Opposite grain size dependence of strain rate sensitivity of copper at low vs high strain rates

The grain size dependence of the strain rate sensitivity (SRS) of copper were systematically investigated via tensile deformation at strain rates of ~10−4 s−1 and ~103 s−1. In contrast to the general perception that SRS increases with decreasing grain size at low strain rates in FCC metals, the SRS...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 738; pp. 430 - 438
Main Authors Mao, Z.N., An, X.H., Liao, X.Z., Wang, J.T.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 19.12.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The grain size dependence of the strain rate sensitivity (SRS) of copper were systematically investigated via tensile deformation at strain rates of ~10−4 s−1 and ~103 s−1. In contrast to the general perception that SRS increases with decreasing grain size at low strain rates in FCC metals, the SRS increases monotonously with grain size under deformation at high strain-rates of ~103 s−1. Analytical formulation based on the Nemat-Nasser-Li (NNL) and Modified-Rusinek-Klepaczko (MRK) models was established to reveal the essential dependence of SRS on grain size, at the change of strain rate: that the opposite dependence of SRS on grain size at low vs high strain rates can be attributed to the transformation of the dominant rate-controlling deformation mechanism from thermal activation at low strain rates to viscous drag at high strain rates. It is demonstrated that the thermal activation component of SRS, m*, which is nearly strain rate independent, increases with reducing grain size; while the viscous drag component of SRS, mvs, which is enhanced significantly at high strain rates, decreases with reducing grain size. Microstructural observation based on local misorientation characterization and statistics confirms that the viscous-drag dominates at high strain-rate deformation, and becomes progressively influential as grain size increases. This unveils the essence of viscous drag in the opposite grain size dependence of SRS at low vs high strain rates.
AbstractList The grain size dependence of the strain rate sensitivity (SRS) of copper were systematically investigated via tensile deformation at strain rates of ~10−4 s−1 and ~103 s−1. In contrast to the general perception that SRS increases with decreasing grain size at low strain rates in FCC metals, the SRS increases monotonously with grain size under deformation at high strain-rates of ~103 s−1. Analytical formulation based on the Nemat-Nasser-Li (NNL) and Modified-Rusinek-Klepaczko (MRK) models was established to reveal the essential dependence of SRS on grain size, at the change of strain rate: that the opposite dependence of SRS on grain size at low vs high strain rates can be attributed to the transformation of the dominant rate-controlling deformation mechanism from thermal activation at low strain rates to viscous drag at high strain rates. It is demonstrated that the thermal activation component of SRS, m*, which is nearly strain rate independent, increases with reducing grain size; while the viscous drag component of SRS, mvs, which is enhanced significantly at high strain rates, decreases with reducing grain size. Microstructural observation based on local misorientation characterization and statistics confirms that the viscous-drag dominates at high strain-rate deformation, and becomes progressively influential as grain size increases. This unveils the essence of viscous drag in the opposite grain size dependence of SRS at low vs high strain rates.
Author Wang, J.T.
Liao, X.Z.
An, X.H.
Mao, Z.N.
Author_xml – sequence: 1
  givenname: Z.N.
  surname: Mao
  fullname: Mao, Z.N.
  organization: School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 2
  givenname: X.H.
  surname: An
  fullname: An, X.H.
  organization: School of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
– sequence: 3
  givenname: X.Z.
  surname: Liao
  fullname: Liao, X.Z.
  email: xiaozhou.liao@sydney.edu.au
  organization: School of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
– sequence: 4
  givenname: J.T.
  surname: Wang
  fullname: Wang, J.T.
  email: jtwang@njust.edu.cn
  organization: School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
BookMark eNp9kDtPwzAUhS1UJNrCH2CyxJxgx4lrSyyo4iUhdYHZcp3r1lEbB9stKr-ehDIghk5nOOe7jzNBo9a3gNA1JTkllN82-TaCzgtCRU5k3ssZGlMxY1kpGR-hMZEFzSoi2QWaxNgQQmhJqjFSi67z0SXAq6Bdi6P7AlxDB20NrQHsLY7pxwm6D0Vo-7Dbu3QYLOO7DgLWCW_8J95HvHar9V8gXqJzqzcRrn51it4fH97mz9nr4ullfv-aGSbLlEngS7YUtq6otUJYM6uLujTaGF5aZgBsyQhIKginMyag4lZXs4prWvKlIZZN0c1xbhf8xw5iUo3fhbZfqQpaSS5Kxos-JY4pE3yMAawyLunkfDucvFGUqKFO1aihTjXUqYhUvfRo8Q_tgtvqcDgN3R0h6F_fOwgqGjf0WrsAJqnau1P4N7LTkmk
CitedBy_id crossref_primary_10_1016_j_jmrt_2022_08_032
crossref_primary_10_1016_j_compositesa_2023_107856
crossref_primary_10_1016_j_matdes_2022_110724
crossref_primary_10_1016_j_msea_2024_147516
crossref_primary_10_1016_j_ijhydene_2022_09_290
crossref_primary_10_3390_ma18030490
crossref_primary_10_1038_s43246_020_00090_2
crossref_primary_10_1080_10408436_2022_2078277
crossref_primary_10_1002_mawe_202100172
crossref_primary_10_3390_cryst10030212
crossref_primary_10_1007_s40870_019_00223_w
crossref_primary_10_1016_j_actamat_2023_118941
crossref_primary_10_1016_j_actamat_2020_08_052
crossref_primary_10_1088_2631_7990_ab263f
crossref_primary_10_3390_app11178005
crossref_primary_10_1016_j_msea_2024_146636
crossref_primary_10_1016_j_engfracmech_2025_110971
crossref_primary_10_1016_j_jnoncrysol_2019_119500
crossref_primary_10_1007_s00170_022_08674_7
crossref_primary_10_1016_j_matdes_2019_107945
crossref_primary_10_1007_s11043_021_09491_3
crossref_primary_10_1002_advs_202407283
crossref_primary_10_1007_s10853_025_10762_4
crossref_primary_10_1016_j_tws_2024_112833
crossref_primary_10_1016_j_jmatprotec_2021_117451
crossref_primary_10_1016_j_surfcoat_2025_131817
crossref_primary_10_1088_1361_651X_acc961
crossref_primary_10_1155_2022_4048913
crossref_primary_10_1007_s40195_022_01416_4
crossref_primary_10_1016_j_ijplas_2021_103178
crossref_primary_10_1016_j_actamat_2023_119343
crossref_primary_10_1016_j_msea_2025_147874
crossref_primary_10_1016_j_crme_2019_06_001
crossref_primary_10_1166_jno_2021_3103
crossref_primary_10_1016_j_heliyon_2023_e23202
crossref_primary_10_1016_j_apmt_2022_101415
crossref_primary_10_1016_j_msea_2019_05_095
crossref_primary_10_1016_j_msea_2021_141547
crossref_primary_10_1016_j_intermet_2025_108665
crossref_primary_10_1080_02670836_2019_1625527
crossref_primary_10_1007_s11665_022_07636_0
crossref_primary_10_1007_s11666_020_01137_z
crossref_primary_10_1016_j_msea_2023_144656
crossref_primary_10_1016_j_powtec_2025_120737
crossref_primary_10_1016_j_jallcom_2021_162951
crossref_primary_10_1016_j_matchar_2021_111295
crossref_primary_10_1016_j_ijmecsci_2020_105553
crossref_primary_10_3389_fmats_2022_1017629
crossref_primary_10_1016_j_ijmecsci_2020_105911
crossref_primary_10_3390_cryst12050705
Cites_doi 10.1016/0001-6160(88)90030-2
10.1016/S1359-6462(01)01071-5
10.1126/science.1092905
10.1016/j.ijplas.2017.11.006
10.1007/s11661-000-1001-6
10.1063/1.338024
10.1007/BF02646332
10.1016/j.msea.2012.09.100
10.1016/j.actamat.2016.02.045
10.1016/j.actamat.2013.08.018
10.1016/S0734-743X(01)00063-X
10.1007/s10853-006-0700-9
10.1016/S0079-6425(02)00003-8
10.1016/j.mechmat.2004.02.003
10.1016/0036-9748(89)90474-2
10.1016/S1359-6454(03)00365-3
10.1016/S0749-6419(03)00037-8
10.1063/1.1465528
10.1016/j.mechmat.2013.02.003
10.1016/S1359-6454(96)00243-1
10.1016/0022-5096(92)90015-T
10.1016/j.actamat.2006.06.062
10.1016/0025-5416(67)90032-8
10.1016/0001-6160(72)90012-0
10.1088/0370-1301/62/11/302
10.1016/j.ijmecsci.2009.07.001
10.1016/j.ijplas.2011.12.001
10.1088/0370-1301/64/9/303
10.1016/0001-6160(77)90168-7
10.1016/S1359-6454(97)00230-9
10.1016/j.msea.2004.03.064
10.1080/14786437008238397
10.1016/j.mechmat.2006.01.004
10.1016/S0022-5096(00)00069-7
10.1016/0001-6160(87)90285-9
10.1016/S0921-5093(02)00521-X
10.1073/pnas.0611097104
10.1016/j.msea.2007.01.042
10.1016/S0921-5093(02)00238-1
10.1063/1.1709772
10.1016/j.actamat.2009.07.018
10.1063/1.1618370
10.1016/j.actamat.2005.03.047
10.1016/j.actamat.2003.12.022
10.1063/1.1658222
10.1016/0001-6160(68)90054-0
10.1016/j.scriptamat.2006.02.022
10.1016/j.scriptamat.2010.05.030
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Dec 19, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 19, 2018
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.msea.2018.09.018
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4936
EndPage 438
ExternalDocumentID 10_1016_j_msea_2018_09_018
S0921509318312140
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SSM
SSZ
T5K
~02
~G-
29M
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SSH
WUQ
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c394t-9e6b3b8fd51ff88fc7d2d4cacc64f3ceef430e918061738e56fa5756a146bc0f3
IEDL.DBID .~1
ISSN 0921-5093
IngestDate Mon Jul 14 10:36:46 EDT 2025
Tue Jul 01 03:29:45 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
Fri Feb 23 02:28:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Viscous drag
Strain rate sensitivity
Opposite grain size dependence
Dynamic tension
Thermal activation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-9e6b3b8fd51ff88fc7d2d4cacc64f3ceef430e918061738e56fa5756a146bc0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2159684362
PQPubID 2045432
PageCount 9
ParticipantIDs proquest_journals_2159684362
crossref_citationtrail_10_1016_j_msea_2018_09_018
crossref_primary_10_1016_j_msea_2018_09_018
elsevier_sciencedirect_doi_10_1016_j_msea_2018_09_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-19
PublicationDateYYYYMMDD 2018-12-19
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-19
  day: 19
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Materials science & engineering. A, Structural materials : properties, microstructure and processing
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Ghosh (bib2) 1974; 5
An, Lin, Sha, Huang, Ringer, Zhu, Liao (bib51) 2016; 109
Rusinek, Rodríguez-Martínez, Arias (bib15) 2010; 52
Suo, Chen, Li, Wang, Fan (bib21) 2013; 560
Nemat-Nasser, Isaacs (bib37) 1997; 45
Lea, Jardine (bib14) 2018; 102
Krausz, Krausz (bib30) 1996
Nemat-Nasser, Guo, Kihl (bib40) 2001; 49
Ferguson (bib50) 1967; 38
Kapoor, Nemat-Nasser (bib39) 2000; 31
Zhu, Li, Samanta, Kim, Suresh (bib10) 2007; 104
Schwaiger, Moser, Dao, Chollacoop, Suresh (bib32) 2003; 51
Asaro, Suresh (bib8) 2005; 53
Guo, Nemat-Nasser (bib41) 2006; 38
Gao, Zhang (bib18) 2012; 32
Tong, Clifton, Huang (bib48) 1992; 40
Campbell, Ferguson (bib11) 1970; 21
Conrad, Feuerstein, Rice (bib42) 1967; 2
Cheval, Priester (bib17) 1989; 23
Hutchinson, Neale (bib1) 1977; 25
Langdon (bib23) 2013; 61
Dao, Lu, Shen, Suresh (bib3) 2006; 54
Wang, Ma (bib44) 2003; 83
Nemat-Nasser, Li (bib22) 1998; 46
Voyiadjis, Abed (bib43) 2005; 57
Lu, Zhu, Shen, Ming, Lu, Suresh (bib9) 2009; 57
Kumar, Kumble (bib16) 1969; 40
Kocks, Mecking (bib34) 2003; 48
Conrad (bib46) 2003; 341
Wei (bib7) 2007; 42
Meyers (bib13) 1994
Wang, Ma (bib29) 2004; 52
Bonora, Milella (bib35) 2001; 26
Petch (bib28) 1953; 174
Follansbee, Kocks (bib12) 1988; 36
Regazzoni, Kocks, Follansbee (bib19) 1987; 35
Wang, Wu, Zuo, Esling, Wang, Li (bib25) 2003; 346
Chen, Lu, Lu (bib4) 2006; 54
Rosenfield, Hahn (bib20) 1966; 59
Wang, Ma, Chen (bib5) 2002; 80
Voyiadjis, Abed (bib33) 2005; 37
Wei, Cheng, Ramesh, Ma (bib6) 2004; 381
Molodova, Gottstein, Winning, Hellmig (bib26) 2007; 460–461
Lu, Shen, Chen, Qian, Lu (bib53) 2004; 304
Lennon, Ramesh (bib38) 2004; 20
An, Wu, Zhang, Figueiredo, Gao, Langdon (bib52) 2010; 63
Jia, Ramesh, Ma, Lu, Lu (bib47) 2001; 45
Hall (bib27) 1951; 64
Zerilli, Armstrong (bib36) 1987; 61
Kumar, Hauser, Dorn (bib49) 1968; 16
Suo, Li, Zhao, Fan, Guo (bib31) 2013; 61
Staker, Holt (bib45) 1972; 20
Kolsky (bib24) 1949; 62
Hutchinson (10.1016/j.msea.2018.09.018_bib1) 1977; 25
Lu (10.1016/j.msea.2018.09.018_bib9) 2009; 57
Voyiadjis (10.1016/j.msea.2018.09.018_bib33) 2005; 37
Staker (10.1016/j.msea.2018.09.018_bib45) 1972; 20
Campbell (10.1016/j.msea.2018.09.018_bib11) 1970; 21
Suo (10.1016/j.msea.2018.09.018_bib21) 2013; 560
An (10.1016/j.msea.2018.09.018_bib52) 2010; 63
Rosenfield (10.1016/j.msea.2018.09.018_bib20) 1966; 59
Krausz (10.1016/j.msea.2018.09.018_bib30) 1996
Conrad (10.1016/j.msea.2018.09.018_bib42) 1967; 2
Nemat-Nasser (10.1016/j.msea.2018.09.018_bib22) 1998; 46
Kocks (10.1016/j.msea.2018.09.018_bib34) 2003; 48
Hall (10.1016/j.msea.2018.09.018_bib27) 1951; 64
Rusinek (10.1016/j.msea.2018.09.018_bib15) 2010; 52
Nemat-Nasser (10.1016/j.msea.2018.09.018_bib37) 1997; 45
Lennon (10.1016/j.msea.2018.09.018_bib38) 2004; 20
Lu (10.1016/j.msea.2018.09.018_bib53) 2004; 304
Langdon (10.1016/j.msea.2018.09.018_bib23) 2013; 61
Gao (10.1016/j.msea.2018.09.018_bib18) 2012; 32
Ghosh (10.1016/j.msea.2018.09.018_bib2) 1974; 5
Petch (10.1016/j.msea.2018.09.018_bib28) 1953; 174
Suo (10.1016/j.msea.2018.09.018_bib31) 2013; 61
Tong (10.1016/j.msea.2018.09.018_bib48) 1992; 40
Voyiadjis (10.1016/j.msea.2018.09.018_bib43) 2005; 57
Kumar (10.1016/j.msea.2018.09.018_bib49) 1968; 16
Nemat-Nasser (10.1016/j.msea.2018.09.018_bib40) 2001; 49
Regazzoni (10.1016/j.msea.2018.09.018_bib19) 1987; 35
Lea (10.1016/j.msea.2018.09.018_bib14) 2018; 102
Zhu (10.1016/j.msea.2018.09.018_bib10) 2007; 104
Wang (10.1016/j.msea.2018.09.018_bib29) 2004; 52
Schwaiger (10.1016/j.msea.2018.09.018_bib32) 2003; 51
Kapoor (10.1016/j.msea.2018.09.018_bib39) 2000; 31
Wei (10.1016/j.msea.2018.09.018_bib7) 2007; 42
Wang (10.1016/j.msea.2018.09.018_bib5) 2002; 80
Meyers (10.1016/j.msea.2018.09.018_bib13) 1994
Kolsky (10.1016/j.msea.2018.09.018_bib24) 1949; 62
Follansbee (10.1016/j.msea.2018.09.018_bib12) 1988; 36
Wei (10.1016/j.msea.2018.09.018_bib6) 2004; 381
Molodova (10.1016/j.msea.2018.09.018_bib26) 2007; 460–461
Wang (10.1016/j.msea.2018.09.018_bib44) 2003; 83
An (10.1016/j.msea.2018.09.018_bib51) 2016; 109
Asaro (10.1016/j.msea.2018.09.018_bib8) 2005; 53
Kumar (10.1016/j.msea.2018.09.018_bib16) 1969; 40
Guo (10.1016/j.msea.2018.09.018_bib41) 2006; 38
Jia (10.1016/j.msea.2018.09.018_bib47) 2001; 45
Wang (10.1016/j.msea.2018.09.018_bib25) 2003; 346
Dao (10.1016/j.msea.2018.09.018_bib3) 2006; 54
Cheval (10.1016/j.msea.2018.09.018_bib17) 1989; 23
Conrad (10.1016/j.msea.2018.09.018_bib46) 2003; 341
Zerilli (10.1016/j.msea.2018.09.018_bib36) 1987; 61
Chen (10.1016/j.msea.2018.09.018_bib4) 2006; 54
Bonora (10.1016/j.msea.2018.09.018_bib35) 2001; 26
Ferguson (10.1016/j.msea.2018.09.018_bib50) 1967; 38
References_xml – volume: 54
  start-page: 1913
  year: 2006
  end-page: 1918
  ident: bib4
  article-title: Hardness and strain rate sensitivity of nanocrystalline Cu
  publication-title: Scr. Mater.
– volume: 32
  start-page: 121
  year: 2012
  end-page: 133
  ident: bib18
  article-title: Constitutive modelling of plasticity of fcc metals under extremely high strain rates
  publication-title: Int. J. Plast.
– year: 1996
  ident: bib30
  article-title: Unified Constitutive Laws of Plastic Deformation
– volume: 20
  start-page: 269
  year: 2004
  end-page: 290
  ident: bib38
  article-title: The influence of crystal structure on the dynamic behavior of materials at high temperatures
  publication-title: Int. J. Plast.
– volume: 25
  start-page: 839
  year: 1977
  end-page: 846
  ident: bib1
  article-title: Influence of strain-rate sensitivity on necking under uniaxial tension
  publication-title: Acta Metall.
– volume: 46
  start-page: 565
  year: 1998
  end-page: 577
  ident: bib22
  article-title: Flow stress of fcc polycrystals with application to OFHC Cu
  publication-title: Acta Mater.
– volume: 341
  start-page: 216
  year: 2003
  end-page: 228
  ident: bib46
  article-title: Grain size dependence of the plastic deformation kinetics in Cu
  publication-title: Mater. Sci. Eng.: A
– volume: 381
  start-page: 71
  year: 2004
  end-page: 79
  ident: bib6
  article-title: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals
  publication-title: Mater. Sci. Eng.: A
– volume: 26
  start-page: 53
  year: 2001
  end-page: 64
  ident: bib35
  article-title: Constitutive modeling for ductile metals behavior incorporating strain rate, temperature and damage mechanics
  publication-title: Int. J. Impact Eng.
– volume: 560
  start-page: 545
  year: 2013
  end-page: 551
  ident: bib21
  article-title: Strain rate sensitivity and deformation kinetics of ECAPed aluminium over a wide range of strain rates
  publication-title: Mater. Sci. Eng.: A
– volume: 48
  start-page: 171
  year: 2003
  end-page: 273
  ident: bib34
  article-title: Physics and phenomenology of strain hardening: the FCC case
  publication-title: Progress. Mater. Sci.
– volume: 57
  start-page: 299
  year: 2005
  end-page: 343
  ident: bib43
  article-title: Effect of dislocation density evolution on the thermomechanical response of metals with different crystal structures at low and high strain rates and temperatures
  publication-title: Arch. Mech.
– volume: 80
  start-page: 2395
  year: 2002
  end-page: 2397
  ident: bib5
  article-title: Enhanced tensile ductility and toughness in nanostructured Cu
  publication-title: Appl. Phys. Lett.
– volume: 40
  start-page: 3475
  year: 1969
  end-page: 3480
  ident: bib16
  article-title: Viscous drag on dislocations at high strain rates in copper
  publication-title: J. Appl. Phys.
– volume: 59
  start-page: 962
  year: 1966
  end-page: 980
  ident: bib20
  article-title: Numerical description of the ambient low-temperature and high-strain rate flow and fracture behavior of plain carbon steel
  publication-title: ASM Trans. Quart.
– volume: 63
  start-page: 560
  year: 2010
  end-page: 563
  ident: bib52
  article-title: Evolution of microstructural homogeneity in copper processed by high-pressure torsion
  publication-title: Scr. Mater.
– volume: 52
  start-page: 1699
  year: 2004
  end-page: 1709
  ident: bib29
  article-title: Three strategies to achieve uniform tensile deformation in a nanostructured metal
  publication-title: Acta Mater.
– volume: 49
  start-page: 1823
  year: 2001
  end-page: 1846
  ident: bib40
  article-title: Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures
  publication-title: J. Mech. Phys. Solids
– volume: 38
  start-page: 1090
  year: 2006
  end-page: 1103
  ident: bib41
  article-title: Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures
  publication-title: Mech. Mater.
– volume: 53
  start-page: 3369
  year: 2005
  end-page: 3382
  ident: bib8
  article-title: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins
  publication-title: Acta Mater.
– volume: 40
  start-page: 1251
  year: 1992
  end-page: 1294
  ident: bib48
  article-title: Pressure-shear impact investigation of strain rate history effects in oxygen-free high-conductivity copper
  publication-title: J. Mech. Phys. Solids
– volume: 61
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib31
  article-title: Compressive behavior and rate-controlling mechanisms of ultrafine grained copper over wide temperature and strain rate ranges
  publication-title: Mech. Mater.
– year: 1994
  ident: bib13
  article-title: Dynamic Behavior of Materials
– volume: 57
  start-page: 5165
  year: 2009
  end-page: 5173
  ident: bib9
  article-title: Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper
  publication-title: Acta Mater.
– volume: 31
  start-page: 815
  year: 2000
  end-page: 823
  ident: bib39
  article-title: Comparison between high and low strain-rate deformation of tantalum
  publication-title: Metall. Mater. Trans. A
– volume: 20
  start-page: 569
  year: 1972
  end-page: 579
  ident: bib45
  article-title: The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700°C
  publication-title: Acta Metall.
– volume: 51
  start-page: 5159
  year: 2003
  end-page: 5172
  ident: bib32
  article-title: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel
  publication-title: Acta Mater.
– volume: 304
  start-page: 422
  year: 2004
  end-page: 426
  ident: bib53
  article-title: Ultrahigh strength and high electrical conductivity in copper
  publication-title: Science
– volume: 61
  start-page: 7035
  year: 2013
  end-page: 7059
  ident: bib23
  article-title: Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement
  publication-title: Acta Mater.
– volume: 2
  start-page: 157
  year: 1967
  end-page: 168
  ident: bib42
  article-title: Effects of grain size on the dislocation density and flow stress of niobium
  publication-title: Mater. Sci. Eng.
– volume: 54
  start-page: 5421
  year: 2006
  end-page: 5432
  ident: bib3
  article-title: Strength, strain-rate sensitivity and ductility of copper with nanoscale twins
  publication-title: Acta Mater.
– volume: 36
  start-page: 81
  year: 1988
  end-page: 93
  ident: bib12
  article-title: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable
  publication-title: Acta Metall.
– volume: 102
  start-page: 41
  year: 2018
  end-page: 52
  ident: bib14
  article-title: Characterisation of high rate plasticity in the uniaxial deformation of high purity copper at elevated temperatures
  publication-title: Int. J. Plast.
– volume: 61
  start-page: 1816
  year: 1987
  end-page: 1825
  ident: bib36
  article-title: Dislocation-mechanics-based constitutive relations for material dynamics calculations
  publication-title: J. Appl. Phys.
– volume: 23
  start-page: 1871
  year: 1989
  end-page: 1876
  ident: bib17
  article-title: Effect of strain rate on the dislocation substructure in deformed copper polycrystals
  publication-title: Scr. Metall.
– volume: 52
  start-page: 120
  year: 2010
  end-page: 135
  ident: bib15
  article-title: A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper
  publication-title: Int. J. Mech. Sci.
– volume: 21
  start-page: 63
  year: 1970
  end-page: 82
  ident: bib11
  article-title: The temperature and strain-rate dependence of the shear strength of mild steel
  publication-title: Philos. Mag.
– volume: 174
  start-page: 25
  year: 1953
  end-page: 28
  ident: bib28
  article-title: The cleavage strength of polycrystals
  publication-title: J. Iron Steel Inst.
– volume: 5
  start-page: 1607
  year: 1974
  end-page: 1616
  ident: bib2
  article-title: Strain localization in the diffuse neck in sheet metal
  publication-title: Metall. Trans.
– volume: 42
  start-page: 1709
  year: 2007
  end-page: 1727
  ident: bib7
  article-title: Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses
  publication-title: J. Mater. Sci.
– volume: 460–461
  start-page: 204
  year: 2007
  end-page: 213
  ident: bib26
  article-title: Thermal stability of ECAP processed pure copper
  publication-title: Mater. Sci. Eng.: A
– volume: 104
  start-page: 3031
  year: 2007
  end-page: 3036
  ident: bib10
  article-title: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 83
  start-page: 3165
  year: 2003
  end-page: 3167
  ident: bib44
  article-title: Temperature and strain rate effects on the strength and ductility of nanostructured copper
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 1189
  year: 1968
  end-page: 1197
  ident: bib49
  article-title: Viscous drag on dislocations in aluminum at high strain rates
  publication-title: Acta Metall.
– volume: 62
  start-page: 676
  year: 1949
  ident: bib24
  article-title: An investigation of the mechanical properties of materials at very high rates of loading
  publication-title: Proc. Phys. Soc. Sect. B
– volume: 109
  start-page: 300
  year: 2016
  end-page: 313
  ident: bib51
  article-title: Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion
  publication-title: Acta Mater.
– volume: 45
  start-page: 613
  year: 2001
  end-page: 620
  ident: bib47
  article-title: Compressive behavior of an electrodeposited nanostructured copper at quasistatic and high strain rates
  publication-title: Scr. Mater.
– volume: 45
  start-page: 907
  year: 1997
  end-page: 919
  ident: bib37
  article-title: Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta W alloys
  publication-title: Acta Mater.
– volume: 37
  start-page: 355
  year: 2005
  end-page: 378
  ident: bib33
  article-title: Microstructural based models for bcc and fcc metals with temperature and strain rate dependency
  publication-title: Mech. Mater.
– volume: 38
  start-page: 1863
  year: 1967
  end-page: 1869
  ident: bib50
  article-title: Dislocation Damping in Aluminum at High Strain Rates
  publication-title: J. Appl. Phys.
– volume: 64
  start-page: 747
  year: 1951
  ident: bib27
  article-title: The deformation and ageing of mild steel: III discussion of results
  publication-title: Proc. Phys. Soc. Sect. B
– volume: 35
  start-page: 2865
  year: 1987
  end-page: 2875
  ident: bib19
  article-title: Dislocation kinetics at high strain rates
  publication-title: Acta Metall.
– volume: 346
  start-page: 83
  year: 2003
  end-page: 90
  ident: bib25
  article-title: Microstructure, texture, grain boundaries in recrystallization regions in pure Cu ECAE samples
  publication-title: Mater. Sci. Eng.: A
– volume: 36
  start-page: 81
  year: 1988
  ident: 10.1016/j.msea.2018.09.018_bib12
  article-title: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(88)90030-2
– volume: 45
  start-page: 613
  year: 2001
  ident: 10.1016/j.msea.2018.09.018_bib47
  article-title: Compressive behavior of an electrodeposited nanostructured copper at quasistatic and high strain rates
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(01)01071-5
– volume: 304
  start-page: 422
  year: 2004
  ident: 10.1016/j.msea.2018.09.018_bib53
  article-title: Ultrahigh strength and high electrical conductivity in copper
  publication-title: Science
  doi: 10.1126/science.1092905
– volume: 57
  start-page: 299
  year: 2005
  ident: 10.1016/j.msea.2018.09.018_bib43
  article-title: Effect of dislocation density evolution on the thermomechanical response of metals with different crystal structures at low and high strain rates and temperatures
  publication-title: Arch. Mech.
– volume: 102
  start-page: 41
  year: 2018
  ident: 10.1016/j.msea.2018.09.018_bib14
  article-title: Characterisation of high rate plasticity in the uniaxial deformation of high purity copper at elevated temperatures
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2017.11.006
– volume: 31
  start-page: 815
  year: 2000
  ident: 10.1016/j.msea.2018.09.018_bib39
  article-title: Comparison between high and low strain-rate deformation of tantalum
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-000-1001-6
– volume: 61
  start-page: 1816
  year: 1987
  ident: 10.1016/j.msea.2018.09.018_bib36
  article-title: Dislocation-mechanics-based constitutive relations for material dynamics calculations
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.338024
– volume: 5
  start-page: 1607
  year: 1974
  ident: 10.1016/j.msea.2018.09.018_bib2
  article-title: Strain localization in the diffuse neck in sheet metal
  publication-title: Metall. Trans.
  doi: 10.1007/BF02646332
– volume: 560
  start-page: 545
  year: 2013
  ident: 10.1016/j.msea.2018.09.018_bib21
  article-title: Strain rate sensitivity and deformation kinetics of ECAPed aluminium over a wide range of strain rates
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2012.09.100
– year: 1994
  ident: 10.1016/j.msea.2018.09.018_bib13
– volume: 109
  start-page: 300
  year: 2016
  ident: 10.1016/j.msea.2018.09.018_bib51
  article-title: Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.02.045
– volume: 61
  start-page: 7035
  year: 2013
  ident: 10.1016/j.msea.2018.09.018_bib23
  article-title: Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.08.018
– volume: 26
  start-page: 53
  year: 2001
  ident: 10.1016/j.msea.2018.09.018_bib35
  article-title: Constitutive modeling for ductile metals behavior incorporating strain rate, temperature and damage mechanics
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/S0734-743X(01)00063-X
– volume: 42
  start-page: 1709
  year: 2007
  ident: 10.1016/j.msea.2018.09.018_bib7
  article-title: Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-0700-9
– volume: 48
  start-page: 171
  year: 2003
  ident: 10.1016/j.msea.2018.09.018_bib34
  article-title: Physics and phenomenology of strain hardening: the FCC case
  publication-title: Progress. Mater. Sci.
  doi: 10.1016/S0079-6425(02)00003-8
– volume: 37
  start-page: 355
  year: 2005
  ident: 10.1016/j.msea.2018.09.018_bib33
  article-title: Microstructural based models for bcc and fcc metals with temperature and strain rate dependency
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2004.02.003
– volume: 23
  start-page: 1871
  year: 1989
  ident: 10.1016/j.msea.2018.09.018_bib17
  article-title: Effect of strain rate on the dislocation substructure in deformed copper polycrystals
  publication-title: Scr. Metall.
  doi: 10.1016/0036-9748(89)90474-2
– volume: 51
  start-page: 5159
  year: 2003
  ident: 10.1016/j.msea.2018.09.018_bib32
  article-title: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(03)00365-3
– volume: 20
  start-page: 269
  year: 2004
  ident: 10.1016/j.msea.2018.09.018_bib38
  article-title: The influence of crystal structure on the dynamic behavior of materials at high temperatures
  publication-title: Int. J. Plast.
  doi: 10.1016/S0749-6419(03)00037-8
– volume: 80
  start-page: 2395
  year: 2002
  ident: 10.1016/j.msea.2018.09.018_bib5
  article-title: Enhanced tensile ductility and toughness in nanostructured Cu
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1465528
– volume: 61
  start-page: 1
  year: 2013
  ident: 10.1016/j.msea.2018.09.018_bib31
  article-title: Compressive behavior and rate-controlling mechanisms of ultrafine grained copper over wide temperature and strain rate ranges
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2013.02.003
– volume: 45
  start-page: 907
  year: 1997
  ident: 10.1016/j.msea.2018.09.018_bib37
  article-title: Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta W alloys
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(96)00243-1
– volume: 40
  start-page: 1251
  year: 1992
  ident: 10.1016/j.msea.2018.09.018_bib48
  article-title: Pressure-shear impact investigation of strain rate history effects in oxygen-free high-conductivity copper
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(92)90015-T
– volume: 54
  start-page: 5421
  year: 2006
  ident: 10.1016/j.msea.2018.09.018_bib3
  article-title: Strength, strain-rate sensitivity and ductility of copper with nanoscale twins
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.06.062
– volume: 174
  start-page: 25
  year: 1953
  ident: 10.1016/j.msea.2018.09.018_bib28
  article-title: The cleavage strength of polycrystals
  publication-title: J. Iron Steel Inst.
– volume: 2
  start-page: 157
  year: 1967
  ident: 10.1016/j.msea.2018.09.018_bib42
  article-title: Effects of grain size on the dislocation density and flow stress of niobium
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(67)90032-8
– volume: 20
  start-page: 569
  year: 1972
  ident: 10.1016/j.msea.2018.09.018_bib45
  article-title: The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700°C
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(72)90012-0
– volume: 62
  start-page: 676
  year: 1949
  ident: 10.1016/j.msea.2018.09.018_bib24
  article-title: An investigation of the mechanical properties of materials at very high rates of loading
  publication-title: Proc. Phys. Soc. Sect. B
  doi: 10.1088/0370-1301/62/11/302
– volume: 52
  start-page: 120
  year: 2010
  ident: 10.1016/j.msea.2018.09.018_bib15
  article-title: A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2009.07.001
– volume: 32
  start-page: 121
  year: 2012
  ident: 10.1016/j.msea.2018.09.018_bib18
  article-title: Constitutive modelling of plasticity of fcc metals under extremely high strain rates
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2011.12.001
– volume: 64
  start-page: 747
  year: 1951
  ident: 10.1016/j.msea.2018.09.018_bib27
  article-title: The deformation and ageing of mild steel: III discussion of results
  publication-title: Proc. Phys. Soc. Sect. B
  doi: 10.1088/0370-1301/64/9/303
– volume: 25
  start-page: 839
  year: 1977
  ident: 10.1016/j.msea.2018.09.018_bib1
  article-title: Influence of strain-rate sensitivity on necking under uniaxial tension
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(77)90168-7
– volume: 46
  start-page: 565
  year: 1998
  ident: 10.1016/j.msea.2018.09.018_bib22
  article-title: Flow stress of fcc polycrystals with application to OFHC Cu
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(97)00230-9
– volume: 381
  start-page: 71
  year: 2004
  ident: 10.1016/j.msea.2018.09.018_bib6
  article-title: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2004.03.064
– volume: 21
  start-page: 63
  year: 1970
  ident: 10.1016/j.msea.2018.09.018_bib11
  article-title: The temperature and strain-rate dependence of the shear strength of mild steel
  publication-title: Philos. Mag.
  doi: 10.1080/14786437008238397
– volume: 38
  start-page: 1090
  year: 2006
  ident: 10.1016/j.msea.2018.09.018_bib41
  article-title: Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2006.01.004
– volume: 49
  start-page: 1823
  year: 2001
  ident: 10.1016/j.msea.2018.09.018_bib40
  article-title: Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(00)00069-7
– volume: 35
  start-page: 2865
  year: 1987
  ident: 10.1016/j.msea.2018.09.018_bib19
  article-title: Dislocation kinetics at high strain rates
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(87)90285-9
– volume: 59
  start-page: 962
  year: 1966
  ident: 10.1016/j.msea.2018.09.018_bib20
  article-title: Numerical description of the ambient low-temperature and high-strain rate flow and fracture behavior of plain carbon steel
  publication-title: ASM Trans. Quart.
– volume: 346
  start-page: 83
  year: 2003
  ident: 10.1016/j.msea.2018.09.018_bib25
  article-title: Microstructure, texture, grain boundaries in recrystallization regions in pure Cu ECAE samples
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/S0921-5093(02)00521-X
– year: 1996
  ident: 10.1016/j.msea.2018.09.018_bib30
– volume: 104
  start-page: 3031
  year: 2007
  ident: 10.1016/j.msea.2018.09.018_bib10
  article-title: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0611097104
– volume: 460–461
  start-page: 204
  year: 2007
  ident: 10.1016/j.msea.2018.09.018_bib26
  article-title: Thermal stability of ECAP processed pure copper
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2007.01.042
– volume: 341
  start-page: 216
  year: 2003
  ident: 10.1016/j.msea.2018.09.018_bib46
  article-title: Grain size dependence of the plastic deformation kinetics in Cu
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/S0921-5093(02)00238-1
– volume: 38
  start-page: 1863
  year: 1967
  ident: 10.1016/j.msea.2018.09.018_bib50
  article-title: Dislocation Damping in Aluminum at High Strain Rates
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1709772
– volume: 57
  start-page: 5165
  year: 2009
  ident: 10.1016/j.msea.2018.09.018_bib9
  article-title: Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.07.018
– volume: 83
  start-page: 3165
  year: 2003
  ident: 10.1016/j.msea.2018.09.018_bib44
  article-title: Temperature and strain rate effects on the strength and ductility of nanostructured copper
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1618370
– volume: 53
  start-page: 3369
  year: 2005
  ident: 10.1016/j.msea.2018.09.018_bib8
  article-title: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.03.047
– volume: 52
  start-page: 1699
  year: 2004
  ident: 10.1016/j.msea.2018.09.018_bib29
  article-title: Three strategies to achieve uniform tensile deformation in a nanostructured metal
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2003.12.022
– volume: 40
  start-page: 3475
  year: 1969
  ident: 10.1016/j.msea.2018.09.018_bib16
  article-title: Viscous drag on dislocations at high strain rates in copper
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1658222
– volume: 16
  start-page: 1189
  year: 1968
  ident: 10.1016/j.msea.2018.09.018_bib49
  article-title: Viscous drag on dislocations in aluminum at high strain rates
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(68)90054-0
– volume: 54
  start-page: 1913
  year: 2006
  ident: 10.1016/j.msea.2018.09.018_bib4
  article-title: Hardness and strain rate sensitivity of nanocrystalline Cu
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2006.02.022
– volume: 63
  start-page: 560
  year: 2010
  ident: 10.1016/j.msea.2018.09.018_bib52
  article-title: Evolution of microstructural homogeneity in copper processed by high-pressure torsion
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2010.05.030
SSID ssj0001405
Score 2.4972599
Snippet The grain size dependence of the strain rate sensitivity (SRS) of copper were systematically investigated via tensile deformation at strain rates of ~10−4 s−1...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 430
SubjectTerms Activation
Copper
Deformation mechanisms
Dependence
Dynamic tension
FCC metals
Grain size
Misalignment
Opposite grain size dependence
Sensitivity analysis
Strain rate
Strain rate sensitivity
Tensile deformation
Thermal activation
Viscous drag
Title Opposite grain size dependence of strain rate sensitivity of copper at low vs high strain rates
URI https://dx.doi.org/10.1016/j.msea.2018.09.018
https://www.proquest.com/docview/2159684362
Volume 738
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1wfSw7epG7bJG1ylMVlVVwPKngLbZrIyrpbtlXBg7_dmT58IR48lTSTEmam8yXwzQwhh6GvkpAp4ynLMo9bI71EceFFJs0ADVOXVIm0l6NoeMvP78TdAum3uTBIq2xifx3Tq2jdvOk12uzl43Hv2lcAV3AhB6cMQrgnYAY7j9HLj98-aR4wUdEYQdhD6SZxpuZ4PYI7Ib1LVrVOsfHH7-D0I0xX2DNYI6vNoZGe1PtaJwt2ukFWvpQS3CT6Kq_4V5beY9MHWoxfLW073BpLZ44WVTsIirUhaIG89bpxBE6ZWZ7bOU1KOpm90OeCYhXjrwuKLXI7OL3pD72meYJnmOIl6D5KWSpdJgLnpHQmzsKMm8SYiDsG0Og4860KJJ5hmLQiArPEIkogdKbGd2ybLE5nU7tDaJxmWayCMBNS8YRZ5eLQCN_EoQPwV6JDglZr2jSVxXGDE91SyB40alqjprWvNDw65OhjTV7X1fhTWrTG0N-8Q0Pg_3Pdfms53fybhQavUZHkgNy7__zsHlnGEbJaArVPFsv5kz2As0mZdivn65Klk7OL4egduLrkVg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh7YUGgS24k9ogpUoIUBkNisxA9UVNqoKSAx8Ns558FLiIEpkh-RdT7fZ0vf3YfQQeiLJCRCecIQ7VGjuJcIyrxIpRrQMLVJkUg7uIx6t_T8jt01ULfOhXG0yir2lzG9iNZVS6eyZicbDjvXvgC4ggc5OGUQwjthDs1TOL5OxuDo7ZPnAT0FjxFGe254lTlTkrwewZ8cv4sXxU6d8sfv6PQjThfgc7qClqtbIz4uF7aKGma8hpa-1BJcR_IqKwhYBt871QecD18NriVulcETi_NCDwK74hA4d8T1UjnCdalJlpkpTmZ4NHnBzzl2ZYy_Tsg30O3pyU2351XqCZ4igs7A-FFKUm41C6zl3KpYh5qqRKmIWgLYaCnxjQi4u8QQblgE-xKzKIHYmSrfkk3UHE_GZgvhONU6FkGoGRc0IUbYOFTMV3FoAf0Fa6GgtppUVWlxt8CRrDlkD9JZWjpLS19I-LTQ4cecrCys8edoVm-G_OYeEiL_n_Pa9c7J6nDmEtxGRJwCdG__87f7aKF3M-jL_tnlxQ5adD2O4hKINmrOpk9mFy4qs3SvcMR3A6bl5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opposite+grain+size+dependence+of+strain+rate+sensitivity+of+copper+at+low+vs+high+strain+rates&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Mao%2C+Z+N&rft.au=An%2C+X+H&rft.au=Liao%2C+X+Z&rft.au=Wang%2C+J+T&rft.date=2018-12-19&rft.pub=Elsevier+BV&rft.issn=0921-5093&rft.eissn=1873-4936&rft.volume=738&rft.spage=430&rft_id=info:doi/10.1016%2Fj.msea.2018.09.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon