Two-Stage Spatiotemporal Context Refinement Network for Precipitation Nowcasting
Precipitation nowcasting by radar echo extrapolation using machine learning algorithms is a field worthy of further study, since rainfall prediction is essential in work and life. Current methods of predicting the radar echo images need further improvement in prediction accuracy as well as in presen...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 21; p. 4285 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Precipitation nowcasting by radar echo extrapolation using machine learning algorithms is a field worthy of further study, since rainfall prediction is essential in work and life. Current methods of predicting the radar echo images need further improvement in prediction accuracy as well as in presenting the predicted details of the radar echo images. In this paper, we propose a two-stage spatiotemporal context refinement network (2S-STRef) to predict future pixel-level radar echo maps (deterministic output) more accurately and with more distinct details. The first stage is an efficient and concise spatiotemporal prediction network, which uses the spatiotemporal RNN module embedded in an encoder and decoder structure to give a first-stage prediction. The second stage is a proposed detail refinement net, which can preserve the high-frequency detailed feature of the radar echo images by using the multi-scale feature extraction and fusion residual block. We used a real-world radar echo map dataset of South China to evaluate the proposed 2S-STRef model. The experiments showed that compared with the PredRNN++ and ConvLSTM method, our 2S-STRef model performs better on the precipitation nowcasting, as well as at the image quality evaluating index and the forecasting indices. At a given 45 dBZ echo threshold (heavy precipitation) and with a 2 h lead time, the widely used CSI, HSS, and SSIM indices of the proposed 2S-STRef model are found equal to 0.195, 0.312, and 0.665, respectively. In this case, the proposed model outperforms the OpticalFlow method and PredRNN++ model. |
---|---|
AbstractList | Precipitation nowcasting by radar echo extrapolation using machine learning algorithms is a field worthy of further study, since rainfall prediction is essential in work and life. Current methods of predicting the radar echo images need further improvement in prediction accuracy as well as in presenting the predicted details of the radar echo images. In this paper, we propose a two-stage spatiotemporal context refinement network (2S-STRef) to predict future pixel-level radar echo maps (deterministic output) more accurately and with more distinct details. The first stage is an efficient and concise spatiotemporal prediction network, which uses the spatiotemporal RNN module embedded in an encoder and decoder structure to give a first-stage prediction. The second stage is a proposed detail refinement net, which can preserve the high-frequency detailed feature of the radar echo images by using the multi-scale feature extraction and fusion residual block. We used a real-world radar echo map dataset of South China to evaluate the proposed 2S-STRef model. The experiments showed that compared with the PredRNN++ and ConvLSTM method, our 2S-STRef model performs better on the precipitation nowcasting, as well as at the image quality evaluating index and the forecasting indices. At a given 45 dBZ echo threshold (heavy precipitation) and with a 2 h lead time, the widely used CSI, HSS, and SSIM indices of the proposed 2S-STRef model are found equal to 0.195, 0.312, and 0.665, respectively. In this case, the proposed model outperforms the OpticalFlow method and PredRNN++ model. |
Author | Tang, Yuanqing Huang, Junhao Xu, Liujia Zang, Zengliang Che, Hongshu Niu, Dan |
Author_xml | – sequence: 1 givenname: Dan surname: Niu fullname: Niu, Dan – sequence: 2 givenname: Junhao surname: Huang fullname: Huang, Junhao – sequence: 3 givenname: Zengliang surname: Zang fullname: Zang, Zengliang – sequence: 4 givenname: Liujia surname: Xu fullname: Xu, Liujia – sequence: 5 givenname: Hongshu surname: Che fullname: Che, Hongshu – sequence: 6 givenname: Yuanqing surname: Tang fullname: Tang, Yuanqing |
BookMark | eNptkV9rFDEUxYNUsNa--AkGfBFhNH9nJo-yWC2UWmx9DneTmyXrbDImWVa_valbUYq5hFwuv3Pg5D4nJzFFJOQlo2-F0PRdLkxwJvmknpBTTkfeS675yT_9M3Jeypa2IwTTVJ6Sm7tD6m8rbLC7XaCGVHG3pAxzt0qx4o_afUEfIu4w1u4a6yHlb51PubvJaMMS6r0mdtfpYKHUEDcvyFMPc8Hzh_eMfL34cLf61F99_ni5en_VW6Fl7aeJglbCMa-Y420mNNNsPY4ShbDjBI6tUU4TMIF67Z3nTiEwhZTTQQovzsjl0dcl2Jolhx3knyZBML8HKW8M5BrsjEYzb0WLLEcH0o0ITmj008T1Wo3Wqub1-ui15PR9j6WaXSgW5xkipn0xfBCDbFexhr56hG7TPseW1HClB9pKD42iR8rmVEpGb-zDT9UMYTaMmvuNmb8ba5I3jyR_Mv0H_gVUupd6 |
CitedBy_id | crossref_primary_10_1109_JSTARS_2023_3310361 crossref_primary_10_1109_JSTARS_2024_3383397 crossref_primary_10_3390_atmos12121618 crossref_primary_10_1016_j_knosys_2024_112679 crossref_primary_10_3390_atmos15020152 crossref_primary_10_3390_rs14235948 crossref_primary_10_3390_rs14174256 crossref_primary_10_3390_rs15061529 crossref_primary_10_3390_rs15061639 crossref_primary_10_1109_JSTARS_2024_3376987 crossref_primary_10_32604_cmes_2022_022045 crossref_primary_10_4108_eetiot_5382 crossref_primary_10_3390_atmos15010104 |
Cites_doi | 10.1175/MWR-D-19-0193.1 10.1007/978-3-319-32034-2_13 10.1145/3292500.3330704 10.1038/273287a0 10.1109/ICDM.2017.49 10.1016/j.procs.2018.08.153 10.1145/3292500.3330717 10.1007/s13143-019-00127-8 10.1002/wrcr.20536 10.1109/TIP.2003.819861 10.1109/ACCESS.2020.2980977 10.1098/rsta.2020.0097 10.1016/j.neucom.2019.09.093 10.1016/j.jhydrol.2019.124140 10.5194/gmd-12-4185-2019 10.1109/TGE.1979.294654 10.3390/atmos8030048 10.1016/j.neucom.2019.10.076 10.1126/science.1115255 10.1109/ACCESS.2020.2995187 10.3390/rs13020246 10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2 10.1038/548379a 10.1038/s41586-019-1559-7 10.1007/s13143-010-1008-x 10.3390/atmos8010011 10.1175/BAMS-D-16-0123.1 10.1016/j.energy.2012.01.006 10.1038/s41586-021-03854-z 10.1109/ACCESS.2019.2950328 10.1109/LGRS.2019.2926776 10.1109/ICC.2019.8761462 10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2 10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2 10.1109/ICESC48915.2020.9155896 10.1016/j.jhydrol.2003.11.011 10.1109/ICDMW.2019.00036 10.3390/s21061981 10.12928/telkomnika.v18i5.14665 10.1109/CVPR.2018.00745 10.1175/BAMS-D-11-00263.1 10.1109/MCI.2009.932254 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs13214285 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection AGRICOLA AGRICOLA - Academic DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_91fc300347da4d7ead39ef8829b57cc5 10_3390_rs13214285 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-880a953d1f51d2c3939191b774e33c78ad1be488a13e9bfdf2d5ea15e020643f3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:23:28 EDT 2025 Fri Jul 11 00:53:52 EDT 2025 Fri Jul 25 11:52:37 EDT 2025 Tue Jul 01 01:58:53 EDT 2025 Thu Apr 24 22:59:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-880a953d1f51d2c3939191b774e33c78ad1be488a13e9bfdf2d5ea15e020643f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/91fc300347da4d7ead39ef8829b57cc5 |
PQID | 2596060696 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_91fc300347da4d7ead39ef8829b57cc5 proquest_miscellaneous_2636463651 proquest_journals_2596060696 crossref_citationtrail_10_3390_rs13214285 crossref_primary_10_3390_rs13214285 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Gneiting (ref_1) 2005; 310 ref_10 Germann (ref_19) 2004; 43 ref_54 ref_52 ref_17 Germann (ref_18) 2002; 130 McGovern (ref_27) 2017; 98 Jones (ref_2) 2017; 548 Wang (ref_51) 2004; 13 Juanzhen (ref_12) 2014; 95 Zhou (ref_49) 2020; 398 Rinehart (ref_14) 1978; 273 Lin (ref_30) 2019; 7 Hansoo (ref_53) 2017; 8 ref_25 Qin (ref_48) 2020; 379 Crane (ref_13) 1979; 17 (ref_29) 2020; 18 Khan (ref_43) 2020; 8 ref_28 Li (ref_42) 2020; 2020 Pulkkinen (ref_23) 2019; 12 Chung (ref_20) 2020; 148 Salman (ref_34) 2018; 135 Sapankevych (ref_32) 2009; 4 ref_36 ref_35 Tian (ref_24) 2019; 17 ref_33 Ryu (ref_22) 2020; 581 ref_31 Bowler (ref_15) 2004; 288 ref_39 Seed (ref_47) 2013; 49 ref_38 ref_37 Tolstykh (ref_11) 2005; 41 Schultz (ref_46) 2021; 379 Liu (ref_45) 2020; 8 Cyril (ref_26) 2012; 39 ref_44 Ham (ref_8) 2019; 573 ref_41 ref_40 ref_3 Seed (ref_21) 2003; 42 ref_9 ref_5 ref_4 ref_7 ref_6 Bellon (ref_16) 2010; 46 |
References_xml | – volume: 148 start-page: 1099 year: 2020 ident: ref_20 article-title: Improving radar echo Lagrangian extrapolation nowcasting by blending numerical model wind information: Statistical performance of 16 typhoon cases publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-19-0193.1 – ident: ref_9 – ident: ref_25 doi: 10.1007/978-3-319-32034-2_13 – ident: ref_28 doi: 10.1145/3292500.3330704 – ident: ref_5 – volume: 273 start-page: 287 year: 1978 ident: ref_14 article-title: Three-dimensional storm motion detection by conventional weather radar publication-title: Nature doi: 10.1038/273287a0 – ident: ref_6 doi: 10.1109/ICDM.2017.49 – volume: 135 start-page: 89 year: 2018 ident: ref_34 article-title: Single layer & multi-layer long short-term memory (LSTM) model with intermediate variables for weather forecasting publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.08.153 – ident: ref_38 doi: 10.1145/3292500.3330717 – volume: 2020 start-page: 1 year: 2020 ident: ref_42 article-title: Weather forecasting using ensemble of spatial-temporal attention network and multi-layer perceptron publication-title: Asia-Pac. J. Atmos. Sci. doi: 10.1007/s13143-019-00127-8 – volume: 49 start-page: 6624 year: 2013 ident: ref_47 article-title: Formulation and evaluation of a scale decomposition-based stochastic precipitation nowcast scheme publication-title: Water Resour. Res. doi: 10.1002/wrcr.20536 – volume: 13 start-page: 600 year: 2004 ident: ref_51 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 8 start-page: 52774 year: 2020 ident: ref_43 article-title: Hybrid deep learning approach for multi-step-ahead daily rainfall prediction using GCM simulations publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980977 – volume: 379 start-page: 20200097 year: 2021 ident: ref_46 article-title: Can deep learning beat numerical weather prediction? publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2020.0097 – volume: 398 start-page: 389 year: 2020 ident: ref_49 article-title: Deep fractal residual network for fast and accurate single image super resolution publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.093 – ident: ref_35 – volume: 581 start-page: 124140 year: 2020 ident: ref_22 article-title: Improved rainfall nowcasting using Burgers’ equation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124140 – volume: 12 start-page: 4185 year: 2019 ident: ref_23 article-title: Pysteps: An open-source Python library for probabilistic precipitation nowcasting (v1. 0) publication-title: Geosci. Model Dev. doi: 10.5194/gmd-12-4185-2019 – ident: ref_4 – volume: 17 start-page: 250 year: 1979 ident: ref_13 article-title: Automatic cell detection and tracking publication-title: IEEE Trans. Geosci. Electron. doi: 10.1109/TGE.1979.294654 – ident: ref_52 – ident: ref_17 doi: 10.3390/atmos8030048 – ident: ref_10 – volume: 379 start-page: 334 year: 2020 ident: ref_48 article-title: Multi-scale feature fusion residual network for single image super-resolution publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.076 – volume: 310 start-page: 248 year: 2005 ident: ref_1 article-title: Weather forecasting with ensemble methods publication-title: Science doi: 10.1126/science.1115255 – volume: 8 start-page: 93179 year: 2020 ident: ref_45 article-title: MPL-GAN: Toward realistic meteorological predictive learning using conditional GAN publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995187 – ident: ref_7 doi: 10.3390/rs13020246 – volume: 43 start-page: 74 year: 2004 ident: ref_19 article-title: Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(2004)043<0074:SDOTPO>2.0.CO;2 – volume: 548 start-page: 379 year: 2017 ident: ref_2 article-title: Machine learning tapped to improve climate forecasts publication-title: Nature doi: 10.1038/548379a – volume: 573 start-page: 568 year: 2019 ident: ref_8 article-title: Deep learning for multi-year ENSO forecasts publication-title: Nature doi: 10.1038/s41586-019-1559-7 – volume: 46 start-page: 369 year: 2010 ident: ref_16 article-title: McGill algorithm for precipitation nowcasting by lagrangian extrapolation (MAPLE) applied to the South Korean radar network publication-title: Asia-Pac. J. Atmos. Sci. doi: 10.1007/s13143-010-1008-x – volume: 8 start-page: 11 year: 2017 ident: ref_53 article-title: Ensemble classification for anomalous propagation echo detection with clustering-based subset-selection method publication-title: Atmosphere doi: 10.3390/atmos8010011 – ident: ref_3 – volume: 98 start-page: 2073 year: 2017 ident: ref_27 article-title: Using artificial intelligence to improve real-time decision-making for high-impact weather publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-16-0123.1 – volume: 39 start-page: 341 year: 2012 ident: ref_26 article-title: Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation publication-title: Energy doi: 10.1016/j.energy.2012.01.006 – ident: ref_41 doi: 10.1038/s41586-021-03854-z – volume: 7 start-page: 158296 year: 2019 ident: ref_30 article-title: Attention-based dual-source spatiotemporal neural network for lightning forecast publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950328 – volume: 17 start-page: 601 year: 2019 ident: ref_24 article-title: A generative adversarial gated recurrent unit model for precipitation nowcasting publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2926776 – ident: ref_37 – ident: ref_40 doi: 10.1109/ICC.2019.8761462 – ident: ref_44 – volume: 130 start-page: 2859 year: 2002 ident: ref_18 article-title: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2 – volume: 42 start-page: 381 year: 2003 ident: ref_21 article-title: A dynamic and spatial scaling approach to advection forecasting publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(2003)042<0381:ADASSA>2.0.CO;2 – ident: ref_31 doi: 10.1109/ICESC48915.2020.9155896 – ident: ref_33 – volume: 41 start-page: 285 year: 2005 ident: ref_11 article-title: Some current problems in numerical weather prediction publication-title: Izv. Atmos. Ocean. Phys. – volume: 288 start-page: 74 year: 2004 ident: ref_15 article-title: Development of a precipitation nowcasting algorithm based upon optical flow techniques publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2003.11.011 – ident: ref_54 doi: 10.1109/ICDMW.2019.00036 – ident: ref_36 – ident: ref_39 doi: 10.3390/s21061981 – volume: 18 start-page: 2498 year: 2020 ident: ref_29 article-title: Prediction of rainfall using improved deep learning with particle swarm optimization publication-title: Telkomnika doi: 10.12928/telkomnika.v18i5.14665 – ident: ref_50 doi: 10.1109/CVPR.2018.00745 – volume: 95 start-page: 409 year: 2014 ident: ref_12 article-title: Use of NWP for nowcasting convective precipitation: Recent progress and challenges publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-11-00263.1 – volume: 4 start-page: 24 year: 2009 ident: ref_32 article-title: Time series prediction using support vector machines: A survey publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2009.932254 |
SSID | ssj0000331904 |
Score | 2.3624747 |
Snippet | Precipitation nowcasting by radar echo extrapolation using machine learning algorithms is a field worthy of further study, since rainfall prediction is... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4285 |
SubjectTerms | Accuracy Algorithms China Coders Context data collection Datasets Deep learning Feature extraction image analysis Image quality Lead time Learning algorithms Machine learning Methods Neural networks Nowcasting Precipitation precipitation nowcasting prediction Predictions Radar Radar echoes Radar imaging Rain Rainfall refinement network Remote sensing RNN spatiotemporal prediction Weather forecasting |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aD3oRn1itEtGLh2A3yT5yEiuKCJaiFnpbsnnooXRrH1T_vTPbtCKK12wIy2Rm8s1k8g0h59rDtsLJzpThlkklOdOpkQywBxeqUJly-Br5sZ3cd-VDL-6FhNs4lFUufGLlqG1pMEd-CTAdsHYzUcnV8J1h1yi8XQ0tNFbJGrjgLKuRtdZtu_O0zLI0BahYU855SQXE95ejcSQqmrH4x0lUEfb_8sfVIXO3RTYDOqTX8-3cJitusEPWQ6Pyt89d0nmZlQwA4qujz1UtdKCW6tOKZupjQp-cB-CIOT_anpd4U8CltIMsFsNAyE3b5czoMVY875Hu3e3LzT0LTRGYEUpOGNibVrGwkY8jy2FMKAi5CkBxTgiTZtpGhQOr1JFwqvDWcxs7HcUOcCGgDy_2SW1QDtwBoUbxJvdeFgm3EsK2DHMbeHMqU5MlStbJxUJAuQk_iI0r-jlEDijM_FuYdXK2nDuc82T8OauFcl7OQG7raqAcvebBVHIVeSOQNye1WtoUVF0o5yESUEWcGgOLNBa7lAeDG-ff6lEnp8vPYCp4_6EHrpzCnEQkyI8WR4f_L3FENjiWrlRPDhukNhlN3TFgj0lxEhTsC7jM2Mo priority: 102 providerName: ProQuest |
Title | Two-Stage Spatiotemporal Context Refinement Network for Precipitation Nowcasting |
URI | https://www.proquest.com/docview/2596060696 https://www.proquest.com/docview/2636463651 https://doaj.org/article/91fc300347da4d7ead39ef8829b57cc5 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xGGBBPEWhVEawMERtbOfhkUILQlBVtJW6RY4fMKAW0aLCv-fshFIEEgtTJOcG587n-y4-fwdwKi2aFSN7IBTVARecBjJRPEDsQZnIRSqMu41814mvB_xmGA0XWn25mrCCHrhQXF2EVjHHopJoyXWCH86EsYgLRR4lSnn2Uox5C8mU34MZLq0GL_hIGeb19ZdJyDy9WPQtAnmi_h_7sA8u7U3YKFEhOS9mswVLZrQNa2WD8sf3Hej2Z-MAgeGDIT1fA11SSj0RTy_1NiX3xiJgdP_6SKco7SaIR0nXsVc8l0TcpDOeKTlxlc67MGi3-hfXQdkMIVBM8GmAfiZFxHRoo1BTHGMCU60c0ZthTCWp1GFu0BtlyIzIrbZUR0aGkUE8iKjDsj1YGY1HZh-IErRBreV5TDXHdC11_zTciSlPVBoLXoGzTwVlqpyga1jxlGHG4JSZfSmzAidz2eeCH-NXqabT81zCcVr7AbR0Vlo6-8vSFah-WikrHW2SYfaGKVgjFnEFjuev0UXcuYccmfErysQsdrxoUXjwH_M4hHXqClv8hcQqrExfXs0RIpNpXoPltH1Vg9Xzy7vbHj6brU73vuaX5gdsieR4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXiqdYWsAIOHCwmthOsj4gVB7LlrarCrZSb8Hxoz1Um-3uVkv_FL-xM06yFQJx6zUeWdF47PlmPP4G4I0JuKzo2bm2wnGlleCmsIoj9hBSV7qvPb1GPhzlw2P17SQ7WYPf3VsYKqvszsR4ULvaUo58B2E6Yu0k1_mH6QWnrlF0u9q10GjMYt9fLTFkm7_f-4zr-1aIwZfxpyFvuwpwK7VacDRYozPp0pClTuA3qTFmqRAGeSlt0TcurTyatUml11VwQbjMmzTzCKzQfQeJ896Bu0qiJ6eX6YOvq5xOItGgE9WwoOJ4sjObpzKSmmV_-L3YHuCv0z-6tMF92GyxKNttjOcBrPnJQ9ho26KfXT2Co_Gy5ghHTz37ESuvWyKrcxZJrX4t2HcfEKZShpGNmoJyhiiYHRFnxrSl_2ajemnNnOqrH8PxrSjrCaxP6ol_CsxqkYgQVJULpzBI7FMmhe5pVWH7uVY9eNcpqLTtD1KbjPMS4xRSZnmjzB68XslOG1aOf0p9JD2vJIhJO36oZ6dluzFLnQYriaWncEa5AjeW1D5g3KGrrLAWJ9nuVqlst_e8vDHGHrxaDePGpNsWM_H1JcrkMic2tix99v8pXsLGcHx4UB7sjfa34J6gopn42HEb1hezS_8cUc-iehFNjcHP27btayZHE8s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrQS9ID7FlhaMgAMHaxPbSdYHVFHaVUshWpVW6i0k_mgP1Wa7u9XSv8avYyZxtkIgbr06lhWNnz1v7PEbgHelx2lFz861EZYrrQQvM6M4cg8hdaWH2tFr5G95enCqvpwlZ2vwq3sLQ2mV3Z7YbNS2NnRGPkCajlw7SnU68CEtYrw32plecaogRTetXTmNFiJH7maJ4dv84-EezvV7IUb7J58PeKgwwI3UasERvKVOpI19EluBbVJj_FIhJXJSmmxY2rhyCPEylk5X3nphE1fGiUOSha7cSxz3HqxnFBX1YH13Px8fr054IonwjlSriSqljgazeSwbibPkDy_YFAv4yxc0Dm70CB4GZso-tVB6DGtu8gQehCLpFzdPYXyyrDmS03PHvjd52EHW6pI1Elc_F-zYeSStdN7I8ja9nCEnZmNS0JgGMXCW10tTzinb-hmc3om5nkNvUk_cC2BGi0h4r6pUWIUh45DOVejWVmVmmGrVhw-dgQoTfpCKZlwWGLWQMYtbY_bh7arvtNXo-GevXbLzqgfpajcN9ey8CMu00LE3kjR7Mlsqm-Eyk9p5jEJ0lWTG4CBb3SwVYbHPi1to9uHN6jMuU7p7KSeuvsY-qUxJmy2JN_8_xGu4j7guvh7mRy9hQ1AGTfPycQt6i9m120YKtKheBawx-HHX8P4NevcZXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+Spatiotemporal+Context+Refinement+Network+for+Precipitation+Nowcasting&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Dan+Niu&rft.au=Junhao+Huang&rft.au=Zengliang+Zang&rft.au=Liujia+Xu&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=21&rft.spage=4285&rft_id=info:doi/10.3390%2Frs13214285&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_91fc300347da4d7ead39ef8829b57cc5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |