A Framework for High-Resolution Mapping of Soil Organic Matter (SOM) by the Integration of Fourier Mid-Infrared Attenuation Total Reflectance Spectroscopy (FTIR-ATR), Sentinel-2 Images, and DEM Derivatives
Soil organic matter (SOM), as the greatest carbon storage in the terrestrial environment, is inextricably related to the global carbon cycle and global climate change. Accurate estimation and mapping of SOM content are crucial for guiding agricultural output and management, as well as controlling th...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 4; p. 1072 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil organic matter (SOM), as the greatest carbon storage in the terrestrial environment, is inextricably related to the global carbon cycle and global climate change. Accurate estimation and mapping of SOM content are crucial for guiding agricultural output and management, as well as controlling the climate issue. Traditional chemical analysis is unable to satisfy the dynamic estimation of SOM due to its low timeliness. Remote and proximal sensing have significant advantages in terms of ease of use, estimation accuracy, and geographical resolution. In this study, we developed a framework based on machine learning to estimate SOM with high accuracy and resolution using Fourier mid-infrared attenuation total reflectance spectroscopy (FTIR-ATR), Sentinel-2 images, and DEM derivatives. This framework’s performance was evaluated on a regional scale using 245 soil samples from northeast China. Results indicated that the calibration size could be shrunk to 50% while achieving a fair prediction performance for SOM content. The Lasso, partial least squares (PLS), support vector regression (SVR), and convolutional neural networks (CNN) performed well in predicting SOM from FTIR-ATR spectra, and the performance was enhanced further by using Sentinel-2 images and DEM derivates. The PLS, SVR, and CNN models created SOM maps with higher spatial resolution and variation than the Kriging approach. The PLS and SVR models provided enough variety and were more realistic in the local SOM map, making them usable at the field scale, and the suggested framework took a fresh look at high-resolution SOM mapping. |
---|---|
AbstractList | Soil organic matter (SOM), as the greatest carbon storage in the terrestrial environment, is inextricably related to the global carbon cycle and global climate change. Accurate estimation and mapping of SOM content are crucial for guiding agricultural output and management, as well as controlling the climate issue. Traditional chemical analysis is unable to satisfy the dynamic estimation of SOM due to its low timeliness. Remote and proximal sensing have significant advantages in terms of ease of use, estimation accuracy, and geographical resolution. In this study, we developed a framework based on machine learning to estimate SOM with high accuracy and resolution using Fourier mid-infrared attenuation total reflectance spectroscopy (FTIR-ATR), Sentinel-2 images, and DEM derivatives. This framework’s performance was evaluated on a regional scale using 245 soil samples from northeast China. Results indicated that the calibration size could be shrunk to 50% while achieving a fair prediction performance for SOM content. The Lasso, partial least squares (PLS), support vector regression (SVR), and convolutional neural networks (CNN) performed well in predicting SOM from FTIR-ATR spectra, and the performance was enhanced further by using Sentinel-2 images and DEM derivates. The PLS, SVR, and CNN models created SOM maps with higher spatial resolution and variation than the Kriging approach. The PLS and SVR models provided enough variety and were more realistic in the local SOM map, making them usable at the field scale, and the suggested framework took a fresh look at high-resolution SOM mapping. |
Author | Ma, Fei Xu, Xuebin Zhou, Jianmin Du, Changwen Qiu, Zhengchao |
Author_xml | – sequence: 1 givenname: Xuebin surname: Xu fullname: Xu, Xuebin – sequence: 2 givenname: Changwen orcidid: 0000-0002-9064-3581 surname: Du fullname: Du, Changwen – sequence: 3 givenname: Fei surname: Ma fullname: Ma, Fei – sequence: 4 givenname: Zhengchao surname: Qiu fullname: Qiu, Zhengchao – sequence: 5 givenname: Jianmin surname: Zhou fullname: Zhou, Jianmin |
BookMark | eNptksFqGzEQhpeSQtM0lz6BoBenZFtpd7W7OpokThZiDLbvQpZGG7lraSvJKX7IvlMVu6UldC4zDN__w_zM--zMOgtZ9pHgL2XJ8FcfCMUVwU3xJjsvUsurghVn_8zvsssQtjhVWRKGq_Ps5xTNvNjBD-e_Ie08ejD9U76E4IZ9NM6iuRhHY3vkNFo5M6CF74U1Mu1jBI8mq8X8Cm0OKD4B6myE3oujLvEzt_cmMXOj8s5qLzwoNE0yuz8xaxfFgJagB5BRWAloNabJuyDdeECT2bpb5tP18uoarcBGY2HIC9TtRA_hGgmr0O3dHN2CN8_J8BnCh-ytFkOAy9_9IlvP7tY3D_nj4r67mT7msmRVzAUI1rIaV7plFZOKCNZgSiglLWa6kapWlGglaF3QDbQAm1oSLJXGqqGElBdZd7JVTmz56M1O-AN3wvDjwvmeCx-NHIA3jRKaUA1KtVUj9QY2jaItK2hFMa1F8pqcvEbvvu8hRL4zQcIwCAtuH3iJK1yVtC3LhH56hW5TwjYdyoumYTVtKlYnCp8omXIMHjSXJh7zjl6YgRPMX76F__2WJPn8SvLnpv_AvwDclcGR |
CitedBy_id | crossref_primary_10_3390_rs15194681 crossref_primary_10_1007_s11042_024_18955_w crossref_primary_10_3390_rs16203817 crossref_primary_10_3390_rs17030420 crossref_primary_10_3390_soilsystems8010022 crossref_primary_10_3390_rs17050882 crossref_primary_10_1021_acs_analchem_3c05311 crossref_primary_10_1177_00037028231203249 crossref_primary_10_3389_fenvs_2024_1420557 crossref_primary_10_3390_rs15102640 crossref_primary_10_3390_agriculture13040781 crossref_primary_10_1080_10106049_2023_2246935 |
Cites_doi | 10.1016/j.still.2010.03.012 10.1038/nature14539 10.1016/j.catena.2020.104632 10.1109/JSTARS.2014.2360411 10.1016/j.rse.2011.11.026 10.1016/j.catena.2021.105280 10.1016/j.scitotenv.2020.142030 10.1366/000370207782217743 10.1016/j.chemolab.2017.09.017 10.1007/BF00994018 10.1016/j.geoderma.2021.115597 10.1016/j.geoderma.2018.08.003 10.1016/0273-1177(89)90481-X 10.1016/j.talanta.2016.05.076 10.1016/j.scitotenv.2021.147216 10.1016/j.scitotenv.2015.08.088 10.1016/j.geodrs.2018.e00198 10.1080/05704928.2013.811081 10.2307/3628024 10.1016/j.scitotenv.2018.02.204 10.1016/j.geoderma.2019.113905 10.1111/j.1365-2389.2005.00776.x 10.1016/j.geoderma.2016.11.015 10.1016/j.geoderma.2017.06.016 10.1071/SR06083 10.1016/j.catena.2021.105842 10.1111/ejss.13085 10.1007/s13593-013-0201-6 10.1016/j.isprsjprs.2018.11.026 10.1016/j.forsciint.2020.110222 10.1016/j.geoderma.2021.114981 10.1016/j.geoderma.2019.113913 10.3390/s110707063 10.3390/s18041048 10.1016/0034-4257(90)90085-Z 10.1016/j.scitotenv.2020.142661 10.1016/j.scitotenv.2020.138244 10.1016/j.soilbio.2014.06.022 10.1016/j.geoderma.2020.114725 10.1097/00010694-193401000-00003 10.1016/j.geoderma.2019.05.031 10.1007/s12034-007-0042-5 10.1080/05704920701829043 10.2136/sssaj2018.09.0318 10.1016/S0034-4257(02)00188-8 10.2111/05-201R.1 10.1016/0034-4257(79)90013-0 10.1111/j.1365-2389.2012.01456.x 10.1016/j.geoderma.2021.115386 10.1016/j.geoderma.2020.114211 10.1080/01431160600589179 10.1016/j.orggeochem.2011.04.003 10.1016/j.rse.2018.09.015 10.1016/j.eja.2021.126278 10.1016/j.geoderma.2019.06.016 10.1007/s11368-019-02520-2 10.2136/sssaj2013.04.0131 10.1016/S0034-4257(02)00096-2 10.2489/jswc.69.6.186A 10.1016/S0924-2031(02)00065-6 10.1111/ejss.12752 10.1016/0034-4257(88)90106-X 10.1016/0034-4257(95)00186-7 10.1016/j.geoderma.2013.07.020 10.1046/j.1365-2389.2004.00593.x 10.1016/j.geoderma.2008.06.011 10.1111/j.2517-6161.1996.tb02080.x 10.1016/S0034-4257(96)00072-7 10.1016/j.isprsjprs.2017.04.016 10.1016/j.geoderma.2015.06.024 10.1016/j.scitotenv.2021.150187 10.1016/j.geoderma.2009.12.025 10.1016/j.vibspec.2008.04.009 10.1016/j.isprsjprs.2013.04.007 10.1016/j.geoderma.2018.09.003 10.1016/j.geoderma.2021.115159 10.1080/00401706.1969.10490666 10.1016/j.fcr.2010.08.008 10.3390/land12010044 10.1016/j.rse.2016.03.025 10.1016/j.rse.2004.03.010 10.1016/j.geoderma.2022.116069 10.1016/j.geoderma.2021.115656 10.1016/S0034-4257(02)00037-8 10.1016/j.geodrs.2014.10.004 10.1016/S0016-7061(03)00223-4 10.1016/S0034-4257(00)00113-9 10.1016/j.aca.2013.12.002 10.1002/fes3.96 10.1016/S0034-4257(96)00067-3 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs15041072 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_77daf15fedd847cfbeb7d5892545056a 10_3390_rs15041072 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-aea989604f8949cd1a97051551809f7cd6d51fda5625be8eeb6c10cdf0d75113 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:32:04 EDT 2025 Fri Jul 11 08:12:44 EDT 2025 Fri Jul 25 11:40:00 EDT 2025 Tue Jul 01 03:11:00 EDT 2025 Thu Apr 24 23:11:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-aea989604f8949cd1a97051551809f7cd6d51fda5625be8eeb6c10cdf0d75113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9064-3581 |
OpenAccessLink | https://doaj.org/article/77daf15fedd847cfbeb7d5892545056a |
PQID | 2779657496 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_77daf15fedd847cfbeb7d5892545056a proquest_miscellaneous_3040435833 proquest_journals_2779657496 crossref_citationtrail_10_3390_rs15041072 crossref_primary_10_3390_rs15041072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ellerbrock (ref_42) 2004; 55 Du (ref_57) 2009; 49 Xu (ref_40) 2020; 310 Luo (ref_3) 2022; 209 Wang (ref_19) 2018; 630 Janik (ref_44) 2007; 45 Frampton (ref_95) 2013; 82 Ng (ref_36) 2019; 352 Xu (ref_93) 2006; 27 Gitelson (ref_77) 1996; 58 Chen (ref_56) 2021; 400 Padarian (ref_65) 2019; 16 Gardin (ref_17) 2021; 404 Shoko (ref_28) 2017; 129 Movasaghi (ref_49) 2008; 43 Zhou (ref_16) 2021; 755 Cortes (ref_35) 1995; 20 Metternicht (ref_72) 2003; 85 Huete (ref_78) 2002; 83 Wang (ref_13) 2022; 409 LeCun (ref_60) 2015; 521 Xiao (ref_87) 2004; 91 Zhou (ref_21) 2020; 729 Bangroo (ref_62) 2020; 193 Beguin (ref_63) 2017; 306 Dalmolin (ref_24) 2021; 393 ref_25 Pedregosa (ref_31) 2011; 12 ref_69 Minasny (ref_92) 2014; 213 Lal (ref_4) 2014; 69 Daughtry (ref_96) 2000; 74 Xing (ref_38) 2019; 335 Huete (ref_81) 1988; 25 Goydaragh (ref_12) 2019; 352 McBratney (ref_10) 2003; 117 ref_29 Xu (ref_7) 2019; 355 Du (ref_46) 2007; 61 Gomez (ref_2) 2008; 146 Scudiero (ref_90) 2014; 2–3 Janik (ref_43) 2014; 49 Tucker (ref_85) 1979; 8 Castaldi (ref_64) 2019; 147 Ni (ref_59) 2014; 813 Nellis (ref_79) 1992; 95 Escadafal (ref_70) 1989; 9 Nayak (ref_51) 2007; 30 Conforti (ref_54) 2017; 288 Wadoux (ref_11) 2021; 383 Wang (ref_6) 2020; 20 ref_32 Lal (ref_5) 2016; 5 Nguyen (ref_18) 2022; 804 Guo (ref_1) 2019; 337 Tibshirani (ref_33) 1996; 58 ref_73 Kennard (ref_30) 1969; 11 Huang (ref_9) 2021; 72 Minhoni (ref_20) 2021; 784 Xing (ref_58) 2016; 158 Li (ref_67) 2022; 425 Wang (ref_74) 2020; 365 Srisomkiew (ref_71) 2022; 409 Ceccato (ref_89) 2002; 82 Kuang (ref_53) 2012; 63 Wang (ref_75) 2021; 754 Shetty (ref_34) 2011; 120 Rondeaux (ref_83) 1996; 55 ref_82 Drusch (ref_14) 2012; 120 Gholizadeh (ref_15) 2018; 218 Delegido (ref_94) 2011; 11 Du (ref_45) 2014; 34 Marsett (ref_80) 2006; 59 Churchman (ref_37) 2010; 109 Rial (ref_22) 2016; 539 Pedersen (ref_41) 2011; 42 Castaldi (ref_61) 2016; 179 (ref_50) 2003; 31 Goffart (ref_86) 2021; 126 Peltre (ref_8) 2014; 77 Haddix (ref_47) 2013; 77 Wadoux (ref_68) 2019; 355 Ma (ref_52) 2017; 171 Behrens (ref_39) 2010; 158 Wadoux (ref_55) 2019; 70 Thaler (ref_91) 2019; 83 Song (ref_66) 2016; 261 Goydaragh (ref_23) 2021; 202 (ref_27) 1890; 37 Crippen (ref_84) 1990; 34 Walkley (ref_26) 1934; 37 Leifeld (ref_48) 2006; 57 Wu (ref_76) 2014; 7 Gao (ref_88) 1996; 58 |
References_xml | – volume: 109 start-page: 23 year: 2010 ident: ref_37 article-title: Effect of land-use history on the potential for carbon sequestration in an Alfisol publication-title: Soil Tillage Res. doi: 10.1016/j.still.2010.03.012 – volume: 521 start-page: 436 year: 2015 ident: ref_60 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 193 start-page: 104632 year: 2020 ident: ref_62 article-title: Application of predictor variables in spatial quantification of soil organic carbon and total nitrogen using regression kriging in the North Kashmir forest Himalayas publication-title: Catena doi: 10.1016/j.catena.2020.104632 – volume: 7 start-page: 4442 year: 2014 ident: ref_76 article-title: Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2014.2360411 – volume: 120 start-page: 25 year: 2012 ident: ref_14 article-title: Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.026 – volume: 202 start-page: 105280 year: 2021 ident: ref_23 article-title: Using environmental variables and Fourier Transform Infrared Spectroscopy to predict soil organic carbon publication-title: Catena doi: 10.1016/j.catena.2021.105280 – ident: ref_32 – volume: 754 start-page: 142030 year: 2021 ident: ref_75 article-title: Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: A case study in Tarim River Basin of southern Xinjiang, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142030 – volume: 61 start-page: 1063 year: 2007 ident: ref_46 article-title: Characterization of soils using photoacoustic mid-infrared spectroscopy publication-title: Appl. Spectrosc. doi: 10.1366/000370207782217743 – volume: 171 start-page: 9 year: 2017 ident: ref_52 article-title: Optimized self-adaptive model for assessment of soil organic matter using Fourier transform mid-infrared photoacoustic spectroscopy publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.09.017 – volume: 12 start-page: 2825 year: 2011 ident: ref_31 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn. Res. – volume: 20 start-page: 273 year: 1995 ident: ref_35 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 409 start-page: 115597 year: 2022 ident: ref_71 article-title: Digital soil assessment of soil fertility for Thai jasmine rice in the Thung Kula Ronghai region, Thailand publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115597 – volume: 335 start-page: 94 year: 2019 ident: ref_38 article-title: Agricultural soil characterization by FTIR spectroscopy at micrometer scales: Depth profiling by photoacoustic spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.003 – volume: 9 start-page: 159 year: 1989 ident: ref_70 article-title: Remote sensing of arid soil surface color with Landsat thematic mapper publication-title: Adv. Space Res. doi: 10.1016/0273-1177(89)90481-X – volume: 37 start-page: 279 year: 1890 ident: ref_27 article-title: Über die Bestimmung des Wassers, des Humus, des Schwefels, der in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans u. s. w. im Ackerboden publication-title: Landwirthschaftlichen Vers. Station. – volume: 158 start-page: 262 year: 2016 ident: ref_58 article-title: Application of FTIR-PAS and Raman spectroscopies for the determination of organic matter in farmland soils publication-title: Talanta doi: 10.1016/j.talanta.2016.05.076 – volume: 784 start-page: 147216 year: 2021 ident: ref_20 article-title: Multitemporal satellite imagery analysis for soil organic carbon assessment in an agricultural farm in southeastern Brazil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147216 – volume: 539 start-page: 26 year: 2016 ident: ref_22 article-title: Mapping soil organic carbon content using spectroscopic and environmental data: A case study in acidic soils from NW Spain publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.08.088 – volume: 16 start-page: e00198 year: 2019 ident: ref_65 article-title: Using deep learning to predict soil properties from regional spectral data publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2018.e00198 – volume: 49 start-page: 139 year: 2014 ident: ref_43 article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2013.811081 – volume: 95 start-page: 93 year: 1992 ident: ref_79 article-title: Transformed vegetation index for measuring spatial variation in drought impactedbiomass on Konza Prairie, Kansas publication-title: Trans. Kans. Acad. Sci. doi: 10.2307/3628024 – volume: 630 start-page: 367 year: 2018 ident: ref_19 article-title: High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.204 – volume: 355 start-page: 113905 year: 2019 ident: ref_7 article-title: Detection of soil organic matter from laser-induced breakdown spectroscopy (LIBS) and mid-infrared spectroscopy (FTIR-ATR) coupled with multivariate techniques publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113905 – volume: 57 start-page: 846 year: 2006 ident: ref_48 article-title: Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2005.00776.x – volume: 288 start-page: 175 year: 2017 ident: ref_54 article-title: Effect of calibration set size on prediction at local scale of soil carbon by Vis-NIR spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2016.11.015 – volume: 306 start-page: 195 year: 2017 ident: ref_63 article-title: Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches publication-title: Geoderma doi: 10.1016/j.geoderma.2017.06.016 – volume: 45 start-page: 73 year: 2007 ident: ref_44 article-title: The prediction of soil carbon fractions using mid-infrared-partial least square analysis publication-title: Soil Res. doi: 10.1071/SR06083 – volume: 209 start-page: 105842 year: 2022 ident: ref_3 article-title: Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in Google Earth Engine publication-title: Catena doi: 10.1016/j.catena.2021.105842 – volume: 72 start-page: 1831 year: 2021 ident: ref_9 article-title: Identifying the fingerprint of permanganate oxidizable carbon as a measure of labile soil organic carbon using Fourier transform mid-infrared photoacoustic spectroscopy publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.13085 – volume: 34 start-page: 803 year: 2014 ident: ref_45 article-title: A 1915–2011 microscale record of soil organic matter under wheat cultivation using FTIR-PAS depth-profiling publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-013-0201-6 – volume: 147 start-page: 267 year: 2019 ident: ref_64 article-title: Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2018.11.026 – volume: 310 start-page: 110222 year: 2020 ident: ref_40 article-title: Forensic soil analysis using laser-induced breakdown spectroscopy (LIBS) and Fourier transform infrared total attenuated reflectance spectroscopy (FTIR-ATR): Principles and case studies publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2020.110222 – volume: 393 start-page: 114981 year: 2021 ident: ref_24 article-title: Environmental covariates improve the spectral predictions of organic carbon in subtropical soils in southern Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2021.114981 – volume: 355 start-page: 113913 year: 2019 ident: ref_68 article-title: Sampling design optimization for soil mapping with random forest publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113913 – volume: 11 start-page: 7063 year: 2011 ident: ref_94 article-title: Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content publication-title: Sensors doi: 10.3390/s110707063 – ident: ref_73 doi: 10.3390/s18041048 – volume: 34 start-page: 71 year: 1990 ident: ref_84 article-title: Calculating the vegetation index faster publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90085-Z – volume: 755 start-page: 142661 year: 2021 ident: ref_16 article-title: Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142661 – volume: 729 start-page: 138244 year: 2020 ident: ref_21 article-title: High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138244 – volume: 77 start-page: 41 year: 2014 ident: ref_8 article-title: Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.06.022 – volume: 383 start-page: 114725 year: 2021 ident: ref_11 article-title: Hypotheses, machine learning and soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114725 – volume: 37 start-page: 29 year: 1934 ident: ref_26 article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed odification of the chromic acid titration method publication-title: Soil Sci. doi: 10.1097/00010694-193401000-00003 – volume: 352 start-page: 395 year: 2019 ident: ref_12 article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.031 – volume: 30 start-page: 235 year: 2007 ident: ref_51 article-title: Instrumental characterization of clay by XRF, XRD and FTIR publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-007-0042-5 – volume: 43 start-page: 134 year: 2008 ident: ref_49 article-title: Fourier transform infrared (FTIR) dpectroscopy of biological tissues publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704920701829043 – volume: 83 start-page: 1443 year: 2019 ident: ref_91 article-title: A new index for remote sensing of soil organic carbon based solely on visible wavelengths publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2018.09.0318 – ident: ref_82 – volume: 85 start-page: 1 year: 2003 ident: ref_72 article-title: Remote sensing of soil salinity: Potentials and constraints publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00188-8 – volume: 59 start-page: 530 year: 2006 ident: ref_80 article-title: Remote sensing for grassland management in the arid southwest publication-title: Rangeland Ecol. Manag. doi: 10.2111/05-201R.1 – volume: 8 start-page: 127 year: 1979 ident: ref_85 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – volume: 63 start-page: 421 year: 2012 ident: ref_53 article-title: Influence of the number of samples on prediction error of visible and near infrared spectroscopy of selected soil properties at the farm scale publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2012.01456.x – volume: 404 start-page: 115386 year: 2021 ident: ref_17 article-title: Mapping soil organic carbon in Tuscany through the statistical combination of ground observations with ancillary and remote sensing data publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115386 – volume: 365 start-page: 114211 year: 2020 ident: ref_74 article-title: Multi-algorithm comparison for predicting soil salinity publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114211 – volume: 27 start-page: 3025 year: 2006 ident: ref_93 article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600589179 – volume: 42 start-page: 947 year: 2011 ident: ref_41 article-title: Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2011.04.003 – volume: 218 start-page: 89 year: 2018 ident: ref_15 article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.015 – volume: 126 start-page: 126278 year: 2021 ident: ref_86 article-title: Field-scale assessment of Belgian winter cover crops biomass based on Sentinel-2 data publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2021.126278 – volume: 352 start-page: 251 year: 2019 ident: ref_36 article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.016 – volume: 20 start-page: 1241 year: 2020 ident: ref_6 article-title: Estimation of soil organic carbon losses and counter approaches from organic materials in black soils of northeastern China publication-title: J. Soil. Sediment. doi: 10.1007/s11368-019-02520-2 – volume: 77 start-page: 1591 year: 2013 ident: ref_47 article-title: Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.04.0131 – volume: 83 start-page: 195 year: 2002 ident: ref_78 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 69 start-page: 186A year: 2014 ident: ref_4 article-title: Societal value of soil carbon publication-title: J. Soil Water Conserv. doi: 10.2489/jswc.69.6.186A – volume: 31 start-page: 1 year: 2003 ident: ref_50 article-title: FTIR techniques in clay mineral studies publication-title: Vib. Spectrosc. doi: 10.1016/S0924-2031(02)00065-6 – volume: 70 start-page: 378 year: 2019 ident: ref_55 article-title: Robust soil mapping at the farm scale with vis–NIR spectroscopy publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12752 – volume: 25 start-page: 295 year: 1988 ident: ref_81 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 55 start-page: 95 year: 1996 ident: ref_83 article-title: Optimization of soil-adjusted vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00186-7 – volume: 213 start-page: 15 year: 2014 ident: ref_92 article-title: Digital mapping of soil salinity in Ardakan region, central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.020 – volume: 55 start-page: 219 year: 2004 ident: ref_42 article-title: Characterizing organic matter of soil aggregate coatings and biopores by Fourier transform infrared spectroscopy publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2004.00593.x – volume: 146 start-page: 403 year: 2008 ident: ref_2 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study publication-title: Geoderma doi: 10.1016/j.geoderma.2008.06.011 – ident: ref_25 – volume: 58 start-page: 267 year: 1996 ident: ref_33 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. B. doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref_29 – volume: 58 start-page: 289 year: 1996 ident: ref_77 article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00072-7 – volume: 129 start-page: 32 year: 2017 ident: ref_28 article-title: Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2017.04.016 – volume: 261 start-page: 11 year: 2016 ident: ref_66 article-title: Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China publication-title: Geoderma doi: 10.1016/j.geoderma.2015.06.024 – volume: 804 start-page: 150187 year: 2022 ident: ref_18 article-title: A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150187 – volume: 158 start-page: 46 year: 2010 ident: ref_39 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.025 – volume: 49 start-page: 32 year: 2009 ident: ref_57 article-title: Determination of soil properties using Fourier transform mid-infrared photoacoustic spectroscopy publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2008.04.009 – volume: 82 start-page: 83 year: 2013 ident: ref_95 article-title: Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2013.04.007 – volume: 337 start-page: 32 year: 2019 ident: ref_1 article-title: Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.003 – volume: 400 start-page: 115159 year: 2021 ident: ref_56 article-title: Evaluating validation strategies on the performance of soil property prediction from regional to continental spectral data publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115159 – volume: 11 start-page: 137 year: 1969 ident: ref_30 article-title: Computer aided design of experiments publication-title: Technometrics doi: 10.1080/00401706.1969.10490666 – volume: 120 start-page: 31 year: 2011 ident: ref_34 article-title: Quantification of fructan concentration in grasses using NIR spectroscopy and PLSR publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2010.08.008 – ident: ref_69 doi: 10.3390/land12010044 – volume: 179 start-page: 54 year: 2016 ident: ref_61 article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.025 – volume: 91 start-page: 256 year: 2004 ident: ref_87 article-title: Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.03.010 – volume: 425 start-page: 116069 year: 2022 ident: ref_67 article-title: Multi-objective optimization sampling based on Pareto optimality for soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2022.116069 – volume: 409 start-page: 115656 year: 2022 ident: ref_13 article-title: A framework for determining the total salt content of soil profiles using time-series Sentinel-2 images and a random forest-temporal convolution network publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115656 – volume: 82 start-page: 188 year: 2002 ident: ref_89 article-title: Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00037-8 – volume: 2–3 start-page: 82 year: 2014 ident: ref_90 article-title: Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2014.10.004 – volume: 117 start-page: 3 year: 2003 ident: ref_10 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 74 start-page: 229 year: 2000 ident: ref_96 article-title: Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00113-9 – volume: 813 start-page: 1 year: 2014 ident: ref_59 article-title: Non-linear calibration models for near infrared spectroscopy publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2013.12.002 – volume: 5 start-page: 212 year: 2016 ident: ref_5 article-title: Soil health and carbon management publication-title: Food Energy Secur. doi: 10.1002/fes3.96 – volume: 58 start-page: 257 year: 1996 ident: ref_88 article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00067-3 |
SSID | ssj0000331904 |
Score | 2.4023259 |
Snippet | Soil organic matter (SOM), as the greatest carbon storage in the terrestrial environment, is inextricably related to the global carbon cycle and global climate... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1072 |
SubjectTerms | Accuracy Agricultural production Analytical chemistry Artificial neural networks Attenuation Calibration Carbon Carbon cycle Carbon sequestration Chemical analysis China climate Climate change data fusion digital soil mapping Fourier transforms global carbon budget Global climate High resolution Image enhancement Infrared spectroscopy kriging Machine learning Mapping Neural networks Organic matter Performance evaluation Performance prediction prediction proximal sensing Reflectance reflectance spectroscopy regression analysis Remote sensing satellite sensing Satellites soil Soil organic matter Spatial discrimination Spatial resolution Spectroscopy Spectrum analysis Support vector machines Terrestrial environments Topography |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BeoAL4ikCBQ2CQyN1Vcder-0TSqFRg5SCkiD1Zu2zVAp2iFOk_Ej-EzP2JhUCcfXOWpZmdl6e_T7G3qlEWWmSgivtEi6MjHjhE8VzaYSMtcYITvedpxfy_Kv4dJlehoZbE8Yqdz6xddS2NtQjP4mzrJBpJgr5fvWDE2sU_V0NFBp32QG64DzvsYPTs4svs32XJUrQxCLR4ZImWN-frBtMgQQWPfEfkagF7P_LH7dBZvyQPQjZIYw6dT5id1z1mN0LROXftk_YrxGMd-NUgPkm0JwGpx58Z0EwVQS4cAW1h3l9vYTurqWBaYujCUfzz9MB6C1g3geTABVB-1B-3NHXwfTa8knl1zSaDiPcVnVw4LCoMVOHmfPU6idrAWKv3xAeZr3awtF4MZnx0WI2OIY5DSFVbsljmHxHl9Ucg6osoNbhI9r8zxZuvHnKFuOzxYdzHhgZOKpTbLhyqsgJzsXnhSiMHaoi60hi8qjwmbHSpkNvFVVV2uXOaWmGkbE-shlmdskz1qvqyj1ngHWlkRKXtbAiNSYX3gmdxTJ2VqdD1WeDnXJKE9DKiTRjWWLVQoosbxXZZ2_3sqsOo-OfUqek470E4Wq3D-r1VRmOaZllVvlh6p21GLaN105nNs0LLKMpVcTPOtxZSBkOe1Pemmafvdkv4zGlfy-qcvVNUyYRwRjRFbcX_3_FS3afGO27wfBD1tusb9wrzHs2-nUw7t8L1wVW priority: 102 providerName: ProQuest |
Title | A Framework for High-Resolution Mapping of Soil Organic Matter (SOM) by the Integration of Fourier Mid-Infrared Attenuation Total Reflectance Spectroscopy (FTIR-ATR), Sentinel-2 Images, and DEM Derivatives |
URI | https://www.proquest.com/docview/2779657496 https://www.proquest.com/docview/3040435833 https://doaj.org/article/77daf15fedd847cfbeb7d5892545056a |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOcAF8RSBEg2CQyN1VT_Wa_uY0poG4YKSIPVm7RMqBbtKUqT8SP4TM7YTikDiwsmSd1ZaeWbnsZ79PsbeqFhZaeKcK-1iLowMeO5jxTNphIy0xghO953Lc3n2Wby_SC5uUH1RT1gHD9x9uKM0tcqHiXfWoiM1Xjud2iTLsbCh4N2mRhjzbhRTrQ-O0bQC0eGRxljXHy1XmPoILHai3yJQC9T_hx9ug0vxgN3vs0IYd6t5yG65-hG72xOUf908Zj_GUGzbqADzTKD-DE5n753lQKkIaOELNB5mzeUCujuWBsoWPxMOZh_LEegNYL4Hkx4iguahfNHR1kF5afmk9ktqSYcxTqs7GHCYN5ihw9R5OuInKwFirV8TDmZztYGDYj6Z8vF8OjqEGTUf1W7BI5h8Q1e1OgRVW0Btwwna-vcWZnz1hM2L0_nbM94zMXBUo1hz5VSeEYyLz3KRGxuqPO3IYbIg96mx0iaht4qqKe0y57Q0YWCsD2yKGV38lO3VTe2eMcB60kiJw1pYkRiTCe-ETiMZOauTUA3YaKucyvQo5USWsaiwWiFFVr8UOWCvd7JXHTbHX6WOScc7CcLTbl-glVW9lVX_srIB299aSNVv8lUVpWkuk1TkcsBe7YZxe9I_F1W75npVxQHBF9HVtuf_Yx0v2D3iu-_axvfZ3np57V5iVrTWQ3Y7K94N2Z3xSflhhs_j0_NP02G7LX4CBpARWA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKeSgviKvYUmAQIHWlWs0mzu0BoYUSNrQp0m6Q-hY5tlMqLcmy2YL2o_gU_omZXLZCIN76GjtRpBmPz9gz5zD2UjpSe8oJucyNw4XyLB4WjuSBp4Rn5znu4NTvnJx6k8_i45l7tsV-9r0wVFbZx8QmUOtK0Rn5oe37oef6IvTeLL5xUo2i29VeQqN1i2Oz_oEpW_06PkL7vrLt6H36bsI7VQGOvyRWXBoZBkRJUgShCJUeydBvhU4CKyx8pT3tjgotKTPITWBM7qmRpXRhaR_RiYOfvcFuCgc3cmpMjz5sjnQsB_3ZEi0JKo5bh8sa8ZbADMv-Y9tr1AH-Cv7NjhbdYbc7KArj1nfusi1T3mM7nSr6l_V99msMUV-7BQhugYpCOB34t-4KiSR2h3OoCphVF3NoGzsVJA1pJ-zPPiVDyNeAIBPijpeC3sP5UauVB8mF5nFZLKkOHsb4Wtlyj0NaYVoAU1PQvQK5JswWjWIP9dGsYT9K4ykfp9PhAcyo4qk0c25D_BXjY30AstSALgZHuMC-N9zm9QOWXoehHrLtsirNIwaYxCrPw-FcaOEqFYjCiNy3Pdvo3B3JARv2xslUR41OCh3zDFMkMmR2ZcgBe7GZu2gJQf456y3ZeDODSLybB9XyPOtiQub7WhYjtzBaI0ZQRW5yX7tBiDk74VL8rb3eQ7IustTZ1ToYsOebYYwJdNEjS1Nd1pljEWcS9dPt_v8Tz9jOJE1OspP49Pgxu2UjgGsr0vfY9mp5aZ4g4FrlTxs3B5Zd87L6DY0JQFY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VVAJeEFcRKDAIkBqpqzi--wGhlNSqKQlVEqS-Weu9lErBDnEKyqfxEfwTM76kQiDe-mrvWpZmdvbM7sw5jL0WjlC-dCIuMu1wV_oWj4wjeOhL17ezDHdw6nceT_zjz-6HM-9sh_1se2GorLKNiVWgVoWkM_K-HQSR7wVu5PdNUxZxOorfLb9xUpCim9ZWTqN2kRO9-YHpW_k2GaGt39h2fDR_f8wbhQGOv-euudAiComexISRG0k1EFFQi56EVmQCqXzlDYwSlCVkOtQ68-XAkspYKkCk4uBnb7DdgJKiDts9PJqcTrcHPJaD3m25NSWq40RWf1Ui-nIx37L_2AQrrYC_toJqf4vvsjsNMIVh7Un32I7O77NbjUb6l80D9msIcVvJBQh1gUpEOB3_184LY0FcD-dQGJgVFwuo2zwljCsKT9iffRr3INsAQk5IGpYKmofj41o5D8YXiie5WVFVPAxxWl4zkcO8wCQBptrQLQM5KsyWlX4PddVsYD-eJ1M-nE97BzCj-qdcL7gNyVeMluUBiFwBOhyMcLl9r5jOy4dsfh2mesQ6eZHrxwwwpZW-j68zV7melKFrtJsFtm9rlXkD0WW91jipbIjSSa9jkWLCRIZMrwzZZa-2Y5c1Pcg_Rx2SjbcjiNK7elCsztMmQqRBoIQZeEYrhYhBmkxngfLCCDN4Qqn4W3uth6RNnCnTq1XRZS-3rzFC0LWPyHVxWaaORQxK1F335P-feMFu4pJKPyaTk6fsto1ori5P32Od9epSP0P0tc6eN34OLL3mlfUbmMNF6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+High-Resolution+Mapping+of+Soil+Organic+Matter+%28SOM%29+by+the+Integration+of+Fourier+Mid-Infrared+Attenuation+Total+Reflectance+Spectroscopy+%28FTIR-ATR%29%2C+Sentinel-2+Images%2C+and+DEM+Derivatives&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Xuebin&rft.au=Du%2C+Changwen&rft.au=Ma%2C+Fei&rft.au=Qiu%2C+Zhengchao&rft.date=2023-02-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=4&rft.spage=1072&rft_id=info:doi/10.3390%2Frs15041072&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15041072 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |