Built-Up Area Mapping for the Greater Bay Area in China from Spaceborne SAR Data Based on the PSDNet and Spatial Statistical Features

Built-up areas (BAs) information acquisition is essential to urban planning and sustainable development in the Greater Bay Area in China. In this paper, a pseudo-Siamese dense convolutional network, namely PSDNet, is proposed to automatically extract BAs from the spaceborne synthetic aperture radar...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 14; p. 3428
Main Authors Zhang, Wei, Lu, Shengtao, Xiang, Deliang, Su, Yi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Built-up areas (BAs) information acquisition is essential to urban planning and sustainable development in the Greater Bay Area in China. In this paper, a pseudo-Siamese dense convolutional network, namely PSDNet, is proposed to automatically extract BAs from the spaceborne synthetic aperture radar (SAR) data in the Greater Bay Area, which considers the spatial statistical features and speckle features in SAR images. The local indicators of spatial association, including Moran’s, Geary’s, and Getis’ together with the speckle divergence feature, are calculated for the SAR data, which can indicate the potential BAs. The amplitude SAR images and the corresponding features are then regarded as the inputs for PSDNet. In this framework, a pseudo-Siamese network can independently learn the BAs discrimination ability from the SAR original amplitude image and the features. The DenseNet is adopted as the backbone network of each channel, which can improve the efficiency while extracting the deep features of the BAs. Moreover, it also has the ability to extract the BAs with multi-scale sizes by using a multi-scale decoder. The Sentinel-1 (S1) SAR data for the Greater Bay Area in China are used for the experimental validation. Our method of BA extraction can achieve above 90% accuracy, which is similar to the current urban extraction product, demonstrating that our method can achieve BA mapping for spaceborne SAR data.
AbstractList Built-up areas (BAs) information acquisition is essential to urban planning and sustainable development in the Greater Bay Area in China. In this paper, a pseudo-Siamese dense convolutional network, namely PSDNet, is proposed to automatically extract BAs from the spaceborne synthetic aperture radar (SAR) data in the Greater Bay Area, which considers the spatial statistical features and speckle features in SAR images. The local indicators of spatial association, including Moran’s, Geary’s, and Getis’ together with the speckle divergence feature, are calculated for the SAR data, which can indicate the potential BAs. The amplitude SAR images and the corresponding features are then regarded as the inputs for PSDNet. In this framework, a pseudo-Siamese network can independently learn the BAs discrimination ability from the SAR original amplitude image and the features. The DenseNet is adopted as the backbone network of each channel, which can improve the efficiency while extracting the deep features of the BAs. Moreover, it also has the ability to extract the BAs with multi-scale sizes by using a multi-scale decoder. The Sentinel-1 (S1) SAR data for the Greater Bay Area in China are used for the experimental validation. Our method of BA extraction can achieve above 90% accuracy, which is similar to the current urban extraction product, demonstrating that our method can achieve BA mapping for spaceborne SAR data.
Author Su, Yi
Zhang, Wei
Lu, Shengtao
Xiang, Deliang
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
– sequence: 2
  givenname: Shengtao
  surname: Lu
  fullname: Lu, Shengtao
– sequence: 3
  givenname: Deliang
  orcidid: 0000-0003-0152-6621
  surname: Xiang
  fullname: Xiang, Deliang
– sequence: 4
  givenname: Yi
  surname: Su
  fullname: Su, Yi
BookMark eNptkU1vFDEMhkeoSJTSC78gEheENJA42ZnJcbv9oFL5EEvPkSfjabOaTYYke-gP4H-T7SJAFb7Ysh6_em2_rI588FRVrwV_L6XmH2ISSiipoHtWHQNvoVag4eif-kV1mtKGl5BSaK6Oq59nOzfl-nZmy0jIPuE8O3_HxhBZvid2VZqZIjvDhwPgPFvdO49sjGHL1jNa6kP0xNbLb-wcMxY00cCCf5z_uj7_TJmhH_ZsdjixdS45ZWdLfVnUd5HSq-r5iFOi09_5pLq9vPi--ljffLm6Xi1vaiu1ynUPjUUJAgYQclAd4aAaq3CwGss-PbS94l0ne-g7a2Uh9dhzku1oBQg7ypPq-qA7BNyYObotxgcT0JnHRoh3BmOxNpER1IOEFrAVQg3A9YIaUN1CUq872zRF6-1Ba47hx45SNluXLE0Tegq7ZKAVHXSi4YuCvnmCbsIu-rKpgUYrvtBadYV6d6BsDClFGv8YFNzsH2z-PrjA_Als3f6wweeIbvrfyC81FKba
CitedBy_id crossref_primary_10_1016_j_uclim_2023_101729
Cites_doi 10.3390/rs8080685
10.1109/TGRS.2021.3079438
10.3390/s21196645
10.1109/JSTARS.2010.2052023
10.1109/TGRS.2002.807754
10.5194/essd-12-1625-2020
10.1117/1.JRS.6.061702
10.1109/LGRS.2019.2915251
10.1109/TGRS.2009.2037144
10.3390/rs11192215
10.3390/rs14040899
10.1109/LGRS.2013.2272953
10.1016/j.isprsjprs.2014.08.004
10.1109/LGRS.2022.3161931
10.1016/j.rse.2019.03.033
10.1109/JSTARS.2008.921099
10.1109/ICCV.2017.324
10.1016/j.isprsjprs.2014.09.002
10.1109/JSTARS.2022.3179171
10.1553/giscience2021_01_s33
10.1109/CVPR.2017.243
10.1109/TGRS.2003.814628
10.1007/978-3-319-71598-8_54
10.1109/LGRS.2020.3005973
10.1109/JSTARS.2012.2235410
10.3390/rs10060874
10.1109/LGRS.2018.2876616
10.1016/j.rse.2021.112515
10.1109/TGRS.1986.289643
10.1109/JSTARS.2012.2201135
10.1016/j.rse.2019.111282
10.1016/j.isprsjprs.2016.03.009
10.1109/JSTARS.2014.2344017
10.3390/rs12172791
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14143428
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Statistics
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_1eb23272a7114d2095e624853eb98c66
10_3390_rs14143428
GeographicLocations Hong Kong China
Pearl River (China)
China
Macao
GeographicLocations_xml – name: Macao
– name: China
– name: Pearl River (China)
– name: Hong Kong China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-b26ca3212d213d48ead46c4adc9a319b27b40883b2b8cc33219fb0e37fc121cf3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:24:42 EDT 2025
Fri Jul 11 12:34:48 EDT 2025
Fri Jul 25 09:36:55 EDT 2025
Tue Jul 01 01:59:41 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-b26ca3212d213d48ead46c4adc9a319b27b40883b2b8cc33219fb0e37fc121cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0152-6621
OpenAccessLink https://www.proquest.com/docview/2694059948?pq-origsite=%requestingapplication%
PQID 2694059948
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_1eb23272a7114d2095e624853eb98c66
proquest_miscellaneous_2718281605
proquest_journals_2694059948
crossref_primary_10_3390_rs14143428
crossref_citationtrail_10_3390_rs14143428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_8) 2019; 17
ref_36
ref_12
Esch (ref_18) 2009; 48
ref_33
Liu (ref_9) 2019; 226
ref_30
Ma (ref_3) 2019; 232
Jing (ref_25) 2020; 18
Zhang (ref_5) 2020; 19
Marconcini (ref_15) 2021; 1
Gamba (ref_13) 2003; 41
ref_37
Chen (ref_10) 2015; 103
Li (ref_32) 2018; 16
Ulaby (ref_34) 1986; 2
Tang (ref_23) 2022; 19
Xu (ref_35) 2020; 19
Gamba (ref_21) 2013; 6
Hu (ref_28) 2014; 7
Zhang (ref_24) 2022; 15
Esch (ref_14) 2013; 10
ref_22
Ban (ref_1) 2015; 103
Stasolla (ref_17) 2008; 1
ref_2
Zhang (ref_11) 2020; 12
ref_29
Cheng (ref_7) 2022; 60
ref_26
Dekker (ref_16) 2003; 41
Gamba (ref_19) 2010; 4
Wu (ref_31) 2021; 262
ref_4
Xiang (ref_6) 2016; 116
Esch (ref_20) 2012; 6
Ban (ref_27) 2012; 5
References_xml – ident: ref_4
  doi: 10.3390/rs8080685
– volume: 19
  start-page: 6000405
  year: 2020
  ident: ref_35
  article-title: Pseudo-Siamese Capsule Network for Aerial Remote Sensing Images Change Detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 60
  start-page: 5209314
  year: 2022
  ident: ref_7
  article-title: PolSAR Image Classification With Multiscale Superpixel-Based Graph Convolutional Network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3079438
– ident: ref_33
  doi: 10.3390/s21196645
– volume: 4
  start-page: 27
  year: 2010
  ident: ref_19
  article-title: Robust extraction of urban area extents in HR and VHR SAR images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2010.2052023
– volume: 41
  start-page: 153
  year: 2003
  ident: ref_13
  article-title: Texture-based characterization of urban environments on satellite SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.807754
– volume: 12
  start-page: 1625
  year: 2020
  ident: ref_11
  article-title: Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-12-1625-2020
– volume: 6
  start-page: 061702
  year: 2012
  ident: ref_20
  article-title: TanDEM-X mission-new perspectives for the inventory and monitoring of global settlement patterns
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.6.061702
– volume: 17
  start-page: 77
  year: 2019
  ident: ref_8
  article-title: SAR Image Change Detection via Spatial Metric Learning With an Improved Mahalanobis Distance
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2915251
– volume: 48
  start-page: 905
  year: 2009
  ident: ref_18
  article-title: Delineation of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity information
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2037144
– ident: ref_2
  doi: 10.3390/rs11192215
– ident: ref_26
  doi: 10.3390/rs14040899
– volume: 10
  start-page: 1617
  year: 2013
  ident: ref_14
  article-title: Urban footprint processor—Fully automated processing chain generating settlement masks from global data of the TanDEM-X mission
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2272953
– volume: 103
  start-page: 28
  year: 2015
  ident: ref_1
  article-title: Spaceborne SAR data for global urban mapping at 30m resolution using a robust urban extractor
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.08.004
– volume: 19
  start-page: 4506205
  year: 2022
  ident: ref_23
  article-title: Large-Difference-Scale Target Detection Using a Revised Bhattacharyya Distance in SAR Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3161931
– volume: 226
  start-page: 51
  year: 2019
  ident: ref_9
  article-title: Automatic extraction of built-up area from ZY3 multi-view satellite imagery: Analysis of 45 global cities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.03.033
– volume: 1
  start-page: 98
  year: 2008
  ident: ref_17
  article-title: Spatial Indexes for the Extraction of Formal and Informal Human Settlements From High-Resolution SAR Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2008.921099
– ident: ref_37
  doi: 10.1109/ICCV.2017.324
– volume: 103
  start-page: 7
  year: 2015
  ident: ref_10
  article-title: Global land cover mapping at 30 m resolution: A POK-based operational approach
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.09.002
– volume: 15
  start-page: 4507
  year: 2022
  ident: ref_24
  article-title: Adversarial deception against SAR target recognition network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3179171
– ident: ref_12
– volume: 1
  start-page: 33
  year: 2021
  ident: ref_15
  article-title: Understanding Current Trends in Global Urbanisation—The World Settlement Footprint Suite
  publication-title: GI_Forum
  doi: 10.1553/giscience2021_01_s33
– ident: ref_36
  doi: 10.1109/CVPR.2017.243
– volume: 41
  start-page: 1950
  year: 2003
  ident: ref_16
  article-title: Texture analysis and classification of ERS SAR images for map updating of urban areas in the netherlands
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.814628
– ident: ref_29
  doi: 10.1007/978-3-319-71598-8_54
– volume: 18
  start-page: 1600
  year: 2020
  ident: ref_25
  article-title: Edge-Aware Superpixel Generation for SAR Imagery With One Iteration Merging
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.3005973
– volume: 6
  start-page: 2184
  year: 2013
  ident: ref_21
  article-title: Fast and efficient urban extent extraction using ASAR wide swath mode data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2235410
– ident: ref_22
  doi: 10.3390/rs10060874
– volume: 16
  start-page: 402
  year: 2018
  ident: ref_32
  article-title: SAR Image Change Detection Using PCANet Guided by Saliency Detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2876616
– volume: 19
  start-page: 4001805
  year: 2020
  ident: ref_5
  article-title: Fast Multiscale Superpixel Segmentation for SAR Imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 262
  start-page: 112515
  year: 2021
  ident: ref_31
  article-title: Built-up area mapping in China from GF-3 SAR imagery based on the framework of deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112515
– volume: 2
  start-page: 235
  year: 1986
  ident: ref_34
  article-title: Textural Infornation in SAR Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.1986.289643
– volume: 5
  start-page: 1087
  year: 2012
  ident: ref_27
  article-title: Multitemporal spaceborne SAR data for urban change detection in China
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2201135
– volume: 232
  start-page: 111282
  year: 2019
  ident: ref_3
  article-title: Remotely sensing large- and small-scale ground subsidence: A case study of the Guangdong–Hong Kong–Macao Greater Bay Area of China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111282
– volume: 116
  start-page: 86
  year: 2016
  ident: ref_6
  article-title: Unsupervised polarimetric SAR urban area classification based on model-based decomposition with cross scattering
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.009
– volume: 7
  start-page: 3248
  year: 2014
  ident: ref_28
  article-title: Unsupervised Change Detection in Multitemporal SAR Images Over Large Urban Areas
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2344017
– ident: ref_30
  doi: 10.3390/rs12172791
SSID ssj0000331904
Score 2.316206
Snippet Built-up areas (BAs) information acquisition is essential to urban planning and sustainable development in the Greater Bay Area in China. In this paper, a...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3428
SubjectTerms Algorithms
Amplitudes
Artificial neural networks
built-up area extraction
China
Cities
Classification
Computer networks
Data processing
Deep learning
Feature extraction
Land settlement
Mapping
pseudo-Siamese dense convolutional network
Remote sensing
spatial statistical features
Statistics
Sustainable development
Synthetic aperture radar
synthetic aperture radar (SAR)
Teaching methods
the Greater Bay Area
Urban areas
Urban planning
Urbanization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LatwwFBUlm3ZT2qal0yZFodl0YWJLGj-WmTwIhYTQ6UB2Ro_rNjB4woxnkQ_If-dc2ZkOpNBNN8bYx1hIV7rnYOtcIQ7LgsDbUkrSkhoIlNQnzrmQBHAJPU51UXkWipdX-cXMfL8Z32yV-uJ_wnp74L7jjjJIP60KZQsw96DACChnGy5Nrip9Hs22kfO2xFRcgzVCKzW9H6mGrj9arjIDbmC47PpWBopG_c_W4Zhczt-I1wMrlMd9a96KF9S-Ey-HAuW_73fFw2R9O--S2R0wZOWlZVuFXxKMU4LBySj0aSkn9r4H3LYyVsaWvH1ETiGMeV1pSU6Pf8hT21lAVxTkoo3PX09Pr6iTtg2MxaSfS2ah0cQZ58wT19Dl78Xs_OznyUUyVFBIvK5MlziVe6uRnYLKdDAlwsbk3tjgK4sOcqpwBsuMdsqV3msgq8alpIvGZyrzjf4gdtpFSx-FhC7zoWlAP8gbMy6saoIiP_YpDrbRI_HtqVdrP9iLc5WLeQ2ZwSNQ_xmBkfi6wd71php_RU14cDYINsKOFxAe9RAe9b_CYyT2noa2Hmbnqubdu-xLY_COg81tzCv-WGJbWqyBQdJWZQa19-l_tOOzeKV440T80XdP7HTLNe2DznTuS4zcR-sX7_o
  priority: 102
  providerName: Directory of Open Access Journals
Title Built-Up Area Mapping for the Greater Bay Area in China from Spaceborne SAR Data Based on the PSDNet and Spatial Statistical Features
URI https://www.proquest.com/docview/2694059948
https://www.proquest.com/docview/2718281605
https://doaj.org/article/1eb23272a7114d2095e624853eb98c66
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB3R5EAvCAqI0BItggsHq_buxl6fUEIaKkSiqiFSb9Z-uVSK7JA4h_6A_m9mbMdFAnGxLHvWlnZ2Z9_bjzcAH1XiEbeFPgiVz5GghDYwxrjAIZYQo1AkqSWiOF_Elyv57WZ000647dptlYeYWAdqV1qaIz-nE5ekJSLV582vgLJG0epqm0LjCPoYgpXqQX9ysbi67mZZQoFNLJSNLqlAfn--3UUSMYKk9Ot_jES1YP9f8bgeZGbP4VmLDtm4cecLeOKLE3jaJir_eX8CxwQOG23ll_Aw2d-tq2C1wQJes7kmrYVbhjCUIaxjNfv3WzbR943BXcHqdNmMzpSwJbJlCjaFZ8vxNZvqSqPpzjtWFnX5q-V04SumC0e2GAnWrPs73hN43CNZfwWr2cWPL5dBm1YhsCKVVWB4bLXA-nI8Ek4qbEsytlI7m2qsLcMTIzH2CMONslagZZqb0IsktxGPbC5eQ68oC_8GGJI16_IcMYm3Uo4SzXPHvR3ZEC86FwP4dKjizLaa45T6Yp0h9yB3ZI_uGMCHznbTKG3802pCnuosSB27flBub7O2s2WRNwgUE64TZHuOI4r0MUm3CW9SZeN4AGcHP2dtl91ljw1sAO-719jZaAVFF77cow2O5FxFSAHf_v8Tp3DM6ZxEva_3DHrVdu_fIXqpzBCO1OzrEPrj6fz7ctg22GE9F_AboNryGw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcmgvCAqIQIFFwIGDVXt3YzsHhBpCSGkTIdJIvZl9uVSKnGA7QvkB_B1-IzN-FQnErRfL8s6upZ3HfrO7MwPwKo4c4jbfeX7sUnRQfONpra1nEUuIvi-igSFHcToLJwv56aJ_sQO_2lgYulbZ2sTKUNuVoT3yI4q4pFwiMn63_u5R1Sg6XW1LaNRiceq2P9BlK96ejJC_rzkffzh_P_GaqgKeEQNZepqHRgm02JYHwsoYp1KGRiprBgrlUfNIS1Q9obmOjRFIOUi170SUmoAHJhU47i24LQWu5BSZPv7Y7en4AgfwZZ0FFdv9o7wIJCISScXe_1j3qvIAf1n_akkb34U7DRZlx7Xw3IMdlx3AXlMW_dv2APYJitaZnO_Dz-Hmall6izV2cIpNFWV2uGQIehmCSFbtNbicDdW2JrjKWFWcm1EEC5ujb06mLXNsfvyFjVSpkLRwlq2yqv_n-WjmSqYyS7Rod5as-zu-E1Td5K54AIsbme6HsJutMvcIGLqGxqYpIiBnpOxHiqeWO9M3Pj5UKnrwpp3ixDQZzqnQxjJBT4fYkVyzowcvO9p1ndfjn1RD4lRHQbm4qw-r_DJpVDsJnEZYGnEVoW9pOWJWF1KiOOH0IDZh2IPDls9JYyCK5Fqce_Cia0bVpvMalbnVBmkQN_A4QIfz8f-HeA57k_PpWXJ2Mjt9AvucIjSqG8WHsFvmG_cUcVOpn1XCyuDrTWvHbzzqKoE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVIJeEBQQgQKLgAMHK_buxo8DQg1p1FIaRQ2RenP35VIpskPiCOUH8Kf4dczYjosE4taLZdnjtbTz2O_bxwzA2zhyiNt85_mxy5Cg-MbTWlvPIpYQfV9EiSGieDYOj2fy80X_Ygd-bc_C0LbKbUysArUtDM2R9-jEJeUSkXEva7ZFTIajj4vvHlWQopXWbTmN2kRO3eYH0rfVh5Mh6vod56Ojr5-OvabCgGdEIktP89AogdHb8kBYGWO3ytBIZU2i0DY1j7RENxSa69gYgZJJpn0noswEPDCZwHbvwG5ErKgDu4Oj8eS8neHxBTbhyzonqhCJ31uuAon4RFLp9z9GwapYwF9jQTXAjR7A_QaZssPalB7Cjsv34V5TJP3bZh_2CJjWeZ0fwc_B-npeerMFfuAUO1OU5-GKIQRmCClZNfPglmygNrXAdc6qUt2MzrOwKTJ1CnS5Y9PDczZUpULRlbOsyKvvJ9Ph2JVM5ZZkMQrNWft3vCfgul661WOY3UqHP4FOXuTuKTAkisZmGeIhZ6TsR4pnljvTNz5eVCa68H7bxalp8p1T2Y15iryH1JHeqKMLb1rZRZ3l459SA9JUK0GZuasHxfIqbRw9DZxGkBpxFSHTtBwRrAspbZxwOolNGHbhYKvntAkXq_TGuLvwun2Njk6rNyp3xRplEEXwOED6-ez_TbyCu-gZ6ZeT8elz2ON0XKPaXnwAnXK5di8QRJX6ZWOtDC5v20F-AwYIMBM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Built-Up+Area+Mapping+for+the+Greater+Bay+Area+in+China+from+Spaceborne+SAR+Data+Based+on+the+PSDNet+and+Spatial+Statistical+Features&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Wei&rft.au=Lu%2C+Shengtao&rft.au=Xiang%2C+Deliang&rft.au=Su%2C+Yi&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=14&rft.spage=3428&rft_id=info:doi/10.3390%2Frs14143428&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon