A Framework for High-Resolution Mapping of Soil Organic Matter (SOM) by the Integration of Fourier Mid-Infrared Attenuation Total Reflectance Spectroscopy (FTIR-ATR), Sentinel-2 Images, and DEM Derivatives

Soil organic matter (SOM), as the greatest carbon storage in the terrestrial environment, is inextricably related to the global carbon cycle and global climate change. Accurate estimation and mapping of SOM content are crucial for guiding agricultural output and management, as well as controlling th...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 4; p. 1072
Main Authors Xu, Xuebin, Du, Changwen, Ma, Fei, Qiu, Zhengchao, Zhou, Jianmin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil organic matter (SOM), as the greatest carbon storage in the terrestrial environment, is inextricably related to the global carbon cycle and global climate change. Accurate estimation and mapping of SOM content are crucial for guiding agricultural output and management, as well as controlling the climate issue. Traditional chemical analysis is unable to satisfy the dynamic estimation of SOM due to its low timeliness. Remote and proximal sensing have significant advantages in terms of ease of use, estimation accuracy, and geographical resolution. In this study, we developed a framework based on machine learning to estimate SOM with high accuracy and resolution using Fourier mid-infrared attenuation total reflectance spectroscopy (FTIR-ATR), Sentinel-2 images, and DEM derivatives. This framework’s performance was evaluated on a regional scale using 245 soil samples from northeast China. Results indicated that the calibration size could be shrunk to 50% while achieving a fair prediction performance for SOM content. The Lasso, partial least squares (PLS), support vector regression (SVR), and convolutional neural networks (CNN) performed well in predicting SOM from FTIR-ATR spectra, and the performance was enhanced further by using Sentinel-2 images and DEM derivates. The PLS, SVR, and CNN models created SOM maps with higher spatial resolution and variation than the Kriging approach. The PLS and SVR models provided enough variety and were more realistic in the local SOM map, making them usable at the field scale, and the suggested framework took a fresh look at high-resolution SOM mapping.
AbstractList Soil organic matter (SOM), as the greatest carbon storage in the terrestrial environment, is inextricably related to the global carbon cycle and global climate change. Accurate estimation and mapping of SOM content are crucial for guiding agricultural output and management, as well as controlling the climate issue. Traditional chemical analysis is unable to satisfy the dynamic estimation of SOM due to its low timeliness. Remote and proximal sensing have significant advantages in terms of ease of use, estimation accuracy, and geographical resolution. In this study, we developed a framework based on machine learning to estimate SOM with high accuracy and resolution using Fourier mid-infrared attenuation total reflectance spectroscopy (FTIR-ATR), Sentinel-2 images, and DEM derivatives. This framework’s performance was evaluated on a regional scale using 245 soil samples from northeast China. Results indicated that the calibration size could be shrunk to 50% while achieving a fair prediction performance for SOM content. The Lasso, partial least squares (PLS), support vector regression (SVR), and convolutional neural networks (CNN) performed well in predicting SOM from FTIR-ATR spectra, and the performance was enhanced further by using Sentinel-2 images and DEM derivates. The PLS, SVR, and CNN models created SOM maps with higher spatial resolution and variation than the Kriging approach. The PLS and SVR models provided enough variety and were more realistic in the local SOM map, making them usable at the field scale, and the suggested framework took a fresh look at high-resolution SOM mapping.
Author Ma, Fei
Xu, Xuebin
Zhou, Jianmin
Du, Changwen
Qiu, Zhengchao
Author_xml – sequence: 1
  givenname: Xuebin
  surname: Xu
  fullname: Xu, Xuebin
– sequence: 2
  givenname: Changwen
  orcidid: 0000-0002-9064-3581
  surname: Du
  fullname: Du, Changwen
– sequence: 3
  givenname: Fei
  surname: Ma
  fullname: Ma, Fei
– sequence: 4
  givenname: Zhengchao
  surname: Qiu
  fullname: Qiu, Zhengchao
– sequence: 5
  givenname: Jianmin
  surname: Zhou
  fullname: Zhou, Jianmin
BookMark eNptksFqGzEQhpeSQtM0lz6BoBenZFtpd7W7OpokThZiDLbvQpZGG7lraSvJKX7IvlMVu6UldC4zDN__w_zM--zMOgtZ9pHgL2XJ8FcfCMUVwU3xJjsvUsurghVn_8zvsssQtjhVWRKGq_Ps5xTNvNjBD-e_Ie08ejD9U76E4IZ9NM6iuRhHY3vkNFo5M6CF74U1Mu1jBI8mq8X8Cm0OKD4B6myE3oujLvEzt_cmMXOj8s5qLzwoNE0yuz8xaxfFgJagB5BRWAloNabJuyDdeECT2bpb5tP18uoarcBGY2HIC9TtRA_hGgmr0O3dHN2CN8_J8BnCh-ytFkOAy9_9IlvP7tY3D_nj4r67mT7msmRVzAUI1rIaV7plFZOKCNZgSiglLWa6kapWlGglaF3QDbQAm1oSLJXGqqGElBdZd7JVTmz56M1O-AN3wvDjwvmeCx-NHIA3jRKaUA1KtVUj9QY2jaItK2hFMa1F8pqcvEbvvu8hRL4zQcIwCAtuH3iJK1yVtC3LhH56hW5TwjYdyoumYTVtKlYnCp8omXIMHjSXJh7zjl6YgRPMX76F__2WJPn8SvLnpv_AvwDclcGR
CitedBy_id crossref_primary_10_3390_rs15194681
crossref_primary_10_1007_s11042_024_18955_w
crossref_primary_10_3390_rs16203817
crossref_primary_10_3390_rs17030420
crossref_primary_10_3390_soilsystems8010022
crossref_primary_10_3390_rs17050882
crossref_primary_10_1021_acs_analchem_3c05311
crossref_primary_10_1177_00037028231203249
crossref_primary_10_3389_fenvs_2024_1420557
crossref_primary_10_3390_rs15102640
crossref_primary_10_3390_agriculture13040781
crossref_primary_10_1080_10106049_2023_2246935
Cites_doi 10.1016/j.still.2010.03.012
10.1038/nature14539
10.1016/j.catena.2020.104632
10.1109/JSTARS.2014.2360411
10.1016/j.rse.2011.11.026
10.1016/j.catena.2021.105280
10.1016/j.scitotenv.2020.142030
10.1366/000370207782217743
10.1016/j.chemolab.2017.09.017
10.1007/BF00994018
10.1016/j.geoderma.2021.115597
10.1016/j.geoderma.2018.08.003
10.1016/0273-1177(89)90481-X
10.1016/j.talanta.2016.05.076
10.1016/j.scitotenv.2021.147216
10.1016/j.scitotenv.2015.08.088
10.1016/j.geodrs.2018.e00198
10.1080/05704928.2013.811081
10.2307/3628024
10.1016/j.scitotenv.2018.02.204
10.1016/j.geoderma.2019.113905
10.1111/j.1365-2389.2005.00776.x
10.1016/j.geoderma.2016.11.015
10.1016/j.geoderma.2017.06.016
10.1071/SR06083
10.1016/j.catena.2021.105842
10.1111/ejss.13085
10.1007/s13593-013-0201-6
10.1016/j.isprsjprs.2018.11.026
10.1016/j.forsciint.2020.110222
10.1016/j.geoderma.2021.114981
10.1016/j.geoderma.2019.113913
10.3390/s110707063
10.3390/s18041048
10.1016/0034-4257(90)90085-Z
10.1016/j.scitotenv.2020.142661
10.1016/j.scitotenv.2020.138244
10.1016/j.soilbio.2014.06.022
10.1016/j.geoderma.2020.114725
10.1097/00010694-193401000-00003
10.1016/j.geoderma.2019.05.031
10.1007/s12034-007-0042-5
10.1080/05704920701829043
10.2136/sssaj2018.09.0318
10.1016/S0034-4257(02)00188-8
10.2111/05-201R.1
10.1016/0034-4257(79)90013-0
10.1111/j.1365-2389.2012.01456.x
10.1016/j.geoderma.2021.115386
10.1016/j.geoderma.2020.114211
10.1080/01431160600589179
10.1016/j.orggeochem.2011.04.003
10.1016/j.rse.2018.09.015
10.1016/j.eja.2021.126278
10.1016/j.geoderma.2019.06.016
10.1007/s11368-019-02520-2
10.2136/sssaj2013.04.0131
10.1016/S0034-4257(02)00096-2
10.2489/jswc.69.6.186A
10.1016/S0924-2031(02)00065-6
10.1111/ejss.12752
10.1016/0034-4257(88)90106-X
10.1016/0034-4257(95)00186-7
10.1016/j.geoderma.2013.07.020
10.1046/j.1365-2389.2004.00593.x
10.1016/j.geoderma.2008.06.011
10.1111/j.2517-6161.1996.tb02080.x
10.1016/S0034-4257(96)00072-7
10.1016/j.isprsjprs.2017.04.016
10.1016/j.geoderma.2015.06.024
10.1016/j.scitotenv.2021.150187
10.1016/j.geoderma.2009.12.025
10.1016/j.vibspec.2008.04.009
10.1016/j.isprsjprs.2013.04.007
10.1016/j.geoderma.2018.09.003
10.1016/j.geoderma.2021.115159
10.1080/00401706.1969.10490666
10.1016/j.fcr.2010.08.008
10.3390/land12010044
10.1016/j.rse.2016.03.025
10.1016/j.rse.2004.03.010
10.1016/j.geoderma.2022.116069
10.1016/j.geoderma.2021.115656
10.1016/S0034-4257(02)00037-8
10.1016/j.geodrs.2014.10.004
10.1016/S0016-7061(03)00223-4
10.1016/S0034-4257(00)00113-9
10.1016/j.aca.2013.12.002
10.1002/fes3.96
10.1016/S0034-4257(96)00067-3
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15041072
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_77daf15fedd847cfbeb7d5892545056a
10_3390_rs15041072
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-aea989604f8949cd1a97051551809f7cd6d51fda5625be8eeb6c10cdf0d75113
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:32:04 EDT 2025
Fri Jul 11 08:12:44 EDT 2025
Fri Jul 25 11:40:00 EDT 2025
Tue Jul 01 03:11:00 EDT 2025
Thu Apr 24 23:11:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-aea989604f8949cd1a97051551809f7cd6d51fda5625be8eeb6c10cdf0d75113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9064-3581
OpenAccessLink https://doaj.org/article/77daf15fedd847cfbeb7d5892545056a
PQID 2779657496
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_77daf15fedd847cfbeb7d5892545056a
proquest_miscellaneous_3040435833
proquest_journals_2779657496
crossref_citationtrail_10_3390_rs15041072
crossref_primary_10_3390_rs15041072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ellerbrock (ref_42) 2004; 55
Du (ref_57) 2009; 49
Xu (ref_40) 2020; 310
Luo (ref_3) 2022; 209
Wang (ref_19) 2018; 630
Janik (ref_44) 2007; 45
Frampton (ref_95) 2013; 82
Ng (ref_36) 2019; 352
Xu (ref_93) 2006; 27
Gitelson (ref_77) 1996; 58
Chen (ref_56) 2021; 400
Padarian (ref_65) 2019; 16
Gardin (ref_17) 2021; 404
Shoko (ref_28) 2017; 129
Movasaghi (ref_49) 2008; 43
Zhou (ref_16) 2021; 755
Cortes (ref_35) 1995; 20
Metternicht (ref_72) 2003; 85
Huete (ref_78) 2002; 83
Wang (ref_13) 2022; 409
LeCun (ref_60) 2015; 521
Xiao (ref_87) 2004; 91
Zhou (ref_21) 2020; 729
Bangroo (ref_62) 2020; 193
Beguin (ref_63) 2017; 306
Dalmolin (ref_24) 2021; 393
ref_25
Pedregosa (ref_31) 2011; 12
ref_69
Minasny (ref_92) 2014; 213
Lal (ref_4) 2014; 69
Daughtry (ref_96) 2000; 74
Xing (ref_38) 2019; 335
Huete (ref_81) 1988; 25
Goydaragh (ref_12) 2019; 352
McBratney (ref_10) 2003; 117
ref_29
Xu (ref_7) 2019; 355
Du (ref_46) 2007; 61
Gomez (ref_2) 2008; 146
Scudiero (ref_90) 2014; 2–3
Janik (ref_43) 2014; 49
Tucker (ref_85) 1979; 8
Castaldi (ref_64) 2019; 147
Ni (ref_59) 2014; 813
Nellis (ref_79) 1992; 95
Escadafal (ref_70) 1989; 9
Nayak (ref_51) 2007; 30
Conforti (ref_54) 2017; 288
Wadoux (ref_11) 2021; 383
Wang (ref_6) 2020; 20
ref_32
Lal (ref_5) 2016; 5
Nguyen (ref_18) 2022; 804
Guo (ref_1) 2019; 337
Tibshirani (ref_33) 1996; 58
ref_73
Kennard (ref_30) 1969; 11
Huang (ref_9) 2021; 72
Minhoni (ref_20) 2021; 784
Xing (ref_58) 2016; 158
Li (ref_67) 2022; 425
Wang (ref_74) 2020; 365
Srisomkiew (ref_71) 2022; 409
Ceccato (ref_89) 2002; 82
Kuang (ref_53) 2012; 63
Wang (ref_75) 2021; 754
Shetty (ref_34) 2011; 120
Rondeaux (ref_83) 1996; 55
ref_82
Drusch (ref_14) 2012; 120
Gholizadeh (ref_15) 2018; 218
Delegido (ref_94) 2011; 11
Du (ref_45) 2014; 34
Marsett (ref_80) 2006; 59
Churchman (ref_37) 2010; 109
Rial (ref_22) 2016; 539
Pedersen (ref_41) 2011; 42
Castaldi (ref_61) 2016; 179
(ref_50) 2003; 31
Goffart (ref_86) 2021; 126
Peltre (ref_8) 2014; 77
Haddix (ref_47) 2013; 77
Wadoux (ref_68) 2019; 355
Ma (ref_52) 2017; 171
Behrens (ref_39) 2010; 158
Wadoux (ref_55) 2019; 70
Thaler (ref_91) 2019; 83
Song (ref_66) 2016; 261
Goydaragh (ref_23) 2021; 202
(ref_27) 1890; 37
Crippen (ref_84) 1990; 34
Walkley (ref_26) 1934; 37
Leifeld (ref_48) 2006; 57
Wu (ref_76) 2014; 7
Gao (ref_88) 1996; 58
References_xml – volume: 109
  start-page: 23
  year: 2010
  ident: ref_37
  article-title: Effect of land-use history on the potential for carbon sequestration in an Alfisol
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2010.03.012
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_60
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 193
  start-page: 104632
  year: 2020
  ident: ref_62
  article-title: Application of predictor variables in spatial quantification of soil organic carbon and total nitrogen using regression kriging in the North Kashmir forest Himalayas
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104632
– volume: 7
  start-page: 4442
  year: 2014
  ident: ref_76
  article-title: Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2360411
– volume: 120
  start-page: 25
  year: 2012
  ident: ref_14
  article-title: Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
– volume: 202
  start-page: 105280
  year: 2021
  ident: ref_23
  article-title: Using environmental variables and Fourier Transform Infrared Spectroscopy to predict soil organic carbon
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105280
– ident: ref_32
– volume: 754
  start-page: 142030
  year: 2021
  ident: ref_75
  article-title: Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: A case study in Tarim River Basin of southern Xinjiang, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142030
– volume: 61
  start-page: 1063
  year: 2007
  ident: ref_46
  article-title: Characterization of soils using photoacoustic mid-infrared spectroscopy
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370207782217743
– volume: 171
  start-page: 9
  year: 2017
  ident: ref_52
  article-title: Optimized self-adaptive model for assessment of soil organic matter using Fourier transform mid-infrared photoacoustic spectroscopy
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.09.017
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_31
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_35
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 409
  start-page: 115597
  year: 2022
  ident: ref_71
  article-title: Digital soil assessment of soil fertility for Thai jasmine rice in the Thung Kula Ronghai region, Thailand
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115597
– volume: 335
  start-page: 94
  year: 2019
  ident: ref_38
  article-title: Agricultural soil characterization by FTIR spectroscopy at micrometer scales: Depth profiling by photoacoustic spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.003
– volume: 9
  start-page: 159
  year: 1989
  ident: ref_70
  article-title: Remote sensing of arid soil surface color with Landsat thematic mapper
  publication-title: Adv. Space Res.
  doi: 10.1016/0273-1177(89)90481-X
– volume: 37
  start-page: 279
  year: 1890
  ident: ref_27
  article-title: Über die Bestimmung des Wassers, des Humus, des Schwefels, der in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans u. s. w. im Ackerboden
  publication-title: Landwirthschaftlichen Vers. Station.
– volume: 158
  start-page: 262
  year: 2016
  ident: ref_58
  article-title: Application of FTIR-PAS and Raman spectroscopies for the determination of organic matter in farmland soils
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.05.076
– volume: 784
  start-page: 147216
  year: 2021
  ident: ref_20
  article-title: Multitemporal satellite imagery analysis for soil organic carbon assessment in an agricultural farm in southeastern Brazil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147216
– volume: 539
  start-page: 26
  year: 2016
  ident: ref_22
  article-title: Mapping soil organic carbon content using spectroscopic and environmental data: A case study in acidic soils from NW Spain
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.08.088
– volume: 16
  start-page: e00198
  year: 2019
  ident: ref_65
  article-title: Using deep learning to predict soil properties from regional spectral data
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2018.e00198
– volume: 49
  start-page: 139
  year: 2014
  ident: ref_43
  article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2013.811081
– volume: 95
  start-page: 93
  year: 1992
  ident: ref_79
  article-title: Transformed vegetation index for measuring spatial variation in drought impactedbiomass on Konza Prairie, Kansas
  publication-title: Trans. Kans. Acad. Sci.
  doi: 10.2307/3628024
– volume: 630
  start-page: 367
  year: 2018
  ident: ref_19
  article-title: High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.204
– volume: 355
  start-page: 113905
  year: 2019
  ident: ref_7
  article-title: Detection of soil organic matter from laser-induced breakdown spectroscopy (LIBS) and mid-infrared spectroscopy (FTIR-ATR) coupled with multivariate techniques
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113905
– volume: 57
  start-page: 846
  year: 2006
  ident: ref_48
  article-title: Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2005.00776.x
– volume: 288
  start-page: 175
  year: 2017
  ident: ref_54
  article-title: Effect of calibration set size on prediction at local scale of soil carbon by Vis-NIR spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.11.015
– volume: 306
  start-page: 195
  year: 2017
  ident: ref_63
  article-title: Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.06.016
– volume: 45
  start-page: 73
  year: 2007
  ident: ref_44
  article-title: The prediction of soil carbon fractions using mid-infrared-partial least square analysis
  publication-title: Soil Res.
  doi: 10.1071/SR06083
– volume: 209
  start-page: 105842
  year: 2022
  ident: ref_3
  article-title: Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in Google Earth Engine
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105842
– volume: 72
  start-page: 1831
  year: 2021
  ident: ref_9
  article-title: Identifying the fingerprint of permanganate oxidizable carbon as a measure of labile soil organic carbon using Fourier transform mid-infrared photoacoustic spectroscopy
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.13085
– volume: 34
  start-page: 803
  year: 2014
  ident: ref_45
  article-title: A 1915–2011 microscale record of soil organic matter under wheat cultivation using FTIR-PAS depth-profiling
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-013-0201-6
– volume: 147
  start-page: 267
  year: 2019
  ident: ref_64
  article-title: Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2018.11.026
– volume: 310
  start-page: 110222
  year: 2020
  ident: ref_40
  article-title: Forensic soil analysis using laser-induced breakdown spectroscopy (LIBS) and Fourier transform infrared total attenuated reflectance spectroscopy (FTIR-ATR): Principles and case studies
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2020.110222
– volume: 393
  start-page: 114981
  year: 2021
  ident: ref_24
  article-title: Environmental covariates improve the spectral predictions of organic carbon in subtropical soils in southern Brazil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.114981
– volume: 355
  start-page: 113913
  year: 2019
  ident: ref_68
  article-title: Sampling design optimization for soil mapping with random forest
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113913
– volume: 11
  start-page: 7063
  year: 2011
  ident: ref_94
  article-title: Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content
  publication-title: Sensors
  doi: 10.3390/s110707063
– ident: ref_73
  doi: 10.3390/s18041048
– volume: 34
  start-page: 71
  year: 1990
  ident: ref_84
  article-title: Calculating the vegetation index faster
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(90)90085-Z
– volume: 755
  start-page: 142661
  year: 2021
  ident: ref_16
  article-title: Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142661
– volume: 729
  start-page: 138244
  year: 2020
  ident: ref_21
  article-title: High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138244
– volume: 77
  start-page: 41
  year: 2014
  ident: ref_8
  article-title: Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.06.022
– volume: 383
  start-page: 114725
  year: 2021
  ident: ref_11
  article-title: Hypotheses, machine learning and soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114725
– volume: 37
  start-page: 29
  year: 1934
  ident: ref_26
  article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed odification of the chromic acid titration method
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193401000-00003
– volume: 352
  start-page: 395
  year: 2019
  ident: ref_12
  article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.031
– volume: 30
  start-page: 235
  year: 2007
  ident: ref_51
  article-title: Instrumental characterization of clay by XRF, XRD and FTIR
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-007-0042-5
– volume: 43
  start-page: 134
  year: 2008
  ident: ref_49
  article-title: Fourier transform infrared (FTIR) dpectroscopy of biological tissues
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704920701829043
– volume: 83
  start-page: 1443
  year: 2019
  ident: ref_91
  article-title: A new index for remote sensing of soil organic carbon based solely on visible wavelengths
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2018.09.0318
– ident: ref_82
– volume: 85
  start-page: 1
  year: 2003
  ident: ref_72
  article-title: Remote sensing of soil salinity: Potentials and constraints
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00188-8
– volume: 59
  start-page: 530
  year: 2006
  ident: ref_80
  article-title: Remote sensing for grassland management in the arid southwest
  publication-title: Rangeland Ecol. Manag.
  doi: 10.2111/05-201R.1
– volume: 8
  start-page: 127
  year: 1979
  ident: ref_85
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– volume: 63
  start-page: 421
  year: 2012
  ident: ref_53
  article-title: Influence of the number of samples on prediction error of visible and near infrared spectroscopy of selected soil properties at the farm scale
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2012.01456.x
– volume: 404
  start-page: 115386
  year: 2021
  ident: ref_17
  article-title: Mapping soil organic carbon in Tuscany through the statistical combination of ground observations with ancillary and remote sensing data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115386
– volume: 365
  start-page: 114211
  year: 2020
  ident: ref_74
  article-title: Multi-algorithm comparison for predicting soil salinity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114211
– volume: 27
  start-page: 3025
  year: 2006
  ident: ref_93
  article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600589179
– volume: 42
  start-page: 947
  year: 2011
  ident: ref_41
  article-title: Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2011.04.003
– volume: 218
  start-page: 89
  year: 2018
  ident: ref_15
  article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.015
– volume: 126
  start-page: 126278
  year: 2021
  ident: ref_86
  article-title: Field-scale assessment of Belgian winter cover crops biomass based on Sentinel-2 data
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2021.126278
– volume: 352
  start-page: 251
  year: 2019
  ident: ref_36
  article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.016
– volume: 20
  start-page: 1241
  year: 2020
  ident: ref_6
  article-title: Estimation of soil organic carbon losses and counter approaches from organic materials in black soils of northeastern China
  publication-title: J. Soil. Sediment.
  doi: 10.1007/s11368-019-02520-2
– volume: 77
  start-page: 1591
  year: 2013
  ident: ref_47
  article-title: Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2013.04.0131
– volume: 83
  start-page: 195
  year: 2002
  ident: ref_78
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 69
  start-page: 186A
  year: 2014
  ident: ref_4
  article-title: Societal value of soil carbon
  publication-title: J. Soil Water Conserv.
  doi: 10.2489/jswc.69.6.186A
– volume: 31
  start-page: 1
  year: 2003
  ident: ref_50
  article-title: FTIR techniques in clay mineral studies
  publication-title: Vib. Spectrosc.
  doi: 10.1016/S0924-2031(02)00065-6
– volume: 70
  start-page: 378
  year: 2019
  ident: ref_55
  article-title: Robust soil mapping at the farm scale with vis–NIR spectroscopy
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12752
– volume: 25
  start-page: 295
  year: 1988
  ident: ref_81
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 55
  start-page: 95
  year: 1996
  ident: ref_83
  article-title: Optimization of soil-adjusted vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00186-7
– volume: 213
  start-page: 15
  year: 2014
  ident: ref_92
  article-title: Digital mapping of soil salinity in Ardakan region, central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.020
– volume: 55
  start-page: 219
  year: 2004
  ident: ref_42
  article-title: Characterizing organic matter of soil aggregate coatings and biopores by Fourier transform infrared spectroscopy
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2004.00593.x
– volume: 146
  start-page: 403
  year: 2008
  ident: ref_2
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.06.011
– ident: ref_25
– volume: 58
  start-page: 267
  year: 1996
  ident: ref_33
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. B.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref_29
– volume: 58
  start-page: 289
  year: 1996
  ident: ref_77
  article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00072-7
– volume: 129
  start-page: 32
  year: 2017
  ident: ref_28
  article-title: Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2017.04.016
– volume: 261
  start-page: 11
  year: 2016
  ident: ref_66
  article-title: Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.06.024
– volume: 804
  start-page: 150187
  year: 2022
  ident: ref_18
  article-title: A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150187
– volume: 158
  start-page: 46
  year: 2010
  ident: ref_39
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.025
– volume: 49
  start-page: 32
  year: 2009
  ident: ref_57
  article-title: Determination of soil properties using Fourier transform mid-infrared photoacoustic spectroscopy
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2008.04.009
– volume: 82
  start-page: 83
  year: 2013
  ident: ref_95
  article-title: Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2013.04.007
– volume: 337
  start-page: 32
  year: 2019
  ident: ref_1
  article-title: Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.003
– volume: 400
  start-page: 115159
  year: 2021
  ident: ref_56
  article-title: Evaluating validation strategies on the performance of soil property prediction from regional to continental spectral data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115159
– volume: 11
  start-page: 137
  year: 1969
  ident: ref_30
  article-title: Computer aided design of experiments
  publication-title: Technometrics
  doi: 10.1080/00401706.1969.10490666
– volume: 120
  start-page: 31
  year: 2011
  ident: ref_34
  article-title: Quantification of fructan concentration in grasses using NIR spectroscopy and PLSR
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2010.08.008
– ident: ref_69
  doi: 10.3390/land12010044
– volume: 179
  start-page: 54
  year: 2016
  ident: ref_61
  article-title: Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.025
– volume: 91
  start-page: 256
  year: 2004
  ident: ref_87
  article-title: Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.03.010
– volume: 425
  start-page: 116069
  year: 2022
  ident: ref_67
  article-title: Multi-objective optimization sampling based on Pareto optimality for soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.116069
– volume: 409
  start-page: 115656
  year: 2022
  ident: ref_13
  article-title: A framework for determining the total salt content of soil profiles using time-series Sentinel-2 images and a random forest-temporal convolution network
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115656
– volume: 82
  start-page: 188
  year: 2002
  ident: ref_89
  article-title: Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00037-8
– volume: 2–3
  start-page: 82
  year: 2014
  ident: ref_90
  article-title: Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2014.10.004
– volume: 117
  start-page: 3
  year: 2003
  ident: ref_10
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 74
  start-page: 229
  year: 2000
  ident: ref_96
  article-title: Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00113-9
– volume: 813
  start-page: 1
  year: 2014
  ident: ref_59
  article-title: Non-linear calibration models for near infrared spectroscopy
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2013.12.002
– volume: 5
  start-page: 212
  year: 2016
  ident: ref_5
  article-title: Soil health and carbon management
  publication-title: Food Energy Secur.
  doi: 10.1002/fes3.96
– volume: 58
  start-page: 257
  year: 1996
  ident: ref_88
  article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
SSID ssj0000331904
Score 2.4023259
Snippet Soil organic matter (SOM), as the greatest carbon storage in the terrestrial environment, is inextricably related to the global carbon cycle and global climate...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1072
SubjectTerms Accuracy
Agricultural production
Analytical chemistry
Artificial neural networks
Attenuation
Calibration
Carbon
Carbon cycle
Carbon sequestration
Chemical analysis
China
climate
Climate change
data fusion
digital soil mapping
Fourier transforms
global carbon budget
Global climate
High resolution
Image enhancement
Infrared spectroscopy
kriging
Machine learning
Mapping
Neural networks
Organic matter
Performance evaluation
Performance prediction
prediction
proximal sensing
Reflectance
reflectance spectroscopy
regression analysis
Remote sensing
satellite sensing
Satellites
soil
Soil organic matter
Spatial discrimination
Spatial resolution
Spectroscopy
Spectrum analysis
Support vector machines
Terrestrial environments
Topography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BeoAL4ikCBQ2CQyN1Vcder-0TSqFRg5SCkiD1Zu2zVAp2iFOk_Ej-EzP2JhUCcfXOWpZmdl6e_T7G3qlEWWmSgivtEi6MjHjhE8VzaYSMtcYITvedpxfy_Kv4dJlehoZbE8Yqdz6xddS2NtQjP4mzrJBpJgr5fvWDE2sU_V0NFBp32QG64DzvsYPTs4svs32XJUrQxCLR4ZImWN-frBtMgQQWPfEfkagF7P_LH7dBZvyQPQjZIYw6dT5id1z1mN0LROXftk_YrxGMd-NUgPkm0JwGpx58Z0EwVQS4cAW1h3l9vYTurqWBaYujCUfzz9MB6C1g3geTABVB-1B-3NHXwfTa8knl1zSaDiPcVnVw4LCoMVOHmfPU6idrAWKv3xAeZr3awtF4MZnx0WI2OIY5DSFVbsljmHxHl9Ucg6osoNbhI9r8zxZuvHnKFuOzxYdzHhgZOKpTbLhyqsgJzsXnhSiMHaoi60hi8qjwmbHSpkNvFVVV2uXOaWmGkbE-shlmdskz1qvqyj1ngHWlkRKXtbAiNSYX3gmdxTJ2VqdD1WeDnXJKE9DKiTRjWWLVQoosbxXZZ2_3sqsOo-OfUqek470E4Wq3D-r1VRmOaZllVvlh6p21GLaN105nNs0LLKMpVcTPOtxZSBkOe1Pemmafvdkv4zGlfy-qcvVNUyYRwRjRFbcX_3_FS3afGO27wfBD1tusb9wrzHs2-nUw7t8L1wVW
  priority: 102
  providerName: ProQuest
Title A Framework for High-Resolution Mapping of Soil Organic Matter (SOM) by the Integration of Fourier Mid-Infrared Attenuation Total Reflectance Spectroscopy (FTIR-ATR), Sentinel-2 Images, and DEM Derivatives
URI https://www.proquest.com/docview/2779657496
https://www.proquest.com/docview/3040435833
https://doaj.org/article/77daf15fedd847cfbeb7d5892545056a
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOcAF8RSBEg2CQyN1VT_Wa_uY0poG4YKSIPVm7RMqBbtKUqT8SP4TM7YTikDiwsmSd1ZaeWbnsZ79PsbeqFhZaeKcK-1iLowMeO5jxTNphIy0xghO953Lc3n2Wby_SC5uUH1RT1gHD9x9uKM0tcqHiXfWoiM1Xjud2iTLsbCh4N2mRhjzbhRTrQ-O0bQC0eGRxljXHy1XmPoILHai3yJQC9T_hx9ug0vxgN3vs0IYd6t5yG65-hG72xOUf908Zj_GUGzbqADzTKD-DE5n753lQKkIaOELNB5mzeUCujuWBsoWPxMOZh_LEegNYL4Hkx4iguahfNHR1kF5afmk9ktqSYcxTqs7GHCYN5ihw9R5OuInKwFirV8TDmZztYGDYj6Z8vF8OjqEGTUf1W7BI5h8Q1e1OgRVW0Btwwna-vcWZnz1hM2L0_nbM94zMXBUo1hz5VSeEYyLz3KRGxuqPO3IYbIg96mx0iaht4qqKe0y57Q0YWCsD2yKGV38lO3VTe2eMcB60kiJw1pYkRiTCe-ETiMZOauTUA3YaKucyvQo5USWsaiwWiFFVr8UOWCvd7JXHTbHX6WOScc7CcLTbl-glVW9lVX_srIB299aSNVv8lUVpWkuk1TkcsBe7YZxe9I_F1W75npVxQHBF9HVtuf_Yx0v2D3iu-_axvfZ3np57V5iVrTWQ3Y7K94N2Z3xSflhhs_j0_NP02G7LX4CBpARWA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKeSgviKvYUmAQIHWlWs0mzu0BoYUSNrQp0m6Q-hY5tlMqLcmy2YL2o_gU_omZXLZCIN76GjtRpBmPz9gz5zD2UjpSe8oJucyNw4XyLB4WjuSBp4Rn5znu4NTvnJx6k8_i45l7tsV-9r0wVFbZx8QmUOtK0Rn5oe37oef6IvTeLL5xUo2i29VeQqN1i2Oz_oEpW_06PkL7vrLt6H36bsI7VQGOvyRWXBoZBkRJUgShCJUeydBvhU4CKyx8pT3tjgotKTPITWBM7qmRpXRhaR_RiYOfvcFuCgc3cmpMjz5sjnQsB_3ZEi0JKo5bh8sa8ZbADMv-Y9tr1AH-Cv7NjhbdYbc7KArj1nfusi1T3mM7nSr6l_V99msMUV-7BQhugYpCOB34t-4KiSR2h3OoCphVF3NoGzsVJA1pJ-zPPiVDyNeAIBPijpeC3sP5UauVB8mF5nFZLKkOHsb4Wtlyj0NaYVoAU1PQvQK5JswWjWIP9dGsYT9K4ykfp9PhAcyo4qk0c25D_BXjY30AstSALgZHuMC-N9zm9QOWXoehHrLtsirNIwaYxCrPw-FcaOEqFYjCiNy3Pdvo3B3JARv2xslUR41OCh3zDFMkMmR2ZcgBe7GZu2gJQf456y3ZeDODSLybB9XyPOtiQub7WhYjtzBaI0ZQRW5yX7tBiDk74VL8rb3eQ7IustTZ1ToYsOebYYwJdNEjS1Nd1pljEWcS9dPt_v8Tz9jOJE1OspP49Pgxu2UjgGsr0vfY9mp5aZ4g4FrlTxs3B5Zd87L6DY0JQFY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VVAJeEFcRKDAIkBqpqzi--wGhlNSqKQlVEqS-Weu9lErBDnEKyqfxEfwTM76kQiDe-mrvWpZmdvbM7sw5jL0WjlC-dCIuMu1wV_oWj4wjeOhL17ezDHdw6nceT_zjz-6HM-9sh_1se2GorLKNiVWgVoWkM_K-HQSR7wVu5PdNUxZxOorfLb9xUpCim9ZWTqN2kRO9-YHpW_k2GaGt39h2fDR_f8wbhQGOv-euudAiComexISRG0k1EFFQi56EVmQCqXzlDYwSlCVkOtQ68-XAkspYKkCk4uBnb7DdgJKiDts9PJqcTrcHPJaD3m25NSWq40RWf1Ui-nIx37L_2AQrrYC_toJqf4vvsjsNMIVh7Un32I7O77NbjUb6l80D9msIcVvJBQh1gUpEOB3_184LY0FcD-dQGJgVFwuo2zwljCsKT9iffRr3INsAQk5IGpYKmofj41o5D8YXiie5WVFVPAxxWl4zkcO8wCQBptrQLQM5KsyWlX4PddVsYD-eJ1M-nE97BzCj-qdcL7gNyVeMluUBiFwBOhyMcLl9r5jOy4dsfh2mesQ6eZHrxwwwpZW-j68zV7melKFrtJsFtm9rlXkD0WW91jipbIjSSa9jkWLCRIZMrwzZZa-2Y5c1Pcg_Rx2SjbcjiNK7elCsztMmQqRBoIQZeEYrhYhBmkxngfLCCDN4Qqn4W3uth6RNnCnTq1XRZS-3rzFC0LWPyHVxWaaORQxK1F335P-feMFu4pJKPyaTk6fsto1ori5P32Od9epSP0P0tc6eN34OLL3mlfUbmMNF6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+High-Resolution+Mapping+of+Soil+Organic+Matter+%28SOM%29+by+the+Integration+of+Fourier+Mid-Infrared+Attenuation+Total+Reflectance+Spectroscopy+%28FTIR-ATR%29%2C+Sentinel-2+Images%2C+and+DEM+Derivatives&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Xuebin&rft.au=Du%2C+Changwen&rft.au=Ma%2C+Fei&rft.au=Qiu%2C+Zhengchao&rft.date=2023-02-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=4&rft.spage=1072&rft_id=info:doi/10.3390%2Frs15041072&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15041072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon