UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation
Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments:...
Saved in:
Published in | Environmental science--processes & impacts Vol. 16; no. 6; pp. 1445 - 1461 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7887 2050-7895 2050-7895 |
DOI | 10.1039/c4em00108g |
Cover
Loading…
Abstract | Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C. |
---|---|
AbstractList | Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C. Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R super(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R super(2) = 0.91), and 230 nm for the other three sample sets (respective R super(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy ( less than or equal to 263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 degree C. Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230–800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R² values between absorbance and DOC concentration were generated using 263 nm for one sample set (R² = 0.91), and 230 nm for the other three sample sets (respective R² values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250–350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C. Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C. |
Author | Evans, Chris D. Peacock, Mike Freeman, Chris Fenner, Nathalie Gough, Rachel Jones, Timothy G. Lebron, Inma |
Author_xml | – sequence: 1 givenname: Mike surname: Peacock fullname: Peacock, Mike – sequence: 2 givenname: Chris D. surname: Evans fullname: Evans, Chris D. – sequence: 3 givenname: Nathalie surname: Fenner fullname: Fenner, Nathalie – sequence: 4 givenname: Chris surname: Freeman fullname: Freeman, Chris – sequence: 5 givenname: Rachel surname: Gough fullname: Gough, Rachel – sequence: 6 givenname: Timothy G. surname: Jones fullname: Jones, Timothy G. – sequence: 7 givenname: Inma surname: Lebron fullname: Lebron, Inma |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24728590$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0l9vFCEQAHBiamytffEDGB5rk1VYll3Wt-Za_yRN-mJ93Qwwe2L2YAvc2ftE_ZrFa63GmCgvDMlvCMPMc7Lng0dCXnL2hjPRvzUNrhjjTC2fkIOaSVZ1qpd7j7Hq9slRSt9YWUpyJdtnZL9uulrJnh2Q26sv1cYlpyekoFOIGrxBmmY0OYZkwrylkCjQOYabLR1DpDNCnsBbal1KYdqgpSEuwTtDDUQdPD0-u1y8ptdr8Nnlkl9sOUwlfkdN8MlZjJBdiWjR32GDE_pl_rqTv73C4jKC3ckX5OkIU8Kjh_2QXL0__7z4WF1cfvi0OL2ojOibXPVq5Ko1DRdoNFMaGLcga2VBIe_1aKwRKMWox06zrmukskoI0VvT2a4VRhyS4_t7S73Xa0x5WLlkcCoFY1inoRZc1m2ruPon5VI0SrQNk_9Dmah5s7v11QNd6xXaYY5uBXE7_GxZASf3wJT-pIjjI-Fs-DESw6-RKJj9gY3Luw_NEdz0t5Q7S7u7sA |
CitedBy_id | crossref_primary_10_1016_j_chemgeo_2019_119448 crossref_primary_10_3390_nano12234159 crossref_primary_10_1002_lom3_10559 crossref_primary_10_3390_w13243612 crossref_primary_10_1016_j_scitotenv_2015_06_092 crossref_primary_10_1128_Spectrum_00179_21 crossref_primary_10_1002_jeq2_20392 crossref_primary_10_1111_1365_2745_12975 crossref_primary_10_1002_hyp_11352 crossref_primary_10_1016_j_scitotenv_2022_160470 crossref_primary_10_5194_bg_21_5725_2024 crossref_primary_10_3390_app10196874 crossref_primary_10_1002_hyp_13297 crossref_primary_10_1016_j_jhydrol_2021_126493 crossref_primary_10_1007_s00027_016_0471_6 crossref_primary_10_1016_j_chemosphere_2020_126216 crossref_primary_10_1016_j_jenvman_2017_07_040 crossref_primary_10_3390_catal14120844 crossref_primary_10_1016_j_scitotenv_2015_03_036 crossref_primary_10_1016_j_ecoenv_2019_109633 crossref_primary_10_1002_saj2_70010 crossref_primary_10_3390_environments11040080 crossref_primary_10_1002_rcm_9364 crossref_primary_10_1016_j_scitotenv_2020_141463 crossref_primary_10_1016_j_watres_2017_02_059 crossref_primary_10_5194_bg_14_1793_2017 crossref_primary_10_1016_j_geoderma_2023_116702 crossref_primary_10_1002_hyp_11040 crossref_primary_10_1002_eco_2100 crossref_primary_10_1007_s11783_024_1819_0 crossref_primary_10_1007_s10533_022_00925_9 crossref_primary_10_3390_environments11010019 crossref_primary_10_3390_su15032836 crossref_primary_10_1016_j_watres_2016_11_010 crossref_primary_10_5194_bg_16_2511_2019 crossref_primary_10_1016_j_limno_2017_02_007 crossref_primary_10_3390_land12122143 crossref_primary_10_1016_j_ecoleng_2017_12_026 crossref_primary_10_1080_00103624_2020_1849266 crossref_primary_10_1016_j_jhydrol_2015_04_061 crossref_primary_10_1016_j_geoderma_2024_116936 crossref_primary_10_1111_fwb_13258 crossref_primary_10_1038_s41598_017_16256_x crossref_primary_10_1016_j_cej_2021_129353 crossref_primary_10_1021_acs_est_8b03615 crossref_primary_10_1007_s11368_018_2021_4 crossref_primary_10_3389_frwa_2024_1380133 crossref_primary_10_1016_j_scitotenv_2024_176600 crossref_primary_10_3390_w13121703 crossref_primary_10_1002_saj2_20419 crossref_primary_10_1016_j_aca_2024_342871 crossref_primary_10_1016_j_jhazmat_2023_132071 crossref_primary_10_1021_acs_iecr_4c02774 crossref_primary_10_1002_hyp_13329 crossref_primary_10_3390_w14233969 crossref_primary_10_3390_f13040599 crossref_primary_10_1002_hyp_14852 crossref_primary_10_1007_s00027_018_0569_0 crossref_primary_10_1016_j_geoderma_2019_01_035 crossref_primary_10_1038_s41598_024_53362_z crossref_primary_10_3390_environments11040065 crossref_primary_10_1007_s11104_020_04434_2 crossref_primary_10_1007_s11104_025_07339_0 crossref_primary_10_2134_jeq2016_02_0062 crossref_primary_10_1016_j_soilbio_2024_109393 crossref_primary_10_1016_j_chemosphere_2021_133055 crossref_primary_10_1016_j_watres_2017_05_022 |
Cites_doi | 10.1016/j.envpol.2013.08.023 10.2136/sssaj1988.03615995005200040055x 10.1016/j.scitotenv.2010.09.009 10.1016/0043-1354(80)90085-8 10.1071/EN09090 10.1016/0048-9697(87)90478-5 10.1016/0022-1694(70)90255-6 10.1016/j.scitotenv.2006.02.010 10.1023/A:1005783812730 10.1016/S0003-2670(00)84304-4 10.4319/lo.2008.53.3.0955 10.4319/lo.1995.40.8.1381 10.1016/j.ecoleng.2012.06.027 10.3354/cr00903 10.1021/es00151a009 10.1016/S0043-1354(99)00137-2 10.1016/j.jhydrol.2011.01.035 10.2307/3565099 10.1029/2008JG000683 10.1111/j.1365-2486.2012.02794.x 10.1007/s10750-011-0733-1 10.1002/hyp.8106 10.1080/09593332008616835 10.1021/es0303485 10.1038/nature08179 10.1111/j.1365-2427.1988.tb00358.x 10.1002/j.1551-8833.2002.tb10250.x 10.1038/415861b 10.1016/0048-9697(94)90553-3 10.1016/j.scitotenv.2005.09.067 10.1038/nature06316 10.1021/es030360x 10.1021/es970547m 10.1002/j.1551-8833.1985.tb05521.x 10.1080/00288330.1987.9516230 10.1016/0304-4203(88)90043-6 10.1021/es104126f 10.1016/j.scitotenv.2012.02.028 10.1080/00288330.1987.9516262 10.1016/S0043-1354(03)00437-8 10.1680/iicep.1957.1925 10.1021/es970437f 10.1016/j.scitotenv.2011.02.036 10.1016/j.ecss.2012.06.015 10.1016/S0169-5347(00)01861-9 10.1080/00288330.1985.9516075 10.1007/s10533-009-9399-4 10.1016/S0043-1354(96)00163-7 10.1016/j.jhydrol.2012.04.048 10.1016/0304-4203(94)90004-3 10.1016/j.jhydrol.2007.09.030 10.1021/es061765v 10.1016/j.scitotenv.2012.06.048 10.1016/S0160-4120(00)00107-0 10.1016/j.jhydrol.2012.11.042 10.4319/lo.1957.2.1.0012 10.1016/j.watres.2007.04.012 10.1080/07438141.2012.741187 10.1016/0043-1354(82)90040-9 10.1016/S0003-2670(96)00412-6 10.1016/j.jhydrol.2012.04.053 10.1038/35090628 10.1016/j.chemosphere.2009.12.062 10.1180/claymin.1989.024.4.08 10.1016/j.scitotenv.2009.03.012 10.1111/j.1752-1688.1987.tb02953.x 10.1016/S0273-1223(99)00641-1 10.1016/j.watres.2006.05.010 10.1002/hyp.6261 10.1007/s10459-010-9222-y 10.1016/j.watres.2012.05.021 10.1016/j.jhydrol.2007.01.046 10.1016/0043-1354(83)90111-2 10.1097/00010694-200004000-00001 10.5194/bg-9-1465-2012 10.1016/S0043-1354(97)00006-7 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7ST 7TV C1K SOI 7S9 L.6 |
DOI | 10.1039/c4em00108g |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Environment Abstracts Pollution Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Pollution Abstracts Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Pollution Abstracts AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7895 |
EndPage | 1461 |
ExternalDocumentID | 24728590 10_1039_c4em00108g |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0-7 0R~ 53G 705 AAEMU AAHBH AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3G J3H J3I O-G O9- PQQKQ R7E RAOCF RCNCU ROL RPMJG RRC RSCEA CGR CUY CVF ECM EIF NPM 7X8 7ST 7TV C1K SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c394t-98f186c413ecb08ba01da528da8e19bfcdc3e53fbf7b077458d83339dc7d763c3 |
ISSN | 2050-7887 2050-7895 |
IngestDate | Thu Jul 10 23:51:04 EDT 2025 Thu Jul 10 19:06:04 EDT 2025 Fri Jul 11 11:08:53 EDT 2025 Mon Jul 21 06:08:20 EDT 2025 Thu Apr 24 23:02:10 EDT 2025 Tue Jul 01 02:26:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c394t-98f186c413ecb08ba01da528da8e19bfcdc3e53fbf7b077458d83339dc7d763c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24728590 |
PQID | 1530321418 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2315266818 proquest_miscellaneous_1534836405 proquest_miscellaneous_1530321418 pubmed_primary_24728590 crossref_primary_10_1039_c4em00108g crossref_citationtrail_10_1039_c4em00108g |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental science--processes & impacts |
PublicationTitleAlternate | Environ Sci Process Impacts |
PublicationYear | 2014 |
References | Wang (c4em00108g-(cit38)/*[position()=1]) 2001; 26 Monteith (c4em00108g-(cit7)/*[position()=1]) 2007; 450 Carpenter (c4em00108g-(cit32)/*[position()=1]) 1984; 159 Kritzberg (c4em00108g-(cit67)/*[position()=1]) 2012; 9 Gough (c4em00108g-(cit75)/*[position()=1]) 2012; 28 Weishaar (c4em00108g-(cit21)/*[position()=1]) 2003; 37 Moore (c4em00108g-(cit49)/*[position()=1]) 1987; 23 Worrall (c4em00108g-(cit37)/*[position()=1]) 2012; 448–449 Banoub (c4em00108g-(cit23)/*[position()=1]) 1973; 71 Doane (c4em00108g-(cit68)/*[position()=1]) 2010; 78 Cooper (c4em00108g-(cit16)/*[position()=1]) 2007; 21 Fosberg (c4em00108g-(cit35)/*[position()=1]) 1967; 18 O'Driscoll (c4em00108g-(cit56)/*[position()=1]) 2006; 366 Wallage (c4em00108g-(cit50)/*[position()=1]) 2006; 367 Austnes (c4em00108g-(cit69)/*[position()=1]) 2010; 99 Carter (c4em00108g-(cit40)/*[position()=1]) 2012; 46 Génin (c4em00108g-(cit72)/*[position()=1]) 1998; 32 Römkens (c4em00108g-(cit79)/*[position()=1]) 1998; 32 Tipping (c4em00108g-(cit29)/*[position()=1]) 1988; 19 Muller (c4em00108g-(cit30)/*[position()=1]) 2012; 435–436 Clay (c4em00108g-(cit65)/*[position()=1]) 2012; 448–449 Hansen (c4em00108g-(cit71)/*[position()=1]) 1989; 24 Yallop (c4em00108g-(cit12)/*[position()=1]) 2009; 407 Wallage (c4em00108g-(cit33)/*[position()=1]) 2010; 408 Jaffé (c4em00108g-(cit76)/*[position()=1]) 2008; 113 McKnight (c4em00108g-(cit26)/*[position()=1]) 1997; 36 Wilson (c4em00108g-(cit44)/*[position()=1]) 2011; 409 Billett (c4em00108g-(cit58)/*[position()=1]) 2010; 45 Park (c4em00108g-(cit48)/*[position()=1]) 1999; 20 Korshin (c4em00108g-(cit18)/*[position()=1]) 1997; 31 Nash (c4em00108g-(cit62)/*[position()=1]) 1970; 10 Duirk (c4em00108g-(cit51)/*[position()=1]) 2006; 40 Box (c4em00108g-(cit61)/*[position()=1]) 1983; 17 Heikkinen (c4em00108g-(cit66)/*[position()=1]) 1994; 152 Tranvik (c4em00108g-(cit10)/*[position()=1]) 2002; 415 Asmala (c4em00108g-(cit41)/*[position()=1]) 2013; 111 Tupas (c4em00108g-(cit81)/*[position()=1]) 1994; 45 Collier (c4em00108g-(cit31)/*[position()=1]) 1987; 21 Hongve (c4em00108g-(cit34)/*[position()=1]) 1996; 30 Grayson (c4em00108g-(cit78)/*[position()=1]) 2012; 26 Fenner (c4em00108g-(cit11)/*[position()=1]) 2007; 41 Lewis (c4em00108g-(cit59)/*[position()=1]) 1957; 8 Ekström (c4em00108g-(cit9)/*[position()=1]) 2011; 45 Gorham (c4em00108g-(cit27)/*[position()=1]) 1957; 2 Chow (c4em00108g-(cit4)/*[position()=1]) 2003; 37 Armstrong (c4em00108g-(cit13)/*[position()=1]) 2012; 47 Graham (c4em00108g-(cit46)/*[position()=1]) 2012; 424 Selberg (c4em00108g-(cit47)/*[position()=1]) 2011; 400 Edzwald (c4em00108g-(cit54)/*[position()=1]) 1999; 40 Lawrence (c4em00108g-(cit25)/*[position()=1]) 1980; 14 De Haan (c4em00108g-(cit22)/*[position()=1]) 1982; 16 Spencer (c4em00108g-(cit82)/*[position()=1]) 2007; 41 Sugimura (c4em00108g-(cit80)/*[position()=1]) 1988; 24 Evans (c4em00108g-(cit8)/*[position()=1]) 2012; 18 Hättenschwiler (c4em00108g-(cit43)/*[position()=1]) 2000; 15 Timperley (c4em00108g-(cit24)/*[position()=1]) 1985; 19 Rowe (c4em00108g-(cit14)/*[position()=1]) 2014; 184 Freeman (c4em00108g-(cit5)/*[position()=1]) 2001; 412 Satapanajaru (c4em00108g-(cit70)/*[position()=1]) 2003; 37 Peuravuori (c4em00108g-(cit45)/*[position()=1]) 1997; 337 Worrall (c4em00108g-(cit52)/*[position()=1]) 2007; 337 Hautala (c4em00108g-(cit36)/*[position()=1]) 2000; 34 Karlsson (c4em00108g-(cit2)/*[position()=1]) 2009; 460 Tipping (c4em00108g-(cit39)/*[position()=1]) 2009; 6 Malcolm (c4em00108g-(cit74)/*[position()=1]) 1986; 20 Edzwald (c4em00108g-(cit19)/*[position()=1]) 1985; 77 Peacock (c4em00108g-(cit42)/*[position()=1]) 2013; 477 Clark (c4em00108g-(cit77)/*[position()=1]) 2007; 3–4 Fenner (c4em00108g-(cit15)/*[position()=1]) 2011; 674 Summers (c4em00108g-(cit53)/*[position()=1]) 1987; 62 Morris (c4em00108g-(cit1)/*[position()=1]) 1995; 40 Helms (c4em00108g-(cit55)/*[position()=1]) 2008; 53 Karanfil (c4em00108g-(cit57)/*[position()=1]) 2002; 94 Norman (c4em00108g-(cit63)/*[position()=1]) 2010; 15 Moore (c4em00108g-(cit28)/*[position()=1]) 1987; 21 Bartlett (c4em00108g-(cit17)/*[position()=1]) 1988; 52 Kalbitz (c4em00108g-(cit83)/*[position()=1]) 2000; 165 |
References_xml | – volume: 184 start-page: 271 year: 2014 ident: c4em00108g-(cit14)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.08.023 – volume: 71 start-page: 159 year: 1973 ident: c4em00108g-(cit23)/*[position()=1] publication-title: Achiv fur Hydrobiologie – volume: 52 start-page: 1191 year: 1988 ident: c4em00108g-(cit17)/*[position()=1] publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1988.03615995005200040055x – volume: 408 start-page: 6235 year: 2010 ident: c4em00108g-(cit33)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2010.09.009 – volume: 14 start-page: 373 year: 1980 ident: c4em00108g-(cit25)/*[position()=1] publication-title: Water Res. doi: 10.1016/0043-1354(80)90085-8 – volume: 6 start-page: 472 year: 2009 ident: c4em00108g-(cit39)/*[position()=1] publication-title: Environ. Chem. doi: 10.1071/EN09090 – volume: 62 start-page: 27 year: 1987 ident: c4em00108g-(cit53)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(87)90478-5 – volume: 10 start-page: 282 year: 1970 ident: c4em00108g-(cit62)/*[position()=1] publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – volume: 367 start-page: 811 year: 2006 ident: c4em00108g-(cit50)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2006.02.010 – volume: 36 start-page: 99 year: 1997 ident: c4em00108g-(cit26)/*[position()=1] publication-title: Biogeochemistry doi: 10.1023/A:1005783812730 – volume: 159 start-page: 299 year: 1984 ident: c4em00108g-(cit32)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)84304-4 – volume: 53 start-page: 955 year: 2008 ident: c4em00108g-(cit55)/*[position()=1] publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2008.53.3.0955 – volume: 40 start-page: 1381 year: 1995 ident: c4em00108g-(cit1)/*[position()=1] publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1995.40.8.1381 – volume: 47 start-page: 182 year: 2012 ident: c4em00108g-(cit13)/*[position()=1] publication-title: Ecological Engineering doi: 10.1016/j.ecoleng.2012.06.027 – volume: 45 start-page: 13 year: 2010 ident: c4em00108g-(cit58)/*[position()=1] publication-title: Climate Research doi: 10.3354/cr00903 – volume: 20 start-page: 904 year: 1986 ident: c4em00108g-(cit74)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es00151a009 – volume: 34 start-page: 246 year: 2000 ident: c4em00108g-(cit36)/*[position()=1] publication-title: Water Res. doi: 10.1016/S0043-1354(99)00137-2 – volume: 400 start-page: 274 year: 2011 ident: c4em00108g-(cit47)/*[position()=1] publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.01.035 – volume: 18 start-page: 210 year: 1967 ident: c4em00108g-(cit35)/*[position()=1] publication-title: Oikos doi: 10.2307/3565099 – volume: 113 start-page: G04032 year: 2008 ident: c4em00108g-(cit76)/*[position()=1] publication-title: J. Geophys. Res. doi: 10.1029/2008JG000683 – volume: 18 start-page: 3317 year: 2012 ident: c4em00108g-(cit8)/*[position()=1] publication-title: Global Change Biology doi: 10.1111/j.1365-2486.2012.02794.x – volume: 674 start-page: 51 year: 2011 ident: c4em00108g-(cit15)/*[position()=1] publication-title: Hydrobiologia doi: 10.1007/s10750-011-0733-1 – volume: 26 start-page: 27 year: 2012 ident: c4em00108g-(cit78)/*[position()=1] publication-title: Hydrol. Processes doi: 10.1002/hyp.8106 – volume: 20 start-page: 419 year: 1999 ident: c4em00108g-(cit48)/*[position()=1] publication-title: Environ. Technol. doi: 10.1080/09593332008616835 – volume: 37 start-page: 5219 year: 2003 ident: c4em00108g-(cit70)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es0303485 – volume: 460 start-page: 506 year: 2009 ident: c4em00108g-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/nature08179 – volume: 19 start-page: 371 year: 1988 ident: c4em00108g-(cit29)/*[position()=1] publication-title: Freshwater Biol. doi: 10.1111/j.1365-2427.1988.tb00358.x – volume: 94 start-page: 68 year: 2002 ident: c4em00108g-(cit57)/*[position()=1] publication-title: Journal – American Water Works Association doi: 10.1002/j.1551-8833.2002.tb10250.x – volume: 415 start-page: 861 year: 2002 ident: c4em00108g-(cit10)/*[position()=1] publication-title: Nature doi: 10.1038/415861b – volume: 152 start-page: 81 year: 1994 ident: c4em00108g-(cit66)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(94)90553-3 – volume: 366 start-page: 880 year: 2006 ident: c4em00108g-(cit56)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2005.09.067 – volume: 450 start-page: 537 year: 2007 ident: c4em00108g-(cit7)/*[position()=1] publication-title: Nature doi: 10.1038/nature06316 – volume: 37 start-page: 4702 year: 2003 ident: c4em00108g-(cit21)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es030360x – volume: 32 start-page: 1058 year: 1998 ident: c4em00108g-(cit72)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es970547m – volume: 77 start-page: 122 year: 1985 ident: c4em00108g-(cit19)/*[position()=1] publication-title: Journal – American Water Works Association doi: 10.1002/j.1551-8833.1985.tb05521.x – volume: 21 start-page: 349 year: 1987 ident: c4em00108g-(cit31)/*[position()=1] publication-title: N. Z. J. Mar. Freshwater Res. doi: 10.1080/00288330.1987.9516230 – volume: 24 start-page: 105 year: 1988 ident: c4em00108g-(cit80)/*[position()=1] publication-title: Mar. Chem. doi: 10.1016/0304-4203(88)90043-6 – volume: 45 start-page: 4733 year: 2011 ident: c4em00108g-(cit9)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es104126f – volume: 424 start-page: 239 year: 2012 ident: c4em00108g-(cit46)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.02.028 – volume: 21 start-page: 585 year: 1987 ident: c4em00108g-(cit28)/*[position()=1] publication-title: N. Z. J. Mar. Freshwater Res. doi: 10.1080/00288330.1987.9516262 – volume: 37 start-page: 4475 year: 2003 ident: c4em00108g-(cit4)/*[position()=1] publication-title: Water Res. doi: 10.1016/S0043-1354(03)00437-8 – volume: 8 start-page: 17 year: 1957 ident: c4em00108g-(cit59)/*[position()=1] publication-title: Proceedings of the Institute of Civil Engineers doi: 10.1680/iicep.1957.1925 – volume: 32 start-page: 363 year: 1998 ident: c4em00108g-(cit79)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es970437f – volume: 409 start-page: 2010 year: 2011 ident: c4em00108g-(cit44)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.02.036 – volume: 111 start-page: 107 year: 2013 ident: c4em00108g-(cit41)/*[position()=1] publication-title: Estuarine, Coastal Shelf Sci. doi: 10.1016/j.ecss.2012.06.015 – volume: 15 start-page: 238 year: 2000 ident: c4em00108g-(cit43)/*[position()=1] publication-title: Trends in Ecology and Evolution doi: 10.1016/S0169-5347(00)01861-9 – volume: 19 start-page: 63 year: 1985 ident: c4em00108g-(cit24)/*[position()=1] publication-title: N. Z. J. Mar. Freshwater Res. doi: 10.1080/00288330.1985.9516075 – volume: 99 start-page: 157 year: 2010 ident: c4em00108g-(cit69)/*[position()=1] publication-title: Biogeochemistry doi: 10.1007/s10533-009-9399-4 – volume: 30 start-page: 2771 year: 1996 ident: c4em00108g-(cit34)/*[position()=1] publication-title: Water Res. doi: 10.1016/S0043-1354(96)00163-7 – volume: 448–449 start-page: 139 year: 2012 ident: c4em00108g-(cit65)/*[position()=1] publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.04.048 – volume: 45 start-page: 207 year: 1994 ident: c4em00108g-(cit81)/*[position()=1] publication-title: Mar. Chem. doi: 10.1016/0304-4203(94)90004-3 – volume: 3–4 start-page: 438 year: 2007 ident: c4em00108g-(cit77)/*[position()=1] publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.09.030 – volume: 41 start-page: 3146 year: 2007 ident: c4em00108g-(cit11)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es061765v – volume: 435–436 start-page: 351 year: 2012 ident: c4em00108g-(cit30)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.06.048 – volume: 26 start-page: 205 year: 2001 ident: c4em00108g-(cit38)/*[position()=1] publication-title: Environ. Int. doi: 10.1016/S0160-4120(00)00107-0 – volume: 477 start-page: 251 year: 2013 ident: c4em00108g-(cit42)/*[position()=1] publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.11.042 – volume: 2 start-page: 12 year: 1957 ident: c4em00108g-(cit27)/*[position()=1] publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1957.2.1.0012 – volume: 41 start-page: 2941 year: 2007 ident: c4em00108g-(cit82)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2007.04.012 – volume: 28 start-page: 282 year: 2012 ident: c4em00108g-(cit75)/*[position()=1] publication-title: Lake Reservoir Manage. doi: 10.1080/07438141.2012.741187 – volume: 16 start-page: 1047 year: 1982 ident: c4em00108g-(cit22)/*[position()=1] publication-title: Water Res. doi: 10.1016/0043-1354(82)90040-9 – volume: 337 start-page: 133 year: 1997 ident: c4em00108g-(cit45)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(96)00412-6 – volume: 448–449 start-page: 149 year: 2012 ident: c4em00108g-(cit37)/*[position()=1] publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.04.053 – volume: 412 start-page: 785 year: 2001 ident: c4em00108g-(cit5)/*[position()=1] publication-title: Nature doi: 10.1038/35090628 – volume: 78 start-page: 1409 year: 2010 ident: c4em00108g-(cit68)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.12.062 – volume: 24 start-page: 663 year: 1989 ident: c4em00108g-(cit71)/*[position()=1] publication-title: Clay Miner. doi: 10.1180/claymin.1989.024.4.08 – volume: 407 start-page: 3803 year: 2009 ident: c4em00108g-(cit12)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2009.03.012 – volume: 23 start-page: 785 year: 1987 ident: c4em00108g-(cit49)/*[position()=1] publication-title: Journal – American Water Works Association doi: 10.1111/j.1752-1688.1987.tb02953.x – volume: 40 start-page: 63 year: 1999 ident: c4em00108g-(cit54)/*[position()=1] publication-title: Water Sci. Technol. doi: 10.1016/S0273-1223(99)00641-1 – volume: 40 start-page: 2667 year: 2006 ident: c4em00108g-(cit51)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2006.05.010 – volume: 21 start-page: 622 year: 2007 ident: c4em00108g-(cit16)/*[position()=1] publication-title: Hydrol. Processes doi: 10.1002/hyp.6261 – volume: 15 start-page: 625 year: 2010 ident: c4em00108g-(cit63)/*[position()=1] publication-title: Advances in Health Sciences Education doi: 10.1007/s10459-010-9222-y – volume: 46 start-page: 4532 year: 2012 ident: c4em00108g-(cit40)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2012.05.021 – volume: 337 start-page: 315 year: 2007 ident: c4em00108g-(cit52)/*[position()=1] publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.01.046 – volume: 17 start-page: 511 year: 1983 ident: c4em00108g-(cit61)/*[position()=1] publication-title: Water Res. doi: 10.1016/0043-1354(83)90111-2 – volume: 165 start-page: 277 year: 2000 ident: c4em00108g-(cit83)/*[position()=1] publication-title: Soil Sci. doi: 10.1097/00010694-200004000-00001 – volume: 9 start-page: 1465 year: 2012 ident: c4em00108g-(cit67)/*[position()=1] publication-title: Biogeosciences doi: 10.5194/bg-9-1465-2012 – volume: 31 start-page: 1787 year: 1997 ident: c4em00108g-(cit18)/*[position()=1] publication-title: Water Res. doi: 10.1016/S0043-1354(97)00006-7 |
SSID | ssj0000851856 |
Score | 2.3837717 |
Snippet | Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1445 |
SubjectTerms | absorbance Absorption Carbon - analysis dissolved organic carbon Environmental Monitoring - methods Fresh Water - chemistry highlands peatlands Spectrophotometry, Ultraviolet spectroscopy surface water temporal variation Water Pollutants - analysis watersheds wavelengths |
Title | UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24728590 https://www.proquest.com/docview/1530321418 https://www.proquest.com/docview/1534836405 https://www.proquest.com/docview/2315266818 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEG0NyQUOiJ2wqREciEZObLeXNrcoiwIi4TKDcrN6cxQRPMMsIPghPoqfoarbSwcmKHCxRlbZ6pl6U0t3vSpCXsrUZDrLVWCiooIEpTKByCsdFCLOVG7A4xrkDh8dZ4fj5O1JejIY_PSqlpYLuaW-r-SV_I9W4R7oFVmy_6DZ7qVwAz6DfuEKGobrlXQ8_hAgNxzJT0LOJzNp6_8teRKbVE6m33CMjBjaWhVbUDgF04u1jHgwA2v7AuGmm-uksEe1tFDge-93cbPg81Igh9c1aHLkS9seSjUzPtsiunr4VeD4ivq0ocl5a9HYi0L32m_PAHp6XUvKVCYIpo61YHeCs4bAOV9hvI_OPnZ47FIB2yZhuLfVB7ftVLFjPB84P-seOZgZ02z82of8nY8o8XY-rIGMw9RVQzpf5t9zgzs7C595SPbNNWST6Uo_EjJsw6oS8wmTZn7ae8u2QuA3J9qVNtpDfVaU_bPXyHoMOQx4jfWd_dGbd90WIEa73M4X7r5J20CXFdv9Cy6GTJfkQTYeGt0iN5tEhu44VN4mA1PfITe89pZ3yY8en7THBPXxScWcCmrxSQGftMUn7fBJG3xSh0_6CtC5SVtsUpRtsPmaXkQmBekemVbSW4WHzHtkfLA_2j0MmsEggWJFsggKXkU8UxB_GSVDLkUYaZHGXAsOJkdWSitmUlbJKpch5Dcp15wxVmiVa_Cnit0na_WkNg8JxYaEeYVzFSKRmIhzyWJZZLnglcoLozfIZvvbl6rpmo_DW87LPxW9QV50slPXK2al1PNWhSWYcjyfE7WZLOclBB8hzg2L-F9lYK0ZpFmXy0DKlkLczfE9DxxGuvXESY4tK8NHV1rrY3K9_-M9IWuL2dI8hSB8IZ81YP4Fo17nLw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV-visible+absorbance+spectroscopy+as+a+proxy+for+peatland+dissolved+organic+carbon+%28DOC%29+quantity+and+quality%3A+considerations+on+wavelength+and+absorbance+degradation&rft.jtitle=Environmental+science--processes+%26+impacts&rft.au=Peacock%2C+Mike&rft.au=Evans%2C+Chris+D.&rft.au=Fenner%2C+Nathalie&rft.au=Freeman%2C+Chris&rft.date=2014-01-01&rft.issn=2050-7887&rft.eissn=2050-7895&rft.volume=16&rft.issue=6&rft.spage=1445&rft_id=info:doi/10.1039%2Fc4em00108g&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_c4em00108g |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7887&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7887&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7887&client=summon |