Affine-Function Transformation-Based Object Matching for Vehicle Detection from Unmanned Aerial Vehicle Imagery

Vehicle detection from remote sensing images plays a significant role in transportation related applications. However, the scale variations, orientation variations, illumination variations, and partial occlusions of vehicles, as well as the image qualities, bring great challenges for accurate vehicl...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 14; p. 1708
Main Authors Cao, Shuang, Yu, Yongtao, Guan, Haiyan, Peng, Daifeng, Yan, Wanqian
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.07.2019
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs11141708

Cover

Loading…
Abstract Vehicle detection from remote sensing images plays a significant role in transportation related applications. However, the scale variations, orientation variations, illumination variations, and partial occlusions of vehicles, as well as the image qualities, bring great challenges for accurate vehicle detection. In this paper, we present an affine-function transformation-based object matching framework for vehicle detection from unmanned aerial vehicle (UAV) images. First, meaningful and non-redundant patches are generated through a superpixel segmentation strategy. Then, the affine-function transformation-based object matching framework is applied to a vehicle template and each of the patches for vehicle existence estimation. Finally, vehicles are detected and located after matching cost thresholding, vehicle location estimation, and multiple response elimination. Quantitative evaluations on two UAV image datasets show that the proposed method achieves an average completeness, correctness, quality, and F1-measure of 0.909, 0.969, 0.883, and 0.938, respectively. Comparative studies also demonstrate that the proposed method achieves compatible performance with the Faster R-CNN and outperforms the other eight existing methods in accurately detecting vehicles of various conditions.
AbstractList Vehicle detection from remote sensing images plays a significant role in transportation related applications. However, the scale variations, orientation variations, illumination variations, and partial occlusions of vehicles, as well as the image qualities, bring great challenges for accurate vehicle detection. In this paper, we present an affine-function transformation-based object matching framework for vehicle detection from unmanned aerial vehicle (UAV) images. First, meaningful and non-redundant patches are generated through a superpixel segmentation strategy. Then, the affine-function transformation-based object matching framework is applied to a vehicle template and each of the patches for vehicle existence estimation. Finally, vehicles are detected and located after matching cost thresholding, vehicle location estimation, and multiple response elimination. Quantitative evaluations on two UAV image datasets show that the proposed method achieves an average completeness, correctness, quality, and F1-measure of 0.909, 0.969, 0.883, and 0.938, respectively. Comparative studies also demonstrate that the proposed method achieves compatible performance with the Faster R-CNN and outperforms the other eight existing methods in accurately detecting vehicles of various conditions.
Author Guan, Haiyan
Peng, Daifeng
Yu, Yongtao
Cao, Shuang
Yan, Wanqian
Author_xml – sequence: 1
  givenname: Shuang
  surname: Cao
  fullname: Cao, Shuang
– sequence: 2
  givenname: Yongtao
  surname: Yu
  fullname: Yu, Yongtao
– sequence: 3
  givenname: Haiyan
  surname: Guan
  fullname: Guan, Haiyan
– sequence: 4
  givenname: Daifeng
  surname: Peng
  fullname: Peng, Daifeng
– sequence: 5
  givenname: Wanqian
  surname: Yan
  fullname: Yan, Wanqian
BookMark eNptkU9PGzEQxa2KSlDgwidYqZeq0rb-l7V9TGlpI4G4QK_WxDsOjnZtajsHvn0dUtEK1ZexZ37vaaz3jhzFFJGQC0Y_CWHo51wYY5Ipqt-QE04V7yU3_Oif-zE5L2VL2xGCGSpPSFp6HyL2V7voakixu8sQi095hv2z_wIFx-52vUVXuxuo7iHETdfm3U98CG7C7itWPEh9TnN3H2eIsWmWmANML9hqhg3mpzPy1sNU8PxPPSX3V9_uLn_017ffV5fL694JI2uvB-YUeDCGKj8O1DDD-Jo6qrTjRrChNaQaQPJRcSWQq2HtGfcIY5OgE6dkdfAdE2ztYw4z5CebINjnRsobC7nuN7PKMTf6hdTglKQa1guHapDcG6MdMNa8Phy8HnP6tcNS7RyKw2mCiGlXLDd60IuFYqKh71-h27TLsf3UckEllYPUqlEfD5TLqZSM_mVBRu0-Svs3ygbTV7AL9TmcmiFM_5P8Bvu0oVA
CitedBy_id crossref_primary_10_3390_rs14020255
crossref_primary_10_3390_rs13214196
crossref_primary_10_3390_rs17030387
crossref_primary_10_3390_app11093884
crossref_primary_10_1109_TITS_2021_3072872
crossref_primary_10_1007_s11760_022_02328_7
crossref_primary_10_1002_syst_202400052
crossref_primary_10_1109_ACCESS_2020_3040290
crossref_primary_10_1109_ACCESS_2020_2990870
crossref_primary_10_1109_TGRS_2020_3029945
crossref_primary_10_3390_rs12010196
Cites_doi 10.3390/rs9040312
10.1109/JSTARS.2017.2694890
10.1109/TGRS.2018.2841808
10.1109/LGRS.2015.2439517
10.1109/TPAMI.2016.2577031
10.1109/JSTARS.2010.2069555
10.3390/s17020336
10.1109/JSTARS.2013.2242846
10.1109/TPAMI.2007.1048
10.1016/j.isprsjprs.2018.05.005
10.1109/LGRS.2017.2699329
10.3390/rs9040368
10.1016/j.jvcir.2015.11.002
10.1016/j.isprsjprs.2018.04.014
10.1109/TPAMI.2012.120
10.1109/IGARSS.2016.7729354
10.1109/ICCET.2010.5486343
10.1109/JSTARS.2018.2810320
10.1109/TITS.2016.2617202
10.3390/s16081325
10.1109/JSTARS.2018.2825099
10.3390/ijgi7070249
10.3390/rs9111170
10.1016/j.isprsjprs.2017.11.023
10.1109/ICPR.2006.479
10.1109/TGRS.2015.2451002
10.1016/j.isprsjprs.2017.11.004
10.1023/B:VISI.0000029664.99615.94
10.1016/j.isprsjprs.2017.12.012
10.1109/ICCWAMTIP.2017.8301495
10.1016/j.isprsjprs.2015.04.014
10.1109/TGRS.2018.2848243
10.3390/s17122720
10.1109/TITS.2016.2622280
10.1109/ICSPS.2010.5555636
10.1016/j.neucom.2016.03.094
10.1016/j.ins.2016.01.004
10.1109/TITS.2016.2517826
10.1109/TPAMI.2012.269
10.1109/TGRS.2013.2296351
10.1016/j.patcog.2016.10.033
10.1109/LGRS.2017.2701902
10.1109/WACV.2017.41
10.1109/IM.2003.1240284
10.1016/j.isprsjprs.2017.07.014
10.1109/JSTARS.2018.2865528
10.1109/TAES.2017.2732832
10.1109/LGRS.2018.2866816
10.1109/JSTARS.2013.2266131
10.1109/TPAMI.2010.182
10.1016/j.isprsjprs.2006.08.004
10.1049/el.2017.2087
10.1109/TGRS.2018.2790926
10.3390/rs10010124
10.14358/PERS.75.7.871
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs11141708
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection (ProQuest)
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_7c1cdf548ac7408ab5ce7642f998ca11
10_3390_rs11141708
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c394t-861c7afa9907fd6091912b0c078c29316919476a42d7273e276bf12fead990ec3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:24:08 EDT 2025
Fri Sep 05 06:53:56 EDT 2025
Sat Sep 06 11:30:42 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Tue Jul 01 04:14:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-861c7afa9907fd6091912b0c078c29316919476a42d7273e276bf12fead990ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2304046487?pq-origsite=%requestingapplication%
PQID 2304046487
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_7c1cdf548ac7408ab5ce7642f998ca11
proquest_miscellaneous_2986855713
proquest_journals_2304046487
crossref_primary_10_3390_rs11141708
crossref_citationtrail_10_3390_rs11141708
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190719
PublicationDateYYYYMMDD 2019-07-19
PublicationDate_xml – month: 07
  year: 2019
  text: 20190719
  day: 19
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chen (ref_29) 2016; 54
Schilling (ref_34) 2018; 136
ref_57
ref_55
ref_10
Xu (ref_19) 2017; 18
ref_53
ref_52
ref_51
Cao (ref_7) 2017; 64
Liu (ref_1) 2011; 4
ref_18
ref_59
Zhou (ref_16) 2017; 53
Zheng (ref_12) 2013; 6
Niu (ref_15) 2006; 61
Salakhutdinov (ref_37) 2013; 35
Zhang (ref_43) 2018; 140
Zhou (ref_2) 2017; 18
Bazi (ref_31) 2018; 56
ref_23
ref_20
Wu (ref_47) 2019; 16
ref_28
Elmikaty (ref_32) 2018; 54
Wang (ref_44) 2018; 145
Lowe (ref_56) 2004; 60
Holt (ref_14) 2009; 75
Li (ref_3) 2016; 44
Razakarivony (ref_25) 2016; 34
Chen (ref_38) 2018; 11
Moranduzzo (ref_24) 2013; 52
Ren (ref_36) 2017; 39
Han (ref_42) 2018; 145
Zhou (ref_8) 2018; 56
ref_35
Deng (ref_49) 2017; 10
ref_33
Jiang (ref_58) 2007; 29
Liu (ref_21) 2015; 12
Zhang (ref_30) 2017; 14
Yu (ref_41) 2016; 112
Chen (ref_13) 2016; 17
Ding (ref_40) 2018; 141
Mokhtarzade (ref_4) 2007; 9
Kemker (ref_39) 2018; 145
Mou (ref_46) 2018; 56
Wan (ref_17) 2017; 14
ref_45
Achanta (ref_54) 2012; 34
Cao (ref_26) 2016; 215
Tuermer (ref_22) 2013; 6
Pan (ref_6) 2018; 11
ref_48
ref_9
Schilling (ref_50) 2018; 11
Cao (ref_27) 2016; 366
ref_5
Kembhavi (ref_11) 2011; 33
References_xml – ident: ref_28
  doi: 10.3390/rs9040312
– volume: 10
  start-page: 3652
  year: 2017
  ident: ref_49
  article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2694890
– volume: 56
  start-page: 6699
  year: 2018
  ident: ref_46
  article-title: Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2841808
– volume: 12
  start-page: 1938
  year: 2015
  ident: ref_21
  article-title: Fast multiclass vehicle detection on aerial images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2439517
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_36
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 4
  start-page: 75
  year: 2011
  ident: ref_1
  article-title: Automated vehicle extraction and speed determination from QuickBird satellite images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2010.2069555
– ident: ref_48
  doi: 10.3390/s17020336
– volume: 6
  start-page: 2327
  year: 2013
  ident: ref_22
  article-title: Airborne vehicle detection in dense urban areas using HOG features and disparity maps
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2242846
– volume: 44
  start-page: 217
  year: 2016
  ident: ref_3
  article-title: Region-based urban road extraction from VHR satellite images using binary partition tree
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 29
  start-page: 959
  year: 2007
  ident: ref_58
  article-title: Matching by linear programming and successive convexification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1048
– volume: 141
  start-page: 208
  year: 2018
  ident: ref_40
  article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.05.005
– ident: ref_35
– volume: 14
  start-page: 1116
  year: 2017
  ident: ref_17
  article-title: Affine invariant description and large-margin dimensionality reduction for target detection in optical remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2699329
– ident: ref_20
  doi: 10.3390/rs9040368
– volume: 34
  start-page: 187
  year: 2016
  ident: ref_25
  article-title: Vehicle detection in aerial imagery: A small target detection benchmark
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.11.002
– volume: 145
  start-page: 60
  year: 2018
  ident: ref_39
  article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.014
– volume: 34
  start-page: 2274
  year: 2012
  ident: ref_54
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– ident: ref_33
  doi: 10.1109/IGARSS.2016.7729354
– ident: ref_9
  doi: 10.1109/ICCET.2010.5486343
– volume: 11
  start-page: 1633
  year: 2018
  ident: ref_38
  article-title: Symmetrical dense-shortcut deep fully convolutional networks for semantic segmentation of very-high-resolution remote sensing images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2810320
– volume: 9
  start-page: 32
  year: 2007
  ident: ref_4
  article-title: Road detection from high-resolution satellite images using artificial neural networks
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 18
  start-page: 1845
  year: 2017
  ident: ref_19
  article-title: An enhanced Viola-Jones vehicle detection method from unmanned aerial vehicles imagery
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2617202
– ident: ref_18
  doi: 10.3390/s16081325
– volume: 11
  start-page: 4299
  year: 2018
  ident: ref_50
  article-title: Detection of vehicles in multisensor data via multibranch convolutional neural networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2825099
– ident: ref_52
  doi: 10.3390/ijgi7070249
– ident: ref_53
  doi: 10.3390/rs9111170
– volume: 136
  start-page: 85
  year: 2018
  ident: ref_34
  article-title: Object-based detection of vehicles using combined optical and elevation data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.023
– ident: ref_55
  doi: 10.1109/ICPR.2006.479
– volume: 54
  start-page: 103
  year: 2016
  ident: ref_29
  article-title: Vehicle detection in high-resolution aerial images via sparse representation and superpixels
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2451002
– volume: 145
  start-page: 23
  year: 2018
  ident: ref_42
  article-title: A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.004
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_56
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 145
  start-page: 148
  year: 2018
  ident: ref_44
  article-title: A deep learning framework for remote sensing image registration
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.12.012
– ident: ref_59
– ident: ref_10
  doi: 10.1109/ICCWAMTIP.2017.8301495
– volume: 112
  start-page: 50
  year: 2016
  ident: ref_41
  article-title: Rotation-and-scale-invariant airplane detection in high-resolution satellite images based on deep-Hough-forests
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.04.014
– volume: 56
  start-page: 7074
  year: 2018
  ident: ref_8
  article-title: Robust vehicle detection in aerial images using bag-of-words and orientation aware scanning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2848243
– ident: ref_51
  doi: 10.3390/s17122720
– volume: 18
  start-page: 1713
  year: 2017
  ident: ref_2
  article-title: On detecting road regions in a single UAV image
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2622280
– ident: ref_5
  doi: 10.1109/ICSPS.2010.5555636
– volume: 215
  start-page: 225
  year: 2016
  ident: ref_26
  article-title: Robust vehicle detection by combining deep features with exemplar classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.094
– volume: 366
  start-page: 177
  year: 2016
  ident: ref_27
  article-title: Vehicle detection from highway satellite images via transfer learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.01.004
– volume: 17
  start-page: 2296
  year: 2016
  ident: ref_13
  article-title: Vehicle detection in high-resolution aerial images based on fast sparse representation classification and multiorder feature
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2517826
– volume: 35
  start-page: 1958
  year: 2013
  ident: ref_37
  article-title: Learning with hierarchical-deep models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.269
– volume: 52
  start-page: 6356
  year: 2013
  ident: ref_24
  article-title: Detecting cars in UAV images with a catalog-based approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2296351
– volume: 64
  start-page: 417
  year: 2017
  ident: ref_7
  article-title: Weakly supervised vehicle detection in satellite images via multi-instance discriminative learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.10.033
– volume: 14
  start-page: 1198
  year: 2017
  ident: ref_30
  article-title: An on-road vehicle detection method for high-resolution aerial images based on local and global structure learning
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2701902
– ident: ref_45
  doi: 10.1109/WACV.2017.41
– ident: ref_57
  doi: 10.1109/IM.2003.1240284
– volume: 140
  start-page: 133
  year: 2018
  ident: ref_43
  article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.07.014
– volume: 11
  start-page: 3701
  year: 2018
  ident: ref_6
  article-title: Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2865528
– volume: 54
  start-page: 51
  year: 2018
  ident: ref_32
  article-title: Car detection in aerial images of dense urban areas
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2017.2732832
– volume: 16
  start-page: 105
  year: 2019
  ident: ref_47
  article-title: Vehicle detection in high-resolution images using superpixel segmentation and CNN iteration strategy
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2866816
– volume: 6
  start-page: 2338
  year: 2013
  ident: ref_12
  article-title: A novel vehicle detection method with high resolution highway aerial image
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2266131
– volume: 33
  start-page: 1250
  year: 2011
  ident: ref_11
  article-title: Vehicle detection using partial least squares
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.182
– volume: 61
  start-page: 170
  year: 2006
  ident: ref_15
  article-title: A semi-automatic framework for highway extraction and vehicle detection based on a geometric deformable model
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2006.08.004
– volume: 53
  start-page: 1406
  year: 2017
  ident: ref_16
  article-title: Orientation aware vehicle detection in aerial images
  publication-title: Electron. Lett.
  doi: 10.1049/el.2017.2087
– volume: 56
  start-page: 3107
  year: 2018
  ident: ref_31
  article-title: Convolutional SVM networks for object detection in UAV imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2790926
– ident: ref_23
  doi: 10.3390/rs10010124
– volume: 75
  start-page: 871
  year: 2009
  ident: ref_14
  article-title: Object-based detection and classification of vehicles from high-resolution aerial photography
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.75.7.871
SSID ssj0000331904
Score 2.2748394
Snippet Vehicle detection from remote sensing images plays a significant role in transportation related applications. However, the scale variations, orientation...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1708
SubjectTerms Classification
Comparative studies
comparative study
Construction
data collection
Deep learning
Genetic transformation
Image detection
Image processing
Image segmentation
Information science
International conferences
lighting
Linear programming
Matching
Neural networks
object matching
quantitative analysis
Remote sensing
remote sensing imagery
Response elimination
Roads & highways
Semantics
Sensors
superpixel segmentation
Traffic police
unmanned aerial vehicle
Unmanned aerial vehicles
Variation
vehicle detection
Vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF1gQT1EoyAgWBqtN48TJ2AJVQSosLeoW-akOkKA2HfrvuUvSEAkkFtb4HEXnO3_f2bk7Qm59ZQRXgWDWSMm4UzFTBmIeFwWW876xWmHu8OQlHM_48zyYN1p94T9hZXngUnFdoT1tHPBqqQXvRVIF2gogzQ7iBC3LrF7AvEYwVezBPphWj5f1SH2I67vLFXg19wT2kWwgUFGo_8c-XIDL6IDsV6yQDsqvOSQ7Nj0iu1WD8sXmmGQD54APshHAEKqSThuEM0vZEMDI0FeFpyp0AtsrHixRGKdvdoHvpA82t-VUzCihs_RD4hZLB4UJ1mJPH1jUYnNCZqPH6f2YVb0SmPZjnrMo9LSQTgK4CGdC0Ejs9VVPAwPQgOhYEifmIpSgfmQsti9C5by-A0OCKVb7p6SVZqk9I9RKpzmgvAl5DyDOKGGkH4dOKmXAv12b3G31l-iqkDj2s3hPIKBAXSffum6Tm1r2syyf8avUEJehlsCS18UDMISkMoTkL0Nok852EZPKD1cJHnnj5W0k2uS6HgYPwmsRmdpsDTJxFEZBANH6-X98xwXZA1KFmWHMizuklS_X9hKIS66uChv9AuhF7Yg
  priority: 102
  providerName: Directory of Open Access Journals
Title Affine-Function Transformation-Based Object Matching for Vehicle Detection from Unmanned Aerial Vehicle Imagery
URI https://www.proquest.com/docview/2304046487
https://www.proquest.com/docview/2986855713
https://doaj.org/article/7c1cdf548ac7408ab5ce7642f998ca11
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6V5NBeKiitmpZGi8qFw4psvPbaJ5QAgVYNIEoqbtY-y6HYNAkH_n1nnI1BatWrd3YP855Z7zcAe4lxSppUce-05jKYghuHNU_IUy_l0Hlr6O3w9Dw7m8mvN-lNbLgt4m-Va5_YOGpXW-qRH1Dzkq7hcnV4_5vT1Ci6XY0jNDagiy44TzvQHZ-cX161XZZBgio2kCtc0gTr-4P5Aq1bCkXzJJ9Fogaw_y9_3ASZySa8jtkhG63EuQUvfPUGXsZB5beP21CPQsC8kE8wHBFL2fWzxLOu-BiDkmMXhrorbIpulhpMDNfZD39LZ7Jjv_SrrfSyhM2qO02ulo0aVWzJvtwRuMXjW5hNTq6PznicmcBtUsglzzNhlQ4ag4wKLsNsoBBDM7CYCViM7ASNU0iVaRQDZS5-qDITxDCgQuEWb5N30Knqyr8H5nWwEqO9y5DxgnCYnU6KLGhjHNp56MH-mn-ljYDiNNfiV4mFBfG6fOJ1Dz63tPcrGI1_Uo1JDC0FQV83H-r5zzJaUqmssC5goaWtkoNcm9R6hVVUwMLRaiF6sLMWYhntcVE-aU8PdttltCS6HtGVrx-QpsizPE2xav_w_yM-witMm-jtFxfFDnSW8wf_CVOTpenDRj457UN3dDz99r0ftbHfFPp_AGXN6Uw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lAuFeUh0payCDhwWNVrr732AaGENkpoExBKUG9mn_TQ2iVJhfKn-I3M-NVKIG692rMra2b2m8d6Zgh5E2krhY4lc1YpJrzOmLYQ8_g0dkKE1hmNtcOTaTKai0_n8fkG-d3WwuBvlS0mVkBtS4M58iNMXuI1XCo_XP9kODUKb1fbERq1Wpy69S8I2Zbvx8cg37dhODyZfRyxZqoAM1EmVixNuJHKK4Bh6W0C9jLjoQ4M2EoDtg-bx2RCJgo-FG27C2WiPQ89sByWOBPBvg_IFrgZGZyircHJ9MvXLqsTRKDSgaj7oEZRFhwtloAmgkucX3nH8lUDAv7C_8qoDR-RncYbpf1afXbJhisek-1mMPrF-gkp-96DH8qGYP5QhHR2x9EtCzYAI2jpZ43ZHDoBWMeEFoX39Ju7wD3psVu5eilWstB5caUQ2mm_Uv2ObHyFzTTWT8n8Xrj5jGwWZeGeE-qUNwK8C5uAoDn2fbYqyhKvtLaAK75H3rX8y03TwBznaFzmEMggr_NbXvfI6472um7b8U-qAYqho8BW29WDcvEjb05uLg031kNgp4wUQap0bJyEqM1DoGoU5z1y0Aoxb87_Mr_V1h551b2Gk4vXMapw5Q3QZGmSxrHk0d7_t3hJtkezyVl-Np6e7pOH4LJh3Rnj2QHZXC1u3Atwi1b6sNFFSr7ft_r_ASNyIU0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAIOHCwkrXXXvuAUEIaNZSGCjWoN7NPemjtkqRC-Wv8Omb8aiUQt169sytrZna-mdndGYA3kbZS6FgGzioVCK-zQFuMeXwaOyFC64ymt8OH82R_IT6dxCdb8Lt9C0PXKlubWBlqWxrKkQ8oeUnHcKkc-OZaxNFk-uHiZ0AdpOiktW2nUavIgdv8wvBt9X42QVm_DcPp3vHH_aDpMBCYKBPrIE24kcorNMnS2wSxM-OhHhrETYM4SIVkMiEThT9NOO9CmWjPQ4_sxynORLjuLdiWiIppD7bHe_Ojr12GZxiheg9FXRM1irLhYLlCyyK4pF6W11CwahbwFxZUADe9D_caz5SNalV6AFuueAh3mibpp5tHUI68R580mCIUkjjZ8TWntyyCMQKiZV80ZXbYIZp4Sm4xHGff3CmtySZu7eqp9KqFLYpzRWaejapt0JHNzqmwxuYxLG6Em0-gV5SFewrMKW8Eeho2QaFzqgFtVZQlXmlt0cb4Prxr-Zebppg59dQ4yzGoIV7nV7zuw-uO9qIu4fFPqjGJoaOgstvVh3L5I292cS4NN9ZjkKcMyjxVOjZOYgTnMWg1ivM-7LZCzBtbsMqvNLcPr7ph3MV0NKMKV14iTZYmaRxLHu38f4mXcBvVPv88mx88g7vovdETtIBnu9BbLy_dc_SQ1vpFo4oMvt-09v8BUYgleQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affine-Function+Transformation-Based+Object+Matching+for+Vehicle+Detection+from+Unmanned+Aerial+Vehicle+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Cao%2C+Shuang&rft.au=Yu%2C+Yongtao&rft.au=Guan%2C+Haiyan&rft.au=Peng%2C+Daifeng&rft.date=2019-07-19&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=14&rft_id=info:doi/10.3390%2Frs11141708&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon