Two-Stage Spatiotemporal Context Refinement Network for Precipitation Nowcasting

Precipitation nowcasting by radar echo extrapolation using machine learning algorithms is a field worthy of further study, since rainfall prediction is essential in work and life. Current methods of predicting the radar echo images need further improvement in prediction accuracy as well as in presen...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 21; p. 4285
Main Authors Niu, Dan, Huang, Junhao, Zang, Zengliang, Xu, Liujia, Che, Hongshu, Tang, Yuanqing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Precipitation nowcasting by radar echo extrapolation using machine learning algorithms is a field worthy of further study, since rainfall prediction is essential in work and life. Current methods of predicting the radar echo images need further improvement in prediction accuracy as well as in presenting the predicted details of the radar echo images. In this paper, we propose a two-stage spatiotemporal context refinement network (2S-STRef) to predict future pixel-level radar echo maps (deterministic output) more accurately and with more distinct details. The first stage is an efficient and concise spatiotemporal prediction network, which uses the spatiotemporal RNN module embedded in an encoder and decoder structure to give a first-stage prediction. The second stage is a proposed detail refinement net, which can preserve the high-frequency detailed feature of the radar echo images by using the multi-scale feature extraction and fusion residual block. We used a real-world radar echo map dataset of South China to evaluate the proposed 2S-STRef model. The experiments showed that compared with the PredRNN++ and ConvLSTM method, our 2S-STRef model performs better on the precipitation nowcasting, as well as at the image quality evaluating index and the forecasting indices. At a given 45 dBZ echo threshold (heavy precipitation) and with a 2 h lead time, the widely used CSI, HSS, and SSIM indices of the proposed 2S-STRef model are found equal to 0.195, 0.312, and 0.665, respectively. In this case, the proposed model outperforms the OpticalFlow method and PredRNN++ model.
AbstractList Precipitation nowcasting by radar echo extrapolation using machine learning algorithms is a field worthy of further study, since rainfall prediction is essential in work and life. Current methods of predicting the radar echo images need further improvement in prediction accuracy as well as in presenting the predicted details of the radar echo images. In this paper, we propose a two-stage spatiotemporal context refinement network (2S-STRef) to predict future pixel-level radar echo maps (deterministic output) more accurately and with more distinct details. The first stage is an efficient and concise spatiotemporal prediction network, which uses the spatiotemporal RNN module embedded in an encoder and decoder structure to give a first-stage prediction. The second stage is a proposed detail refinement net, which can preserve the high-frequency detailed feature of the radar echo images by using the multi-scale feature extraction and fusion residual block. We used a real-world radar echo map dataset of South China to evaluate the proposed 2S-STRef model. The experiments showed that compared with the PredRNN++ and ConvLSTM method, our 2S-STRef model performs better on the precipitation nowcasting, as well as at the image quality evaluating index and the forecasting indices. At a given 45 dBZ echo threshold (heavy precipitation) and with a 2 h lead time, the widely used CSI, HSS, and SSIM indices of the proposed 2S-STRef model are found equal to 0.195, 0.312, and 0.665, respectively. In this case, the proposed model outperforms the OpticalFlow method and PredRNN++ model.
Author Tang, Yuanqing
Huang, Junhao
Xu, Liujia
Zang, Zengliang
Che, Hongshu
Niu, Dan
Author_xml – sequence: 1
  givenname: Dan
  surname: Niu
  fullname: Niu, Dan
– sequence: 2
  givenname: Junhao
  surname: Huang
  fullname: Huang, Junhao
– sequence: 3
  givenname: Zengliang
  surname: Zang
  fullname: Zang, Zengliang
– sequence: 4
  givenname: Liujia
  surname: Xu
  fullname: Xu, Liujia
– sequence: 5
  givenname: Hongshu
  surname: Che
  fullname: Che, Hongshu
– sequence: 6
  givenname: Yuanqing
  surname: Tang
  fullname: Tang, Yuanqing
BookMark eNptkV9rFDEUxYNUsNa--AkGfBFhNH9nJo-yWC2UWmx9DneTmyXrbDImWVa_valbUYq5hFwuv3Pg5D4nJzFFJOQlo2-F0PRdLkxwJvmknpBTTkfeS675yT_9M3Jeypa2IwTTVJ6Sm7tD6m8rbLC7XaCGVHG3pAxzt0qx4o_afUEfIu4w1u4a6yHlb51PubvJaMMS6r0mdtfpYKHUEDcvyFMPc8Hzh_eMfL34cLf61F99_ni5en_VW6Fl7aeJglbCMa-Y420mNNNsPY4ShbDjBI6tUU4TMIF67Z3nTiEwhZTTQQovzsjl0dcl2Jolhx3knyZBML8HKW8M5BrsjEYzb0WLLEcH0o0ITmj008T1Wo3Wqub1-ui15PR9j6WaXSgW5xkipn0xfBCDbFexhr56hG7TPseW1HClB9pKD42iR8rmVEpGb-zDT9UMYTaMmvuNmb8ba5I3jyR_Mv0H_gVUupd6
CitedBy_id crossref_primary_10_1109_JSTARS_2023_3310361
crossref_primary_10_1109_JSTARS_2024_3383397
crossref_primary_10_3390_atmos12121618
crossref_primary_10_1016_j_knosys_2024_112679
crossref_primary_10_3390_atmos15020152
crossref_primary_10_3390_rs14235948
crossref_primary_10_3390_rs14174256
crossref_primary_10_3390_rs15061529
crossref_primary_10_3390_rs15061639
crossref_primary_10_1109_JSTARS_2024_3376987
crossref_primary_10_32604_cmes_2022_022045
crossref_primary_10_4108_eetiot_5382
crossref_primary_10_3390_atmos15010104
Cites_doi 10.1175/MWR-D-19-0193.1
10.1007/978-3-319-32034-2_13
10.1145/3292500.3330704
10.1038/273287a0
10.1109/ICDM.2017.49
10.1016/j.procs.2018.08.153
10.1145/3292500.3330717
10.1007/s13143-019-00127-8
10.1002/wrcr.20536
10.1109/TIP.2003.819861
10.1109/ACCESS.2020.2980977
10.1098/rsta.2020.0097
10.1016/j.neucom.2019.09.093
10.1016/j.jhydrol.2019.124140
10.5194/gmd-12-4185-2019
10.1109/TGE.1979.294654
10.3390/atmos8030048
10.1016/j.neucom.2019.10.076
10.1126/science.1115255
10.1109/ACCESS.2020.2995187
10.3390/rs13020246
10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2
10.1038/548379a
10.1038/s41586-019-1559-7
10.1007/s13143-010-1008-x
10.3390/atmos8010011
10.1175/BAMS-D-16-0123.1
10.1016/j.energy.2012.01.006
10.1038/s41586-021-03854-z
10.1109/ACCESS.2019.2950328
10.1109/LGRS.2019.2926776
10.1109/ICC.2019.8761462
10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2
10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2
10.1109/ICESC48915.2020.9155896
10.1016/j.jhydrol.2003.11.011
10.1109/ICDMW.2019.00036
10.3390/s21061981
10.12928/telkomnika.v18i5.14665
10.1109/CVPR.2018.00745
10.1175/BAMS-D-11-00263.1
10.1109/MCI.2009.932254
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13214285
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Collection (ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_91fc300347da4d7ead39ef8829b57cc5
10_3390_rs13214285
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-880a953d1f51d2c3939191b774e33c78ad1be488a13e9bfdf2d5ea15e020643f3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:23:28 EDT 2025
Fri Jul 11 00:53:52 EDT 2025
Fri Jul 25 11:52:37 EDT 2025
Tue Jul 01 01:58:53 EDT 2025
Thu Apr 24 22:59:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-880a953d1f51d2c3939191b774e33c78ad1be488a13e9bfdf2d5ea15e020643f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/91fc300347da4d7ead39ef8829b57cc5
PQID 2596060696
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_91fc300347da4d7ead39ef8829b57cc5
proquest_miscellaneous_2636463651
proquest_journals_2596060696
crossref_citationtrail_10_3390_rs13214285
crossref_primary_10_3390_rs13214285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Gneiting (ref_1) 2005; 310
ref_10
Germann (ref_19) 2004; 43
ref_54
ref_52
ref_17
Germann (ref_18) 2002; 130
McGovern (ref_27) 2017; 98
Jones (ref_2) 2017; 548
Wang (ref_51) 2004; 13
Juanzhen (ref_12) 2014; 95
Zhou (ref_49) 2020; 398
Rinehart (ref_14) 1978; 273
Lin (ref_30) 2019; 7
Hansoo (ref_53) 2017; 8
ref_25
Qin (ref_48) 2020; 379
Crane (ref_13) 1979; 17
(ref_29) 2020; 18
Khan (ref_43) 2020; 8
ref_28
Li (ref_42) 2020; 2020
Pulkkinen (ref_23) 2019; 12
Chung (ref_20) 2020; 148
Salman (ref_34) 2018; 135
Sapankevych (ref_32) 2009; 4
ref_36
ref_35
Tian (ref_24) 2019; 17
ref_33
Ryu (ref_22) 2020; 581
ref_31
Bowler (ref_15) 2004; 288
ref_39
Seed (ref_47) 2013; 49
ref_38
ref_37
Tolstykh (ref_11) 2005; 41
Schultz (ref_46) 2021; 379
Liu (ref_45) 2020; 8
Cyril (ref_26) 2012; 39
ref_44
Ham (ref_8) 2019; 573
ref_41
ref_40
ref_3
Seed (ref_21) 2003; 42
ref_9
ref_5
ref_4
ref_7
ref_6
Bellon (ref_16) 2010; 46
References_xml – volume: 148
  start-page: 1099
  year: 2020
  ident: ref_20
  article-title: Improving radar echo Lagrangian extrapolation nowcasting by blending numerical model wind information: Statistical performance of 16 typhoon cases
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-19-0193.1
– ident: ref_9
– ident: ref_25
  doi: 10.1007/978-3-319-32034-2_13
– ident: ref_28
  doi: 10.1145/3292500.3330704
– ident: ref_5
– volume: 273
  start-page: 287
  year: 1978
  ident: ref_14
  article-title: Three-dimensional storm motion detection by conventional weather radar
  publication-title: Nature
  doi: 10.1038/273287a0
– ident: ref_6
  doi: 10.1109/ICDM.2017.49
– volume: 135
  start-page: 89
  year: 2018
  ident: ref_34
  article-title: Single layer & multi-layer long short-term memory (LSTM) model with intermediate variables for weather forecasting
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.08.153
– ident: ref_38
  doi: 10.1145/3292500.3330717
– volume: 2020
  start-page: 1
  year: 2020
  ident: ref_42
  article-title: Weather forecasting using ensemble of spatial-temporal attention network and multi-layer perceptron
  publication-title: Asia-Pac. J. Atmos. Sci.
  doi: 10.1007/s13143-019-00127-8
– volume: 49
  start-page: 6624
  year: 2013
  ident: ref_47
  article-title: Formulation and evaluation of a scale decomposition-based stochastic precipitation nowcast scheme
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20536
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_51
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 8
  start-page: 52774
  year: 2020
  ident: ref_43
  article-title: Hybrid deep learning approach for multi-step-ahead daily rainfall prediction using GCM simulations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980977
– volume: 379
  start-page: 20200097
  year: 2021
  ident: ref_46
  article-title: Can deep learning beat numerical weather prediction?
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2020.0097
– volume: 398
  start-page: 389
  year: 2020
  ident: ref_49
  article-title: Deep fractal residual network for fast and accurate single image super resolution
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.093
– ident: ref_35
– volume: 581
  start-page: 124140
  year: 2020
  ident: ref_22
  article-title: Improved rainfall nowcasting using Burgers’ equation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124140
– volume: 12
  start-page: 4185
  year: 2019
  ident: ref_23
  article-title: Pysteps: An open-source Python library for probabilistic precipitation nowcasting (v1. 0)
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-12-4185-2019
– ident: ref_4
– volume: 17
  start-page: 250
  year: 1979
  ident: ref_13
  article-title: Automatic cell detection and tracking
  publication-title: IEEE Trans. Geosci. Electron.
  doi: 10.1109/TGE.1979.294654
– ident: ref_52
– ident: ref_17
  doi: 10.3390/atmos8030048
– ident: ref_10
– volume: 379
  start-page: 334
  year: 2020
  ident: ref_48
  article-title: Multi-scale feature fusion residual network for single image super-resolution
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.076
– volume: 310
  start-page: 248
  year: 2005
  ident: ref_1
  article-title: Weather forecasting with ensemble methods
  publication-title: Science
  doi: 10.1126/science.1115255
– volume: 8
  start-page: 93179
  year: 2020
  ident: ref_45
  article-title: MPL-GAN: Toward realistic meteorological predictive learning using conditional GAN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995187
– ident: ref_7
  doi: 10.3390/rs13020246
– volume: 43
  start-page: 74
  year: 2004
  ident: ref_19
  article-title: Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2
– volume: 548
  start-page: 379
  year: 2017
  ident: ref_2
  article-title: Machine learning tapped to improve climate forecasts
  publication-title: Nature
  doi: 10.1038/548379a
– volume: 573
  start-page: 568
  year: 2019
  ident: ref_8
  article-title: Deep learning for multi-year ENSO forecasts
  publication-title: Nature
  doi: 10.1038/s41586-019-1559-7
– volume: 46
  start-page: 369
  year: 2010
  ident: ref_16
  article-title: McGill algorithm for precipitation nowcasting by lagrangian extrapolation (MAPLE) applied to the South Korean radar network
  publication-title: Asia-Pac. J. Atmos. Sci.
  doi: 10.1007/s13143-010-1008-x
– volume: 8
  start-page: 11
  year: 2017
  ident: ref_53
  article-title: Ensemble classification for anomalous propagation echo detection with clustering-based subset-selection method
  publication-title: Atmosphere
  doi: 10.3390/atmos8010011
– ident: ref_3
– volume: 98
  start-page: 2073
  year: 2017
  ident: ref_27
  article-title: Using artificial intelligence to improve real-time decision-making for high-impact weather
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-16-0123.1
– volume: 39
  start-page: 341
  year: 2012
  ident: ref_26
  article-title: Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.006
– ident: ref_41
  doi: 10.1038/s41586-021-03854-z
– volume: 7
  start-page: 158296
  year: 2019
  ident: ref_30
  article-title: Attention-based dual-source spatiotemporal neural network for lightning forecast
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950328
– volume: 17
  start-page: 601
  year: 2019
  ident: ref_24
  article-title: A generative adversarial gated recurrent unit model for precipitation nowcasting
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2926776
– ident: ref_37
– ident: ref_40
  doi: 10.1109/ICC.2019.8761462
– ident: ref_44
– volume: 130
  start-page: 2859
  year: 2002
  ident: ref_18
  article-title: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2
– volume: 42
  start-page: 381
  year: 2003
  ident: ref_21
  article-title: A dynamic and spatial scaling approach to advection forecasting
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2
– ident: ref_31
  doi: 10.1109/ICESC48915.2020.9155896
– ident: ref_33
– volume: 41
  start-page: 285
  year: 2005
  ident: ref_11
  article-title: Some current problems in numerical weather prediction
  publication-title: Izv. Atmos. Ocean. Phys.
– volume: 288
  start-page: 74
  year: 2004
  ident: ref_15
  article-title: Development of a precipitation nowcasting algorithm based upon optical flow techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2003.11.011
– ident: ref_54
  doi: 10.1109/ICDMW.2019.00036
– ident: ref_36
– ident: ref_39
  doi: 10.3390/s21061981
– volume: 18
  start-page: 2498
  year: 2020
  ident: ref_29
  article-title: Prediction of rainfall using improved deep learning with particle swarm optimization
  publication-title: Telkomnika
  doi: 10.12928/telkomnika.v18i5.14665
– ident: ref_50
  doi: 10.1109/CVPR.2018.00745
– volume: 95
  start-page: 409
  year: 2014
  ident: ref_12
  article-title: Use of NWP for nowcasting convective precipitation: Recent progress and challenges
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-11-00263.1
– volume: 4
  start-page: 24
  year: 2009
  ident: ref_32
  article-title: Time series prediction using support vector machines: A survey
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2009.932254
SSID ssj0000331904
Score 2.3624747
Snippet Precipitation nowcasting by radar echo extrapolation using machine learning algorithms is a field worthy of further study, since rainfall prediction is...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4285
SubjectTerms Accuracy
Algorithms
China
Coders
Context
data collection
Datasets
Deep learning
Feature extraction
image analysis
Image quality
Lead time
Learning algorithms
Machine learning
Methods
Neural networks
Nowcasting
Precipitation
precipitation nowcasting
prediction
Predictions
Radar
Radar echoes
Radar imaging
Rain
Rainfall
refinement network
Remote sensing
RNN
spatiotemporal prediction
Weather forecasting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aD3oRn1itEtGLh2A3yT5yEiuKCJaiFnpbsnnooXRrH1T_vTPbtCKK12wIy2Rm8s1k8g0h59rDtsLJzpThlkklOdOpkQywBxeqUJly-Br5sZ3cd-VDL-6FhNs4lFUufGLlqG1pMEd-CTAdsHYzUcnV8J1h1yi8XQ0tNFbJGrjgLKuRtdZtu_O0zLI0BahYU855SQXE95ejcSQqmrH4x0lUEfb_8sfVIXO3RTYDOqTX8-3cJitusEPWQ6Pyt89d0nmZlQwA4qujz1UtdKCW6tOKZupjQp-cB-CIOT_anpd4U8CltIMsFsNAyE3b5czoMVY875Hu3e3LzT0LTRGYEUpOGNibVrGwkY8jy2FMKAi5CkBxTgiTZtpGhQOr1JFwqvDWcxs7HcUOcCGgDy_2SW1QDtwBoUbxJvdeFgm3EsK2DHMbeHMqU5MlStbJxUJAuQk_iI0r-jlEDijM_FuYdXK2nDuc82T8OauFcl7OQG7raqAcvebBVHIVeSOQNye1WtoUVF0o5yESUEWcGgOLNBa7lAeDG-ff6lEnp8vPYCp4_6EHrpzCnEQkyI8WR4f_L3FENjiWrlRPDhukNhlN3TFgj0lxEhTsC7jM2Mo
  priority: 102
  providerName: ProQuest
Title Two-Stage Spatiotemporal Context Refinement Network for Precipitation Nowcasting
URI https://www.proquest.com/docview/2596060696
https://www.proquest.com/docview/2636463651
https://doaj.org/article/91fc300347da4d7ead39ef8829b57cc5
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xGGBBPEWhVEawMERtbOfhkUILQlBVtJW6RY4fMKAW0aLCv-fshFIEEgtTJOcG587n-y4-fwdwKi2aFSN7IBTVARecBjJRPEDsQZnIRSqMu41814mvB_xmGA0XWn25mrCCHrhQXF2EVjHHopJoyXWCH86EsYgLRR4lSnn2Uox5C8mU34MZLq0GL_hIGeb19ZdJyDy9WPQtAnmi_h_7sA8u7U3YKFEhOS9mswVLZrQNa2WD8sf3Hej2Z-MAgeGDIT1fA11SSj0RTy_1NiX3xiJgdP_6SKco7SaIR0nXsVc8l0TcpDOeKTlxlc67MGi3-hfXQdkMIVBM8GmAfiZFxHRoo1BTHGMCU60c0ZthTCWp1GFu0BtlyIzIrbZUR0aGkUE8iKjDsj1YGY1HZh-IErRBreV5TDXHdC11_zTciSlPVBoLXoGzTwVlqpyga1jxlGHG4JSZfSmzAidz2eeCH-NXqabT81zCcVr7AbR0Vlo6-8vSFah-WikrHW2SYfaGKVgjFnEFjuev0UXcuYccmfErysQsdrxoUXjwH_M4hHXqClv8hcQqrExfXs0RIpNpXoPltH1Vg9Xzy7vbHj6brU73vuaX5gdsieR4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXiqdYWsAIOHCwmthOsj4gVB7LlrarCrZSb8Hxoz1Um-3uVkv_FL-xM06yFQJx6zUeWdF47PlmPP4G4I0JuKzo2bm2wnGlleCmsIoj9hBSV7qvPb1GPhzlw2P17SQ7WYPf3VsYKqvszsR4ULvaUo58B2E6Yu0k1_mH6QWnrlF0u9q10GjMYt9fLTFkm7_f-4zr-1aIwZfxpyFvuwpwK7VacDRYozPp0pClTuA3qTFmqRAGeSlt0TcurTyatUml11VwQbjMmzTzCKzQfQeJ896Bu0qiJ6eX6YOvq5xOItGgE9WwoOJ4sjObpzKSmmV_-L3YHuCv0z-6tMF92GyxKNttjOcBrPnJQ9ho26KfXT2Co_Gy5ghHTz37ESuvWyKrcxZJrX4t2HcfEKZShpGNmoJyhiiYHRFnxrSl_2ajemnNnOqrH8PxrSjrCaxP6ol_CsxqkYgQVJULpzBI7FMmhe5pVWH7uVY9eNcpqLTtD1KbjPMS4xRSZnmjzB68XslOG1aOf0p9JD2vJIhJO36oZ6dluzFLnQYriaWncEa5AjeW1D5g3KGrrLAWJ9nuVqlst_e8vDHGHrxaDePGpNsWM_H1JcrkMic2tix99v8pXsLGcHx4UB7sjfa34J6gopn42HEb1hezS_8cUc-iehFNjcHP27btayZHE8s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrQS9ID7FlhaMgAMHaxPbSdYHVFHaVUshWpVW6i0k_mgP1Wa7u9XSv8avYyZxtkIgbr06lhWNnz1v7PEbgHelx2lFz861EZYrrQQvM6M4cg8hdaWH2tFr5G95enCqvpwlZ2vwq3sLQ2mV3Z7YbNS2NnRGPkCajlw7SnU68CEtYrw32plecaogRTetXTmNFiJH7maJ4dv84-EezvV7IUb7J58PeKgwwI3UasERvKVOpI19EluBbVJj_FIhJXJSmmxY2rhyCPEylk5X3nphE1fGiUOSha7cSxz3HqxnFBX1YH13Px8fr054IonwjlSriSqljgazeSwbibPkDy_YFAv4yxc0Dm70CB4GZso-tVB6DGtu8gQehCLpFzdPYXyyrDmS03PHvjd52EHW6pI1Elc_F-zYeSStdN7I8ja9nCEnZmNS0JgGMXCW10tTzinb-hmc3om5nkNvUk_cC2BGi0h4r6pUWIUh45DOVejWVmVmmGrVhw-dgQoTfpCKZlwWGLWQMYtbY_bh7arvtNXo-GevXbLzqgfpajcN9ey8CMu00LE3kjR7Mlsqm-Eyk9p5jEJ0lWTG4CBb3SwVYbHPi1to9uHN6jMuU7p7KSeuvsY-qUxJmy2JN_8_xGu4j7guvh7mRy9hQ1AGTfPycQt6i9m120YKtKheBawx-HHX8P4NevcZXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+Spatiotemporal+Context+Refinement+Network+for+Precipitation+Nowcasting&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Dan+Niu&rft.au=Junhao+Huang&rft.au=Zengliang+Zang&rft.au=Liujia+Xu&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=21&rft.spage=4285&rft_id=info:doi/10.3390%2Frs13214285&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_91fc300347da4d7ead39ef8829b57cc5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon