Opposite grain size dependence of strain rate sensitivity of copper at low vs high strain rates
The grain size dependence of the strain rate sensitivity (SRS) of copper were systematically investigated via tensile deformation at strain rates of ~10−4 s−1 and ~103 s−1. In contrast to the general perception that SRS increases with decreasing grain size at low strain rates in FCC metals, the SRS...
Saved in:
Published in | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 738; pp. 430 - 438 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
19.12.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The grain size dependence of the strain rate sensitivity (SRS) of copper were systematically investigated via tensile deformation at strain rates of ~10−4 s−1 and ~103 s−1. In contrast to the general perception that SRS increases with decreasing grain size at low strain rates in FCC metals, the SRS increases monotonously with grain size under deformation at high strain-rates of ~103 s−1. Analytical formulation based on the Nemat-Nasser-Li (NNL) and Modified-Rusinek-Klepaczko (MRK) models was established to reveal the essential dependence of SRS on grain size, at the change of strain rate: that the opposite dependence of SRS on grain size at low vs high strain rates can be attributed to the transformation of the dominant rate-controlling deformation mechanism from thermal activation at low strain rates to viscous drag at high strain rates. It is demonstrated that the thermal activation component of SRS, m*, which is nearly strain rate independent, increases with reducing grain size; while the viscous drag component of SRS, mvs, which is enhanced significantly at high strain rates, decreases with reducing grain size. Microstructural observation based on local misorientation characterization and statistics confirms that the viscous-drag dominates at high strain-rate deformation, and becomes progressively influential as grain size increases. This unveils the essence of viscous drag in the opposite grain size dependence of SRS at low vs high strain rates. |
---|---|
AbstractList | The grain size dependence of the strain rate sensitivity (SRS) of copper were systematically investigated via tensile deformation at strain rates of ~10−4 s−1 and ~103 s−1. In contrast to the general perception that SRS increases with decreasing grain size at low strain rates in FCC metals, the SRS increases monotonously with grain size under deformation at high strain-rates of ~103 s−1. Analytical formulation based on the Nemat-Nasser-Li (NNL) and Modified-Rusinek-Klepaczko (MRK) models was established to reveal the essential dependence of SRS on grain size, at the change of strain rate: that the opposite dependence of SRS on grain size at low vs high strain rates can be attributed to the transformation of the dominant rate-controlling deformation mechanism from thermal activation at low strain rates to viscous drag at high strain rates. It is demonstrated that the thermal activation component of SRS, m*, which is nearly strain rate independent, increases with reducing grain size; while the viscous drag component of SRS, mvs, which is enhanced significantly at high strain rates, decreases with reducing grain size. Microstructural observation based on local misorientation characterization and statistics confirms that the viscous-drag dominates at high strain-rate deformation, and becomes progressively influential as grain size increases. This unveils the essence of viscous drag in the opposite grain size dependence of SRS at low vs high strain rates. |
Author | Wang, J.T. Liao, X.Z. An, X.H. Mao, Z.N. |
Author_xml | – sequence: 1 givenname: Z.N. surname: Mao fullname: Mao, Z.N. organization: School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China – sequence: 2 givenname: X.H. surname: An fullname: An, X.H. organization: School of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia – sequence: 3 givenname: X.Z. surname: Liao fullname: Liao, X.Z. email: xiaozhou.liao@sydney.edu.au organization: School of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia – sequence: 4 givenname: J.T. surname: Wang fullname: Wang, J.T. email: jtwang@njust.edu.cn organization: School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China |
BookMark | eNp9kDtPwzAUhS1UJNrCH2CyxJxgx4lrSyyo4iUhdYHZcp3r1lEbB9stKr-ehDIghk5nOOe7jzNBo9a3gNA1JTkllN82-TaCzgtCRU5k3ssZGlMxY1kpGR-hMZEFzSoi2QWaxNgQQmhJqjFSi67z0SXAq6Bdi6P7AlxDB20NrQHsLY7pxwm6D0Vo-7Dbu3QYLOO7DgLWCW_8J95HvHar9V8gXqJzqzcRrn51it4fH97mz9nr4ullfv-aGSbLlEngS7YUtq6otUJYM6uLujTaGF5aZgBsyQhIKginMyag4lZXs4prWvKlIZZN0c1xbhf8xw5iUo3fhbZfqQpaSS5Kxos-JY4pE3yMAawyLunkfDucvFGUqKFO1aihTjXUqYhUvfRo8Q_tgtvqcDgN3R0h6F_fOwgqGjf0WrsAJqnau1P4N7LTkmk |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2022_08_032 crossref_primary_10_1016_j_compositesa_2023_107856 crossref_primary_10_1016_j_matdes_2022_110724 crossref_primary_10_1016_j_msea_2024_147516 crossref_primary_10_1016_j_ijhydene_2022_09_290 crossref_primary_10_3390_ma18030490 crossref_primary_10_1038_s43246_020_00090_2 crossref_primary_10_1080_10408436_2022_2078277 crossref_primary_10_1002_mawe_202100172 crossref_primary_10_3390_cryst10030212 crossref_primary_10_1007_s40870_019_00223_w crossref_primary_10_1016_j_actamat_2023_118941 crossref_primary_10_1016_j_actamat_2020_08_052 crossref_primary_10_1088_2631_7990_ab263f crossref_primary_10_3390_app11178005 crossref_primary_10_1016_j_msea_2024_146636 crossref_primary_10_1016_j_engfracmech_2025_110971 crossref_primary_10_1016_j_jnoncrysol_2019_119500 crossref_primary_10_1007_s00170_022_08674_7 crossref_primary_10_1016_j_matdes_2019_107945 crossref_primary_10_1007_s11043_021_09491_3 crossref_primary_10_1002_advs_202407283 crossref_primary_10_1007_s10853_025_10762_4 crossref_primary_10_1016_j_tws_2024_112833 crossref_primary_10_1016_j_jmatprotec_2021_117451 crossref_primary_10_1016_j_surfcoat_2025_131817 crossref_primary_10_1088_1361_651X_acc961 crossref_primary_10_1155_2022_4048913 crossref_primary_10_1007_s40195_022_01416_4 crossref_primary_10_1016_j_ijplas_2021_103178 crossref_primary_10_1016_j_actamat_2023_119343 crossref_primary_10_1016_j_msea_2025_147874 crossref_primary_10_1016_j_crme_2019_06_001 crossref_primary_10_1166_jno_2021_3103 crossref_primary_10_1016_j_heliyon_2023_e23202 crossref_primary_10_1016_j_apmt_2022_101415 crossref_primary_10_1016_j_msea_2019_05_095 crossref_primary_10_1016_j_msea_2021_141547 crossref_primary_10_1016_j_intermet_2025_108665 crossref_primary_10_1080_02670836_2019_1625527 crossref_primary_10_1007_s11665_022_07636_0 crossref_primary_10_1007_s11666_020_01137_z crossref_primary_10_1016_j_msea_2023_144656 crossref_primary_10_1016_j_powtec_2025_120737 crossref_primary_10_1016_j_jallcom_2021_162951 crossref_primary_10_1016_j_matchar_2021_111295 crossref_primary_10_1016_j_ijmecsci_2020_105553 crossref_primary_10_3389_fmats_2022_1017629 crossref_primary_10_1016_j_ijmecsci_2020_105911 crossref_primary_10_3390_cryst12050705 |
Cites_doi | 10.1016/0001-6160(88)90030-2 10.1016/S1359-6462(01)01071-5 10.1126/science.1092905 10.1016/j.ijplas.2017.11.006 10.1007/s11661-000-1001-6 10.1063/1.338024 10.1007/BF02646332 10.1016/j.msea.2012.09.100 10.1016/j.actamat.2016.02.045 10.1016/j.actamat.2013.08.018 10.1016/S0734-743X(01)00063-X 10.1007/s10853-006-0700-9 10.1016/S0079-6425(02)00003-8 10.1016/j.mechmat.2004.02.003 10.1016/0036-9748(89)90474-2 10.1016/S1359-6454(03)00365-3 10.1016/S0749-6419(03)00037-8 10.1063/1.1465528 10.1016/j.mechmat.2013.02.003 10.1016/S1359-6454(96)00243-1 10.1016/0022-5096(92)90015-T 10.1016/j.actamat.2006.06.062 10.1016/0025-5416(67)90032-8 10.1016/0001-6160(72)90012-0 10.1088/0370-1301/62/11/302 10.1016/j.ijmecsci.2009.07.001 10.1016/j.ijplas.2011.12.001 10.1088/0370-1301/64/9/303 10.1016/0001-6160(77)90168-7 10.1016/S1359-6454(97)00230-9 10.1016/j.msea.2004.03.064 10.1080/14786437008238397 10.1016/j.mechmat.2006.01.004 10.1016/S0022-5096(00)00069-7 10.1016/0001-6160(87)90285-9 10.1016/S0921-5093(02)00521-X 10.1073/pnas.0611097104 10.1016/j.msea.2007.01.042 10.1016/S0921-5093(02)00238-1 10.1063/1.1709772 10.1016/j.actamat.2009.07.018 10.1063/1.1618370 10.1016/j.actamat.2005.03.047 10.1016/j.actamat.2003.12.022 10.1063/1.1658222 10.1016/0001-6160(68)90054-0 10.1016/j.scriptamat.2006.02.022 10.1016/j.scriptamat.2010.05.030 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Dec 19, 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Dec 19, 2018 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.msea.2018.09.018 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4936 |
EndPage | 438 |
ExternalDocumentID | 10_1016_j_msea_2018_09_018 S0921509318312140 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SMS SPC SPCBC SSM SSZ T5K ~02 ~G- 29M 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SSH WUQ 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c394t-9e6b3b8fd51ff88fc7d2d4cacc64f3ceef430e918061738e56fa5756a146bc0f3 |
IEDL.DBID | .~1 |
ISSN | 0921-5093 |
IngestDate | Mon Jul 14 10:36:46 EDT 2025 Tue Jul 01 03:29:45 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 Fri Feb 23 02:28:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Viscous drag Strain rate sensitivity Opposite grain size dependence Dynamic tension Thermal activation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-9e6b3b8fd51ff88fc7d2d4cacc64f3ceef430e918061738e56fa5756a146bc0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2159684362 |
PQPubID | 2045432 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2159684362 crossref_citationtrail_10_1016_j_msea_2018_09_018 crossref_primary_10_1016_j_msea_2018_09_018 elsevier_sciencedirect_doi_10_1016_j_msea_2018_09_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-19 |
PublicationDateYYYYMMDD | 2018-12-19 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Ghosh (bib2) 1974; 5 An, Lin, Sha, Huang, Ringer, Zhu, Liao (bib51) 2016; 109 Rusinek, Rodríguez-Martínez, Arias (bib15) 2010; 52 Suo, Chen, Li, Wang, Fan (bib21) 2013; 560 Nemat-Nasser, Isaacs (bib37) 1997; 45 Lea, Jardine (bib14) 2018; 102 Krausz, Krausz (bib30) 1996 Nemat-Nasser, Guo, Kihl (bib40) 2001; 49 Ferguson (bib50) 1967; 38 Kapoor, Nemat-Nasser (bib39) 2000; 31 Zhu, Li, Samanta, Kim, Suresh (bib10) 2007; 104 Schwaiger, Moser, Dao, Chollacoop, Suresh (bib32) 2003; 51 Asaro, Suresh (bib8) 2005; 53 Guo, Nemat-Nasser (bib41) 2006; 38 Gao, Zhang (bib18) 2012; 32 Tong, Clifton, Huang (bib48) 1992; 40 Campbell, Ferguson (bib11) 1970; 21 Conrad, Feuerstein, Rice (bib42) 1967; 2 Cheval, Priester (bib17) 1989; 23 Hutchinson, Neale (bib1) 1977; 25 Langdon (bib23) 2013; 61 Dao, Lu, Shen, Suresh (bib3) 2006; 54 Wang, Ma (bib44) 2003; 83 Nemat-Nasser, Li (bib22) 1998; 46 Voyiadjis, Abed (bib43) 2005; 57 Lu, Zhu, Shen, Ming, Lu, Suresh (bib9) 2009; 57 Kumar, Kumble (bib16) 1969; 40 Kocks, Mecking (bib34) 2003; 48 Conrad (bib46) 2003; 341 Wei (bib7) 2007; 42 Meyers (bib13) 1994 Wang, Ma (bib29) 2004; 52 Bonora, Milella (bib35) 2001; 26 Petch (bib28) 1953; 174 Follansbee, Kocks (bib12) 1988; 36 Regazzoni, Kocks, Follansbee (bib19) 1987; 35 Wang, Wu, Zuo, Esling, Wang, Li (bib25) 2003; 346 Chen, Lu, Lu (bib4) 2006; 54 Rosenfield, Hahn (bib20) 1966; 59 Wang, Ma, Chen (bib5) 2002; 80 Voyiadjis, Abed (bib33) 2005; 37 Wei, Cheng, Ramesh, Ma (bib6) 2004; 381 Molodova, Gottstein, Winning, Hellmig (bib26) 2007; 460–461 Lu, Shen, Chen, Qian, Lu (bib53) 2004; 304 Lennon, Ramesh (bib38) 2004; 20 An, Wu, Zhang, Figueiredo, Gao, Langdon (bib52) 2010; 63 Jia, Ramesh, Ma, Lu, Lu (bib47) 2001; 45 Hall (bib27) 1951; 64 Zerilli, Armstrong (bib36) 1987; 61 Kumar, Hauser, Dorn (bib49) 1968; 16 Suo, Li, Zhao, Fan, Guo (bib31) 2013; 61 Staker, Holt (bib45) 1972; 20 Kolsky (bib24) 1949; 62 Hutchinson (10.1016/j.msea.2018.09.018_bib1) 1977; 25 Lu (10.1016/j.msea.2018.09.018_bib9) 2009; 57 Voyiadjis (10.1016/j.msea.2018.09.018_bib33) 2005; 37 Staker (10.1016/j.msea.2018.09.018_bib45) 1972; 20 Campbell (10.1016/j.msea.2018.09.018_bib11) 1970; 21 Suo (10.1016/j.msea.2018.09.018_bib21) 2013; 560 An (10.1016/j.msea.2018.09.018_bib52) 2010; 63 Rosenfield (10.1016/j.msea.2018.09.018_bib20) 1966; 59 Krausz (10.1016/j.msea.2018.09.018_bib30) 1996 Conrad (10.1016/j.msea.2018.09.018_bib42) 1967; 2 Nemat-Nasser (10.1016/j.msea.2018.09.018_bib22) 1998; 46 Kocks (10.1016/j.msea.2018.09.018_bib34) 2003; 48 Hall (10.1016/j.msea.2018.09.018_bib27) 1951; 64 Rusinek (10.1016/j.msea.2018.09.018_bib15) 2010; 52 Nemat-Nasser (10.1016/j.msea.2018.09.018_bib37) 1997; 45 Lennon (10.1016/j.msea.2018.09.018_bib38) 2004; 20 Lu (10.1016/j.msea.2018.09.018_bib53) 2004; 304 Langdon (10.1016/j.msea.2018.09.018_bib23) 2013; 61 Gao (10.1016/j.msea.2018.09.018_bib18) 2012; 32 Ghosh (10.1016/j.msea.2018.09.018_bib2) 1974; 5 Petch (10.1016/j.msea.2018.09.018_bib28) 1953; 174 Suo (10.1016/j.msea.2018.09.018_bib31) 2013; 61 Tong (10.1016/j.msea.2018.09.018_bib48) 1992; 40 Voyiadjis (10.1016/j.msea.2018.09.018_bib43) 2005; 57 Kumar (10.1016/j.msea.2018.09.018_bib49) 1968; 16 Nemat-Nasser (10.1016/j.msea.2018.09.018_bib40) 2001; 49 Regazzoni (10.1016/j.msea.2018.09.018_bib19) 1987; 35 Lea (10.1016/j.msea.2018.09.018_bib14) 2018; 102 Zhu (10.1016/j.msea.2018.09.018_bib10) 2007; 104 Wang (10.1016/j.msea.2018.09.018_bib29) 2004; 52 Schwaiger (10.1016/j.msea.2018.09.018_bib32) 2003; 51 Kapoor (10.1016/j.msea.2018.09.018_bib39) 2000; 31 Wei (10.1016/j.msea.2018.09.018_bib7) 2007; 42 Wang (10.1016/j.msea.2018.09.018_bib5) 2002; 80 Meyers (10.1016/j.msea.2018.09.018_bib13) 1994 Kolsky (10.1016/j.msea.2018.09.018_bib24) 1949; 62 Follansbee (10.1016/j.msea.2018.09.018_bib12) 1988; 36 Wei (10.1016/j.msea.2018.09.018_bib6) 2004; 381 Molodova (10.1016/j.msea.2018.09.018_bib26) 2007; 460–461 Wang (10.1016/j.msea.2018.09.018_bib44) 2003; 83 An (10.1016/j.msea.2018.09.018_bib51) 2016; 109 Asaro (10.1016/j.msea.2018.09.018_bib8) 2005; 53 Kumar (10.1016/j.msea.2018.09.018_bib16) 1969; 40 Guo (10.1016/j.msea.2018.09.018_bib41) 2006; 38 Jia (10.1016/j.msea.2018.09.018_bib47) 2001; 45 Wang (10.1016/j.msea.2018.09.018_bib25) 2003; 346 Dao (10.1016/j.msea.2018.09.018_bib3) 2006; 54 Cheval (10.1016/j.msea.2018.09.018_bib17) 1989; 23 Conrad (10.1016/j.msea.2018.09.018_bib46) 2003; 341 Zerilli (10.1016/j.msea.2018.09.018_bib36) 1987; 61 Chen (10.1016/j.msea.2018.09.018_bib4) 2006; 54 Bonora (10.1016/j.msea.2018.09.018_bib35) 2001; 26 Ferguson (10.1016/j.msea.2018.09.018_bib50) 1967; 38 |
References_xml | – volume: 54 start-page: 1913 year: 2006 end-page: 1918 ident: bib4 article-title: Hardness and strain rate sensitivity of nanocrystalline Cu publication-title: Scr. Mater. – volume: 32 start-page: 121 year: 2012 end-page: 133 ident: bib18 article-title: Constitutive modelling of plasticity of fcc metals under extremely high strain rates publication-title: Int. J. Plast. – year: 1996 ident: bib30 article-title: Unified Constitutive Laws of Plastic Deformation – volume: 20 start-page: 269 year: 2004 end-page: 290 ident: bib38 article-title: The influence of crystal structure on the dynamic behavior of materials at high temperatures publication-title: Int. J. Plast. – volume: 25 start-page: 839 year: 1977 end-page: 846 ident: bib1 article-title: Influence of strain-rate sensitivity on necking under uniaxial tension publication-title: Acta Metall. – volume: 46 start-page: 565 year: 1998 end-page: 577 ident: bib22 article-title: Flow stress of fcc polycrystals with application to OFHC Cu publication-title: Acta Mater. – volume: 341 start-page: 216 year: 2003 end-page: 228 ident: bib46 article-title: Grain size dependence of the plastic deformation kinetics in Cu publication-title: Mater. Sci. Eng.: A – volume: 381 start-page: 71 year: 2004 end-page: 79 ident: bib6 article-title: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals publication-title: Mater. Sci. Eng.: A – volume: 26 start-page: 53 year: 2001 end-page: 64 ident: bib35 article-title: Constitutive modeling for ductile metals behavior incorporating strain rate, temperature and damage mechanics publication-title: Int. J. Impact Eng. – volume: 560 start-page: 545 year: 2013 end-page: 551 ident: bib21 article-title: Strain rate sensitivity and deformation kinetics of ECAPed aluminium over a wide range of strain rates publication-title: Mater. Sci. Eng.: A – volume: 48 start-page: 171 year: 2003 end-page: 273 ident: bib34 article-title: Physics and phenomenology of strain hardening: the FCC case publication-title: Progress. Mater. Sci. – volume: 57 start-page: 299 year: 2005 end-page: 343 ident: bib43 article-title: Effect of dislocation density evolution on the thermomechanical response of metals with different crystal structures at low and high strain rates and temperatures publication-title: Arch. Mech. – volume: 80 start-page: 2395 year: 2002 end-page: 2397 ident: bib5 article-title: Enhanced tensile ductility and toughness in nanostructured Cu publication-title: Appl. Phys. Lett. – volume: 40 start-page: 3475 year: 1969 end-page: 3480 ident: bib16 article-title: Viscous drag on dislocations at high strain rates in copper publication-title: J. Appl. Phys. – volume: 59 start-page: 962 year: 1966 end-page: 980 ident: bib20 article-title: Numerical description of the ambient low-temperature and high-strain rate flow and fracture behavior of plain carbon steel publication-title: ASM Trans. Quart. – volume: 63 start-page: 560 year: 2010 end-page: 563 ident: bib52 article-title: Evolution of microstructural homogeneity in copper processed by high-pressure torsion publication-title: Scr. Mater. – volume: 52 start-page: 1699 year: 2004 end-page: 1709 ident: bib29 article-title: Three strategies to achieve uniform tensile deformation in a nanostructured metal publication-title: Acta Mater. – volume: 49 start-page: 1823 year: 2001 end-page: 1846 ident: bib40 article-title: Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures publication-title: J. Mech. Phys. Solids – volume: 38 start-page: 1090 year: 2006 end-page: 1103 ident: bib41 article-title: Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures publication-title: Mech. Mater. – volume: 53 start-page: 3369 year: 2005 end-page: 3382 ident: bib8 article-title: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins publication-title: Acta Mater. – volume: 40 start-page: 1251 year: 1992 end-page: 1294 ident: bib48 article-title: Pressure-shear impact investigation of strain rate history effects in oxygen-free high-conductivity copper publication-title: J. Mech. Phys. Solids – volume: 61 start-page: 1 year: 2013 end-page: 10 ident: bib31 article-title: Compressive behavior and rate-controlling mechanisms of ultrafine grained copper over wide temperature and strain rate ranges publication-title: Mech. Mater. – year: 1994 ident: bib13 article-title: Dynamic Behavior of Materials – volume: 57 start-page: 5165 year: 2009 end-page: 5173 ident: bib9 article-title: Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper publication-title: Acta Mater. – volume: 31 start-page: 815 year: 2000 end-page: 823 ident: bib39 article-title: Comparison between high and low strain-rate deformation of tantalum publication-title: Metall. Mater. Trans. A – volume: 20 start-page: 569 year: 1972 end-page: 579 ident: bib45 article-title: The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700°C publication-title: Acta Metall. – volume: 51 start-page: 5159 year: 2003 end-page: 5172 ident: bib32 article-title: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel publication-title: Acta Mater. – volume: 304 start-page: 422 year: 2004 end-page: 426 ident: bib53 article-title: Ultrahigh strength and high electrical conductivity in copper publication-title: Science – volume: 61 start-page: 7035 year: 2013 end-page: 7059 ident: bib23 article-title: Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement publication-title: Acta Mater. – volume: 2 start-page: 157 year: 1967 end-page: 168 ident: bib42 article-title: Effects of grain size on the dislocation density and flow stress of niobium publication-title: Mater. Sci. Eng. – volume: 54 start-page: 5421 year: 2006 end-page: 5432 ident: bib3 article-title: Strength, strain-rate sensitivity and ductility of copper with nanoscale twins publication-title: Acta Mater. – volume: 36 start-page: 81 year: 1988 end-page: 93 ident: bib12 article-title: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable publication-title: Acta Metall. – volume: 102 start-page: 41 year: 2018 end-page: 52 ident: bib14 article-title: Characterisation of high rate plasticity in the uniaxial deformation of high purity copper at elevated temperatures publication-title: Int. J. Plast. – volume: 61 start-page: 1816 year: 1987 end-page: 1825 ident: bib36 article-title: Dislocation-mechanics-based constitutive relations for material dynamics calculations publication-title: J. Appl. Phys. – volume: 23 start-page: 1871 year: 1989 end-page: 1876 ident: bib17 article-title: Effect of strain rate on the dislocation substructure in deformed copper polycrystals publication-title: Scr. Metall. – volume: 52 start-page: 120 year: 2010 end-page: 135 ident: bib15 article-title: A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper publication-title: Int. J. Mech. Sci. – volume: 21 start-page: 63 year: 1970 end-page: 82 ident: bib11 article-title: The temperature and strain-rate dependence of the shear strength of mild steel publication-title: Philos. Mag. – volume: 174 start-page: 25 year: 1953 end-page: 28 ident: bib28 article-title: The cleavage strength of polycrystals publication-title: J. Iron Steel Inst. – volume: 5 start-page: 1607 year: 1974 end-page: 1616 ident: bib2 article-title: Strain localization in the diffuse neck in sheet metal publication-title: Metall. Trans. – volume: 42 start-page: 1709 year: 2007 end-page: 1727 ident: bib7 article-title: Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses publication-title: J. Mater. Sci. – volume: 460–461 start-page: 204 year: 2007 end-page: 213 ident: bib26 article-title: Thermal stability of ECAP processed pure copper publication-title: Mater. Sci. Eng.: A – volume: 104 start-page: 3031 year: 2007 end-page: 3036 ident: bib10 article-title: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals publication-title: Proc. Natl. Acad. Sci. USA – volume: 83 start-page: 3165 year: 2003 end-page: 3167 ident: bib44 article-title: Temperature and strain rate effects on the strength and ductility of nanostructured copper publication-title: Appl. Phys. Lett. – volume: 16 start-page: 1189 year: 1968 end-page: 1197 ident: bib49 article-title: Viscous drag on dislocations in aluminum at high strain rates publication-title: Acta Metall. – volume: 62 start-page: 676 year: 1949 ident: bib24 article-title: An investigation of the mechanical properties of materials at very high rates of loading publication-title: Proc. Phys. Soc. Sect. B – volume: 109 start-page: 300 year: 2016 end-page: 313 ident: bib51 article-title: Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion publication-title: Acta Mater. – volume: 45 start-page: 613 year: 2001 end-page: 620 ident: bib47 article-title: Compressive behavior of an electrodeposited nanostructured copper at quasistatic and high strain rates publication-title: Scr. Mater. – volume: 45 start-page: 907 year: 1997 end-page: 919 ident: bib37 article-title: Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta W alloys publication-title: Acta Mater. – volume: 37 start-page: 355 year: 2005 end-page: 378 ident: bib33 article-title: Microstructural based models for bcc and fcc metals with temperature and strain rate dependency publication-title: Mech. Mater. – volume: 38 start-page: 1863 year: 1967 end-page: 1869 ident: bib50 article-title: Dislocation Damping in Aluminum at High Strain Rates publication-title: J. Appl. Phys. – volume: 64 start-page: 747 year: 1951 ident: bib27 article-title: The deformation and ageing of mild steel: III discussion of results publication-title: Proc. Phys. Soc. Sect. B – volume: 35 start-page: 2865 year: 1987 end-page: 2875 ident: bib19 article-title: Dislocation kinetics at high strain rates publication-title: Acta Metall. – volume: 346 start-page: 83 year: 2003 end-page: 90 ident: bib25 article-title: Microstructure, texture, grain boundaries in recrystallization regions in pure Cu ECAE samples publication-title: Mater. Sci. Eng.: A – volume: 36 start-page: 81 year: 1988 ident: 10.1016/j.msea.2018.09.018_bib12 article-title: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable publication-title: Acta Metall. doi: 10.1016/0001-6160(88)90030-2 – volume: 45 start-page: 613 year: 2001 ident: 10.1016/j.msea.2018.09.018_bib47 article-title: Compressive behavior of an electrodeposited nanostructured copper at quasistatic and high strain rates publication-title: Scr. Mater. doi: 10.1016/S1359-6462(01)01071-5 – volume: 304 start-page: 422 year: 2004 ident: 10.1016/j.msea.2018.09.018_bib53 article-title: Ultrahigh strength and high electrical conductivity in copper publication-title: Science doi: 10.1126/science.1092905 – volume: 57 start-page: 299 year: 2005 ident: 10.1016/j.msea.2018.09.018_bib43 article-title: Effect of dislocation density evolution on the thermomechanical response of metals with different crystal structures at low and high strain rates and temperatures publication-title: Arch. Mech. – volume: 102 start-page: 41 year: 2018 ident: 10.1016/j.msea.2018.09.018_bib14 article-title: Characterisation of high rate plasticity in the uniaxial deformation of high purity copper at elevated temperatures publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.11.006 – volume: 31 start-page: 815 year: 2000 ident: 10.1016/j.msea.2018.09.018_bib39 article-title: Comparison between high and low strain-rate deformation of tantalum publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-000-1001-6 – volume: 61 start-page: 1816 year: 1987 ident: 10.1016/j.msea.2018.09.018_bib36 article-title: Dislocation-mechanics-based constitutive relations for material dynamics calculations publication-title: J. Appl. Phys. doi: 10.1063/1.338024 – volume: 5 start-page: 1607 year: 1974 ident: 10.1016/j.msea.2018.09.018_bib2 article-title: Strain localization in the diffuse neck in sheet metal publication-title: Metall. Trans. doi: 10.1007/BF02646332 – volume: 560 start-page: 545 year: 2013 ident: 10.1016/j.msea.2018.09.018_bib21 article-title: Strain rate sensitivity and deformation kinetics of ECAPed aluminium over a wide range of strain rates publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2012.09.100 – year: 1994 ident: 10.1016/j.msea.2018.09.018_bib13 – volume: 109 start-page: 300 year: 2016 ident: 10.1016/j.msea.2018.09.018_bib51 article-title: Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.02.045 – volume: 61 start-page: 7035 year: 2013 ident: 10.1016/j.msea.2018.09.018_bib23 article-title: Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.08.018 – volume: 26 start-page: 53 year: 2001 ident: 10.1016/j.msea.2018.09.018_bib35 article-title: Constitutive modeling for ductile metals behavior incorporating strain rate, temperature and damage mechanics publication-title: Int. J. Impact Eng. doi: 10.1016/S0734-743X(01)00063-X – volume: 42 start-page: 1709 year: 2007 ident: 10.1016/j.msea.2018.09.018_bib7 article-title: Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-0700-9 – volume: 48 start-page: 171 year: 2003 ident: 10.1016/j.msea.2018.09.018_bib34 article-title: Physics and phenomenology of strain hardening: the FCC case publication-title: Progress. Mater. Sci. doi: 10.1016/S0079-6425(02)00003-8 – volume: 37 start-page: 355 year: 2005 ident: 10.1016/j.msea.2018.09.018_bib33 article-title: Microstructural based models for bcc and fcc metals with temperature and strain rate dependency publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2004.02.003 – volume: 23 start-page: 1871 year: 1989 ident: 10.1016/j.msea.2018.09.018_bib17 article-title: Effect of strain rate on the dislocation substructure in deformed copper polycrystals publication-title: Scr. Metall. doi: 10.1016/0036-9748(89)90474-2 – volume: 51 start-page: 5159 year: 2003 ident: 10.1016/j.msea.2018.09.018_bib32 article-title: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel publication-title: Acta Mater. doi: 10.1016/S1359-6454(03)00365-3 – volume: 20 start-page: 269 year: 2004 ident: 10.1016/j.msea.2018.09.018_bib38 article-title: The influence of crystal structure on the dynamic behavior of materials at high temperatures publication-title: Int. J. Plast. doi: 10.1016/S0749-6419(03)00037-8 – volume: 80 start-page: 2395 year: 2002 ident: 10.1016/j.msea.2018.09.018_bib5 article-title: Enhanced tensile ductility and toughness in nanostructured Cu publication-title: Appl. Phys. Lett. doi: 10.1063/1.1465528 – volume: 61 start-page: 1 year: 2013 ident: 10.1016/j.msea.2018.09.018_bib31 article-title: Compressive behavior and rate-controlling mechanisms of ultrafine grained copper over wide temperature and strain rate ranges publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2013.02.003 – volume: 45 start-page: 907 year: 1997 ident: 10.1016/j.msea.2018.09.018_bib37 article-title: Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta W alloys publication-title: Acta Mater. doi: 10.1016/S1359-6454(96)00243-1 – volume: 40 start-page: 1251 year: 1992 ident: 10.1016/j.msea.2018.09.018_bib48 article-title: Pressure-shear impact investigation of strain rate history effects in oxygen-free high-conductivity copper publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(92)90015-T – volume: 54 start-page: 5421 year: 2006 ident: 10.1016/j.msea.2018.09.018_bib3 article-title: Strength, strain-rate sensitivity and ductility of copper with nanoscale twins publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.06.062 – volume: 174 start-page: 25 year: 1953 ident: 10.1016/j.msea.2018.09.018_bib28 article-title: The cleavage strength of polycrystals publication-title: J. Iron Steel Inst. – volume: 2 start-page: 157 year: 1967 ident: 10.1016/j.msea.2018.09.018_bib42 article-title: Effects of grain size on the dislocation density and flow stress of niobium publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(67)90032-8 – volume: 20 start-page: 569 year: 1972 ident: 10.1016/j.msea.2018.09.018_bib45 article-title: The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700°C publication-title: Acta Metall. doi: 10.1016/0001-6160(72)90012-0 – volume: 62 start-page: 676 year: 1949 ident: 10.1016/j.msea.2018.09.018_bib24 article-title: An investigation of the mechanical properties of materials at very high rates of loading publication-title: Proc. Phys. Soc. Sect. B doi: 10.1088/0370-1301/62/11/302 – volume: 52 start-page: 120 year: 2010 ident: 10.1016/j.msea.2018.09.018_bib15 article-title: A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2009.07.001 – volume: 32 start-page: 121 year: 2012 ident: 10.1016/j.msea.2018.09.018_bib18 article-title: Constitutive modelling of plasticity of fcc metals under extremely high strain rates publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2011.12.001 – volume: 64 start-page: 747 year: 1951 ident: 10.1016/j.msea.2018.09.018_bib27 article-title: The deformation and ageing of mild steel: III discussion of results publication-title: Proc. Phys. Soc. Sect. B doi: 10.1088/0370-1301/64/9/303 – volume: 25 start-page: 839 year: 1977 ident: 10.1016/j.msea.2018.09.018_bib1 article-title: Influence of strain-rate sensitivity on necking under uniaxial tension publication-title: Acta Metall. doi: 10.1016/0001-6160(77)90168-7 – volume: 46 start-page: 565 year: 1998 ident: 10.1016/j.msea.2018.09.018_bib22 article-title: Flow stress of fcc polycrystals with application to OFHC Cu publication-title: Acta Mater. doi: 10.1016/S1359-6454(97)00230-9 – volume: 381 start-page: 71 year: 2004 ident: 10.1016/j.msea.2018.09.018_bib6 article-title: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2004.03.064 – volume: 21 start-page: 63 year: 1970 ident: 10.1016/j.msea.2018.09.018_bib11 article-title: The temperature and strain-rate dependence of the shear strength of mild steel publication-title: Philos. Mag. doi: 10.1080/14786437008238397 – volume: 38 start-page: 1090 year: 2006 ident: 10.1016/j.msea.2018.09.018_bib41 article-title: Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2006.01.004 – volume: 49 start-page: 1823 year: 2001 ident: 10.1016/j.msea.2018.09.018_bib40 article-title: Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(00)00069-7 – volume: 35 start-page: 2865 year: 1987 ident: 10.1016/j.msea.2018.09.018_bib19 article-title: Dislocation kinetics at high strain rates publication-title: Acta Metall. doi: 10.1016/0001-6160(87)90285-9 – volume: 59 start-page: 962 year: 1966 ident: 10.1016/j.msea.2018.09.018_bib20 article-title: Numerical description of the ambient low-temperature and high-strain rate flow and fracture behavior of plain carbon steel publication-title: ASM Trans. Quart. – volume: 346 start-page: 83 year: 2003 ident: 10.1016/j.msea.2018.09.018_bib25 article-title: Microstructure, texture, grain boundaries in recrystallization regions in pure Cu ECAE samples publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(02)00521-X – year: 1996 ident: 10.1016/j.msea.2018.09.018_bib30 – volume: 104 start-page: 3031 year: 2007 ident: 10.1016/j.msea.2018.09.018_bib10 article-title: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0611097104 – volume: 460–461 start-page: 204 year: 2007 ident: 10.1016/j.msea.2018.09.018_bib26 article-title: Thermal stability of ECAP processed pure copper publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2007.01.042 – volume: 341 start-page: 216 year: 2003 ident: 10.1016/j.msea.2018.09.018_bib46 article-title: Grain size dependence of the plastic deformation kinetics in Cu publication-title: Mater. Sci. Eng.: A doi: 10.1016/S0921-5093(02)00238-1 – volume: 38 start-page: 1863 year: 1967 ident: 10.1016/j.msea.2018.09.018_bib50 article-title: Dislocation Damping in Aluminum at High Strain Rates publication-title: J. Appl. Phys. doi: 10.1063/1.1709772 – volume: 57 start-page: 5165 year: 2009 ident: 10.1016/j.msea.2018.09.018_bib9 article-title: Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.07.018 – volume: 83 start-page: 3165 year: 2003 ident: 10.1016/j.msea.2018.09.018_bib44 article-title: Temperature and strain rate effects on the strength and ductility of nanostructured copper publication-title: Appl. Phys. Lett. doi: 10.1063/1.1618370 – volume: 53 start-page: 3369 year: 2005 ident: 10.1016/j.msea.2018.09.018_bib8 article-title: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.03.047 – volume: 52 start-page: 1699 year: 2004 ident: 10.1016/j.msea.2018.09.018_bib29 article-title: Three strategies to achieve uniform tensile deformation in a nanostructured metal publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.12.022 – volume: 40 start-page: 3475 year: 1969 ident: 10.1016/j.msea.2018.09.018_bib16 article-title: Viscous drag on dislocations at high strain rates in copper publication-title: J. Appl. Phys. doi: 10.1063/1.1658222 – volume: 16 start-page: 1189 year: 1968 ident: 10.1016/j.msea.2018.09.018_bib49 article-title: Viscous drag on dislocations in aluminum at high strain rates publication-title: Acta Metall. doi: 10.1016/0001-6160(68)90054-0 – volume: 54 start-page: 1913 year: 2006 ident: 10.1016/j.msea.2018.09.018_bib4 article-title: Hardness and strain rate sensitivity of nanocrystalline Cu publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2006.02.022 – volume: 63 start-page: 560 year: 2010 ident: 10.1016/j.msea.2018.09.018_bib52 article-title: Evolution of microstructural homogeneity in copper processed by high-pressure torsion publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2010.05.030 |
SSID | ssj0001405 |
Score | 2.4972599 |
Snippet | The grain size dependence of the strain rate sensitivity (SRS) of copper were systematically investigated via tensile deformation at strain rates of ~10−4 s−1... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 430 |
SubjectTerms | Activation Copper Deformation mechanisms Dependence Dynamic tension FCC metals Grain size Misalignment Opposite grain size dependence Sensitivity analysis Strain rate Strain rate sensitivity Tensile deformation Thermal activation Viscous drag |
Title | Opposite grain size dependence of strain rate sensitivity of copper at low vs high strain rates |
URI | https://dx.doi.org/10.1016/j.msea.2018.09.018 https://www.proquest.com/docview/2159684362 |
Volume | 738 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1wfSw7epG7bJG1ylMVlVVwPKngLbZrIyrpbtlXBg7_dmT58IR48lTSTEmam8yXwzQwhh6GvkpAp4ynLMo9bI71EceFFJs0ADVOXVIm0l6NoeMvP78TdAum3uTBIq2xifx3Tq2jdvOk12uzl43Hv2lcAV3AhB6cMQrgnYAY7j9HLj98-aR4wUdEYQdhD6SZxpuZ4PYI7Ib1LVrVOsfHH7-D0I0xX2DNYI6vNoZGe1PtaJwt2ukFWvpQS3CT6Kq_4V5beY9MHWoxfLW073BpLZ44WVTsIirUhaIG89bpxBE6ZWZ7bOU1KOpm90OeCYhXjrwuKLXI7OL3pD72meYJnmOIl6D5KWSpdJgLnpHQmzsKMm8SYiDsG0Og4860KJJ5hmLQiArPEIkogdKbGd2ybLE5nU7tDaJxmWayCMBNS8YRZ5eLQCN_EoQPwV6JDglZr2jSVxXGDE91SyB40alqjprWvNDw65OhjTV7X1fhTWrTG0N-8Q0Pg_3Pdfms53fybhQavUZHkgNy7__zsHlnGEbJaArVPFsv5kz2As0mZdivn65Klk7OL4egduLrkVg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh7YUGgS24k9ogpUoIUBkNisxA9UVNqoKSAx8Ns558FLiIEpkh-RdT7fZ0vf3YfQQeiLJCRCecIQ7VGjuJcIyrxIpRrQMLVJkUg7uIx6t_T8jt01ULfOhXG0yir2lzG9iNZVS6eyZicbDjvXvgC4ggc5OGUQwjthDs1TOL5OxuDo7ZPnAT0FjxFGe254lTlTkrwewZ8cv4sXxU6d8sfv6PQjThfgc7qClqtbIz4uF7aKGma8hpa-1BJcR_IqKwhYBt871QecD18NriVulcETi_NCDwK74hA4d8T1UjnCdalJlpkpTmZ4NHnBzzl2ZYy_Tsg30O3pyU2351XqCZ4igs7A-FFKUm41C6zl3KpYh5qqRKmIWgLYaCnxjQi4u8QQblgE-xKzKIHYmSrfkk3UHE_GZgvhONU6FkGoGRc0IUbYOFTMV3FoAf0Fa6GgtppUVWlxt8CRrDlkD9JZWjpLS19I-LTQ4cecrCys8edoVm-G_OYeEiL_n_Pa9c7J6nDmEtxGRJwCdG__87f7aKF3M-jL_tnlxQ5adD2O4hKINmrOpk9mFy4qs3SvcMR3A6bl5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opposite+grain+size+dependence+of+strain+rate+sensitivity+of+copper+at+low+vs+high+strain+rates&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Mao%2C+Z+N&rft.au=An%2C+X+H&rft.au=Liao%2C+X+Z&rft.au=Wang%2C+J+T&rft.date=2018-12-19&rft.pub=Elsevier+BV&rft.issn=0921-5093&rft.eissn=1873-4936&rft.volume=738&rft.spage=430&rft_id=info:doi/10.1016%2Fj.msea.2018.09.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon |