Gamma-ray bursts afterglows with energy injection from a spinning down neutron star

Aims. We investigate a model for the shallow decay phases of gamma-ray burst (GRB) afterglows discovered by Swift/XRT in the first hours following a GRB event. In the context of the fireball scenario, we consider the possibility that long-lived energy injection from a millisecond spinning, ultramagn...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 526; p. A121
Main Authors Dall’Osso, S., Stratta, G., Guetta, D., Covino, S., De Cesare, G., Stella, L.
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.02.2011
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
DOI10.1051/0004-6361/201014168

Cover

Loading…
Abstract Aims. We investigate a model for the shallow decay phases of gamma-ray burst (GRB) afterglows discovered by Swift/XRT in the first hours following a GRB event. In the context of the fireball scenario, we consider the possibility that long-lived energy injection from a millisecond spinning, ultramagnetic neutron star (magnetar) powers afterglow emission during this phase. Methods. We consider the energy evolution in a relativistic shock that is subject to both radiative losses and energy injection from a spinning down magnetar in spherical symmetry. We model the energy injection term through magnetic dipole losses and discuss an approximate treatment for the dynamical evolution of the blastwave. We obtain an analytic solution for the energy evolution in the shock and associated lightcurves. To fully illustrate the potential of our solution we calculate lightcurves for a few selected X-ray afterglows observed by Swift and fit them using our theoretical lightcurves. Results. Our solution naturally describes in a single picture the properties of the shallow decay phase and the transition to the so-called normal decay phase. In particular, we obtain remarkably good fits to X-ray afterglows for plausible parameters of the magnetar. Even though approximate, our treatment provides a step forward with respect to previously adopted approximations and provides additional support of the idea that a millisecond spinning (1–3 ms), ultramagnetic (B ~ 1014−1015 G) neutron star loosing spin energy through magnetic dipole radiation can explain the luminosity, durations and shapes of X-ray GRB afterglows.
AbstractList Aims. We investigate a model for the shallow decay phases of gamma-ray burst (GRB) afterglows discovered by Swift/XRT in the first hours following a GRB event. In the context of the fireball scenario, we consider the possibility that long-lived energy injection from a millisecond spinning, ultramagnetic neutron star (magnetar) powers afterglow emission during this phase. Methods. We consider the energy evolution in a relativistic shock that is subject to both radiative losses and energy injection from a spinning down magnetar in spherical symmetry. We model the energy injection term through magnetic dipole losses and discuss an approximate treatment for the dynamical evolution of the blastwave. We obtain an analytic solution for the energy evolution in the shock and associated lightcurves. To fully illustrate the potential of our solution we calculate lightcurves for a few selected X-ray afterglows observed by Swift and fit them using our theoretical lightcurves. Results. Our solution naturally describes in a single picture the properties of the shallow decay phase and the transition to the so-called normal decay phase. In particular, we obtain remarkably good fits to X-ray afterglows for plausible parameters of the magnetar. Even though approximate, our treatment provides a step forward with respect to previously adopted approximations and provides additional support of the idea that a millisecond spinning (1–3 ms), ultramagnetic (B ~ 1014−1015 G) neutron star loosing spin energy through magnetic dipole radiation can explain the luminosity, durations and shapes of X-ray GRB afterglows.
Aims. We investigate a model for the shallow decay phases of gamma-ray burst (GRB) afterglows discovered by Swift/XRT in the first hours following a GRB event. In the context of the fireball scenario, we consider the possibility that long-lived energy injection from a millisecond spinning, ultramagnetic neutron star (magnetar) powers afterglow emission during this phase. Methods. We consider the energy evolution in a relativistic shock that is subject to both radiative losses and energy injection from a spinning down magnetar in spherical symmetry. We model the energy injection term through magnetic dipole losses and discuss an approximate treatment for the dynamical evolution of the blastwave. We obtain an analytic solution for the energy evolution in the shock and associated lightcurves. To fully illustrate the potential of our solution we calculate lightcurves for a few selected X-ray afterglows observed by Swift and fit them using our theoretical lightcurves. Results. Our solution naturally describes in a single picture the properties of the shallow decay phase and the transition to the so-called normal decay phase. In particular, we obtain remarkably good fits to X-ray afterglows for plausible parameters of the magnetar. Even though approximate, our treatment provides a step forward with respect to previously adopted approximations and provides additional support of the idea that a millisecond spinning (1– 3 ms), ultramagnetic (B ~ 10 super(14)– 10 super(15) G) neutron star loosing spin energy through magnetic dipole radiation can explain the luminosity, durations and shapes of X-ray GRB afterglows.
Author Dall’Osso, S.
Stella, L.
Guetta, D.
Covino, S.
Stratta, G.
De Cesare, G.
Author_xml – sequence: 1
  givenname: S.
  surname: Dall’Osso
  fullname: Dall’Osso, S.
  organization: INAF – Osservatorio Astronomico di Roma, via Frascati 33, Monte Porzio Catone, Roma, Italy
– sequence: 2
  givenname: G.
  surname: Stratta
  fullname: Stratta, G.
  organization: ASDC, via Galileo Galilei, 00040 Frascati (Roma), Italy
– sequence: 3
  givenname: D.
  surname: Guetta
  fullname: Guetta, D.
  organization: INAF – Osservatorio Astronomico di Roma, via Frascati 33, Monte Porzio Catone, Roma, Italy
– sequence: 4
  givenname: S.
  surname: Covino
  fullname: Covino, S.
  organization: INAF – Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807, Merate (LC), Italy
– sequence: 5
  givenname: G.
  surname: De Cesare
  fullname: De Cesare, G.
  organization: INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica di Roma, via Fosso del Cavaliere 100, 00133 Roma, Italy
– sequence: 6
  givenname: L.
  surname: Stella
  fullname: Stella, L.
  organization: INAF – Osservatorio Astronomico di Roma, via Frascati 33, Monte Porzio Catone, Roma, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24014249$$DView record in Pascal Francis
BookMark eNp9kMtOwzAQRS1UJNrCF7DxBrEK-BU7WaIKyksCqTyW1tQ4xSVxiu2q9O9JVeiCBavRaO650pwB6vnWW4SOKTmjJKfnhBCRSS7pOSOUUEFlsYf6VHCWESVkD_V3iQM0iHHerYwWvI8mY2gayAKs8XQZYooYqmTDrG5XEa9cesfWd-saOz-3JrnW4yq0DQYcF85752f4rV157O0yhe4YE4RDtF9BHe3Rzxyi56vLp9F1dv8wvhld3GeGlyJlICUzJbUSVC5yQ5kiinMhclYoVnI1nUpprSwpGMGk4gVRJdicG8tKNc2BD9HptncR2s-ljUk3Lhpb1-Btu4y6yAvBuOxah-jkJwnRQF0F8MZFvQiugbDWTHTOmCi7XLnNmdDGGGyljUuw-ToFcLWmRG98641NvbGpd747lv9hf-v_p7It5WKyXzsEwofuXla5LsirfpF34wm_VfqRfwNY0pHm
CODEN AAEJAF
CitedBy_id crossref_primary_10_3847_1538_4357_acaefd
crossref_primary_10_1093_mnras_stu2336
crossref_primary_10_3847_1538_4365_aabaf3
crossref_primary_10_1093_mnras_stac2752
crossref_primary_10_3847_1538_4357_ac1678
crossref_primary_10_1051_0004_6361_202243260
crossref_primary_10_3847_1538_4357_ab8302
crossref_primary_10_1088_0004_637X_776_2_106
crossref_primary_10_1093_mnras_stad2326
crossref_primary_10_3847_2041_8213_ab2980
crossref_primary_10_1142_S0218271820500431
crossref_primary_10_3847_1538_4357_ab38c4
crossref_primary_10_3847_1538_4357_aaf9a0
crossref_primary_10_1088_1674_4527_ad7e67
crossref_primary_10_1093_mnras_stx2023
crossref_primary_10_1093_mnras_sty1706
crossref_primary_10_1051_0004_6361_201629610
crossref_primary_10_1093_pasj_psab057
crossref_primary_10_1007_s10699_020_09699_5
crossref_primary_10_1093_mnras_stad763
crossref_primary_10_3847_1538_4357_aa8a6b
crossref_primary_10_1088_0004_637X_774_2_157
crossref_primary_10_1093_mnras_staf147
crossref_primary_10_3847_1538_4357_aadd8f
crossref_primary_10_3847_2041_8213_ad22e2
crossref_primary_10_1088_2041_8205_771_2_L26
crossref_primary_10_1088_1475_7516_2024_07_026
crossref_primary_10_3390_galaxies10030060
crossref_primary_10_3390_galaxies9040095
crossref_primary_10_1016_j_asr_2018_03_010
crossref_primary_10_1016_j_jheap_2015_05_003
crossref_primary_10_1093_mnras_stv2127
crossref_primary_10_1007_s10509_022_04088_9
crossref_primary_10_1051_0004_6361_201628384
crossref_primary_10_1088_0067_0049_209_2_20
crossref_primary_10_1088_0004_637X_758_1_32
crossref_primary_10_1093_mnras_stac1648
crossref_primary_10_3847_0004_637X_828_1_36
crossref_primary_10_1093_mnras_stu2752
crossref_primary_10_1088_0004_637X_814_1_1
crossref_primary_10_1093_mnras_stv1229
crossref_primary_10_3390_universe7030076
crossref_primary_10_1088_1674_1137_41_12_125101
crossref_primary_10_1093_mnras_sty2176
crossref_primary_10_1016_j_newar_2017_04_001
crossref_primary_10_3847_1538_4365_ac7c64
crossref_primary_10_3847_1538_4357_ac8b77
crossref_primary_10_3847_1538_4357_abeb1a
crossref_primary_10_1051_0004_6361_201731005
crossref_primary_10_1093_mnras_staa3090
crossref_primary_10_3847_1538_4357_aa8f4a
crossref_primary_10_3847_1538_4357_ad93b5
crossref_primary_10_1140_epja_i2016_16041_2
crossref_primary_10_1142_S2010194514601628
crossref_primary_10_1088_0004_637X_783_2_126
crossref_primary_10_3847_2041_8205_825_2_L20
crossref_primary_10_3847_1538_4357_aad08a
crossref_primary_10_1093_mnras_stac2609
crossref_primary_10_3847_2041_8213_acccec
crossref_primary_10_1093_mnras_stw2695
crossref_primary_10_1051_0004_6361_201834552
crossref_primary_10_1088_0004_637X_785_1_74
crossref_primary_10_1051_0004_6361_201321221
crossref_primary_10_3847_1538_4357_acfed8
crossref_primary_10_1093_mnras_stt293
crossref_primary_10_1051_0004_6361_201731875
crossref_primary_10_1093_mnras_stad2632
crossref_primary_10_3847_2041_8213_ab8296
crossref_primary_10_1088_0004_637X_805_2_88
crossref_primary_10_3847_1538_4357_abb702
crossref_primary_10_1093_mnras_stv901
crossref_primary_10_3847_1538_4357_ac158a
crossref_primary_10_1007_s10714_021_02831_1
crossref_primary_10_3847_1538_4357_acd63f
crossref_primary_10_1093_mnras_stab153
crossref_primary_10_1088_1674_4527_15_7_006
crossref_primary_10_1093_mnras_stae1238
crossref_primary_10_3847_1538_4357_ab8221
crossref_primary_10_1103_PhysRevD_89_047302
crossref_primary_10_1088_1402_4896_acc1b2
crossref_primary_10_1093_mnras_stt1915
crossref_primary_10_3847_2041_8213_abc254
crossref_primary_10_1051_0004_6361_201117754
crossref_primary_10_1051_0004_6361_202450444
crossref_primary_10_1088_0004_637X_781_1_1
crossref_primary_10_1088_0004_637X_799_1_107
crossref_primary_10_1016_j_newar_2024_101712
crossref_primary_10_1088_0004_637X_759_1_58
crossref_primary_10_3847_1538_4357_acd6ee
crossref_primary_10_1051_0004_6361_202038265
crossref_primary_10_3847_1538_4365_abfe17
crossref_primary_10_3847_1538_4357_aba43a
crossref_primary_10_1093_mnrasl_slw115
crossref_primary_10_1093_mnras_stw435
crossref_primary_10_1111_j_1365_2966_2011_19433_x
crossref_primary_10_1007_s10686_021_09795_9
crossref_primary_10_1093_mnras_stt2165
crossref_primary_10_1093_mnras_stx1531
crossref_primary_10_1111_j_1365_2966_2011_18280_x
crossref_primary_10_3847_0004_637X_817_2_132
crossref_primary_10_1002_asna_201312024
crossref_primary_10_3847_1538_4365_ab4711
crossref_primary_10_1016_j_physrep_2014_09_008
crossref_primary_10_1088_0004_637X_775_1_67
crossref_primary_10_3847_1538_4357_ac9b11
crossref_primary_10_1093_mnras_stu1277
crossref_primary_10_1103_PhysRevD_98_043011
crossref_primary_10_3390_universe4030050
crossref_primary_10_1088_1475_7516_2024_08_015
crossref_primary_10_1093_mnras_stv2280
crossref_primary_10_3847_1538_4357_ab2912
crossref_primary_10_1093_mnras_stt2055
crossref_primary_10_1093_mnras_stu247
crossref_primary_10_1093_pasj_psac057
crossref_primary_10_1051_0004_6361_201117895
crossref_primary_10_1016_j_jheap_2015_03_003
crossref_primary_10_1088_0004_637X_797_1_33
crossref_primary_10_1051_0004_6361_202245348
crossref_primary_10_1093_mnras_stab2210
crossref_primary_10_3390_galaxies10030066
crossref_primary_10_1051_0004_6361_202451877
crossref_primary_10_3847_1538_4357_aacbcc
crossref_primary_10_1088_1674_4527_17_6_54
crossref_primary_10_3390_galaxies13020015
crossref_primary_10_1088_0004_637X_813_2_92
crossref_primary_10_1051_0004_6361_201423920
crossref_primary_10_1088_0004_637X_800_1_31
crossref_primary_10_1093_mnras_sts683
crossref_primary_10_3847_1538_4357_ada0b9
crossref_primary_10_3847_1538_4357_ac167d
crossref_primary_10_1088_0004_637X_798_1_25
crossref_primary_10_1051_eas_1361056
crossref_primary_10_1103_PhysRevD_93_103001
crossref_primary_10_1007_s11214_015_0191_6
crossref_primary_10_3847_1538_4357_ad1756
crossref_primary_10_1093_mnras_stw122
crossref_primary_10_1093_mnras_stac3730
crossref_primary_10_1093_mnrasl_slu003
crossref_primary_10_1088_0034_4885_78_11_116901
crossref_primary_10_1088_0004_637X_766_1_30
Cites_doi 10.1088/0004-637X/699/2/1789
10.1111/j.1365-2966.2006.10453.x
10.1086/178147
10.1086/311244
10.1111/j.1745-3933.2007.00403.x
10.1086/309055
10.1086/306523
10.1086/311269
10.1086/186493
10.1086/517868
10.1086/319698
10.1088/0004-637X/700/2/1047
10.1086/320255
10.1086/421969
10.1111/j.1365-2966.2009.15538.x
10.1086/323256
10.1086/186413
10.1086/424915
10.1086/187446
10.1086/306652
10.1086/507518
10.1111/j.1365-2966.2009.14913.x
10.1111/j.1365-2966.2005.09900.x
10.1051/0004-6361:20077530
10.1111/j.1365-2966.2007.11724.x
10.1086/174178
10.1038/357472a0
10.1111/j.1365-2966.2007.11679.x
10.1016/S0370-1573(98)00127-6
10.1088/1674-4527/9/12/003
10.1111/j.1365-2966.2004.07770.x
10.1086/312689
10.1103/PhysRev.74.328
10.1103/PhysRevLett.94.021101
10.1086/500723
10.1086/524701
10.1007/s00159-008-0011-z
10.1086/498685
10.1086/172359
10.1086/172580
10.1111/j.1745-3933.2006.00217.x
10.1093/mnras/287.1.110
10.1088/1009-9271/7/5/07
10.1086/311622
10.1088/0004-637X/702/2/1171
10.1007/s10509-007-9323-0
10.1088/1009-9271/7/1/01
10.1111/j.1365-2966.2008.14054.x
10.1142/S0217751X0401746X
10.1086/311311
10.1111/j.1365-2966.2006.10217.x
10.1086/519450
10.1103/PhysRevD.66.084025
10.1088/0004-637X/698/1/43
10.1111/j.1365-2966.2009.14940.x
10.1093/mnras/275.2.255
10.1111/j.1745-3933.2008.00560.x
10.1086/521870
10.1051/0004-6361:20000452
10.1063/1.2356383
10.1017/CBO9780511536281.015
10.1086/338119
10.1146/annurev.astro.46.060407.145147
10.1016/S1384-1076(99)00013-5
10.1063/1.861619
10.1088/0004-637X/711/2/641
10.1086/386367
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7TG
KL.
DOI 10.1051/0004-6361/201014168
DatabaseName Istex
CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 24014249
10_1051_0004_6361_201014168
ark_67375_80W_V6KGS3J7_P
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOTM
ABDNZ
ABDPE
ABPPZ
ABTAH
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
AEILP
AENEX
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
BSCLL
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNP
RNS
RSV
SDH
SJN
SOJ
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
AAOGA
AAYXX
ABNSH
ACRPL
ADNMO
AGQPQ
CITATION
IQODW
7TG
KL.
ID FETCH-LOGICAL-c394t-a662c91e6a7545c12707334452872937bb66ee691ac426738079ae53ce297b5a3
ISSN 0004-6361
IngestDate Thu Sep 04 22:47:23 EDT 2025
Mon Jul 21 09:12:11 EDT 2025
Tue Jul 01 05:24:30 EDT 2025
Thu Apr 24 23:05:14 EDT 2025
Wed Oct 30 09:39:15 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Spherical symmetry
Neutron stars
X ray burst
Magnetic dipoles
gamma-ray burst: general
stars: magnetars
Relativistic shock wave
Cosmic gamma sources
Light curves
G stars
Luminosity
Gamma ray burst
Phase transitions
relativistic processes
Shock waves
Afterglow
Dynamical evolution
Fireballs
Models
Analytical solution
X-rays: bursts
Magnetic energy
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-a662c91e6a7545c12707334452872937bb66ee691ac426738079ae53ce297b5a3
Notes istex:C18CC92ECBE788C95C6B83F141DFFC0EB8726F12
bibcode:2011A%26A...526A.121D
Virgo-Ego Scientific Forum fellow.
ark:/67375/80W-V6KGS3J7-P
publisher-ID:aa14168-10
dkey:10.1051/0004-6361/201014168
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2011/02/aa14168-10.pdf
PQID 858423607
PQPubID 23462
ParticipantIDs proquest_miscellaneous_858423607
pascalfrancis_primary_24014249
crossref_citationtrail_10_1051_0004_6361_201014168
crossref_primary_10_1051_0004_6361_201014168
istex_primary_ark_67375_80W_V6KGS3J7_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2011
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Blandford (R4) 1976; 19
Woosley (R65) 1993; 405
Panaitescu (R41) 2006; 369
Thompson (R59) 2001; 561
Meszaros (R34) 1999; 4
Dainotti (R15) 2008; 391
Rees (R45) 1994; 430
Usov (R62) 1992; 357
R64
Yu (R67) 2007; 7
Sari (R49) 2000; 535
Tchekhovskoy (R55) 2009; 699
Thompson (R57) 1995; 275
Racusin (R43) 2009; 698
Zhang (R70) 2004; 19
R1
Gruzinov (R27) 2005; 94
Fan (R22) 2006; 372
Dall’Osso (R17) 2009; 398
Corsi (R12) 2009; 702
Zhang (R71) 2006; 642
Evans (R20) 2007; 469
Grupe (R26) 2007; 662
Cannizzo (R8) 2009; 700
R35
Blackman (R3) 1998; 498
Dai (R14) 1998; 333
Mereghetti (R33) 2008; 15
Sari (R48) 1998; 497
Stella (R53) 2005; 634
Taub (R54) 1948; 74
Sari (R47) 1997; 287
Thompson (R60) 2004; 611
Lyons (R31) 2010; 402
Piran (R42) 1999; 314
Thompson (R56) 1993; 408
Dall’Osso (R16) 2007; 308
Troja (R61) 2007; 665
Kluźniak (R28) 1998; 505
Liang (R30) 2008; 675
Duncan (R19) 1992; 392
Gehrels (R24) 2009; 47
Wheeler (R63) 2000; 537
Cenko (R9) 2010; 711
Frail (R23) 2001; 562
Panaitescu (R40) 2006; 366
Cohen (R10) 1998; 509
Cutler (R13) 2002; 66
MacFadyen (R32) 2001; 550
Palomba (R38) 2001; 367
Ghirlanda (R25) 2004; 613
Nava (R37) 2007; 377
Bucciantini (R6) 2008; 383
de Pasquale (R18) 2007; 377
Zhang (R68) 2007; 7
R50
Bianco (R2) 2004; 605
Zhang (R69) 2001; 552
R51
Paczynski (R39) 1994; 427
Ming (R66) 2009; 9
Spitkovsky (R52) 2006; 648
Evans (R21) 2009; 397
Contopoulos (R11) 1999; 511
Ramirez-Ruiz (R44) 2004; 349
Liang (R29) 2007; 670
Bucciantini (R5) 2006; 368
Bucciantini (R7) 2009; 396
Narayan (R36) 1992; 395
Rees (R46) 1998; 496
Thompson (R58) 1996; 473
References_xml – volume: 699
  start-page: 1789
  year: 2009
  ident: R55
  publication-title: ApJ
  doi: 10.1088/0004-637X/699/2/1789
– volume: 369
  start-page: 2059
  year: 2006
  ident: R41
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10453.x
– volume: 473
  start-page: 322
  year: 1996
  ident: R58
  publication-title: ApJ
  doi: 10.1086/178147
– volume: 496
  start-page: L1
  year: 1998
  ident: R46
  publication-title: ApJ
  doi: 10.1086/311244
– volume: 383
  start-page: L25
  year: 2008
  ident: R6
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2007.00403.x
– volume: 333
  start-page: L87
  year: 1998
  ident: R14
  publication-title: A&A
– volume: 537
  start-page: 810
  year: 2000
  ident: R63
  publication-title: ApJ
  doi: 10.1086/309055
– volume: 509
  start-page: 717
  year: 1998
  ident: R10
  publication-title: ApJ
  doi: 10.1086/306523
– volume: 497
  start-page: L17
  year: 1998
  ident: R48
  publication-title: ApJ
  doi: 10.1086/311269
– volume: 395
  start-page: L83
  year: 1992
  ident: R36
  publication-title: ApJ
  doi: 10.1086/186493
– volume: 662
  start-page: 443
  year: 2007
  ident: R26
  publication-title: ApJ
  doi: 10.1086/517868
– volume: 550
  start-page: 410
  year: 2001
  ident: R32
  publication-title: ApJ
  doi: 10.1086/319698
– volume: 700
  start-page: 1047
  year: 2009
  ident: R8
  publication-title: ApJ
  doi: 10.1088/0004-637X/700/2/1047
– volume: 552
  start-page: L35
  year: 2001
  ident: R69
  publication-title: ApJ
  doi: 10.1086/320255
– volume: 611
  start-page: 380
  year: 2004
  ident: R60
  publication-title: ApJ
  doi: 10.1086/421969
– ident: R1
– volume: 402
  start-page: L705
  year: 2010
  ident: R31
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15538.x
– volume: 561
  start-page: 980
  year: 2001
  ident: R59
  publication-title: ApJ
  doi: 10.1086/323256
– volume: 392
  start-page: L9
  year: 1992
  ident: R19
  publication-title: ApJ
  doi: 10.1086/186413
– volume: 613
  start-page: L13
  year: 2004
  ident: R25
  publication-title: ApJ
  doi: 10.1086/424915
– volume: 430
  start-page: L93
  year: 1994
  ident: R45
  publication-title: ApJ
  doi: 10.1086/187446
– volume: 511
  start-page: 351
  year: 1999
  ident: R11
  publication-title: ApJ
  doi: 10.1086/306652
– volume: 648
  start-page: L51
  year: 2006
  ident: R52
  publication-title: ApJ
  doi: 10.1086/507518
– volume: 397
  start-page: 1177
  year: 2009
  ident: R21
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14913.x
– volume: 366
  start-page: 1357
  year: 2006
  ident: R40
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09900.x
– volume: 469
  start-page: 379
  year: 2007
  ident: R20
  publication-title: A&A
  doi: 10.1051/0004-6361:20077530
– volume: 377
  start-page: 1638
  year: 2007
  ident: R18
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.11724.x
– volume: 427
  start-page: 708
  year: 1994
  ident: R39
  publication-title: ApJ
  doi: 10.1086/174178
– volume: 357
  start-page: 472
  year: 1992
  ident: R62
  publication-title: Nature
  doi: 10.1038/357472a0
– volume: 377
  start-page: 1464
  year: 2007
  ident: R37
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.11679.x
– volume: 314
  start-page: 575
  year: 1999
  ident: R42
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(98)00127-6
– volume: 9
  start-page: 1317
  year: 2009
  ident: R66
  publication-title: Res. Astron. Astrophys.
  doi: 10.1088/1674-4527/9/12/003
– volume: 349
  start-page: L38
  year: 2004
  ident: R44
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07770.x
– volume: 535
  start-page: L33
  year: 2000
  ident: R49
  publication-title: ApJ
  doi: 10.1086/312689
– volume: 74
  start-page: 328
  year: 1948
  ident: R54
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.74.328
– volume: 94
  start-page: 021101
  year: 2005
  ident: R27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.021101
– volume: 642
  start-page: 354
  year: 2006
  ident: R71
  publication-title: ApJ
  doi: 10.1086/500723
– volume: 675
  start-page: 528
  year: 2008
  ident: R30
  publication-title: ApJ
  doi: 10.1086/524701
– volume: 15
  start-page: 225
  year: 2008
  ident: R33
  publication-title: A&A Rev.
  doi: 10.1007/s00159-008-0011-z
– volume: 634
  start-page: L165
  year: 2005
  ident: R53
  publication-title: ApJ
  doi: 10.1086/498685
– volume: 405
  start-page: 273
  year: 1993
  ident: R65
  publication-title: ApJ
  doi: 10.1086/172359
– volume: 408
  start-page: 194
  year: 1993
  ident: R56
  publication-title: ApJ
  doi: 10.1086/172580
– volume: 372
  start-page: L19
  year: 2006
  ident: R22
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2006.00217.x
– volume: 287
  start-page: 110
  year: 1997
  ident: R47
  publication-title: MNRAS
  doi: 10.1093/mnras/287.1.110
– volume: 7
  start-page: 669
  year: 2007
  ident: R67
  publication-title: Chinese J. Astron. Astrophys.
  doi: 10.1088/1009-9271/7/5/07
– volume: 505
  start-page: L113
  year: 1998
  ident: R28
  publication-title: ApJ
  doi: 10.1086/311622
– volume: 702
  start-page: 1171
  year: 2009
  ident: R12
  publication-title: ApJ
  doi: 10.1088/0004-637X/702/2/1171
– volume: 308
  start-page: 119
  year: 2007
  ident: R16
  publication-title: Ap&SS
  doi: 10.1007/s10509-007-9323-0
– volume: 7
  start-page: 1
  year: 2007
  ident: R68
  publication-title: Chinese J. Astron. Astrophys.
  doi: 10.1088/1009-9271/7/1/01
– volume: 398
  start-page: 1869
  year: 2009
  ident: R17
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14054.x
– volume: 19
  start-page: 2385
  year: 2004
  ident: R70
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X0401746X
– ident: R35
– volume: 498
  start-page: L31
  year: 1998
  ident: R3
  publication-title: ApJ
  doi: 10.1086/311311
– volume: 368
  start-page: 1717
  year: 2006
  ident: R5
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10217.x
– volume: 665
  start-page: 599
  year: 2007
  ident: R61
  publication-title: ApJ
  doi: 10.1086/519450
– volume: 66
  start-page: 084025
  year: 2002
  ident: R13
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.66.084025
– volume: 698
  start-page: 43
  year: 2009
  ident: R43
  publication-title: ApJ
  doi: 10.1088/0004-637X/698/1/43
– volume: 396
  start-page: 2038
  year: 2009
  ident: R7
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14940.x
– volume: 275
  start-page: 255
  year: 1995
  ident: R57
  publication-title: MNRAS
  doi: 10.1093/mnras/275.2.255
– volume: 391
  start-page: L79
  year: 2008
  ident: R15
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2008.00560.x
– volume: 670
  start-page: 565
  year: 2007
  ident: R29
  publication-title: ApJ
  doi: 10.1086/521870
– volume: 367
  start-page: 525
  year: 2001
  ident: R38
  publication-title: A&A
  doi: 10.1051/0004-6361:20000452
– ident: R50
  doi: 10.1063/1.2356383
– ident: R64
  doi: 10.1017/CBO9780511536281.015
– volume: 562
  start-page: L55
  year: 2001
  ident: R23
  publication-title: ApJ
  doi: 10.1086/338119
– volume: 47
  start-page: 567
  year: 2009
  ident: R24
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.46.060407.145147
– volume: 4
  start-page: 303
  year: 1999
  ident: R34
  publication-title: New Astron.
  doi: 10.1016/S1384-1076(99)00013-5
– volume: 19
  start-page: 1130
  year: 1976
  ident: R4
  publication-title: Phys. Fluids
  doi: 10.1063/1.861619
– volume: 711
  start-page: 641
  year: 2010
  ident: R9
  publication-title: ApJ
  doi: 10.1088/0004-637X/711/2/641
– volume: 605
  start-page: L1
  year: 2004
  ident: R2
  publication-title: ApJ
  doi: 10.1086/386367
– ident: R51
SSID ssj0002183
Score 2.4641209
Snippet Aims. We investigate a model for the shallow decay phases of gamma-ray burst (GRB) afterglows discovered by Swift/XRT in the first hours following a GRB event....
SourceID proquest
pascalfrancis
crossref
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage A121
SubjectTerms Astronomy
Earth, ocean, space
Exact sciences and technology
gamma-ray burst: general
relativistic processes
shock waves
stars: magnetars
X-rays: bursts
Title Gamma-ray bursts afterglows with energy injection from a spinning down neutron star
URI https://api.istex.fr/ark:/67375/80W-V6KGS3J7-P/fulltext.pdf
https://www.proquest.com/docview/858423607
Volume 526
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkhcEBRQw6PaA-olOI1f6_gYNSWlCIjUFnqz1usNAhKnim3xOHDglzOzY29iCqhwsZyR1078fTs7O5kHY0-VDn0tAu2AcTxwAi2lk2p35gyU62VKpTNhEmlfvRbH58HJRXjR6fzYiFqqyrSvvv02r-R_UAUZ4IpZsv-ArL0pCOAc8IUjIAzHa2E8kYuFdFbyaw9eTVEW1PH7_Xz5uU5a001m30dNLcFNNonsFZcfTKuiXgab8F6uK3SIo1thtWmsjgoULxdUokniJ3KEGE8tFcra8CSM5XzexE7Eb-CnG89q3_pwsA4u2aoTK5xUupaNrewQnRybg7O1l7UV4HE0nja6qWhp38ARPhVf72tSuIGP0a-1G7LWyCEl0V_R7qBAKBySboPJLKbXsEudedrVtH9Z5WzsoVx9wmC2KEyGg3fJW_FycuqfRMn0Btv2YKth2n-8-G5XczQhaQtFD20qV4XugZUd2K_Rsm62caJ-wWhbWcCEm1GnlCuLvrFkzu6w2_UWhI-IT3dZR-c7bNeCzff5aAPqHXZzSmf32KklHCfC8TXhOBKOE-G4JRxHwnHJG8JxJByvCceRcPfZ-fOjs8Njp-7K4Sg_DkpHCuGp2NVCRmB9K4xciHw_CELYe4PtGKWpEFqL2JUKrL8IGxrEEjSC0l4cpaH0H7CtfJnrXcYz2PuLbOjCMgBWuRfJDBsizFCqQMOpLvOat5moumQ9dk6ZJyZ0InQxdCJIEILEQtBlz-ygS6rY8vfL9w1M9to_8aPL9lo42gFgE2O6aNxlvAE2AR2Nf7zJXC-rIhmCle_5YhA9vO7DHrFb62n1mG2Vq0o_Aeu3TPcMPX8CcnioZw
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gamma-ray+bursts+afterglows+with+energy+injection+from+a+spinning+down+neutron+star&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Dall%E2%80%99Osso%2C+S.&rft.au=Stratta%2C+G.&rft.au=Guetta%2C+D.&rft.au=Covino%2C+S.&rft.date=2011-02-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=526&rft_id=info:doi/10.1051%2F0004-6361%2F201014168&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_80W_V6KGS3J7_P
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon