Development of prediction model for fructose- 1,6- bisphosphatase inhibitors using the Monte Carlo method

Fructose-1,6-bisphosphatase (FBPase) is an enzyme important for regulation of gluconeogenesis, which is a major process in the liver responsible for glucose production. Inhibition of FBPase enzyme causing blockage of the gluconeogenesis process represents a newer scheme in the progress of anti-diabe...

Full description

Saved in:
Bibliographic Details
Published inSAR and QSAR in environmental research Vol. 30; no. 3; pp. 145 - 159
Main Authors Manisha, Chauhan, S., Kumar, P., Kumar, A.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 04.03.2019
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1062-936X
1029-046X
1029-046X
DOI10.1080/1062936X.2019.1568299

Cover

Loading…
Abstract Fructose-1,6-bisphosphatase (FBPase) is an enzyme important for regulation of gluconeogenesis, which is a major process in the liver responsible for glucose production. Inhibition of FBPase enzyme causing blockage of the gluconeogenesis process represents a newer scheme in the progress of anti-diabetic drugs. The current research describes the development of hybrid optimal descriptors-based quantitative structure-activity relationship (QSAR) models intended for a set of 62 FBPase inhibitors with the Monte Carlo method. The molecular structures were expressed by the simplified molecular input line entry system (SMILES) notation. Three splits were prepared by random division of the molecules into training set, calibration set and validation set. Statistical parameters obtained from QSAR modelling were good for various designed splits. The best QSAR model showed the following parameters: the values of r 2 for calibration set and validation set of the best model were 0.6837 and 0.8623 and of Q 2 were 0.6114 and 0.8036, respectively. Based on the results obtained for correlation weights, different structural attributes were described as promoter of the endpoint. Further, these structural attributes were used in designing of new FBPase inhibitors and a molecular docking study was completed for the determination of interactions of the designed molecules with the enzyme.
AbstractList Fructose-1,6-bisphosphatase (FBPase) is an enzyme important for regulation of gluconeogenesis, which is a major process in the liver responsible for glucose production. Inhibition of FBPase enzyme causing blockage of the gluconeogenesis process represents a newer scheme in the progress of anti-diabetic drugs. The current research describes the development of hybrid optimal descriptors-based quantitative structure-activity relationship (QSAR) models intended for a set of 62 FBPase inhibitors with the Monte Carlo method. The molecular structures were expressed by the simplified molecular input line entry system (SMILES) notation. Three splits were prepared by random division of the molecules into training set, calibration set and validation set. Statistical parameters obtained from QSAR modelling were good for various designed splits. The best QSAR model showed the following parameters: the values of r2 for calibration set and validation set of the best model were 0.6837 and 0.8623 and of Q2 were 0.6114 and 0.8036, respectively. Based on the results obtained for correlation weights, different structural attributes were described as promoter of the endpoint. Further, these structural attributes were used in designing of new FBPase inhibitors and a molecular docking study was completed for the determination of interactions of the designed molecules with the enzyme.Fructose-1,6-bisphosphatase (FBPase) is an enzyme important for regulation of gluconeogenesis, which is a major process in the liver responsible for glucose production. Inhibition of FBPase enzyme causing blockage of the gluconeogenesis process represents a newer scheme in the progress of anti-diabetic drugs. The current research describes the development of hybrid optimal descriptors-based quantitative structure-activity relationship (QSAR) models intended for a set of 62 FBPase inhibitors with the Monte Carlo method. The molecular structures were expressed by the simplified molecular input line entry system (SMILES) notation. Three splits were prepared by random division of the molecules into training set, calibration set and validation set. Statistical parameters obtained from QSAR modelling were good for various designed splits. The best QSAR model showed the following parameters: the values of r2 for calibration set and validation set of the best model were 0.6837 and 0.8623 and of Q2 were 0.6114 and 0.8036, respectively. Based on the results obtained for correlation weights, different structural attributes were described as promoter of the endpoint. Further, these structural attributes were used in designing of new FBPase inhibitors and a molecular docking study was completed for the determination of interactions of the designed molecules with the enzyme.
Fructose-1,6-bisphosphatase (FBPase) is an enzyme important for regulation of gluconeogenesis, which is a major process in the liver responsible for glucose production. Inhibition of FBPase enzyme causing blockage of the gluconeogenesis process represents a newer scheme in the progress of anti-diabetic drugs. The current research describes the development of hybrid optimal descriptors-based quantitative structure-activity relationship (QSAR) models intended for a set of 62 FBPase inhibitors with the Monte Carlo method. The molecular structures were expressed by the simplified molecular input line entry system (SMILES) notation. Three splits were prepared by random division of the molecules into training set, calibration set and validation set. Statistical parameters obtained from QSAR modelling were good for various designed splits. The best QSAR model showed the following parameters: the values of r 2 for calibration set and validation set of the best model were 0.6837 and 0.8623 and of Q 2 were 0.6114 and 0.8036, respectively. Based on the results obtained for correlation weights, different structural attributes were described as promoter of the endpoint. Further, these structural attributes were used in designing of new FBPase inhibitors and a molecular docking study was completed for the determination of interactions of the designed molecules with the enzyme.
Fructose-1,6-bisphosphatase (FBPase) is an enzyme important for regulation of gluconeogenesis, which is a major process in the liver responsible for glucose production. Inhibition of FBPase enzyme causing blockage of the gluconeogenesis process represents a newer scheme in the progress of anti-diabetic drugs. The current research describes the development of hybrid optimal descriptors-based quantitative structure-activity relationship (QSAR) models intended for a set of 62 FBPase inhibitors with the Monte Carlo method. The molecular structures were expressed by the simplified molecular input line entry system (SMILES) notation. Three splits were prepared by random division of the molecules into training set, calibration set and validation set. Statistical parameters obtained from QSAR modelling were good for various designed splits. The best QSAR model showed the following parameters: the values of r for calibration set and validation set of the best model were 0.6837 and 0.8623 and of Q were 0.6114 and 0.8036, respectively. Based on the results obtained for correlation weights, different structural attributes were described as promoter of the endpoint. Further, these structural attributes were used in designing of new FBPase inhibitors and a molecular docking study was completed for the determination of interactions of the designed molecules with the enzyme.
Fructose-1,6-bisphosphatase (FBPase) is an enzyme important for regulation of gluconeogenesis, which is a major process in the liver responsible for glucose production. Inhibition of FBPase enzyme causing blockage of the gluconeogenesis process represents a newer scheme in the progress of anti-diabetic drugs. The current research describes the development of hybrid optimal descriptors-based quantitative structure-activity relationship (QSAR) models intended for a set of 62 FBPase inhibitors with the Monte Carlo method. The molecular structures were expressed by the simplified molecular input line entry system (SMILES) notation. Three splits were prepared by random division of the molecules into training set, calibration set and validation set. Statistical parameters obtained from QSAR modelling were good for various designed splits. The best QSAR model showed the following parameters: the values of r2 for calibration set and validation set of the best model were 0.6837 and 0.8623 and of Q2 were 0.6114 and 0.8036, respectively. Based on the results obtained for correlation weights, different structural attributes were described as promoter of the endpoint. Further, these structural attributes were used in designing of new FBPase inhibitors and a molecular docking study was completed for the determination of interactions of the designed molecules with the enzyme.
Author Manisha
Kumar, P.
Chauhan, S.
Kumar, A.
Author_xml – sequence: 1
  surname: Manisha
  fullname: Manisha
  organization: Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology
– sequence: 2
  givenname: S.
  surname: Chauhan
  fullname: Chauhan, S.
  organization: Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology
– sequence: 3
  givenname: P.
  surname: Kumar
  fullname: Kumar, P.
  organization: Department of Chemistry, Kurukshetra University
– sequence: 4
  givenname: A.
  surname: Kumar
  fullname: Kumar, A.
  email: ashwanijangra@ymail.com
  organization: Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30777782$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAURi3Uij7gJ4AssWFBpn7ETiw2RcOjlYrYgNSd5dg3jKvEDrYD6r8n0cxsugBLfizOd23fc4FOQgyA0CtKNpS05IoSyRSX9xtGqNpQIVum1DN0TglTFanl_cl6lqxaoTN0kfMDIaTlpHmOzpZ1GS07R_4j_IYhTiOEgmOPpwTO2-JjwGN0MOA-Jtyn2ZaYocL0naxw5_O0i8s0xWTAPux850tMGc_Zh5-47AB_jaEA3po0RDxC2UX3Ap32Zsjw8rBfoh-fP33f3lR3377cbj_cVZarulRKMtEzDlATy5rWSdHVyxeMYJTUtHbAO2poTUmnGu5ACclsI6yjQJntnOSX6O2-7pTirxly0aPPFobBBIhz1oy2XAqm2Iq-eYI-xDmF5XUrJSWXUjQL9fpAzd0ITk_JjyY96mMTF-D9HrAp5pyg19YXs_awJOMHTYlelemjMr0q0wdlS1o8SR8v-F_uep_zYXE0mj8xDU4X8zjE1CcTrM-a_7vEXwfJrFs
CitedBy_id crossref_primary_10_1080_1062936X_2022_2120068
crossref_primary_10_1016_j_chemolab_2022_104552
crossref_primary_10_1080_07391102_2020_1806111
crossref_primary_10_1007_s11696_022_02170_8
crossref_primary_10_1016_j_molstruc_2022_133504
crossref_primary_10_1016_j_fuel_2023_128237
crossref_primary_10_1080_1062936X_2019_1629998
crossref_primary_10_1016_j_taap_2020_115276
crossref_primary_10_1080_1062936X_2020_1806922
crossref_primary_10_1080_1062936X_2020_1842495
crossref_primary_10_1007_s11224_020_01629_2
crossref_primary_10_1080_07391102_2023_2193991
crossref_primary_10_1080_08927022_2020_1770753
crossref_primary_10_1016_j_molliq_2020_114055
crossref_primary_10_1007_s11356_021_13460_1
crossref_primary_10_1080_07391102_2020_1863861
crossref_primary_10_1007_s11224_023_02238_5
crossref_primary_10_1080_10406638_2022_2067194
crossref_primary_10_1007_s11030_020_10085_3
crossref_primary_10_3390_cimb44080234
crossref_primary_10_3390_molecules25061292
crossref_primary_10_1080_1062936X_2023_2167860
crossref_primary_10_1016_j_molstruc_2022_133437
crossref_primary_10_1080_1062936X_2021_1914156
crossref_primary_10_1007_s00204_020_02828_w
crossref_primary_10_1080_07391102_2019_1656109
crossref_primary_10_1016_j_jhazmat_2020_123777
crossref_primary_10_1039_D1NJ04759K
crossref_primary_10_1016_j_rechem_2024_101734
crossref_primary_10_1080_1062936X_2020_1806105
crossref_primary_10_2174_1389557520666200212111428
crossref_primary_10_1016_j_compbiolchem_2024_108167
crossref_primary_10_1080_1062936X_2020_1771769
crossref_primary_10_1007_s11224_019_01468_w
crossref_primary_10_1080_1062936X_2023_2212175
crossref_primary_10_1080_07391102_2020_1784286
crossref_primary_10_1002_minf_201900070
crossref_primary_10_1016_j_microc_2023_109549
crossref_primary_10_1080_07391102_2020_1818627
crossref_primary_10_1016_j_chemolab_2020_103982
crossref_primary_10_1016_j_compbiolchem_2023_107975
crossref_primary_10_1080_1062936X_2021_2003429
crossref_primary_10_1080_1062936X_2021_1952649
crossref_primary_10_1080_15376516_2019_1709238
Cites_doi 10.1016/j.bmcl.2006.01.015
10.1039/c0md00269k
10.1016/j.ejmech.2014.11.049
10.1002/ardp.201600268
10.1002/jcc.21334
10.2174/15701808113106660085
10.1016/j.bmc.2009.04.030
10.1016/j.ejmech.2016.03.075
10.1016/j.bmcl.2009.11.093
10.1016/j.chemolab.2011.03.011
10.1016/j.chemolab.2011.08.007
10.1016/j.ejmech.2013.05.031
10.1111/j.1747-0285.2009.00778.x
10.1021/ja074871l
10.3390/ijms12118161
10.1055/a-0652-5290
10.1002/ardp.201400259
10.1021/jm901420x
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
NPM
7ST
C1K
SOI
7X8
DOI 10.1080/1062936X.2019.1568299
DatabaseName CrossRef
PubMed
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Environment Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Environmental Sciences
EISSN 1029-046X
EndPage 159
ExternalDocumentID 30777782
10_1080_1062936X_2019_1568299
1568299
Genre Article
Journal Article
GroupedDBID ---
.7F
.QJ
0BK
0R~
123
29P
30N
36B
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NW0
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TCY
TDBHL
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
NPM
7ST
C1K
SOI
TASJS
7X8
ID FETCH-LOGICAL-c394t-9625f23ee40c278d65b4936a5210414de3b1a1410b973de9562c75cd1e12cbd63
ISSN 1062-936X
1029-046X
IngestDate Fri Sep 05 10:49:05 EDT 2025
Wed Aug 13 09:12:56 EDT 2025
Wed Feb 19 02:35:38 EST 2025
Tue Jul 01 02:29:41 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Dec 25 09:08:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords docking
SMILES
CORAL
FBPase
QSAR
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-9625f23ee40c278d65b4936a5210414de3b1a1410b973de9562c75cd1e12cbd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30777782
PQID 2186636657
PQPubID 2045229
PageCount 15
ParticipantIDs proquest_miscellaneous_2183652926
crossref_citationtrail_10_1080_1062936X_2019_1568299
crossref_primary_10_1080_1062936X_2019_1568299
informaworld_taylorfrancis_310_1080_1062936X_2019_1568299
pubmed_primary_30777782
proquest_journals_2186636657
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-04
PublicationDateYYYYMMDD 2019-03-04
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-04
  day: 04
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle SAR and QSAR in environmental research
PublicationTitleAlternate SAR QSAR Environ Res
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
Begum S. (CIT0028) 2015; 26
CIT0034
Gobbi M. (CIT0020) 2016; 250
CIT0036
CIT0035
CIT0038
CIT0039
CIT0041
CIT0040
CIT0042
Discovery Studio Visualizer (CIT0049) 2013
CIT0001
Bhargava S. (CIT0048) 2017; 15
Stoičkov V. (CIT0032) 2017; 29
CIT0002
CIT0046
CIT0005
CIT0004
CIT0007
CIT0006
Veselinović J.B. (CIT0018) 2015; 26
CIT0009
CIT0008
Sokolović D. (CIT0024) 2016; 25
Živković J.V. (CIT0021) 2015; 64
CIT0010
Trott O. (CIT0047) 2010; 31
CIT0012
CIT0011
Golubović M. (CIT0045) 2018; 75
Veselinović A.M. (CIT0016) 2018; 42
Rescifina A. (CIT0023) 2017; 106
Bie J. (CIT0003) 2014
CIT0014
CIT0013
Shamsara J. (CIT0037) 2017; 11
CIT0015
Bouhedjar K. (CIT0029) 2017
CIT0019
Simon L. (CIT0031) 2017; 9
Prachayasittikul V. (CIT0017) 2017; 28
Nesměrák K. (CIT0027) 2017; 26
CIT0022
Kumar A. (CIT0043) 2017; 28
Toropov A.A. (CIT0044) 2016; 99
Bhargava S. (CIT0033) 2017; 28
CIT0025
CIT0026
References_xml – volume: 26
  start-page: 3203
  year: 2017
  ident: CIT0027
  publication-title: Chem. Res.
– volume: 28
  start-page: 179
  year: 2017
  ident: CIT0043
  publication-title: Res
– ident: CIT0007
  doi: 10.1016/j.bmcl.2006.01.015
– ident: CIT0011
– volume: 64
  start-page: 276
  year: 2015
  ident: CIT0021
  publication-title: Biol. Med.
– ident: CIT0008
  doi: 10.1039/c0md00269k
– volume: 9
  start-page: 445
  year: 2017
  ident: CIT0031
  publication-title: Sci. Comput. Life Sci.
– volume: 26
  start-page: 449
  year: 2015
  ident: CIT0018
  publication-title: Res
– ident: CIT0035
– volume: 25
  start-page: 2989
  year: 2016
  ident: CIT0024
  publication-title: Chem. Res.
– start-page: 34
  volume-title: QSAR modeling useful in anti-cancer drug discovery: Prediction of V600EBRAF-dependent P-ERK using Monte Carlo method
  year: 2017
  ident: CIT0029
– ident: CIT0005
  doi: 10.1016/j.ejmech.2014.11.049
– ident: CIT0039
  doi: 10.1002/ardp.201600268
– volume-title: Accelrys Inc
  year: 2013
  ident: CIT0049
– start-page: 1850
  volume-title: Design, synthesis and biological evaluation of 7-nitro-1H-indole-2-carboxylic acid derivatives as allosteric inhibitors of fructose-1,6-bisphosphatase
  year: 2014
  ident: CIT0003
– volume: 26
  start-page: 343
  year: 2015
  ident: CIT0028
  publication-title: Res
– ident: CIT0022
– ident: CIT0019
– ident: CIT0036
– volume: 106
  start-page: 94
  year: 2017
  ident: CIT0023
  publication-title: J. Pharma. Sci.
– volume: 29
  start-page: 441
  volume-title: receptor antagonists based on the Monte Carlo method, Struct Chem
  year: 2017
  ident: CIT0032
– ident: CIT0042
– ident: CIT0013
– volume: 250
  start-page: 42
  year: 2016
  ident: CIT0020
  publication-title: Lett
– volume: 31
  start-page: 455
  year: 2010
  ident: CIT0047
  publication-title: Comput. Chem.
  doi: 10.1002/jcc.21334
– ident: CIT0046
  doi: 10.2174/15701808113106660085
– ident: CIT0002
  doi: 10.1016/j.bmc.2009.04.030
– ident: CIT0010
  doi: 10.1016/j.ejmech.2016.03.075
– volume: 75
  start-page: 32
  year: 2018
  ident: CIT0045
  publication-title: Biol. Chem.
– volume: 28
  start-page: 973
  year: 2017
  ident: CIT0033
  publication-title: Res
– volume: 99
  start-page: 1
  year: 2016
  ident: CIT0044
  publication-title: Environ. Chem.
– volume: 15
  start-page: 1
  year: 2017
  ident: CIT0048
  publication-title: Prod. Res.
– ident: CIT0004
– ident: CIT0015
  doi: 10.1016/j.bmcl.2009.11.093
– ident: CIT0038
  doi: 10.1016/j.chemolab.2011.03.011
– volume: 11
  start-page: 212
  year: 2017
  ident: CIT0037
  publication-title: Chem. J.
– volume: 28
  start-page: 1
  year: 2017
  ident: CIT0017
  publication-title: Res
– ident: CIT0041
– ident: CIT0014
– ident: CIT0040
  doi: 10.1016/j.chemolab.2011.08.007
– ident: CIT0012
  doi: 10.1016/j.ejmech.2013.05.031
– volume: 42
  start-page: 10976
  year: 2018
  ident: CIT0016
  publication-title: Chem
– ident: CIT0034
  doi: 10.1111/j.1747-0285.2009.00778.x
– ident: CIT0001
  doi: 10.1021/ja074871l
– ident: CIT0006
  doi: 10.3390/ijms12118161
– ident: CIT0030
– ident: CIT0026
  doi: 10.1055/a-0652-5290
– ident: CIT0025
  doi: 10.1002/ardp.201400259
– ident: CIT0009
  doi: 10.1021/jm901420x
SSID ssj0008307
Score 2.3940413
Snippet Fructose-1,6-bisphosphatase (FBPase) is an enzyme important for regulation of gluconeogenesis, which is a major process in the liver responsible for glucose...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 145
SubjectTerms Calibration
Computer simulation
CORAL
Diabetes mellitus
docking
Drug development
Enzymes
FBPase
Fructose
Gluconeogenesis
Inhibitors
Liver
Mathematical models
Molecular docking
Monte Carlo simulation
Parameters
Prediction models
QSAR
SMILES
Structure-activity relationships
Title Development of prediction model for fructose- 1,6- bisphosphatase inhibitors using the Monte Carlo method
URI https://www.tandfonline.com/doi/abs/10.1080/1062936X.2019.1568299
https://www.ncbi.nlm.nih.gov/pubmed/30777782
https://www.proquest.com/docview/2186636657
https://www.proquest.com/docview/2183652926
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbB6MvY2vXLVs3NBh7yZTZli3bj6F0lEHLLi3kzViyRAytHWrnYf31PTq-pkvptkCMsSzF-PtydI50LoR8hDnfpHEmWOC4ivnSNUxypZlOtXFSo-IUfXNOz8TJhf9tESyGmq0YXVLLmbrZGlfyP6jCNcDVRsn-A7L9oHABzgFfOALCcPwrjEceP-i5fG13XRBQLHCDLoTG5octK82mILOOBJvKvFotS_imNcxg07xY5jLHmjvrqoudOrU5q6wzyGXZ1pgeK7G_5j9xz-GHPbEpR4ZgOSwTMFogw7XuwlZ4HvkRrJd3Vl17P-_vf1yZj5clbCQUZ00h4ZluRKl1rAHrezESj-5Wod14OYJtCqqHWFh3u3gGZmXkNaWTRkCurhBJkEvwaYoW3cmW3TU9Jk-8MMSNe-6c9XNzBO1dHFfkfNn6m7vkaTfKhrKykcr2foMEFZPz5-RZa1HQeUOPF-SRLvbI_rxI6_LqN_1E0ccXN0_2yMHxGCraCvZqn-QjKtHS0IFKFKlE4ZloTyXqfhaMbhKJDkSiSCQKRKJIJIpEog2RXpKLr8fnRyesrcLBFI_9msVgIRuPa-07ygujTATSh3eWgt7n-K6faS7d1HoLyzjkmQZ721NhoDJXu56SmeAHZKcoC_2aUKNAoXe0iUNQXDXca7gCgyGCMSLjh9GE-N3rTlSbot5WSrlM3DaTbQdYYgFLWsAmZNZ3WzU5Wh7qEI-xTGpcHDNNJZuEP9D3sAM-aUVBldjCboLbTcwJ-dA3g6C2u29pocs13sNF4MWemJBXDWH6p-349ubelrdkd_iXHZKd-nqt34E6XMv3yPBbc6OvHw
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb5wwEB216aG99CNpmm2T1pWqnuoVYGPgGEWJNm12T4m0N4SN3aAmsNplD-2v74yB7aZSlEOQEAcYZJth5o39PAPwBX2-K7JS8TgIDZc6dFwLY7ktrAsKZ7LCc3OmMzW5kt_n8XxrLwzRKimGdl2iCG-r6eemyeiBEodXhV5KzYmZlY0xAknRqD6FZzFid9JyEcw21jgVfss0iXCSGXbx3PeaO_7pTvbS-zGo90Vnr8AMvegoKL_G61aPzZ__Ejw-rpuv4WUPVdlxp1tv4Imtd2HvuMYw_fY3-8o8edTPyu_C_um_DXMo01uM1R5UW6wk1ji2WNLKEGkD80V4GPacOcph26wsZ-E3xZmuVovrBs-iRR_Lqvq60hVVBWLE0v_JELOyKWXVYifF8qZhXRXst3B1dnp5MuF9eQduRCZbnmHo5SJhrQxMlKSlirXE7hYIKAIZytIKHRZEQ9VZIkqLgVxkktiUoQ0jo0sl9mGnbmp7AMwZRIqBdVmCiMjis04YRKIpviN1MklHIIePmps-9zmV4LjJwz5F6jDWOY113o_1CMYbsUWX_OMhgWxbY_LWz7q4rkRKLh6QPRzUK-_tyCqnimFK0OrYCD5vbqMFoGWdorbN2j8jVBxlkRrBu04tN61F5ccjjd4_omGf4PnkcnqRX5zPfnyAF3TLk_DkIey0y7U9QlTW6o_-t_sLAKMpVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VVkJcCrSULrRgJMQJr5LYcZJjVboqH11xoFJvUezYNKIkq032AL-eGSdZ2kpVD40U5ZBMZDvjmTfx8wzAe_T5rshKxeMgNFzq0HEtjOW2sC4onMkKz805m6vTc_nlIh7ZhO1Aq6QY2vWJIrytpsm9KN3IiMOrQielLoiYlU0xAEnRpj6CLYXwhFh9IpivjXEq_I5pEuEkM27iues1N9zTjeSld0NQ74pmT0GPnegZKL-mq05Pzd9b-R0f1MtnsD0AVXbUa9Zz2LD1Duwe1Rik__7DPjBPHfX_5Hdg7-T_djmUGexFuwvVNU4SaxxbLGldiHSB-RI8DDvOHGWwbVrLWfhRcaardnHZ4Fl06GFZVV9WuqKaQIw4-j8ZIlZ2Rjm12HGxvGpYXwP7BZzPTn4cn_KhuAM3IpMdzzDwcpGwVgYmStJSxVpidwuEE4EMZWmFDgsioeosEaXFMC4ySWzK0IaR0aUSe7BZN7XdB-YM4sTAuixBPGTxWScM4tAU35E6maQTkOM3zc2Q-ZwKcFzl4ZAgdRzrnMY6H8Z6AtO12KJP_XGfQHZdYfLO_3NxfYGUXNwjezBqVz5YkTanemFK0NrYBN6tb-P8p0WdorbNyj8jVBxlkZrAy14r161F3ccjjV49oGFv4fH3T7P82-f519fwhO54Bp48gM1uubKHCMk6_cZPun8r1yf6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+prediction+model+for+fructose-+1%2C6-+bisphosphatase+inhibitors+using+the+Monte+Carlo+method&rft.jtitle=SAR+and+QSAR+in+environmental+research&rft.au=Manisha&rft.au=Chauhan%2C+S&rft.au=Kumar%2C+P&rft.au=Kumar%2C+A&rft.date=2019-03-04&rft.eissn=1029-046X&rft.spage=1&rft_id=info:doi/10.1080%2F1062936X.2019.1568299&rft_id=info%3Apmid%2F30777782&rft.externalDocID=30777782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-936X&client=summon