UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation

Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments:...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science--processes & impacts Vol. 16; no. 6; pp. 1445 - 1461
Main Authors Peacock, Mike, Evans, Chris D., Fenner, Nathalie, Freeman, Chris, Gough, Rachel, Jones, Timothy G., Lebron, Inma
Format Journal Article
LanguageEnglish
Published England 01.01.2014
Subjects
Online AccessGet full text
ISSN2050-7887
2050-7895
2050-7895
DOI10.1039/c4em00108g

Cover

Loading…
Abstract Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.
AbstractList Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.
Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R super(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R super(2) = 0.91), and 230 nm for the other three sample sets (respective R super(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy ( less than or equal to 263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 degree C.
Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230–800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R² values between absorbance and DOC concentration were generated using 263 nm for one sample set (R² = 0.91), and 230 nm for the other three sample sets (respective R² values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250–350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.
Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.
Author Evans, Chris D.
Peacock, Mike
Freeman, Chris
Fenner, Nathalie
Gough, Rachel
Jones, Timothy G.
Lebron, Inma
Author_xml – sequence: 1
  givenname: Mike
  surname: Peacock
  fullname: Peacock, Mike
– sequence: 2
  givenname: Chris D.
  surname: Evans
  fullname: Evans, Chris D.
– sequence: 3
  givenname: Nathalie
  surname: Fenner
  fullname: Fenner, Nathalie
– sequence: 4
  givenname: Chris
  surname: Freeman
  fullname: Freeman, Chris
– sequence: 5
  givenname: Rachel
  surname: Gough
  fullname: Gough, Rachel
– sequence: 6
  givenname: Timothy G.
  surname: Jones
  fullname: Jones, Timothy G.
– sequence: 7
  givenname: Inma
  surname: Lebron
  fullname: Lebron, Inma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24728590$$D View this record in MEDLINE/PubMed
BookMark eNqN0l9vFCEQAHBiamytffEDGB5rk1VYll3Wt-Za_yRN-mJ93Qwwe2L2YAvc2ftE_ZrFa63GmCgvDMlvCMPMc7Lng0dCXnL2hjPRvzUNrhjjTC2fkIOaSVZ1qpd7j7Hq9slRSt9YWUpyJdtnZL9uulrJnh2Q26sv1cYlpyekoFOIGrxBmmY0OYZkwrylkCjQOYabLR1DpDNCnsBbal1KYdqgpSEuwTtDDUQdPD0-u1y8ptdr8Nnlkl9sOUwlfkdN8MlZjJBdiWjR32GDE_pl_rqTv73C4jKC3ckX5OkIU8Kjh_2QXL0__7z4WF1cfvi0OL2ojOibXPVq5Ko1DRdoNFMaGLcga2VBIe_1aKwRKMWox06zrmukskoI0VvT2a4VRhyS4_t7S73Xa0x5WLlkcCoFY1inoRZc1m2ruPon5VI0SrQNk_9Dmah5s7v11QNd6xXaYY5uBXE7_GxZASf3wJT-pIjjI-Fs-DESw6-RKJj9gY3Luw_NEdz0t5Q7S7u7sA
CitedBy_id crossref_primary_10_1016_j_chemgeo_2019_119448
crossref_primary_10_3390_nano12234159
crossref_primary_10_1002_lom3_10559
crossref_primary_10_3390_w13243612
crossref_primary_10_1016_j_scitotenv_2015_06_092
crossref_primary_10_1128_Spectrum_00179_21
crossref_primary_10_1002_jeq2_20392
crossref_primary_10_1111_1365_2745_12975
crossref_primary_10_1002_hyp_11352
crossref_primary_10_1016_j_scitotenv_2022_160470
crossref_primary_10_5194_bg_21_5725_2024
crossref_primary_10_3390_app10196874
crossref_primary_10_1002_hyp_13297
crossref_primary_10_1016_j_jhydrol_2021_126493
crossref_primary_10_1007_s00027_016_0471_6
crossref_primary_10_1016_j_chemosphere_2020_126216
crossref_primary_10_1016_j_jenvman_2017_07_040
crossref_primary_10_3390_catal14120844
crossref_primary_10_1016_j_scitotenv_2015_03_036
crossref_primary_10_1016_j_ecoenv_2019_109633
crossref_primary_10_1002_saj2_70010
crossref_primary_10_3390_environments11040080
crossref_primary_10_1002_rcm_9364
crossref_primary_10_1016_j_scitotenv_2020_141463
crossref_primary_10_1016_j_watres_2017_02_059
crossref_primary_10_5194_bg_14_1793_2017
crossref_primary_10_1016_j_geoderma_2023_116702
crossref_primary_10_1002_hyp_11040
crossref_primary_10_1002_eco_2100
crossref_primary_10_1007_s11783_024_1819_0
crossref_primary_10_1007_s10533_022_00925_9
crossref_primary_10_3390_environments11010019
crossref_primary_10_3390_su15032836
crossref_primary_10_1016_j_watres_2016_11_010
crossref_primary_10_5194_bg_16_2511_2019
crossref_primary_10_1016_j_limno_2017_02_007
crossref_primary_10_3390_land12122143
crossref_primary_10_1016_j_ecoleng_2017_12_026
crossref_primary_10_1080_00103624_2020_1849266
crossref_primary_10_1016_j_jhydrol_2015_04_061
crossref_primary_10_1016_j_geoderma_2024_116936
crossref_primary_10_1111_fwb_13258
crossref_primary_10_1038_s41598_017_16256_x
crossref_primary_10_1016_j_cej_2021_129353
crossref_primary_10_1021_acs_est_8b03615
crossref_primary_10_1007_s11368_018_2021_4
crossref_primary_10_3389_frwa_2024_1380133
crossref_primary_10_1016_j_scitotenv_2024_176600
crossref_primary_10_3390_w13121703
crossref_primary_10_1002_saj2_20419
crossref_primary_10_1016_j_aca_2024_342871
crossref_primary_10_1016_j_jhazmat_2023_132071
crossref_primary_10_1021_acs_iecr_4c02774
crossref_primary_10_1002_hyp_13329
crossref_primary_10_3390_w14233969
crossref_primary_10_3390_f13040599
crossref_primary_10_1002_hyp_14852
crossref_primary_10_1007_s00027_018_0569_0
crossref_primary_10_1016_j_geoderma_2019_01_035
crossref_primary_10_1038_s41598_024_53362_z
crossref_primary_10_3390_environments11040065
crossref_primary_10_1007_s11104_020_04434_2
crossref_primary_10_1007_s11104_025_07339_0
crossref_primary_10_2134_jeq2016_02_0062
crossref_primary_10_1016_j_soilbio_2024_109393
crossref_primary_10_1016_j_chemosphere_2021_133055
crossref_primary_10_1016_j_watres_2017_05_022
Cites_doi 10.1016/j.envpol.2013.08.023
10.2136/sssaj1988.03615995005200040055x
10.1016/j.scitotenv.2010.09.009
10.1016/0043-1354(80)90085-8
10.1071/EN09090
10.1016/0048-9697(87)90478-5
10.1016/0022-1694(70)90255-6
10.1016/j.scitotenv.2006.02.010
10.1023/A:1005783812730
10.1016/S0003-2670(00)84304-4
10.4319/lo.2008.53.3.0955
10.4319/lo.1995.40.8.1381
10.1016/j.ecoleng.2012.06.027
10.3354/cr00903
10.1021/es00151a009
10.1016/S0043-1354(99)00137-2
10.1016/j.jhydrol.2011.01.035
10.2307/3565099
10.1029/2008JG000683
10.1111/j.1365-2486.2012.02794.x
10.1007/s10750-011-0733-1
10.1002/hyp.8106
10.1080/09593332008616835
10.1021/es0303485
10.1038/nature08179
10.1111/j.1365-2427.1988.tb00358.x
10.1002/j.1551-8833.2002.tb10250.x
10.1038/415861b
10.1016/0048-9697(94)90553-3
10.1016/j.scitotenv.2005.09.067
10.1038/nature06316
10.1021/es030360x
10.1021/es970547m
10.1002/j.1551-8833.1985.tb05521.x
10.1080/00288330.1987.9516230
10.1016/0304-4203(88)90043-6
10.1021/es104126f
10.1016/j.scitotenv.2012.02.028
10.1080/00288330.1987.9516262
10.1016/S0043-1354(03)00437-8
10.1680/iicep.1957.1925
10.1021/es970437f
10.1016/j.scitotenv.2011.02.036
10.1016/j.ecss.2012.06.015
10.1016/S0169-5347(00)01861-9
10.1080/00288330.1985.9516075
10.1007/s10533-009-9399-4
10.1016/S0043-1354(96)00163-7
10.1016/j.jhydrol.2012.04.048
10.1016/0304-4203(94)90004-3
10.1016/j.jhydrol.2007.09.030
10.1021/es061765v
10.1016/j.scitotenv.2012.06.048
10.1016/S0160-4120(00)00107-0
10.1016/j.jhydrol.2012.11.042
10.4319/lo.1957.2.1.0012
10.1016/j.watres.2007.04.012
10.1080/07438141.2012.741187
10.1016/0043-1354(82)90040-9
10.1016/S0003-2670(96)00412-6
10.1016/j.jhydrol.2012.04.053
10.1038/35090628
10.1016/j.chemosphere.2009.12.062
10.1180/claymin.1989.024.4.08
10.1016/j.scitotenv.2009.03.012
10.1111/j.1752-1688.1987.tb02953.x
10.1016/S0273-1223(99)00641-1
10.1016/j.watres.2006.05.010
10.1002/hyp.6261
10.1007/s10459-010-9222-y
10.1016/j.watres.2012.05.021
10.1016/j.jhydrol.2007.01.046
10.1016/0043-1354(83)90111-2
10.1097/00010694-200004000-00001
10.5194/bg-9-1465-2012
10.1016/S0043-1354(97)00006-7
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7ST
7TV
C1K
SOI
7S9
L.6
DOI 10.1039/c4em00108g
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Environment Abstracts
Pollution Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Pollution Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Pollution Abstracts
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7895
EndPage 1461
ExternalDocumentID 24728590
10_1039_c4em00108g
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0-7
0R~
53G
705
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
PQQKQ
R7E
RAOCF
RCNCU
ROL
RPMJG
RRC
RSCEA
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7ST
7TV
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c394t-98f186c413ecb08ba01da528da8e19bfcdc3e53fbf7b077458d83339dc7d763c3
ISSN 2050-7887
2050-7895
IngestDate Thu Jul 10 23:51:04 EDT 2025
Thu Jul 10 19:06:04 EDT 2025
Fri Jul 11 11:08:53 EDT 2025
Mon Jul 21 06:08:20 EDT 2025
Thu Apr 24 23:02:10 EDT 2025
Tue Jul 01 02:26:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-98f186c413ecb08ba01da528da8e19bfcdc3e53fbf7b077458d83339dc7d763c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24728590
PQID 1530321418
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2315266818
proquest_miscellaneous_1534836405
proquest_miscellaneous_1530321418
pubmed_primary_24728590
crossref_primary_10_1039_c4em00108g
crossref_citationtrail_10_1039_c4em00108g
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental science--processes & impacts
PublicationTitleAlternate Environ Sci Process Impacts
PublicationYear 2014
References Wang (c4em00108g-(cit38)/*[position()=1]) 2001; 26
Monteith (c4em00108g-(cit7)/*[position()=1]) 2007; 450
Carpenter (c4em00108g-(cit32)/*[position()=1]) 1984; 159
Kritzberg (c4em00108g-(cit67)/*[position()=1]) 2012; 9
Gough (c4em00108g-(cit75)/*[position()=1]) 2012; 28
Weishaar (c4em00108g-(cit21)/*[position()=1]) 2003; 37
Moore (c4em00108g-(cit49)/*[position()=1]) 1987; 23
Worrall (c4em00108g-(cit37)/*[position()=1]) 2012; 448–449
Banoub (c4em00108g-(cit23)/*[position()=1]) 1973; 71
Doane (c4em00108g-(cit68)/*[position()=1]) 2010; 78
Cooper (c4em00108g-(cit16)/*[position()=1]) 2007; 21
Fosberg (c4em00108g-(cit35)/*[position()=1]) 1967; 18
O'Driscoll (c4em00108g-(cit56)/*[position()=1]) 2006; 366
Wallage (c4em00108g-(cit50)/*[position()=1]) 2006; 367
Austnes (c4em00108g-(cit69)/*[position()=1]) 2010; 99
Carter (c4em00108g-(cit40)/*[position()=1]) 2012; 46
Génin (c4em00108g-(cit72)/*[position()=1]) 1998; 32
Römkens (c4em00108g-(cit79)/*[position()=1]) 1998; 32
Tipping (c4em00108g-(cit29)/*[position()=1]) 1988; 19
Muller (c4em00108g-(cit30)/*[position()=1]) 2012; 435–436
Clay (c4em00108g-(cit65)/*[position()=1]) 2012; 448–449
Hansen (c4em00108g-(cit71)/*[position()=1]) 1989; 24
Yallop (c4em00108g-(cit12)/*[position()=1]) 2009; 407
Wallage (c4em00108g-(cit33)/*[position()=1]) 2010; 408
Jaffé (c4em00108g-(cit76)/*[position()=1]) 2008; 113
McKnight (c4em00108g-(cit26)/*[position()=1]) 1997; 36
Wilson (c4em00108g-(cit44)/*[position()=1]) 2011; 409
Billett (c4em00108g-(cit58)/*[position()=1]) 2010; 45
Park (c4em00108g-(cit48)/*[position()=1]) 1999; 20
Korshin (c4em00108g-(cit18)/*[position()=1]) 1997; 31
Nash (c4em00108g-(cit62)/*[position()=1]) 1970; 10
Duirk (c4em00108g-(cit51)/*[position()=1]) 2006; 40
Box (c4em00108g-(cit61)/*[position()=1]) 1983; 17
Heikkinen (c4em00108g-(cit66)/*[position()=1]) 1994; 152
Tranvik (c4em00108g-(cit10)/*[position()=1]) 2002; 415
Asmala (c4em00108g-(cit41)/*[position()=1]) 2013; 111
Tupas (c4em00108g-(cit81)/*[position()=1]) 1994; 45
Collier (c4em00108g-(cit31)/*[position()=1]) 1987; 21
Hongve (c4em00108g-(cit34)/*[position()=1]) 1996; 30
Grayson (c4em00108g-(cit78)/*[position()=1]) 2012; 26
Fenner (c4em00108g-(cit11)/*[position()=1]) 2007; 41
Lewis (c4em00108g-(cit59)/*[position()=1]) 1957; 8
Ekström (c4em00108g-(cit9)/*[position()=1]) 2011; 45
Gorham (c4em00108g-(cit27)/*[position()=1]) 1957; 2
Chow (c4em00108g-(cit4)/*[position()=1]) 2003; 37
Armstrong (c4em00108g-(cit13)/*[position()=1]) 2012; 47
Graham (c4em00108g-(cit46)/*[position()=1]) 2012; 424
Selberg (c4em00108g-(cit47)/*[position()=1]) 2011; 400
Edzwald (c4em00108g-(cit54)/*[position()=1]) 1999; 40
Lawrence (c4em00108g-(cit25)/*[position()=1]) 1980; 14
De Haan (c4em00108g-(cit22)/*[position()=1]) 1982; 16
Spencer (c4em00108g-(cit82)/*[position()=1]) 2007; 41
Sugimura (c4em00108g-(cit80)/*[position()=1]) 1988; 24
Evans (c4em00108g-(cit8)/*[position()=1]) 2012; 18
Hättenschwiler (c4em00108g-(cit43)/*[position()=1]) 2000; 15
Timperley (c4em00108g-(cit24)/*[position()=1]) 1985; 19
Rowe (c4em00108g-(cit14)/*[position()=1]) 2014; 184
Freeman (c4em00108g-(cit5)/*[position()=1]) 2001; 412
Satapanajaru (c4em00108g-(cit70)/*[position()=1]) 2003; 37
Peuravuori (c4em00108g-(cit45)/*[position()=1]) 1997; 337
Worrall (c4em00108g-(cit52)/*[position()=1]) 2007; 337
Hautala (c4em00108g-(cit36)/*[position()=1]) 2000; 34
Karlsson (c4em00108g-(cit2)/*[position()=1]) 2009; 460
Tipping (c4em00108g-(cit39)/*[position()=1]) 2009; 6
Malcolm (c4em00108g-(cit74)/*[position()=1]) 1986; 20
Edzwald (c4em00108g-(cit19)/*[position()=1]) 1985; 77
Peacock (c4em00108g-(cit42)/*[position()=1]) 2013; 477
Clark (c4em00108g-(cit77)/*[position()=1]) 2007; 3–4
Fenner (c4em00108g-(cit15)/*[position()=1]) 2011; 674
Summers (c4em00108g-(cit53)/*[position()=1]) 1987; 62
Morris (c4em00108g-(cit1)/*[position()=1]) 1995; 40
Helms (c4em00108g-(cit55)/*[position()=1]) 2008; 53
Karanfil (c4em00108g-(cit57)/*[position()=1]) 2002; 94
Norman (c4em00108g-(cit63)/*[position()=1]) 2010; 15
Moore (c4em00108g-(cit28)/*[position()=1]) 1987; 21
Bartlett (c4em00108g-(cit17)/*[position()=1]) 1988; 52
Kalbitz (c4em00108g-(cit83)/*[position()=1]) 2000; 165
References_xml – volume: 184
  start-page: 271
  year: 2014
  ident: c4em00108g-(cit14)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.08.023
– volume: 71
  start-page: 159
  year: 1973
  ident: c4em00108g-(cit23)/*[position()=1]
  publication-title: Achiv fur Hydrobiologie
– volume: 52
  start-page: 1191
  year: 1988
  ident: c4em00108g-(cit17)/*[position()=1]
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1988.03615995005200040055x
– volume: 408
  start-page: 6235
  year: 2010
  ident: c4em00108g-(cit33)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2010.09.009
– volume: 14
  start-page: 373
  year: 1980
  ident: c4em00108g-(cit25)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/0043-1354(80)90085-8
– volume: 6
  start-page: 472
  year: 2009
  ident: c4em00108g-(cit39)/*[position()=1]
  publication-title: Environ. Chem.
  doi: 10.1071/EN09090
– volume: 62
  start-page: 27
  year: 1987
  ident: c4em00108g-(cit53)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/0048-9697(87)90478-5
– volume: 10
  start-page: 282
  year: 1970
  ident: c4em00108g-(cit62)/*[position()=1]
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 367
  start-page: 811
  year: 2006
  ident: c4em00108g-(cit50)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2006.02.010
– volume: 36
  start-page: 99
  year: 1997
  ident: c4em00108g-(cit26)/*[position()=1]
  publication-title: Biogeochemistry
  doi: 10.1023/A:1005783812730
– volume: 159
  start-page: 299
  year: 1984
  ident: c4em00108g-(cit32)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)84304-4
– volume: 53
  start-page: 955
  year: 2008
  ident: c4em00108g-(cit55)/*[position()=1]
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2008.53.3.0955
– volume: 40
  start-page: 1381
  year: 1995
  ident: c4em00108g-(cit1)/*[position()=1]
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1995.40.8.1381
– volume: 47
  start-page: 182
  year: 2012
  ident: c4em00108g-(cit13)/*[position()=1]
  publication-title: Ecological Engineering
  doi: 10.1016/j.ecoleng.2012.06.027
– volume: 45
  start-page: 13
  year: 2010
  ident: c4em00108g-(cit58)/*[position()=1]
  publication-title: Climate Research
  doi: 10.3354/cr00903
– volume: 20
  start-page: 904
  year: 1986
  ident: c4em00108g-(cit74)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00151a009
– volume: 34
  start-page: 246
  year: 2000
  ident: c4em00108g-(cit36)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(99)00137-2
– volume: 400
  start-page: 274
  year: 2011
  ident: c4em00108g-(cit47)/*[position()=1]
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.01.035
– volume: 18
  start-page: 210
  year: 1967
  ident: c4em00108g-(cit35)/*[position()=1]
  publication-title: Oikos
  doi: 10.2307/3565099
– volume: 113
  start-page: G04032
  year: 2008
  ident: c4em00108g-(cit76)/*[position()=1]
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JG000683
– volume: 18
  start-page: 3317
  year: 2012
  ident: c4em00108g-(cit8)/*[position()=1]
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2012.02794.x
– volume: 674
  start-page: 51
  year: 2011
  ident: c4em00108g-(cit15)/*[position()=1]
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-011-0733-1
– volume: 26
  start-page: 27
  year: 2012
  ident: c4em00108g-(cit78)/*[position()=1]
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.8106
– volume: 20
  start-page: 419
  year: 1999
  ident: c4em00108g-(cit48)/*[position()=1]
  publication-title: Environ. Technol.
  doi: 10.1080/09593332008616835
– volume: 37
  start-page: 5219
  year: 2003
  ident: c4em00108g-(cit70)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0303485
– volume: 460
  start-page: 506
  year: 2009
  ident: c4em00108g-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08179
– volume: 19
  start-page: 371
  year: 1988
  ident: c4em00108g-(cit29)/*[position()=1]
  publication-title: Freshwater Biol.
  doi: 10.1111/j.1365-2427.1988.tb00358.x
– volume: 94
  start-page: 68
  year: 2002
  ident: c4em00108g-(cit57)/*[position()=1]
  publication-title: Journal – American Water Works Association
  doi: 10.1002/j.1551-8833.2002.tb10250.x
– volume: 415
  start-page: 861
  year: 2002
  ident: c4em00108g-(cit10)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/415861b
– volume: 152
  start-page: 81
  year: 1994
  ident: c4em00108g-(cit66)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/0048-9697(94)90553-3
– volume: 366
  start-page: 880
  year: 2006
  ident: c4em00108g-(cit56)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.09.067
– volume: 450
  start-page: 537
  year: 2007
  ident: c4em00108g-(cit7)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06316
– volume: 37
  start-page: 4702
  year: 2003
  ident: c4em00108g-(cit21)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es030360x
– volume: 32
  start-page: 1058
  year: 1998
  ident: c4em00108g-(cit72)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es970547m
– volume: 77
  start-page: 122
  year: 1985
  ident: c4em00108g-(cit19)/*[position()=1]
  publication-title: Journal – American Water Works Association
  doi: 10.1002/j.1551-8833.1985.tb05521.x
– volume: 21
  start-page: 349
  year: 1987
  ident: c4em00108g-(cit31)/*[position()=1]
  publication-title: N. Z. J. Mar. Freshwater Res.
  doi: 10.1080/00288330.1987.9516230
– volume: 24
  start-page: 105
  year: 1988
  ident: c4em00108g-(cit80)/*[position()=1]
  publication-title: Mar. Chem.
  doi: 10.1016/0304-4203(88)90043-6
– volume: 45
  start-page: 4733
  year: 2011
  ident: c4em00108g-(cit9)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es104126f
– volume: 424
  start-page: 239
  year: 2012
  ident: c4em00108g-(cit46)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.02.028
– volume: 21
  start-page: 585
  year: 1987
  ident: c4em00108g-(cit28)/*[position()=1]
  publication-title: N. Z. J. Mar. Freshwater Res.
  doi: 10.1080/00288330.1987.9516262
– volume: 37
  start-page: 4475
  year: 2003
  ident: c4em00108g-(cit4)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(03)00437-8
– volume: 8
  start-page: 17
  year: 1957
  ident: c4em00108g-(cit59)/*[position()=1]
  publication-title: Proceedings of the Institute of Civil Engineers
  doi: 10.1680/iicep.1957.1925
– volume: 32
  start-page: 363
  year: 1998
  ident: c4em00108g-(cit79)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es970437f
– volume: 409
  start-page: 2010
  year: 2011
  ident: c4em00108g-(cit44)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.02.036
– volume: 111
  start-page: 107
  year: 2013
  ident: c4em00108g-(cit41)/*[position()=1]
  publication-title: Estuarine, Coastal Shelf Sci.
  doi: 10.1016/j.ecss.2012.06.015
– volume: 15
  start-page: 238
  year: 2000
  ident: c4em00108g-(cit43)/*[position()=1]
  publication-title: Trends in Ecology and Evolution
  doi: 10.1016/S0169-5347(00)01861-9
– volume: 19
  start-page: 63
  year: 1985
  ident: c4em00108g-(cit24)/*[position()=1]
  publication-title: N. Z. J. Mar. Freshwater Res.
  doi: 10.1080/00288330.1985.9516075
– volume: 99
  start-page: 157
  year: 2010
  ident: c4em00108g-(cit69)/*[position()=1]
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-009-9399-4
– volume: 30
  start-page: 2771
  year: 1996
  ident: c4em00108g-(cit34)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(96)00163-7
– volume: 448–449
  start-page: 139
  year: 2012
  ident: c4em00108g-(cit65)/*[position()=1]
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.04.048
– volume: 45
  start-page: 207
  year: 1994
  ident: c4em00108g-(cit81)/*[position()=1]
  publication-title: Mar. Chem.
  doi: 10.1016/0304-4203(94)90004-3
– volume: 3–4
  start-page: 438
  year: 2007
  ident: c4em00108g-(cit77)/*[position()=1]
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.09.030
– volume: 41
  start-page: 3146
  year: 2007
  ident: c4em00108g-(cit11)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es061765v
– volume: 435–436
  start-page: 351
  year: 2012
  ident: c4em00108g-(cit30)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.06.048
– volume: 26
  start-page: 205
  year: 2001
  ident: c4em00108g-(cit38)/*[position()=1]
  publication-title: Environ. Int.
  doi: 10.1016/S0160-4120(00)00107-0
– volume: 477
  start-page: 251
  year: 2013
  ident: c4em00108g-(cit42)/*[position()=1]
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.11.042
– volume: 2
  start-page: 12
  year: 1957
  ident: c4em00108g-(cit27)/*[position()=1]
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1957.2.1.0012
– volume: 41
  start-page: 2941
  year: 2007
  ident: c4em00108g-(cit82)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.04.012
– volume: 28
  start-page: 282
  year: 2012
  ident: c4em00108g-(cit75)/*[position()=1]
  publication-title: Lake Reservoir Manage.
  doi: 10.1080/07438141.2012.741187
– volume: 16
  start-page: 1047
  year: 1982
  ident: c4em00108g-(cit22)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/0043-1354(82)90040-9
– volume: 337
  start-page: 133
  year: 1997
  ident: c4em00108g-(cit45)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(96)00412-6
– volume: 448–449
  start-page: 149
  year: 2012
  ident: c4em00108g-(cit37)/*[position()=1]
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.04.053
– volume: 412
  start-page: 785
  year: 2001
  ident: c4em00108g-(cit5)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35090628
– volume: 78
  start-page: 1409
  year: 2010
  ident: c4em00108g-(cit68)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.12.062
– volume: 24
  start-page: 663
  year: 1989
  ident: c4em00108g-(cit71)/*[position()=1]
  publication-title: Clay Miner.
  doi: 10.1180/claymin.1989.024.4.08
– volume: 407
  start-page: 3803
  year: 2009
  ident: c4em00108g-(cit12)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2009.03.012
– volume: 23
  start-page: 785
  year: 1987
  ident: c4em00108g-(cit49)/*[position()=1]
  publication-title: Journal – American Water Works Association
  doi: 10.1111/j.1752-1688.1987.tb02953.x
– volume: 40
  start-page: 63
  year: 1999
  ident: c4em00108g-(cit54)/*[position()=1]
  publication-title: Water Sci. Technol.
  doi: 10.1016/S0273-1223(99)00641-1
– volume: 40
  start-page: 2667
  year: 2006
  ident: c4em00108g-(cit51)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.05.010
– volume: 21
  start-page: 622
  year: 2007
  ident: c4em00108g-(cit16)/*[position()=1]
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.6261
– volume: 15
  start-page: 625
  year: 2010
  ident: c4em00108g-(cit63)/*[position()=1]
  publication-title: Advances in Health Sciences Education
  doi: 10.1007/s10459-010-9222-y
– volume: 46
  start-page: 4532
  year: 2012
  ident: c4em00108g-(cit40)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.05.021
– volume: 337
  start-page: 315
  year: 2007
  ident: c4em00108g-(cit52)/*[position()=1]
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.01.046
– volume: 17
  start-page: 511
  year: 1983
  ident: c4em00108g-(cit61)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/0043-1354(83)90111-2
– volume: 165
  start-page: 277
  year: 2000
  ident: c4em00108g-(cit83)/*[position()=1]
  publication-title: Soil Sci.
  doi: 10.1097/00010694-200004000-00001
– volume: 9
  start-page: 1465
  year: 2012
  ident: c4em00108g-(cit67)/*[position()=1]
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-1465-2012
– volume: 31
  start-page: 1787
  year: 1997
  ident: c4em00108g-(cit18)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(97)00006-7
SSID ssj0000851856
Score 2.3837717
Snippet Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1445
SubjectTerms absorbance
Absorption
Carbon - analysis
dissolved organic carbon
Environmental Monitoring - methods
Fresh Water - chemistry
highlands
peatlands
Spectrophotometry, Ultraviolet
spectroscopy
surface water
temporal variation
Water Pollutants - analysis
watersheds
wavelengths
Title UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation
URI https://www.ncbi.nlm.nih.gov/pubmed/24728590
https://www.proquest.com/docview/1530321418
https://www.proquest.com/docview/1534836405
https://www.proquest.com/docview/2315266818
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEG0NyQUOiJ2wqREciEZObLeXNrcoiwIi4TKDcrN6cxQRPMMsIPghPoqfoarbSwcmKHCxRlbZ6pl6U0t3vSpCXsrUZDrLVWCiooIEpTKByCsdFCLOVG7A4xrkDh8dZ4fj5O1JejIY_PSqlpYLuaW-r-SV_I9W4R7oFVmy_6DZ7qVwAz6DfuEKGobrlXQ8_hAgNxzJT0LOJzNp6_8teRKbVE6m33CMjBjaWhVbUDgF04u1jHgwA2v7AuGmm-uksEe1tFDge-93cbPg81Igh9c1aHLkS9seSjUzPtsiunr4VeD4ivq0ocl5a9HYi0L32m_PAHp6XUvKVCYIpo61YHeCs4bAOV9hvI_OPnZ47FIB2yZhuLfVB7ftVLFjPB84P-seOZgZ02z82of8nY8o8XY-rIGMw9RVQzpf5t9zgzs7C595SPbNNWST6Uo_EjJsw6oS8wmTZn7ae8u2QuA3J9qVNtpDfVaU_bPXyHoMOQx4jfWd_dGbd90WIEa73M4X7r5J20CXFdv9Cy6GTJfkQTYeGt0iN5tEhu44VN4mA1PfITe89pZ3yY8en7THBPXxScWcCmrxSQGftMUn7fBJG3xSh0_6CtC5SVtsUpRtsPmaXkQmBekemVbSW4WHzHtkfLA_2j0MmsEggWJFsggKXkU8UxB_GSVDLkUYaZHGXAsOJkdWSitmUlbJKpch5Dcp15wxVmiVa_Cnit0na_WkNg8JxYaEeYVzFSKRmIhzyWJZZLnglcoLozfIZvvbl6rpmo_DW87LPxW9QV50slPXK2al1PNWhSWYcjyfE7WZLOclBB8hzg2L-F9lYK0ZpFmXy0DKlkLczfE9DxxGuvXESY4tK8NHV1rrY3K9_-M9IWuL2dI8hSB8IZ81YP4Fo17nLw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV-visible+absorbance+spectroscopy+as+a+proxy+for+peatland+dissolved+organic+carbon+%28DOC%29+quantity+and+quality%3A+considerations+on+wavelength+and+absorbance+degradation&rft.jtitle=Environmental+science--processes+%26+impacts&rft.au=Peacock%2C+Mike&rft.au=Evans%2C+Chris+D.&rft.au=Fenner%2C+Nathalie&rft.au=Freeman%2C+Chris&rft.date=2014-01-01&rft.issn=2050-7887&rft.eissn=2050-7895&rft.volume=16&rft.issue=6&rft.spage=1445&rft_id=info:doi/10.1039%2Fc4em00108g&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_c4em00108g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7887&client=summon