Novel Speech Signal Processing Algorithms for High-Accuracy Classification of Parkinson's Disease
There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this pap...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 59; no. 5; pp. 1264 - 1271 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.05.2012
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD. |
---|---|
AbstractList | There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD. There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD.There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD. |
Author | McSharry, Patrick E. Ramig, Lorraine O. Little, Max A. Tsanas, Athanasios Spielman, Jennifer |
Author_xml | – sequence: 1 givenname: Athanasios surname: Tsanas fullname: Tsanas, Athanasios email: tsanas@maths.ox.ac.uk organization: Oxford Centre for Industrial and Applied Mathematics (OCIAM), Mathematical Institute, University of Oxford, Oxford , U.K – sequence: 2 givenname: Max A. surname: Little fullname: Little, Max A. email: maxl@mit.edu organization: Media Lab, Massachusetts Institute of Technology, Cambridge, USA – sequence: 3 givenname: Patrick E. surname: McSharry fullname: McSharry, Patrick E. email: patrick@mcsharry.net organization: Smith School of Enterprise and the Environment, University of Oxford, Oxford, U.K – sequence: 4 givenname: Jennifer surname: Spielman fullname: Spielman, Jennifer email: Jennifer.Spielman@Colorado.edu organization: Department of Speech, Language, and Hearing Science, University of Colorado, Boulder, USA – sequence: 5 givenname: Lorraine O. surname: Ramig fullname: Ramig, Lorraine O. email: Lorraine.Ramig@colorado.edu organization: Department of Speech, Language, and Hearing Science, University of Colorado, Boulder, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25862144$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22249592$$D View this record in MEDLINE/PubMed |
BookMark | eNp90VFrUzEUB_Agk62b-wAyGHkZ-nJrTpJ7mzx2dTph6mDz-ZKbnrTZ0qRLboV9e29tneCDEAiB3z8Hzv-YHMQUkZC3wMYATH-4v_x6NeYM-JiDEqKZvCIjqGtV8VrAARkxBqrSXMsjclzKw_CUSjaH5IhzLnWt-YiYb-knBnq3RrRLeucX0QR6m5PFUnxc0GlYpOz75apQlzK99otlNbV2k419prNgBuW8Nb1PkSZHb01-9LGk-K7Qj76gKfiGvHYmFDzd3yfkx6er-9l1dfP985fZ9KayQsu-0rZRTa3UBJjRiAItzpmbWydQdkLZuUAA1zVK1JZh52qtGi5MBwjKKeHECXm_-3ed09MGS9-ufLEYgomYNqUFxrTanslAz_d0061w3q6zX5n83P5ZywAu9sAUa4LLJlpf_rp6mA1SDg52zuZUSkb3QoC124rabUXttqJ2X9GQmfyTsb7_vcA-Gx_-mzzbJT0ivkxqgDdMS_EL_j2d7w |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1007_s11517_024_03139_3 crossref_primary_10_1016_j_bspc_2023_105087 crossref_primary_10_1007_s00521_022_07046_2 crossref_primary_10_1021_acschemneuro_8b00520 crossref_primary_10_1016_j_bspc_2014_07_006 crossref_primary_10_1108_IJICC_07_2021_0138 crossref_primary_10_1016_j_jbi_2019_103362 crossref_primary_10_1007_s00521_020_05014_2 crossref_primary_10_1007_s10916_017_0877_2 crossref_primary_10_1016_j_jvoice_2015_10_022 crossref_primary_10_3390_ijerph16101688 crossref_primary_10_1016_j_jvoice_2018_07_014 crossref_primary_10_1016_j_csl_2022_101355 crossref_primary_10_1155_2016_6837498 crossref_primary_10_1038_s41598_018_25999_0 crossref_primary_10_1007_s00779_014_0829_5 crossref_primary_10_3390_app142311085 crossref_primary_10_1121_1_4870484 crossref_primary_10_1515_bmt_2017_0148 crossref_primary_10_1016_j_schres_2012_10_005 crossref_primary_10_1371_journal_pone_0065881 crossref_primary_10_1016_j_specom_2020_12_007 crossref_primary_10_1038_s41598_024_51600_y crossref_primary_10_1016_j_bspc_2018_07_019 crossref_primary_10_1016_j_eswa_2021_115013 crossref_primary_10_1016_j_jvoice_2021_11_004 crossref_primary_10_1007_s12652_022_04342_6 crossref_primary_10_1016_j_apacoust_2020_107528 crossref_primary_10_1007_s40031_022_00851_2 crossref_primary_10_1049_htl_2017_0007 crossref_primary_10_1007_s11042_022_14042_0 crossref_primary_10_29132_ijpas_873653 crossref_primary_10_31590_ejosat_655795 crossref_primary_10_1109_ACCESS_2020_2989032 crossref_primary_10_1016_j_bbe_2020_12_009 crossref_primary_10_1016_j_bbe_2022_04_003 crossref_primary_10_1038_s41598_019_44221_3 crossref_primary_10_1016_j_bbe_2022_04_002 crossref_primary_10_3390_jpm11111090 crossref_primary_10_1109_JTEHM_2024_3375323 crossref_primary_10_1109_RBME_2020_3007816 crossref_primary_10_3390_a16110509 crossref_primary_10_1007_s00702_017_1676_0 crossref_primary_10_1007_s10772_023_10068_3 crossref_primary_10_4108_eetpht_10_5519 crossref_primary_10_1080_0954898X_2025_2453032 crossref_primary_10_1109_ACCESS_2020_3031646 crossref_primary_10_3390_diagnostics12081796 crossref_primary_10_1016_j_patrec_2019_04_005 crossref_primary_10_1109_TNSRE_2023_3321874 crossref_primary_10_3390_diagnostics11061076 crossref_primary_10_1016_j_bspc_2018_12_024 crossref_primary_10_1109_LSP_2021_3108509 crossref_primary_10_3390_diagnostics11122312 crossref_primary_10_1016_j_physa_2016_12_009 crossref_primary_10_1111_exsy_12472 crossref_primary_10_1109_ACCESS_2019_2906350 crossref_primary_10_1007_s13369_020_05080_7 crossref_primary_10_2196_26608 crossref_primary_10_1109_TASLP_2021_3078364 crossref_primary_10_1615_CritRevBiomedEng_2022041442 crossref_primary_10_1016_j_irbm_2018_10_016 crossref_primary_10_1016_j_patter_2022_100471 crossref_primary_10_1016_j_bspc_2018_08_029 crossref_primary_10_3233_JIFS_230183 crossref_primary_10_1109_ACCESS_2022_3203973 crossref_primary_10_1007_s00702_014_1229_8 crossref_primary_10_1097_NR9_0000000000000065 crossref_primary_10_3233_JPD_181389 crossref_primary_10_1016_j_micpro_2022_104547 crossref_primary_10_1007_s42979_022_01123_y crossref_primary_10_1371_journal_pone_0217388 crossref_primary_10_3390_languages6040174 crossref_primary_10_1038_s41598_020_78418_8 crossref_primary_10_1007_s11356_018_2147_3 crossref_primary_10_1007_s11760_023_02826_2 crossref_primary_10_1016_j_bspc_2021_102452 crossref_primary_10_3233_JPD_230002 crossref_primary_10_1007_s42979_020_00422_6 crossref_primary_10_1109_ICJECE_2021_3075373 crossref_primary_10_3389_fnins_2021_754058 crossref_primary_10_1007_s11517_020_02250_5 crossref_primary_10_1016_j_bspc_2020_102050 crossref_primary_10_2196_mhealth_4538 crossref_primary_10_1007_s10772_018_09588_0 crossref_primary_10_1002_mds_28751 crossref_primary_10_1109_ACCESS_2024_3498836 crossref_primary_10_1142_S2424922X18400077 crossref_primary_10_1109_JTEHM_2019_2940900 crossref_primary_10_4108_eetpht_10_5568 crossref_primary_10_1186_s12938_021_00951_y crossref_primary_10_3390_diagnostics11101892 crossref_primary_10_1016_j_neucom_2020_03_058 crossref_primary_10_1016_j_engappai_2018_09_018 crossref_primary_10_1016_j_compbiomed_2024_109566 crossref_primary_10_1109_ACCESS_2021_3124765 crossref_primary_10_1016_j_medengphy_2014_12_005 crossref_primary_10_1038_s41746_019_0084_2 crossref_primary_10_1007_s00521_021_06626_y crossref_primary_10_1109_ACCESS_2018_2851382 crossref_primary_10_1007_s11517_023_02944_6 crossref_primary_10_1007_s13198_023_01999_w crossref_primary_10_35596_1729_7648_2022_20_1_73_82 crossref_primary_10_1016_j_csl_2021_101321 crossref_primary_10_1109_ACCESS_2024_3393243 crossref_primary_10_1007_s00371_020_01859_9 crossref_primary_10_1088_1742_6596_1631_1_012168 crossref_primary_10_1016_j_cmpb_2017_11_010 crossref_primary_10_3390_bios10010001 crossref_primary_10_1007_s10772_017_9473_6 crossref_primary_10_1016_j_eswa_2019_01_028 crossref_primary_10_1109_TASLP_2021_3097215 crossref_primary_10_3390_s23020857 crossref_primary_10_1016_j_matpr_2020_10_120 crossref_primary_10_1109_TNSRE_2014_2359997 crossref_primary_10_1109_ACCESS_2019_2936564 crossref_primary_10_1038_s41531_020_0113_5 crossref_primary_10_3390_s150921710 crossref_primary_10_1016_j_bspc_2022_104013 crossref_primary_10_1016_j_eswa_2023_119650 crossref_primary_10_1121_1_5100272 crossref_primary_10_1016_j_specom_2016_11_005 crossref_primary_10_1109_TASLP_2020_2985066 crossref_primary_10_3233_THC_220386 crossref_primary_10_3390_s23031069 crossref_primary_10_3390_math9243172 crossref_primary_10_1016_j_eswa_2019_06_052 crossref_primary_10_1016_j_forsciint_2016_11_020 crossref_primary_10_1016_j_csl_2021_101216 crossref_primary_10_1109_JPROC_2023_3276209 crossref_primary_10_2196_jmir_6678 crossref_primary_10_1016_j_csl_2022_101411 crossref_primary_10_2196_46105 crossref_primary_10_1080_23279095_2024_2364229 crossref_primary_10_1109_JSTSP_2019_2949912 crossref_primary_10_2196_14306 crossref_primary_10_1007_s10772_017_9485_2 crossref_primary_10_1016_j_eswa_2015_10_034 crossref_primary_10_1088_1757_899X_318_1_012039 crossref_primary_10_1109_TNSRE_2018_2851787 crossref_primary_10_1371_journal_pone_0182428 crossref_primary_10_3390_brainsci13040543 crossref_primary_10_3917_cerpsy_137_0046 crossref_primary_10_1109_TASLP_2014_2329734 crossref_primary_10_1016_j_ifacol_2021_10_286 crossref_primary_10_3389_fninf_2021_578369 crossref_primary_10_1159_000525514 crossref_primary_10_3233_JPD_202476 crossref_primary_10_1016_j_bspc_2020_102165 crossref_primary_10_1007_s00221_023_06653_2 crossref_primary_10_3390_s22155491 crossref_primary_10_1109_JPROC_2021_3126493 crossref_primary_10_1007_s11128_024_04588_3 crossref_primary_10_3390_s130505406 crossref_primary_10_1007_s00521_016_2756_z crossref_primary_10_1038_s41531_025_00913_4 crossref_primary_10_1016_j_cmpb_2014_08_007 crossref_primary_10_1371_journal_pone_0113412 crossref_primary_10_3233_THC_181306 crossref_primary_10_1038_s41598_023_49352_2 crossref_primary_10_1109_ACCESS_2021_3129847 crossref_primary_10_1007_s00500_023_08191_z crossref_primary_10_3390_healthcare10102070 crossref_primary_10_1038_d41586_020_02732_4 crossref_primary_10_1109_ACCESS_2020_3005614 crossref_primary_10_1016_j_asoc_2018_10_022 crossref_primary_10_1109_JBHI_2018_2866873 crossref_primary_10_1142_S0218213024500143 crossref_primary_10_1016_j_matpr_2021_03_343 crossref_primary_10_1016_j_engappai_2023_106097 crossref_primary_10_1007_s13755_020_00104_w crossref_primary_10_1016_j_bbe_2013_06_001 crossref_primary_10_1109_ACCESS_2025_3540600 crossref_primary_10_1121_1_5053681 crossref_primary_10_1109_JBHI_2013_2245674 crossref_primary_10_1080_24725579_2018_1496495 crossref_primary_10_56082_annalsarsciinfo_2023_1_2_46 crossref_primary_10_1002_mds_26371 crossref_primary_10_1109_TBME_2021_3116935 crossref_primary_10_3389_fbioe_2015_00104 crossref_primary_10_1007_s11517_020_02260_3 crossref_primary_10_1016_j_bspc_2016_09_004 crossref_primary_10_3233_JPD_140526 crossref_primary_10_1016_j_cmpb_2022_107133 crossref_primary_10_3390_bios12070502 crossref_primary_10_3390_s21082582 crossref_primary_10_1016_j_heliyon_2021_e08134 crossref_primary_10_1080_14737175_2019_1649142 crossref_primary_10_1007_s00034_022_02047_x crossref_primary_10_1007_s42979_020_0099_4 crossref_primary_10_3390_diagnostics12081980 crossref_primary_10_1016_j_mehy_2019_109483 crossref_primary_10_4015_S1016237218500254 crossref_primary_10_1016_j_apacoust_2023_109476 crossref_primary_10_1007_s12559_012_9157_0 crossref_primary_10_1002_cpe_6675 crossref_primary_10_1088_1361_6579_aabf64 crossref_primary_10_1109_JBHI_2019_2961748 crossref_primary_10_1109_TASLP_2023_3260709 crossref_primary_10_1002_advs_202203565 crossref_primary_10_1038_s41598_020_80394_y crossref_primary_10_3390_bioengineering10111316 crossref_primary_10_3390_s23115196 crossref_primary_10_1016_j_bspc_2020_102350 crossref_primary_10_3390_jpm12010055 crossref_primary_10_1016_j_ijmedinf_2018_09_008 crossref_primary_10_1109_ACCESS_2024_3402999 crossref_primary_10_1109_TBME_2017_2664802 crossref_primary_10_1089_tmj_2018_0271 crossref_primary_10_1109_JBHI_2020_3011104 crossref_primary_10_1142_S0129065718500375 crossref_primary_10_1109_ACCESS_2021_3057382 crossref_primary_10_1007_s10772_025_10172_6 crossref_primary_10_1371_journal_pone_0185613 crossref_primary_10_1016_j_bspc_2023_105457 crossref_primary_10_2196_12286 crossref_primary_10_1038_s41598_022_13865_z crossref_primary_10_1007_s11042_020_09424_1 crossref_primary_10_4103_abr_abr_254_21 crossref_primary_10_1109_LSP_2020_3044503 crossref_primary_10_3233_JIFS_179714 crossref_primary_10_1016_j_bspc_2021_102415 crossref_primary_10_1016_j_neucom_2015_07_138 crossref_primary_10_1136_bmjopen_2023_077766 crossref_primary_10_1016_j_bspc_2021_102418 crossref_primary_10_1016_j_cmpb_2016_08_005 crossref_primary_10_1007_s10772_019_09647_0 crossref_primary_10_1080_03772063_2024_2409677 crossref_primary_10_21015_vtse_v9i3_652 crossref_primary_10_3233_JAD_150520 crossref_primary_10_1212_WNL_0000000000006366 crossref_primary_10_1098_rsif_2018_0405 crossref_primary_10_1109_ACCESS_2023_3344464 crossref_primary_10_1109_TEVC_2013_2281532 crossref_primary_10_1142_S0219649220400158 crossref_primary_10_3390_s20092649 crossref_primary_10_1109_ACCESS_2022_3156659 crossref_primary_10_3109_21678421_2013_817585 crossref_primary_10_1007_s00521_019_04069_0 crossref_primary_10_1109_ACCESS_2021_3050524 crossref_primary_10_4018_IJSI_315655 crossref_primary_10_1016_j_jvoice_2024_04_020 crossref_primary_10_1016_j_bspc_2021_102604 crossref_primary_10_1016_j_bspc_2021_102849 crossref_primary_10_1080_02699206_2021_1979658 crossref_primary_10_1016_j_bbe_2020_01_003 crossref_primary_10_1109_ACCESS_2021_3057715 crossref_primary_10_1016_j_bbe_2019_05_005 crossref_primary_10_3390_app10051827 crossref_primary_10_3390_s22218486 crossref_primary_10_2196_64624 crossref_primary_10_2139_ssrn_4617895 crossref_primary_10_1044_2024_JSLHR_24_00157 crossref_primary_10_32604_cmc_2021_016489 crossref_primary_10_1016_j_neucom_2016_06_092 crossref_primary_10_1044_2018_JSLHR_S_17_0262 crossref_primary_10_1016_j_heliyon_2023_e21175 crossref_primary_10_1186_s12938_016_0242_6 crossref_primary_10_1007_s00702_022_02540_2 crossref_primary_10_1007_s42600_023_00283_x crossref_primary_10_1016_j_cmpb_2013_05_029 crossref_primary_10_1016_j_neuri_2022_100064 crossref_primary_10_1016_j_procs_2018_10_376 crossref_primary_10_1016_j_neucom_2023_126436 crossref_primary_10_1016_j_specom_2018_05_007 crossref_primary_10_1038_s41597_024_04186_z crossref_primary_10_1007_s10489_022_04345_y crossref_primary_10_1044_2023_JSLHR_23_00273 crossref_primary_10_1109_TNSRE_2021_3125314 crossref_primary_10_1186_s13010_018_0065_0 crossref_primary_10_3390_app12030991 crossref_primary_10_1016_j_ijmedinf_2018_11_008 crossref_primary_10_3233_THC_213205 crossref_primary_10_1016_j_csl_2014_03_003 crossref_primary_10_1121_1_4939739 crossref_primary_10_1016_j_engappai_2023_106700 crossref_primary_10_1016_j_procs_2018_03_007 crossref_primary_10_1186_s12883_024_04001_7 crossref_primary_10_3389_fnagi_2021_633752 crossref_primary_10_1371_journal_pone_0275721 crossref_primary_10_3389_fpsyg_2015_01750 crossref_primary_10_1016_j_cmpb_2014_01_004 crossref_primary_10_1016_j_patcog_2018_09_013 crossref_primary_10_1109_JBHI_2015_2467375 crossref_primary_10_1109_TASLP_2017_2759002 crossref_primary_10_1038_s41390_021_01779_x crossref_primary_10_1007_s12559_017_9497_x crossref_primary_10_3233_JAD_180037 crossref_primary_10_1007_s12559_013_9207_2 crossref_primary_10_1007_s00521_021_05741_0 crossref_primary_10_1016_j_mayocp_2023_03_007 crossref_primary_10_1109_TNSRE_2013_2293575 crossref_primary_10_2196_13611 crossref_primary_10_1016_j_artmed_2021_102162 crossref_primary_10_1016_j_compmedimag_2018_04_002 crossref_primary_10_1080_03772063_2021_1997361 crossref_primary_10_1007_s11277_021_08901_6 crossref_primary_10_1080_19488300_2015_1095256 crossref_primary_10_1016_j_bbe_2021_04_014 crossref_primary_10_1016_j_bspc_2019_101831 crossref_primary_10_3390_brainsci15030320 crossref_primary_10_1016_j_dadm_2014_11_012 crossref_primary_10_1016_j_bspc_2022_103688 crossref_primary_10_2174_1874609812666190625140311 crossref_primary_10_26634_jip_10_1_19381 crossref_primary_10_3233_JHD_190375 crossref_primary_10_1016_j_cmpb_2017_02_019 crossref_primary_10_1007_s12652_022_03825_w crossref_primary_10_1007_s13534_023_00283_x crossref_primary_10_1007_s13369_020_04357_1 crossref_primary_10_1016_j_specom_2023_103011 crossref_primary_10_32604_cmc_2022_020109 crossref_primary_10_1016_j_specom_2020_04_006 crossref_primary_10_1080_00222895_2023_2217100 crossref_primary_10_3390_s19153320 |
Cites_doi | 10.1109/TASL.2006.876878 10.1109/TPAMI.2005.159 10.1007/978-3-642-13923-9_33 10.1111/j.1467-9868.2011.00771.x 10.1214/07-AOS582 10.1109/TBME.2008.2005954 10.1016/S0925-2312(03)00431-4 10.1109/TBME.2006.871883 10.1186/1471-2105-9-319 10.1044/1092-4388(2009/08-0184) 10.1145/1015330.1015352 10.1023/A:1010933404324 10.1007/s10916-009-9272-y 10.1098/rspa.1998.0193 10.1145/1961189.1961199 10.1109/ICASSP.2010.5495554 10.1155/1999/327643 10.1093/aje/kwg068 10.1016/j.euroneuro.2005.04.007 10.1016/B978-1-55860-247-2.50037-1 10.1098/rsif.2010.0456 10.1109/TNN.2010.2064787 10.1016/j.eswa.2009.06.040 10.1007/978-3-540-35488-8 10.1002/cpa.20131 10.1159/000219950 10.1109/TBME.2009.2036000 10.1109/TPAMI.2009.190 10.1016/j.bandc.2004.05.002 10.1016/S0095-4470(95)80042-5 10.1136/jnnp.73.5.529 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/TBME.2012.2183367 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Applied Sciences |
EISSN | 1558-2531 |
EndPage | 1271 |
ExternalDocumentID | 22249592 25862144 10_1109_TBME_2012_2183367 6126094 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 090651 – fundername: Wellcome Trust grantid: WT090651MF – fundername: NIDCD NIH HHS grantid: R01 DC1150 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c394t-9c686588710a9ee3eced0fdcf3e4b38cd3e11fb6835c0ebf598623ab1e18f83f3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Jul 10 18:39:37 EDT 2025 Thu Apr 03 07:02:35 EDT 2025 Mon Jul 21 09:12:49 EDT 2025 Tue Jul 01 02:15:45 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Wed Aug 27 02:53:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Nervous system diseases Automatic classification support vector machines (SVM) Decision support system High precision Parkinson's disease (PD) feature selection (FS) Parkinson disease Support vector machine Signal classification Decision support tool Cerebral disorder random forests (RF) Algorithm performance Central nervous system disease Signal processing Degenerative disease nonlinear speech signal processing Non linear processing Speech processing Extrapyramidal syndrome Biomedical engineering |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-9c686588710a9ee3eced0fdcf3e4b38cd3e11fb6835c0ebf598623ab1e18f83f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://publications.aston.ac.uk/id/eprint/18329/1/Novel_speech_signal_processing_algorithms.pdf |
PMID | 22249592 |
PQID | 1009809807 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6126094 proquest_miscellaneous_1009809807 pubmed_primary_22249592 crossref_primary_10_1109_TBME_2012_2183367 pascalfrancis_primary_25862144 crossref_citationtrail_10_1109_TBME_2012_2183367 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-01 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2012 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref35 ref34 ref12 ref37 ref31 ref30 rajput (ref1) 2007 ref11 ref32 ref10 titze (ref15) 2000 ref2 ref39 ref38 tsanas (ref33) 2011 ref16 tsanas (ref13) 2010 shahbaba (ref40) 2009; 10 hastie (ref24) 2009 guyon (ref25) 2006 baken (ref14) 2000 ref26 ref20 ref42 ref41 ref22 ref21 (ref36) 0 naylor (ref19) 2007; 15 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 sun (ref29) 2010; 32 (ref23) 0 |
References_xml | – volume: 15 start-page: 34 year: 2007 ident: ref19 article-title: Estimation of glottal closure instants in voiced speech using the DYPSA algorithm publication-title: IEEE Trans Speech Audio Process doi: 10.1109/TASL.2006.876878 – volume: 10 start-page: 1829 year: 2009 ident: ref40 article-title: Nonlinear models using Dirichlet process mixtures publication-title: J Mach Learn Res – ident: ref27 doi: 10.1109/TPAMI.2005.159 – year: 2000 ident: ref14 publication-title: Clinical Measurement of Speech and Voice – ident: ref6 doi: 10.1007/978-3-642-13923-9_33 – ident: ref26 doi: 10.1111/j.1467-9868.2011.00771.x – start-page: 169172 year: 2011 ident: ref33 article-title: Robust parsimonious selection of dysphonia measures for telemonitoring of Parkinson's disease symptom severity publication-title: Proc 7th Int Workshop Models Anal Vocal Emissions Biomed Appl (MAVEBA) – ident: ref31 doi: 10.1214/07-AOS582 – ident: ref5 doi: 10.1109/TBME.2008.2005954 – ident: ref41 doi: 10.1016/S0925-2312(03)00431-4 – year: 0 ident: ref23 – ident: ref21 doi: 10.1109/TBME.2006.871883 – ident: ref42 doi: 10.1186/1471-2105-9-319 – ident: ref7 doi: 10.1044/1092-4388(2009/08-0184) – ident: ref32 doi: 10.1145/1015330.1015352 – ident: ref34 doi: 10.1023/A:1010933404324 – ident: ref38 doi: 10.1007/s10916-009-9272-y – year: 2007 ident: ref1 publication-title: Handbook of Parkinson's Disease – ident: ref20 doi: 10.1098/rspa.1998.0193 – ident: ref35 doi: 10.1145/1961189.1961199 – ident: ref12 doi: 10.1109/ICASSP.2010.5495554 – ident: ref8 doi: 10.1155/1999/327643 – ident: ref4 doi: 10.1093/aje/kwg068 – ident: ref2 doi: 10.1016/j.euroneuro.2005.04.007 – ident: ref28 doi: 10.1016/B978-1-55860-247-2.50037-1 – ident: ref11 doi: 10.1098/rsif.2010.0456 – year: 2009 ident: ref24 publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction – ident: ref39 doi: 10.1109/TNN.2010.2064787 – ident: ref37 doi: 10.1016/j.eswa.2009.06.040 – year: 0 ident: ref36 – year: 2006 ident: ref25 publication-title: Feature Extraction Foundations and Applications doi: 10.1007/978-3-540-35488-8 – ident: ref30 doi: 10.1002/cpa.20131 – ident: ref22 doi: 10.1159/000219950 – ident: ref10 doi: 10.1109/TBME.2009.2036000 – year: 2000 ident: ref15 publication-title: Principles of Voice Production – volume: 32 start-page: 1610 year: 2010 ident: ref29 article-title: Local learning based feature selection for high dimensional data analysis publication-title: IEEE Pattern Analysis and Machine doi: 10.1109/TPAMI.2009.190 – start-page: 457 year: 2010 ident: ref13 article-title: New nonlinear markers and insights into speech signal degradation for effective tracking of Parkinson's disease symptom severity publication-title: Proc Int Symp Nonlinear Theory Appl – ident: ref9 doi: 10.1016/j.bandc.2004.05.002 – ident: ref16 doi: 10.1016/S0095-4470(95)80042-5 – ident: ref3 doi: 10.1136/jnnp.73.5.529 |
SSID | ssj0014846 |
Score | 2.5749478 |
Snippet | There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1264 |
SubjectTerms | Aged Aged, 80 and over Applied sciences Biological and medical sciences Case-Control Studies Classification algorithms Decision support tool Decision Trees Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Dysphonia - classification Dysphonia - physiopathology Entropy Exact sciences and technology feature selection (FS) Female Frequency measurement Humans Information, signal and communications theory Male Medical sciences Mel frequency cepstral coefficient Middle Aged Nervous system (semeiology, syndromes) Nervous system as a whole Neurology Noise Noise measurement Nonlinear Dynamics nonlinear speech signal processing Parkinson Disease - classification Parkinson Disease - diagnosis Parkinson Disease - physiopathology Parkinson's disease (PD) random forests (RF) Signal processing Signal Processing, Computer-Assisted Speech Speech processing Support Vector Machine support vector machines (SVM) Telecommunications and information theory |
Title | Novel Speech Signal Processing Algorithms for High-Accuracy Classification of Parkinson's Disease |
URI | https://ieeexplore.ieee.org/document/6126094 https://www.ncbi.nlm.nih.gov/pubmed/22249592 https://www.proquest.com/docview/1009809807 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_aPog-tNr6cVXLCoIg5rr57O7jqS1FuL60hb6F3c1sWzwv5S4p6F_fmU0uWlER8hDIbrKbmTC_X-YL4C2axBxUsY-KrPJEUFQVWcyrSCVIgJkQRR6aTUxPiuPz7MtFfrEGH4ZcGEQMwWc45tPgy69q1_Kvsn2yxgXRkXVYJ-LW5WoNHoNMdUk5MqYPONFZ78GMpd4_-zg95CCuZMx4IC248R6ZRaIGOrlnjkJ_FY6ONEt6Qb7rbPF36BlM0NEWTFeL7yJPvo7bxo7dj9_qOv7v7h7DZo9FxaRTniewhvNtePRLhcJteDDtfe87YE7qW5yJ0xtEdyVOry95bp9nQGPFZHZZL66bq29LQUBYcABJNHGuXRj3XYTemxyVFBRB1F5wunXIPHu3FJ87L9FTOD86PPt0HPUNGiKX6qyJtCsUIRjiXNJoxBQdVtJXzqeY2VS5KsU49rYglOckWs-14JPU2Bhj5VXq02ewMa_n-AJEYaXL0UinreeCOVY5X6EzxskstlqNQK7kVLq-ejk30ZiVgcVIXbKUS5Zy2Ut5BO-HKTdd6Y5_Dd5hiQwDe2GMYO-eMgzXk5y2QmR0BG9W2lHSh8neFjPHul1yMWit-KB7P-_U5ufsXvt2__zUl_CQ19bFVb6CjWbR4mvCPo3dC0p_B4OG_lc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VIvE48GihhEdZJBASktP1-oH3wCHQViltcmkq9eburmfbqiGuYhtUfgt_hf_GrO0YioBbJaQcLGXXr_3s-cbzzQzAS1RCvc1868VhZslBSTJPY5R5iUAizMQoorrZxGgcDw_Cj4fR4RJ863JhELEWn2Hfbdax_Cw3lftUtkHWOCZ3pJVQ7uLFF3LQinc7m7Sar4TY3pp8GHptDwHPBDIsPWnihIwsuQVcScQADWbcZsYGGOogMVmAvm91TETEcNTWlSsXgdI--olNAhvQfq_BdeIZkWiyw7oYRZg0aUDcp1eGkGEbM_W53Ji8H2052ZjoOwYSxK7VHxlickakuGQA644uTo-pCloS2_TS-DvZrY3e9l34vrhdjdblrF-Vum--_lZJ8n-9n_fgTsu22aB5PO7DEs5W4PYvNRhX4MaoVResghrnn3HK9s8RzQnbPz12c9tMChrLBtPjfH5annwqGFF95iQy3sCYaq7MBau7izrdVQ11llvmEsrr3LrXBdts4mAP4OBKLvchLM_yGT4CFmtuIlTcSG1dSSCdGJuhUcrw0Ncy6QFf4CI1bX121yZkmtZ-GpepQ1XqUJW2qOrBm27KeVOc5F-DVx0CuoHt4vdg_RL4uv9FRJdC7nYPXizQmNKrx8WT1AzzqnDlrmXifrTvtQamP2e3aH_856M-h5vDyWgv3dsZ7z6BW-48GxXpU1gu5xU-I6ZX6vX6gWNwdNWI_AHWa14c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Speech+Signal+Processing+Algorithms+for+High-Accuracy+Classification+of+Parkinson%27s+Disease&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=TSANAS%2C+Athanasios&rft.au=LITTLE%2C+Max+A&rft.au=MCSHARRY%2C+Patrick+E&rft.au=SPIELMAN%2C+Jennifer&rft.date=2012-05-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0018-9294&rft.volume=59&rft.issue=5&rft.spage=1264&rft.epage=1271&rft_id=info:doi/10.1109%2FTBME.2012.2183367&rft.externalDBID=n%2Fa&rft.externalDocID=25862144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |