multi-scale sizes by using a multi-scale decoder. The Sentinel-1 (S1) SAR data for the Greater Bay Area in China are used for the experimental validation. Our method of BA extraction can achieve above 90% accuracy, which is similar to the current urban extraction product, demonstrating that our method can achieve BA mapping for spaceborne SAR data. |
Author | Su, Yi Zhang, Wei Lu, Shengtao Xiang, Deliang |
Author_xml | – sequence: 1 givenname: Wei surname: Zhang fullname: Zhang, Wei – sequence: 2 givenname: Shengtao surname: Lu fullname: Lu, Shengtao – sequence: 3 givenname: Deliang orcidid: 0000-0003-0152-6621 surname: Xiang fullname: Xiang, Deliang – sequence: 4 givenname: Yi surname: Su fullname: Su, Yi |
BookMark | eNptkU1vFDEMhkeoSJTSC78gEheENJA42ZnJcbv9oFL5EEvPkSfjabOaTYYke-gP4H-T7SJAFb7Ysh6_em2_rI588FRVrwV_L6XmH2ISSiipoHtWHQNvoVag4eif-kV1mtKGl5BSaK6Oq59nOzfl-nZmy0jIPuE8O3_HxhBZvid2VZqZIjvDhwPgPFvdO49sjGHL1jNa6kP0xNbLb-wcMxY00cCCf5z_uj7_TJmhH_ZsdjixdS45ZWdLfVnUd5HSq-r5iFOi09_5pLq9vPi--ljffLm6Xi1vaiu1ynUPjUUJAgYQclAd4aAaq3CwGss-PbS94l0ne-g7a2Uh9dhzku1oBQg7ypPq-qA7BNyYObotxgcT0JnHRoh3BmOxNpER1IOEFrAVQg3A9YIaUN1CUq872zRF6-1Ba47hx45SNluXLE0Tegq7ZKAVHXSi4YuCvnmCbsIu-rKpgUYrvtBadYV6d6BsDClFGv8YFNzsH2z-PrjA_Als3f6wweeIbvrfyC81FKba |
CitedBy_id | crossref_primary_10_1016_j_uclim_2023_101729 |
Cites_doi | 10.3390/rs8080685 10.1109/TGRS.2021.3079438 10.3390/s21196645 10.1109/JSTARS.2010.2052023 10.1109/TGRS.2002.807754 10.5194/essd-12-1625-2020 10.1117/1.JRS.6.061702 10.1109/LGRS.2019.2915251 10.1109/TGRS.2009.2037144 10.3390/rs11192215 10.3390/rs14040899 10.1109/LGRS.2013.2272953 10.1016/j.isprsjprs.2014.08.004 10.1109/LGRS.2022.3161931 10.1016/j.rse.2019.03.033 10.1109/JSTARS.2008.921099 10.1109/ICCV.2017.324 10.1016/j.isprsjprs.2014.09.002 10.1109/JSTARS.2022.3179171 10.1553/giscience2021_01_s33 10.1109/CVPR.2017.243 10.1109/TGRS.2003.814628 10.1007/978-3-319-71598-8_54 10.1109/LGRS.2020.3005973 10.1109/JSTARS.2012.2235410 10.3390/rs10060874 10.1109/LGRS.2018.2876616 10.1016/j.rse.2021.112515 10.1109/TGRS.1986.289643 10.1109/JSTARS.2012.2201135 10.1016/j.rse.2019.111282 10.1016/j.isprsjprs.2016.03.009 10.1109/JSTARS.2014.2344017 10.3390/rs12172791 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs14143428 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Statistics |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_1eb23272a7114d2095e624853eb98c66 10_3390_rs14143428 |
GeographicLocations | Hong Kong China Pearl River (China) China Macao |
GeographicLocations_xml | – name: Macao – name: China – name: Pearl River (China) – name: Hong Kong China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-b26ca3212d213d48ead46c4adc9a319b27b40883b2b8cc33219fb0e37fc121cf3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:24:42 EDT 2025 Fri Jul 11 12:34:48 EDT 2025 Fri Jul 25 09:36:55 EDT 2025 Tue Jul 01 01:59:41 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-b26ca3212d213d48ead46c4adc9a319b27b40883b2b8cc33219fb0e37fc121cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0152-6621 |
OpenAccessLink | https://www.proquest.com/docview/2694059948?pq-origsite=%requestingapplication% |
PQID | 2694059948 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1eb23272a7114d2095e624853eb98c66 proquest_miscellaneous_2718281605 proquest_journals_2694059948 crossref_primary_10_3390_rs14143428 crossref_citationtrail_10_3390_rs14143428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wang (ref_8) 2019; 17 ref_36 ref_12 Esch (ref_18) 2009; 48 ref_33 Liu (ref_9) 2019; 226 ref_30 Ma (ref_3) 2019; 232 Jing (ref_25) 2020; 18 Zhang (ref_5) 2020; 19 Marconcini (ref_15) 2021; 1 Gamba (ref_13) 2003; 41 ref_37 Chen (ref_10) 2015; 103 Li (ref_32) 2018; 16 Ulaby (ref_34) 1986; 2 Tang (ref_23) 2022; 19 Xu (ref_35) 2020; 19 Gamba (ref_21) 2013; 6 Hu (ref_28) 2014; 7 Zhang (ref_24) 2022; 15 Esch (ref_14) 2013; 10 ref_22 Ban (ref_1) 2015; 103 Stasolla (ref_17) 2008; 1 ref_2 Zhang (ref_11) 2020; 12 ref_29 Cheng (ref_7) 2022; 60 ref_26 Dekker (ref_16) 2003; 41 Gamba (ref_19) 2010; 4 Wu (ref_31) 2021; 262 ref_4 Xiang (ref_6) 2016; 116 Esch (ref_20) 2012; 6 Ban (ref_27) 2012; 5 |
References_xml | – ident: ref_4 doi: 10.3390/rs8080685 – volume: 19 start-page: 6000405 year: 2020 ident: ref_35 article-title: Pseudo-Siamese Capsule Network for Aerial Remote Sensing Images Change Detection publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 60 start-page: 5209314 year: 2022 ident: ref_7 article-title: PolSAR Image Classification With Multiscale Superpixel-Based Graph Convolutional Network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2021.3079438 – ident: ref_33 doi: 10.3390/s21196645 – volume: 4 start-page: 27 year: 2010 ident: ref_19 article-title: Robust extraction of urban area extents in HR and VHR SAR images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2010.2052023 – volume: 41 start-page: 153 year: 2003 ident: ref_13 article-title: Texture-based characterization of urban environments on satellite SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.807754 – volume: 12 start-page: 1625 year: 2020 ident: ref_11 article-title: Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-12-1625-2020 – volume: 6 start-page: 061702 year: 2012 ident: ref_20 article-title: TanDEM-X mission-new perspectives for the inventory and monitoring of global settlement patterns publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.6.061702 – volume: 17 start-page: 77 year: 2019 ident: ref_8 article-title: SAR Image Change Detection via Spatial Metric Learning With an Improved Mahalanobis Distance publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2915251 – volume: 48 start-page: 905 year: 2009 ident: ref_18 article-title: Delineation of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity information publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2037144 – ident: ref_2 doi: 10.3390/rs11192215 – ident: ref_26 doi: 10.3390/rs14040899 – volume: 10 start-page: 1617 year: 2013 ident: ref_14 article-title: Urban footprint processor—Fully automated processing chain generating settlement masks from global data of the TanDEM-X mission publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2272953 – volume: 103 start-page: 28 year: 2015 ident: ref_1 article-title: Spaceborne SAR data for global urban mapping at 30m resolution using a robust urban extractor publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.08.004 – volume: 19 start-page: 4506205 year: 2022 ident: ref_23 article-title: Large-Difference-Scale Target Detection Using a Revised Bhattacharyya Distance in SAR Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2022.3161931 – volume: 226 start-page: 51 year: 2019 ident: ref_9 article-title: Automatic extraction of built-up area from ZY3 multi-view satellite imagery: Analysis of 45 global cities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.03.033 – volume: 1 start-page: 98 year: 2008 ident: ref_17 article-title: Spatial Indexes for the Extraction of Formal and Informal Human Settlements From High-Resolution SAR Images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2008.921099 – ident: ref_37 doi: 10.1109/ICCV.2017.324 – volume: 103 start-page: 7 year: 2015 ident: ref_10 article-title: Global land cover mapping at 30 m resolution: A POK-based operational approach publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.09.002 – volume: 15 start-page: 4507 year: 2022 ident: ref_24 article-title: Adversarial deception against SAR target recognition network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3179171 – ident: ref_12 – volume: 1 start-page: 33 year: 2021 ident: ref_15 article-title: Understanding Current Trends in Global Urbanisation—The World Settlement Footprint Suite publication-title: GI_Forum doi: 10.1553/giscience2021_01_s33 – ident: ref_36 doi: 10.1109/CVPR.2017.243 – volume: 41 start-page: 1950 year: 2003 ident: ref_16 article-title: Texture analysis and classification of ERS SAR images for map updating of urban areas in the netherlands publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.814628 – ident: ref_29 doi: 10.1007/978-3-319-71598-8_54 – volume: 18 start-page: 1600 year: 2020 ident: ref_25 article-title: Edge-Aware Superpixel Generation for SAR Imagery With One Iteration Merging publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.3005973 – volume: 6 start-page: 2184 year: 2013 ident: ref_21 article-title: Fast and efficient urban extent extraction using ASAR wide swath mode data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2235410 – ident: ref_22 doi: 10.3390/rs10060874 – volume: 16 start-page: 402 year: 2018 ident: ref_32 article-title: SAR Image Change Detection Using PCANet Guided by Saliency Detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2876616 – volume: 19 start-page: 4001805 year: 2020 ident: ref_5 article-title: Fast Multiscale Superpixel Segmentation for SAR Imagery publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 262 start-page: 112515 year: 2021 ident: ref_31 article-title: Built-up area mapping in China from GF-3 SAR imagery based on the framework of deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112515 – volume: 2 start-page: 235 year: 1986 ident: ref_34 article-title: Textural Infornation in SAR Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.1986.289643 – volume: 5 start-page: 1087 year: 2012 ident: ref_27 article-title: Multitemporal spaceborne SAR data for urban change detection in China publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2201135 – volume: 232 start-page: 111282 year: 2019 ident: ref_3 article-title: Remotely sensing large- and small-scale ground subsidence: A case study of the Guangdong–Hong Kong–Macao Greater Bay Area of China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111282 – volume: 116 start-page: 86 year: 2016 ident: ref_6 article-title: Unsupervised polarimetric SAR urban area classification based on model-based decomposition with cross scattering publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.009 – volume: 7 start-page: 3248 year: 2014 ident: ref_28 article-title: Unsupervised Change Detection in Multitemporal SAR Images Over Large Urban Areas publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2344017 – ident: ref_30 doi: 10.3390/rs12172791 |
SSID | ssj0000331904 |
Score | 2.316206 |
Snippet | Built-up areas (BAs) information acquisition is essential to urban planning and sustainable development in the Greater Bay Area in China. In this paper, a... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3428 |
SubjectTerms | Algorithms Amplitudes Artificial neural networks built-up area extraction China Cities Classification Computer networks Data processing Deep learning Feature extraction Land settlement Mapping pseudo-Siamese dense convolutional network Remote sensing spatial statistical features Statistics Sustainable development Synthetic aperture radar synthetic aperture radar (SAR) Teaching methods the Greater Bay Area Urban areas Urban planning Urbanization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LatwwFBUlm3ZT2qal0yZFodl0YWJLGj-WmTwIhYTQ6UB2Ro_rNjB4woxnkQ_If-dc2ZkOpNBNN8bYx1hIV7rnYOtcIQ7LgsDbUkrSkhoIlNQnzrmQBHAJPU51UXkWipdX-cXMfL8Z32yV-uJ_wnp74L7jjjJIP60KZQsw96DACChnGy5Nrip9Hs22kfO2xFRcgzVCKzW9H6mGrj9arjIDbmC47PpWBopG_c_W4Zhczt-I1wMrlMd9a96KF9S-Ey-HAuW_73fFw2R9O--S2R0wZOWlZVuFXxKMU4LBySj0aSkn9r4H3LYyVsaWvH1ETiGMeV1pSU6Pf8hT21lAVxTkoo3PX09Pr6iTtg2MxaSfS2ah0cQZ58wT19Dl78Xs_OznyUUyVFBIvK5MlziVe6uRnYLKdDAlwsbk3tjgK4sOcqpwBsuMdsqV3msgq8alpIvGZyrzjf4gdtpFSx-FhC7zoWlAP8gbMy6saoIiP_YpDrbRI_HtqVdrP9iLc5WLeQ2ZwSNQ_xmBkfi6wd71php_RU14cDYINsKOFxAe9RAe9b_CYyT2noa2Hmbnqubdu-xLY_COg81tzCv-WGJbWqyBQdJWZQa19-l_tOOzeKV440T80XdP7HTLNe2DznTuS4zcR-sX7_o priority: 102 providerName: Directory of Open Access Journals |
Title | Built-Up Area Mapping for the Greater Bay Area in China from Spaceborne SAR Data Based on the PSDNet and Spatial Statistical Features |
URI | https://www.proquest.com/docview/2694059948 https://www.proquest.com/docview/2718281605 https://doaj.org/article/1eb23272a7114d2095e624853eb98c66 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB3R5EAvCAqI0BItggsHq_buxl6fUEIaKkSiqiFSb9Z-uVSK7JA4h_6A_m9mbMdFAnGxLHvWlnZ2Z9_bjzcAH1XiEbeFPgiVz5GghDYwxrjAIZYQo1AkqSWiOF_Elyv57WZ000647dptlYeYWAdqV1qaIz-nE5ekJSLV582vgLJG0epqm0LjCPoYgpXqQX9ysbi67mZZQoFNLJSNLqlAfn--3UUSMYKk9Ot_jES1YP9f8bgeZGbP4VmLDtm4cecLeOKLE3jaJir_eX8CxwQOG23ll_Aw2d-tq2C1wQJes7kmrYVbhjCUIaxjNfv3WzbR943BXcHqdNmMzpSwJbJlCjaFZ8vxNZvqSqPpzjtWFnX5q-V04SumC0e2GAnWrPs73hN43CNZfwWr2cWPL5dBm1YhsCKVVWB4bLXA-nI8Ek4qbEsytlI7m2qsLcMTIzH2CMONslagZZqb0IsktxGPbC5eQ68oC_8GGJI16_IcMYm3Uo4SzXPHvR3ZEC86FwP4dKjizLaa45T6Yp0h9yB3ZI_uGMCHznbTKG3802pCnuosSB27flBub7O2s2WRNwgUE64TZHuOI4r0MUm3CW9SZeN4AGcHP2dtl91ljw1sAO-719jZaAVFF77cow2O5FxFSAHf_v8Tp3DM6ZxEva_3DHrVdu_fIXqpzBCO1OzrEPrj6fz7ctg22GE9F_AboNryGw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcmgvCAqIQIFFwIGDVXt3YzsHhBpCSGkTIdJIvZl9uVSKnGA7QvkB_B1-IzN-FQnErRfL8s6upZ3HfrO7MwPwKo4c4jbfeX7sUnRQfONpra1nEUuIvi-igSFHcToLJwv56aJ_sQO_2lgYulbZ2sTKUNuVoT3yI4q4pFwiMn63_u5R1Sg6XW1LaNRiceq2P9BlK96ejJC_rzkffzh_P_GaqgKeEQNZepqHRgm02JYHwsoYp1KGRiprBgrlUfNIS1Q9obmOjRFIOUi170SUmoAHJhU47i24LQWu5BSZPv7Y7en4AgfwZZ0FFdv9o7wIJCISScXe_1j3qvIAf1n_akkb34U7DRZlx7Xw3IMdlx3AXlMW_dv2APYJitaZnO_Dz-Hmall6izV2cIpNFWV2uGQIehmCSFbtNbicDdW2JrjKWFWcm1EEC5ujb06mLXNsfvyFjVSpkLRwlq2yqv_n-WjmSqYyS7Rod5as-zu-E1Td5K54AIsbme6HsJutMvcIGLqGxqYpIiBnpOxHiqeWO9M3Pj5UKnrwpp3ixDQZzqnQxjJBT4fYkVyzowcvO9p1ndfjn1RD4lRHQbm4qw-r_DJpVDsJnEZYGnEVoW9pOWJWF1KiOOH0IDZh2IPDls9JYyCK5Fqce_Cia0bVpvMalbnVBmkQN_A4QIfz8f-HeA57k_PpWXJ2Mjt9AvucIjSqG8WHsFvmG_cUcVOpn1XCyuDrTWvHbzzqKoE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVIJeEBQQgQKLgAMHK_buxo8DQg1p1FIaRQ2RenP35VIpskPiCOUH8Kf4dczYjosE4taLZdnjtbTz2O_bxwzA2zhyiNt85_mxy5Cg-MbTWlvPIpYQfV9EiSGieDYOj2fy80X_Ygd-bc_C0LbKbUysArUtDM2R9-jEJeUSkXEva7ZFTIajj4vvHlWQopXWbTmN2kRO3eYH0rfVh5Mh6vod56Ojr5-OvabCgGdEIktP89AogdHb8kBYGWO3ytBIZU2i0DY1j7RENxSa69gYgZJJpn0noswEPDCZwHbvwG5ErKgDu4Oj8eS8neHxBTbhyzonqhCJ31uuAon4RFLp9z9GwapYwF9jQTXAjR7A_QaZssPalB7Cjsv34V5TJP3bZh_2CJjWeZ0fwc_B-npeerMFfuAUO1OU5-GKIQRmCClZNfPglmygNrXAdc6qUt2MzrOwKTJ1CnS5Y9PDczZUpULRlbOsyKvvJ9Ph2JVM5ZZkMQrNWft3vCfgul661WOY3UqHP4FOXuTuKTAkisZmGeIhZ6TsR4pnljvTNz5eVCa68H7bxalp8p1T2Y15iryH1JHeqKMLb1rZRZ3l459SA9JUK0GZuasHxfIqbRw9DZxGkBpxFSHTtBwRrAspbZxwOolNGHbhYKvntAkXq_TGuLvwun2Njk6rNyp3xRplEEXwOED6-ez_TbyCu-gZ6ZeT8elz2ON0XKPaXnwAnXK5di8QRJX6ZWOtDC5v20F-AwYIMBM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Built-Up+Area+Mapping+for+the+Greater+Bay+Area+in+China+from+Spaceborne+SAR+Data+Based+on+the+PSDNet+and+Spatial+Statistical+Features&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Wei&rft.au=Lu%2C+Shengtao&rft.au=Xiang%2C+Deliang&rft.au=Su%2C+Yi&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=14&rft.spage=3428&rft_id=info:doi/10.3390%2Frs14143428&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |