Novel Speech Signal Processing Algorithms for High-Accuracy Classification of Parkinson's Disease

There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this pap...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 59; no. 5; pp. 1264 - 1271
Main Authors Tsanas, Athanasios, Little, Max A., McSharry, Patrick E., Spielman, Jennifer, Ramig, Lorraine O.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2012
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD.
AbstractList There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD.
There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD.There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD.
Author McSharry, Patrick E.
Ramig, Lorraine O.
Little, Max A.
Tsanas, Athanasios
Spielman, Jennifer
Author_xml – sequence: 1
  givenname: Athanasios
  surname: Tsanas
  fullname: Tsanas, Athanasios
  email: tsanas@maths.ox.ac.uk
  organization: Oxford Centre for Industrial and Applied Mathematics (OCIAM), Mathematical Institute, University of Oxford, Oxford , U.K
– sequence: 2
  givenname: Max A.
  surname: Little
  fullname: Little, Max A.
  email: maxl@mit.edu
  organization: Media Lab, Massachusetts Institute of Technology, Cambridge, USA
– sequence: 3
  givenname: Patrick E.
  surname: McSharry
  fullname: McSharry, Patrick E.
  email: patrick@mcsharry.net
  organization: Smith School of Enterprise and the Environment, University of Oxford, Oxford, U.K
– sequence: 4
  givenname: Jennifer
  surname: Spielman
  fullname: Spielman, Jennifer
  email: Jennifer.Spielman@Colorado.edu
  organization: Department of Speech, Language, and Hearing Science, University of Colorado, Boulder, USA
– sequence: 5
  givenname: Lorraine O.
  surname: Ramig
  fullname: Ramig, Lorraine O.
  email: Lorraine.Ramig@colorado.edu
  organization: Department of Speech, Language, and Hearing Science, University of Colorado, Boulder, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25862144$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22249592$$D View this record in MEDLINE/PubMed
BookMark eNp90VFrUzEUB_Agk62b-wAyGHkZ-nJrTpJ7mzx2dTph6mDz-ZKbnrTZ0qRLboV9e29tneCDEAiB3z8Hzv-YHMQUkZC3wMYATH-4v_x6NeYM-JiDEqKZvCIjqGtV8VrAARkxBqrSXMsjclzKw_CUSjaH5IhzLnWt-YiYb-knBnq3RrRLeucX0QR6m5PFUnxc0GlYpOz75apQlzK99otlNbV2k419prNgBuW8Nb1PkSZHb01-9LGk-K7Qj76gKfiGvHYmFDzd3yfkx6er-9l1dfP985fZ9KayQsu-0rZRTa3UBJjRiAItzpmbWydQdkLZuUAA1zVK1JZh52qtGi5MBwjKKeHECXm_-3ed09MGS9-ufLEYgomYNqUFxrTanslAz_d0061w3q6zX5n83P5ZywAu9sAUa4LLJlpf_rp6mA1SDg52zuZUSkb3QoC124rabUXttqJ2X9GQmfyTsb7_vcA-Gx_-mzzbJT0ivkxqgDdMS_EL_j2d7w
CODEN IEBEAX
CitedBy_id crossref_primary_10_1007_s11517_024_03139_3
crossref_primary_10_1016_j_bspc_2023_105087
crossref_primary_10_1007_s00521_022_07046_2
crossref_primary_10_1021_acschemneuro_8b00520
crossref_primary_10_1016_j_bspc_2014_07_006
crossref_primary_10_1108_IJICC_07_2021_0138
crossref_primary_10_1016_j_jbi_2019_103362
crossref_primary_10_1007_s00521_020_05014_2
crossref_primary_10_1007_s10916_017_0877_2
crossref_primary_10_1016_j_jvoice_2015_10_022
crossref_primary_10_3390_ijerph16101688
crossref_primary_10_1016_j_jvoice_2018_07_014
crossref_primary_10_1016_j_csl_2022_101355
crossref_primary_10_1155_2016_6837498
crossref_primary_10_1038_s41598_018_25999_0
crossref_primary_10_1007_s00779_014_0829_5
crossref_primary_10_3390_app142311085
crossref_primary_10_1121_1_4870484
crossref_primary_10_1515_bmt_2017_0148
crossref_primary_10_1016_j_schres_2012_10_005
crossref_primary_10_1371_journal_pone_0065881
crossref_primary_10_1016_j_specom_2020_12_007
crossref_primary_10_1038_s41598_024_51600_y
crossref_primary_10_1016_j_bspc_2018_07_019
crossref_primary_10_1016_j_eswa_2021_115013
crossref_primary_10_1016_j_jvoice_2021_11_004
crossref_primary_10_1007_s12652_022_04342_6
crossref_primary_10_1016_j_apacoust_2020_107528
crossref_primary_10_1007_s40031_022_00851_2
crossref_primary_10_1049_htl_2017_0007
crossref_primary_10_1007_s11042_022_14042_0
crossref_primary_10_29132_ijpas_873653
crossref_primary_10_31590_ejosat_655795
crossref_primary_10_1109_ACCESS_2020_2989032
crossref_primary_10_1016_j_bbe_2020_12_009
crossref_primary_10_1016_j_bbe_2022_04_003
crossref_primary_10_1038_s41598_019_44221_3
crossref_primary_10_1016_j_bbe_2022_04_002
crossref_primary_10_3390_jpm11111090
crossref_primary_10_1109_JTEHM_2024_3375323
crossref_primary_10_1109_RBME_2020_3007816
crossref_primary_10_3390_a16110509
crossref_primary_10_1007_s00702_017_1676_0
crossref_primary_10_1007_s10772_023_10068_3
crossref_primary_10_4108_eetpht_10_5519
crossref_primary_10_1080_0954898X_2025_2453032
crossref_primary_10_1109_ACCESS_2020_3031646
crossref_primary_10_3390_diagnostics12081796
crossref_primary_10_1016_j_patrec_2019_04_005
crossref_primary_10_1109_TNSRE_2023_3321874
crossref_primary_10_3390_diagnostics11061076
crossref_primary_10_1016_j_bspc_2018_12_024
crossref_primary_10_1109_LSP_2021_3108509
crossref_primary_10_3390_diagnostics11122312
crossref_primary_10_1016_j_physa_2016_12_009
crossref_primary_10_1111_exsy_12472
crossref_primary_10_1109_ACCESS_2019_2906350
crossref_primary_10_1007_s13369_020_05080_7
crossref_primary_10_2196_26608
crossref_primary_10_1109_TASLP_2021_3078364
crossref_primary_10_1615_CritRevBiomedEng_2022041442
crossref_primary_10_1016_j_irbm_2018_10_016
crossref_primary_10_1016_j_patter_2022_100471
crossref_primary_10_1016_j_bspc_2018_08_029
crossref_primary_10_3233_JIFS_230183
crossref_primary_10_1109_ACCESS_2022_3203973
crossref_primary_10_1007_s00702_014_1229_8
crossref_primary_10_1097_NR9_0000000000000065
crossref_primary_10_3233_JPD_181389
crossref_primary_10_1016_j_micpro_2022_104547
crossref_primary_10_1007_s42979_022_01123_y
crossref_primary_10_1371_journal_pone_0217388
crossref_primary_10_3390_languages6040174
crossref_primary_10_1038_s41598_020_78418_8
crossref_primary_10_1007_s11356_018_2147_3
crossref_primary_10_1007_s11760_023_02826_2
crossref_primary_10_1016_j_bspc_2021_102452
crossref_primary_10_3233_JPD_230002
crossref_primary_10_1007_s42979_020_00422_6
crossref_primary_10_1109_ICJECE_2021_3075373
crossref_primary_10_3389_fnins_2021_754058
crossref_primary_10_1007_s11517_020_02250_5
crossref_primary_10_1016_j_bspc_2020_102050
crossref_primary_10_2196_mhealth_4538
crossref_primary_10_1007_s10772_018_09588_0
crossref_primary_10_1002_mds_28751
crossref_primary_10_1109_ACCESS_2024_3498836
crossref_primary_10_1142_S2424922X18400077
crossref_primary_10_1109_JTEHM_2019_2940900
crossref_primary_10_4108_eetpht_10_5568
crossref_primary_10_1186_s12938_021_00951_y
crossref_primary_10_3390_diagnostics11101892
crossref_primary_10_1016_j_neucom_2020_03_058
crossref_primary_10_1016_j_engappai_2018_09_018
crossref_primary_10_1016_j_compbiomed_2024_109566
crossref_primary_10_1109_ACCESS_2021_3124765
crossref_primary_10_1016_j_medengphy_2014_12_005
crossref_primary_10_1038_s41746_019_0084_2
crossref_primary_10_1007_s00521_021_06626_y
crossref_primary_10_1109_ACCESS_2018_2851382
crossref_primary_10_1007_s11517_023_02944_6
crossref_primary_10_1007_s13198_023_01999_w
crossref_primary_10_35596_1729_7648_2022_20_1_73_82
crossref_primary_10_1016_j_csl_2021_101321
crossref_primary_10_1109_ACCESS_2024_3393243
crossref_primary_10_1007_s00371_020_01859_9
crossref_primary_10_1088_1742_6596_1631_1_012168
crossref_primary_10_1016_j_cmpb_2017_11_010
crossref_primary_10_3390_bios10010001
crossref_primary_10_1007_s10772_017_9473_6
crossref_primary_10_1016_j_eswa_2019_01_028
crossref_primary_10_1109_TASLP_2021_3097215
crossref_primary_10_3390_s23020857
crossref_primary_10_1016_j_matpr_2020_10_120
crossref_primary_10_1109_TNSRE_2014_2359997
crossref_primary_10_1109_ACCESS_2019_2936564
crossref_primary_10_1038_s41531_020_0113_5
crossref_primary_10_3390_s150921710
crossref_primary_10_1016_j_bspc_2022_104013
crossref_primary_10_1016_j_eswa_2023_119650
crossref_primary_10_1121_1_5100272
crossref_primary_10_1016_j_specom_2016_11_005
crossref_primary_10_1109_TASLP_2020_2985066
crossref_primary_10_3233_THC_220386
crossref_primary_10_3390_s23031069
crossref_primary_10_3390_math9243172
crossref_primary_10_1016_j_eswa_2019_06_052
crossref_primary_10_1016_j_forsciint_2016_11_020
crossref_primary_10_1016_j_csl_2021_101216
crossref_primary_10_1109_JPROC_2023_3276209
crossref_primary_10_2196_jmir_6678
crossref_primary_10_1016_j_csl_2022_101411
crossref_primary_10_2196_46105
crossref_primary_10_1080_23279095_2024_2364229
crossref_primary_10_1109_JSTSP_2019_2949912
crossref_primary_10_2196_14306
crossref_primary_10_1007_s10772_017_9485_2
crossref_primary_10_1016_j_eswa_2015_10_034
crossref_primary_10_1088_1757_899X_318_1_012039
crossref_primary_10_1109_TNSRE_2018_2851787
crossref_primary_10_1371_journal_pone_0182428
crossref_primary_10_3390_brainsci13040543
crossref_primary_10_3917_cerpsy_137_0046
crossref_primary_10_1109_TASLP_2014_2329734
crossref_primary_10_1016_j_ifacol_2021_10_286
crossref_primary_10_3389_fninf_2021_578369
crossref_primary_10_1159_000525514
crossref_primary_10_3233_JPD_202476
crossref_primary_10_1016_j_bspc_2020_102165
crossref_primary_10_1007_s00221_023_06653_2
crossref_primary_10_3390_s22155491
crossref_primary_10_1109_JPROC_2021_3126493
crossref_primary_10_1007_s11128_024_04588_3
crossref_primary_10_3390_s130505406
crossref_primary_10_1007_s00521_016_2756_z
crossref_primary_10_1038_s41531_025_00913_4
crossref_primary_10_1016_j_cmpb_2014_08_007
crossref_primary_10_1371_journal_pone_0113412
crossref_primary_10_3233_THC_181306
crossref_primary_10_1038_s41598_023_49352_2
crossref_primary_10_1109_ACCESS_2021_3129847
crossref_primary_10_1007_s00500_023_08191_z
crossref_primary_10_3390_healthcare10102070
crossref_primary_10_1038_d41586_020_02732_4
crossref_primary_10_1109_ACCESS_2020_3005614
crossref_primary_10_1016_j_asoc_2018_10_022
crossref_primary_10_1109_JBHI_2018_2866873
crossref_primary_10_1142_S0218213024500143
crossref_primary_10_1016_j_matpr_2021_03_343
crossref_primary_10_1016_j_engappai_2023_106097
crossref_primary_10_1007_s13755_020_00104_w
crossref_primary_10_1016_j_bbe_2013_06_001
crossref_primary_10_1109_ACCESS_2025_3540600
crossref_primary_10_1121_1_5053681
crossref_primary_10_1109_JBHI_2013_2245674
crossref_primary_10_1080_24725579_2018_1496495
crossref_primary_10_56082_annalsarsciinfo_2023_1_2_46
crossref_primary_10_1002_mds_26371
crossref_primary_10_1109_TBME_2021_3116935
crossref_primary_10_3389_fbioe_2015_00104
crossref_primary_10_1007_s11517_020_02260_3
crossref_primary_10_1016_j_bspc_2016_09_004
crossref_primary_10_3233_JPD_140526
crossref_primary_10_1016_j_cmpb_2022_107133
crossref_primary_10_3390_bios12070502
crossref_primary_10_3390_s21082582
crossref_primary_10_1016_j_heliyon_2021_e08134
crossref_primary_10_1080_14737175_2019_1649142
crossref_primary_10_1007_s00034_022_02047_x
crossref_primary_10_1007_s42979_020_0099_4
crossref_primary_10_3390_diagnostics12081980
crossref_primary_10_1016_j_mehy_2019_109483
crossref_primary_10_4015_S1016237218500254
crossref_primary_10_1016_j_apacoust_2023_109476
crossref_primary_10_1007_s12559_012_9157_0
crossref_primary_10_1002_cpe_6675
crossref_primary_10_1088_1361_6579_aabf64
crossref_primary_10_1109_JBHI_2019_2961748
crossref_primary_10_1109_TASLP_2023_3260709
crossref_primary_10_1002_advs_202203565
crossref_primary_10_1038_s41598_020_80394_y
crossref_primary_10_3390_bioengineering10111316
crossref_primary_10_3390_s23115196
crossref_primary_10_1016_j_bspc_2020_102350
crossref_primary_10_3390_jpm12010055
crossref_primary_10_1016_j_ijmedinf_2018_09_008
crossref_primary_10_1109_ACCESS_2024_3402999
crossref_primary_10_1109_TBME_2017_2664802
crossref_primary_10_1089_tmj_2018_0271
crossref_primary_10_1109_JBHI_2020_3011104
crossref_primary_10_1142_S0129065718500375
crossref_primary_10_1109_ACCESS_2021_3057382
crossref_primary_10_1007_s10772_025_10172_6
crossref_primary_10_1371_journal_pone_0185613
crossref_primary_10_1016_j_bspc_2023_105457
crossref_primary_10_2196_12286
crossref_primary_10_1038_s41598_022_13865_z
crossref_primary_10_1007_s11042_020_09424_1
crossref_primary_10_4103_abr_abr_254_21
crossref_primary_10_1109_LSP_2020_3044503
crossref_primary_10_3233_JIFS_179714
crossref_primary_10_1016_j_bspc_2021_102415
crossref_primary_10_1016_j_neucom_2015_07_138
crossref_primary_10_1136_bmjopen_2023_077766
crossref_primary_10_1016_j_bspc_2021_102418
crossref_primary_10_1016_j_cmpb_2016_08_005
crossref_primary_10_1007_s10772_019_09647_0
crossref_primary_10_1080_03772063_2024_2409677
crossref_primary_10_21015_vtse_v9i3_652
crossref_primary_10_3233_JAD_150520
crossref_primary_10_1212_WNL_0000000000006366
crossref_primary_10_1098_rsif_2018_0405
crossref_primary_10_1109_ACCESS_2023_3344464
crossref_primary_10_1109_TEVC_2013_2281532
crossref_primary_10_1142_S0219649220400158
crossref_primary_10_3390_s20092649
crossref_primary_10_1109_ACCESS_2022_3156659
crossref_primary_10_3109_21678421_2013_817585
crossref_primary_10_1007_s00521_019_04069_0
crossref_primary_10_1109_ACCESS_2021_3050524
crossref_primary_10_4018_IJSI_315655
crossref_primary_10_1016_j_jvoice_2024_04_020
crossref_primary_10_1016_j_bspc_2021_102604
crossref_primary_10_1016_j_bspc_2021_102849
crossref_primary_10_1080_02699206_2021_1979658
crossref_primary_10_1016_j_bbe_2020_01_003
crossref_primary_10_1109_ACCESS_2021_3057715
crossref_primary_10_1016_j_bbe_2019_05_005
crossref_primary_10_3390_app10051827
crossref_primary_10_3390_s22218486
crossref_primary_10_2196_64624
crossref_primary_10_2139_ssrn_4617895
crossref_primary_10_1044_2024_JSLHR_24_00157
crossref_primary_10_32604_cmc_2021_016489
crossref_primary_10_1016_j_neucom_2016_06_092
crossref_primary_10_1044_2018_JSLHR_S_17_0262
crossref_primary_10_1016_j_heliyon_2023_e21175
crossref_primary_10_1186_s12938_016_0242_6
crossref_primary_10_1007_s00702_022_02540_2
crossref_primary_10_1007_s42600_023_00283_x
crossref_primary_10_1016_j_cmpb_2013_05_029
crossref_primary_10_1016_j_neuri_2022_100064
crossref_primary_10_1016_j_procs_2018_10_376
crossref_primary_10_1016_j_neucom_2023_126436
crossref_primary_10_1016_j_specom_2018_05_007
crossref_primary_10_1038_s41597_024_04186_z
crossref_primary_10_1007_s10489_022_04345_y
crossref_primary_10_1044_2023_JSLHR_23_00273
crossref_primary_10_1109_TNSRE_2021_3125314
crossref_primary_10_1186_s13010_018_0065_0
crossref_primary_10_3390_app12030991
crossref_primary_10_1016_j_ijmedinf_2018_11_008
crossref_primary_10_3233_THC_213205
crossref_primary_10_1016_j_csl_2014_03_003
crossref_primary_10_1121_1_4939739
crossref_primary_10_1016_j_engappai_2023_106700
crossref_primary_10_1016_j_procs_2018_03_007
crossref_primary_10_1186_s12883_024_04001_7
crossref_primary_10_3389_fnagi_2021_633752
crossref_primary_10_1371_journal_pone_0275721
crossref_primary_10_3389_fpsyg_2015_01750
crossref_primary_10_1016_j_cmpb_2014_01_004
crossref_primary_10_1016_j_patcog_2018_09_013
crossref_primary_10_1109_JBHI_2015_2467375
crossref_primary_10_1109_TASLP_2017_2759002
crossref_primary_10_1038_s41390_021_01779_x
crossref_primary_10_1007_s12559_017_9497_x
crossref_primary_10_3233_JAD_180037
crossref_primary_10_1007_s12559_013_9207_2
crossref_primary_10_1007_s00521_021_05741_0
crossref_primary_10_1016_j_mayocp_2023_03_007
crossref_primary_10_1109_TNSRE_2013_2293575
crossref_primary_10_2196_13611
crossref_primary_10_1016_j_artmed_2021_102162
crossref_primary_10_1016_j_compmedimag_2018_04_002
crossref_primary_10_1080_03772063_2021_1997361
crossref_primary_10_1007_s11277_021_08901_6
crossref_primary_10_1080_19488300_2015_1095256
crossref_primary_10_1016_j_bbe_2021_04_014
crossref_primary_10_1016_j_bspc_2019_101831
crossref_primary_10_3390_brainsci15030320
crossref_primary_10_1016_j_dadm_2014_11_012
crossref_primary_10_1016_j_bspc_2022_103688
crossref_primary_10_2174_1874609812666190625140311
crossref_primary_10_26634_jip_10_1_19381
crossref_primary_10_3233_JHD_190375
crossref_primary_10_1016_j_cmpb_2017_02_019
crossref_primary_10_1007_s12652_022_03825_w
crossref_primary_10_1007_s13534_023_00283_x
crossref_primary_10_1007_s13369_020_04357_1
crossref_primary_10_1016_j_specom_2023_103011
crossref_primary_10_32604_cmc_2022_020109
crossref_primary_10_1016_j_specom_2020_04_006
crossref_primary_10_1080_00222895_2023_2217100
crossref_primary_10_3390_s19153320
Cites_doi 10.1109/TASL.2006.876878
10.1109/TPAMI.2005.159
10.1007/978-3-642-13923-9_33
10.1111/j.1467-9868.2011.00771.x
10.1214/07-AOS582
10.1109/TBME.2008.2005954
10.1016/S0925-2312(03)00431-4
10.1109/TBME.2006.871883
10.1186/1471-2105-9-319
10.1044/1092-4388(2009/08-0184)
10.1145/1015330.1015352
10.1023/A:1010933404324
10.1007/s10916-009-9272-y
10.1098/rspa.1998.0193
10.1145/1961189.1961199
10.1109/ICASSP.2010.5495554
10.1155/1999/327643
10.1093/aje/kwg068
10.1016/j.euroneuro.2005.04.007
10.1016/B978-1-55860-247-2.50037-1
10.1098/rsif.2010.0456
10.1109/TNN.2010.2064787
10.1016/j.eswa.2009.06.040
10.1007/978-3-540-35488-8
10.1002/cpa.20131
10.1159/000219950
10.1109/TBME.2009.2036000
10.1109/TPAMI.2009.190
10.1016/j.bandc.2004.05.002
10.1016/S0095-4470(95)80042-5
10.1136/jnnp.73.5.529
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TBME.2012.2183367
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Applied Sciences
EISSN 1558-2531
EndPage 1271
ExternalDocumentID 22249592
25862144
10_1109_TBME_2012_2183367
6126094
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 090651
– fundername: Wellcome Trust
  grantid: WT090651MF
– fundername: NIDCD NIH HHS
  grantid: R01 DC1150
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c394t-9c686588710a9ee3eced0fdcf3e4b38cd3e11fb6835c0ebf598623ab1e18f83f3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Jul 10 18:39:37 EDT 2025
Thu Apr 03 07:02:35 EDT 2025
Mon Jul 21 09:12:49 EDT 2025
Tue Jul 01 02:15:45 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Wed Aug 27 02:53:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Nervous system diseases
Automatic classification
support vector machines (SVM)
Decision support system
High precision
Parkinson's disease (PD)
feature selection (FS)
Parkinson disease
Support vector machine
Signal classification
Decision support tool
Cerebral disorder
random forests (RF)
Algorithm performance
Central nervous system disease
Signal processing
Degenerative disease
nonlinear speech signal processing
Non linear processing
Speech processing
Extrapyramidal syndrome
Biomedical engineering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-9c686588710a9ee3eced0fdcf3e4b38cd3e11fb6835c0ebf598623ab1e18f83f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://publications.aston.ac.uk/id/eprint/18329/1/Novel_speech_signal_processing_algorithms.pdf
PMID 22249592
PQID 1009809807
PQPubID 23479
PageCount 8
ParticipantIDs ieee_primary_6126094
proquest_miscellaneous_1009809807
pubmed_primary_22249592
crossref_primary_10_1109_TBME_2012_2183367
pascalfrancis_primary_25862144
crossref_citationtrail_10_1109_TBME_2012_2183367
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref35
ref34
ref12
ref37
ref31
ref30
rajput (ref1) 2007
ref11
ref32
ref10
titze (ref15) 2000
ref2
ref39
ref38
tsanas (ref33) 2011
ref16
tsanas (ref13) 2010
shahbaba (ref40) 2009; 10
hastie (ref24) 2009
guyon (ref25) 2006
baken (ref14) 2000
ref26
ref20
ref42
ref41
ref22
ref21
(ref36) 0
naylor (ref19) 2007; 15
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
sun (ref29) 2010; 32
(ref23) 0
References_xml – volume: 15
  start-page: 34
  year: 2007
  ident: ref19
  article-title: Estimation of glottal closure instants in voiced speech using the DYPSA algorithm
  publication-title: IEEE Trans Speech Audio Process
  doi: 10.1109/TASL.2006.876878
– volume: 10
  start-page: 1829
  year: 2009
  ident: ref40
  article-title: Nonlinear models using Dirichlet process mixtures
  publication-title: J Mach Learn Res
– ident: ref27
  doi: 10.1109/TPAMI.2005.159
– year: 2000
  ident: ref14
  publication-title: Clinical Measurement of Speech and Voice
– ident: ref6
  doi: 10.1007/978-3-642-13923-9_33
– ident: ref26
  doi: 10.1111/j.1467-9868.2011.00771.x
– start-page: 169172
  year: 2011
  ident: ref33
  article-title: Robust parsimonious selection of dysphonia measures for telemonitoring of Parkinson's disease symptom severity
  publication-title: Proc 7th Int Workshop Models Anal Vocal Emissions Biomed Appl (MAVEBA)
– ident: ref31
  doi: 10.1214/07-AOS582
– ident: ref5
  doi: 10.1109/TBME.2008.2005954
– ident: ref41
  doi: 10.1016/S0925-2312(03)00431-4
– year: 0
  ident: ref23
– ident: ref21
  doi: 10.1109/TBME.2006.871883
– ident: ref42
  doi: 10.1186/1471-2105-9-319
– ident: ref7
  doi: 10.1044/1092-4388(2009/08-0184)
– ident: ref32
  doi: 10.1145/1015330.1015352
– ident: ref34
  doi: 10.1023/A:1010933404324
– ident: ref38
  doi: 10.1007/s10916-009-9272-y
– year: 2007
  ident: ref1
  publication-title: Handbook of Parkinson's Disease
– ident: ref20
  doi: 10.1098/rspa.1998.0193
– ident: ref35
  doi: 10.1145/1961189.1961199
– ident: ref12
  doi: 10.1109/ICASSP.2010.5495554
– ident: ref8
  doi: 10.1155/1999/327643
– ident: ref4
  doi: 10.1093/aje/kwg068
– ident: ref2
  doi: 10.1016/j.euroneuro.2005.04.007
– ident: ref28
  doi: 10.1016/B978-1-55860-247-2.50037-1
– ident: ref11
  doi: 10.1098/rsif.2010.0456
– year: 2009
  ident: ref24
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref39
  doi: 10.1109/TNN.2010.2064787
– ident: ref37
  doi: 10.1016/j.eswa.2009.06.040
– year: 0
  ident: ref36
– year: 2006
  ident: ref25
  publication-title: Feature Extraction Foundations and Applications
  doi: 10.1007/978-3-540-35488-8
– ident: ref30
  doi: 10.1002/cpa.20131
– ident: ref22
  doi: 10.1159/000219950
– ident: ref10
  doi: 10.1109/TBME.2009.2036000
– year: 2000
  ident: ref15
  publication-title: Principles of Voice Production
– volume: 32
  start-page: 1610
  year: 2010
  ident: ref29
  article-title: Local learning based feature selection for high dimensional data analysis
  publication-title: IEEE Pattern Analysis and Machine
  doi: 10.1109/TPAMI.2009.190
– start-page: 457
  year: 2010
  ident: ref13
  article-title: New nonlinear markers and insights into speech signal degradation for effective tracking of Parkinson's disease symptom severity
  publication-title: Proc Int Symp Nonlinear Theory Appl
– ident: ref9
  doi: 10.1016/j.bandc.2004.05.002
– ident: ref16
  doi: 10.1016/S0095-4470(95)80042-5
– ident: ref3
  doi: 10.1136/jnnp.73.5.529
SSID ssj0014846
Score 2.5749478
Snippet There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1264
SubjectTerms Aged
Aged, 80 and over
Applied sciences
Biological and medical sciences
Case-Control Studies
Classification algorithms
Decision support tool
Decision Trees
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Dysphonia - classification
Dysphonia - physiopathology
Entropy
Exact sciences and technology
feature selection (FS)
Female
Frequency measurement
Humans
Information, signal and communications theory
Male
Medical sciences
Mel frequency cepstral coefficient
Middle Aged
Nervous system (semeiology, syndromes)
Nervous system as a whole
Neurology
Noise
Noise measurement
Nonlinear Dynamics
nonlinear speech signal processing
Parkinson Disease - classification
Parkinson Disease - diagnosis
Parkinson Disease - physiopathology
Parkinson's disease (PD)
random forests (RF)
Signal processing
Signal Processing, Computer-Assisted
Speech
Speech processing
Support Vector Machine
support vector machines (SVM)
Telecommunications and information theory
Title Novel Speech Signal Processing Algorithms for High-Accuracy Classification of Parkinson's Disease
URI https://ieeexplore.ieee.org/document/6126094
https://www.ncbi.nlm.nih.gov/pubmed/22249592
https://www.proquest.com/docview/1009809807
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_aPog-tNr6cVXLCoIg5rr57O7jqS1FuL60hb6F3c1sWzwv5S4p6F_fmU0uWlER8hDIbrKbmTC_X-YL4C2axBxUsY-KrPJEUFQVWcyrSCVIgJkQRR6aTUxPiuPz7MtFfrEGH4ZcGEQMwWc45tPgy69q1_Kvsn2yxgXRkXVYJ-LW5WoNHoNMdUk5MqYPONFZ78GMpd4_-zg95CCuZMx4IC248R6ZRaIGOrlnjkJ_FY6ONEt6Qb7rbPF36BlM0NEWTFeL7yJPvo7bxo7dj9_qOv7v7h7DZo9FxaRTniewhvNtePRLhcJteDDtfe87YE7qW5yJ0xtEdyVOry95bp9nQGPFZHZZL66bq29LQUBYcABJNHGuXRj3XYTemxyVFBRB1F5wunXIPHu3FJ87L9FTOD86PPt0HPUNGiKX6qyJtCsUIRjiXNJoxBQdVtJXzqeY2VS5KsU49rYglOckWs-14JPU2Bhj5VXq02ewMa_n-AJEYaXL0UinreeCOVY5X6EzxskstlqNQK7kVLq-ejk30ZiVgcVIXbKUS5Zy2Ut5BO-HKTdd6Y5_Dd5hiQwDe2GMYO-eMgzXk5y2QmR0BG9W2lHSh8neFjPHul1yMWit-KB7P-_U5ufsXvt2__zUl_CQ19bFVb6CjWbR4mvCPo3dC0p_B4OG_lc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIvE48GihhEdZJBASktP1-oH3wCHQViltcmkq9eburmfbqiGuYhtUfgt_hf_GrO0YioBbJaQcLGXXr_3s-cbzzQzAS1RCvc1868VhZslBSTJPY5R5iUAizMQoorrZxGgcDw_Cj4fR4RJ863JhELEWn2Hfbdax_Cw3lftUtkHWOCZ3pJVQ7uLFF3LQinc7m7Sar4TY3pp8GHptDwHPBDIsPWnihIwsuQVcScQADWbcZsYGGOogMVmAvm91TETEcNTWlSsXgdI--olNAhvQfq_BdeIZkWiyw7oYRZg0aUDcp1eGkGEbM_W53Ji8H2052ZjoOwYSxK7VHxlickakuGQA644uTo-pCloS2_TS-DvZrY3e9l34vrhdjdblrF-Vum--_lZJ8n-9n_fgTsu22aB5PO7DEs5W4PYvNRhX4MaoVResghrnn3HK9s8RzQnbPz12c9tMChrLBtPjfH5annwqGFF95iQy3sCYaq7MBau7izrdVQ11llvmEsrr3LrXBdts4mAP4OBKLvchLM_yGT4CFmtuIlTcSG1dSSCdGJuhUcrw0Ncy6QFf4CI1bX121yZkmtZ-GpepQ1XqUJW2qOrBm27KeVOc5F-DVx0CuoHt4vdg_RL4uv9FRJdC7nYPXizQmNKrx8WT1AzzqnDlrmXifrTvtQamP2e3aH_856M-h5vDyWgv3dsZ7z6BW-48GxXpU1gu5xU-I6ZX6vX6gWNwdNWI_AHWa14c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Speech+Signal+Processing+Algorithms+for+High-Accuracy+Classification+of+Parkinson%27s+Disease&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=TSANAS%2C+Athanasios&rft.au=LITTLE%2C+Max+A&rft.au=MCSHARRY%2C+Patrick+E&rft.au=SPIELMAN%2C+Jennifer&rft.date=2012-05-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0018-9294&rft.volume=59&rft.issue=5&rft.spage=1264&rft.epage=1271&rft_id=info:doi/10.1109%2FTBME.2012.2183367&rft.externalDBID=n%2Fa&rft.externalDocID=25862144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon