Affine-Function Transformation-Based Object Matching for Vehicle Detection from Unmanned Aerial Vehicle Imagery
Vehicle detection from remote sensing images plays a significant role in transportation related applications. However, the scale variations, orientation variations, illumination variations, and partial occlusions of vehicles, as well as the image qualities, bring great challenges for accurate vehicl...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 14; p. 1708 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
19.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs11141708 |
Cover
Loading…
Abstract | Vehicle detection from remote sensing images plays a significant role in transportation related applications. However, the scale variations, orientation variations, illumination variations, and partial occlusions of vehicles, as well as the image qualities, bring great challenges for accurate vehicle detection. In this paper, we present an affine-function transformation-based object matching framework for vehicle detection from unmanned aerial vehicle (UAV) images. First, meaningful and non-redundant patches are generated through a superpixel segmentation strategy. Then, the affine-function transformation-based object matching framework is applied to a vehicle template and each of the patches for vehicle existence estimation. Finally, vehicles are detected and located after matching cost thresholding, vehicle location estimation, and multiple response elimination. Quantitative evaluations on two UAV image datasets show that the proposed method achieves an average completeness, correctness, quality, and F1-measure of 0.909, 0.969, 0.883, and 0.938, respectively. Comparative studies also demonstrate that the proposed method achieves compatible performance with the Faster R-CNN and outperforms the other eight existing methods in accurately detecting vehicles of various conditions. |
---|---|
AbstractList | Vehicle detection from remote sensing images plays a significant role in transportation related applications. However, the scale variations, orientation variations, illumination variations, and partial occlusions of vehicles, as well as the image qualities, bring great challenges for accurate vehicle detection. In this paper, we present an affine-function transformation-based object matching framework for vehicle detection from unmanned aerial vehicle (UAV) images. First, meaningful and non-redundant patches are generated through a superpixel segmentation strategy. Then, the affine-function transformation-based object matching framework is applied to a vehicle template and each of the patches for vehicle existence estimation. Finally, vehicles are detected and located after matching cost thresholding, vehicle location estimation, and multiple response elimination. Quantitative evaluations on two UAV image datasets show that the proposed method achieves an average completeness, correctness, quality, and F1-measure of 0.909, 0.969, 0.883, and 0.938, respectively. Comparative studies also demonstrate that the proposed method achieves compatible performance with the Faster R-CNN and outperforms the other eight existing methods in accurately detecting vehicles of various conditions. |
Author | Guan, Haiyan Peng, Daifeng Yu, Yongtao Cao, Shuang Yan, Wanqian |
Author_xml | – sequence: 1 givenname: Shuang surname: Cao fullname: Cao, Shuang – sequence: 2 givenname: Yongtao surname: Yu fullname: Yu, Yongtao – sequence: 3 givenname: Haiyan surname: Guan fullname: Guan, Haiyan – sequence: 4 givenname: Daifeng surname: Peng fullname: Peng, Daifeng – sequence: 5 givenname: Wanqian surname: Yan fullname: Yan, Wanqian |
BookMark | eNptkU9PGzEQxa2KSlDgwidYqZeq0rb-l7V9TGlpI4G4QK_WxDsOjnZtajsHvn0dUtEK1ZexZ37vaaz3jhzFFJGQC0Y_CWHo51wYY5Ipqt-QE04V7yU3_Oif-zE5L2VL2xGCGSpPSFp6HyL2V7voakixu8sQi095hv2z_wIFx-52vUVXuxuo7iHETdfm3U98CG7C7itWPEh9TnN3H2eIsWmWmANML9hqhg3mpzPy1sNU8PxPPSX3V9_uLn_017ffV5fL694JI2uvB-YUeDCGKj8O1DDD-Jo6qrTjRrChNaQaQPJRcSWQq2HtGfcIY5OgE6dkdfAdE2ztYw4z5CebINjnRsobC7nuN7PKMTf6hdTglKQa1guHapDcG6MdMNa8Phy8HnP6tcNS7RyKw2mCiGlXLDd60IuFYqKh71-h27TLsf3UckEllYPUqlEfD5TLqZSM_mVBRu0-Svs3ygbTV7AL9TmcmiFM_5P8Bvu0oVA |
CitedBy_id | crossref_primary_10_3390_rs14020255 crossref_primary_10_3390_rs13214196 crossref_primary_10_3390_rs17030387 crossref_primary_10_3390_app11093884 crossref_primary_10_1109_TITS_2021_3072872 crossref_primary_10_1007_s11760_022_02328_7 crossref_primary_10_1002_syst_202400052 crossref_primary_10_1109_ACCESS_2020_3040290 crossref_primary_10_1109_ACCESS_2020_2990870 crossref_primary_10_1109_TGRS_2020_3029945 crossref_primary_10_3390_rs12010196 |
Cites_doi | 10.3390/rs9040312 10.1109/JSTARS.2017.2694890 10.1109/TGRS.2018.2841808 10.1109/LGRS.2015.2439517 10.1109/TPAMI.2016.2577031 10.1109/JSTARS.2010.2069555 10.3390/s17020336 10.1109/JSTARS.2013.2242846 10.1109/TPAMI.2007.1048 10.1016/j.isprsjprs.2018.05.005 10.1109/LGRS.2017.2699329 10.3390/rs9040368 10.1016/j.jvcir.2015.11.002 10.1016/j.isprsjprs.2018.04.014 10.1109/TPAMI.2012.120 10.1109/IGARSS.2016.7729354 10.1109/ICCET.2010.5486343 10.1109/JSTARS.2018.2810320 10.1109/TITS.2016.2617202 10.3390/s16081325 10.1109/JSTARS.2018.2825099 10.3390/ijgi7070249 10.3390/rs9111170 10.1016/j.isprsjprs.2017.11.023 10.1109/ICPR.2006.479 10.1109/TGRS.2015.2451002 10.1016/j.isprsjprs.2017.11.004 10.1023/B:VISI.0000029664.99615.94 10.1016/j.isprsjprs.2017.12.012 10.1109/ICCWAMTIP.2017.8301495 10.1016/j.isprsjprs.2015.04.014 10.1109/TGRS.2018.2848243 10.3390/s17122720 10.1109/TITS.2016.2622280 10.1109/ICSPS.2010.5555636 10.1016/j.neucom.2016.03.094 10.1016/j.ins.2016.01.004 10.1109/TITS.2016.2517826 10.1109/TPAMI.2012.269 10.1109/TGRS.2013.2296351 10.1016/j.patcog.2016.10.033 10.1109/LGRS.2017.2701902 10.1109/WACV.2017.41 10.1109/IM.2003.1240284 10.1016/j.isprsjprs.2017.07.014 10.1109/JSTARS.2018.2865528 10.1109/TAES.2017.2732832 10.1109/LGRS.2018.2866816 10.1109/JSTARS.2013.2266131 10.1109/TPAMI.2010.182 10.1016/j.isprsjprs.2006.08.004 10.1049/el.2017.2087 10.1109/TGRS.2018.2790926 10.3390/rs10010124 10.14358/PERS.75.7.871 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs11141708 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection (ProQuest) Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_7c1cdf548ac7408ab5ce7642f998ca11 10_3390_rs11141708 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO 7S9 L.6 |
ID | FETCH-LOGICAL-c394t-861c7afa9907fd6091912b0c078c29316919476a42d7273e276bf12fead990ec3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:24:08 EDT 2025 Fri Sep 05 06:53:56 EDT 2025 Sat Sep 06 11:30:42 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Tue Jul 01 04:14:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-861c7afa9907fd6091912b0c078c29316919476a42d7273e276bf12fead990ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2304046487?pq-origsite=%requestingapplication% |
PQID | 2304046487 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7c1cdf548ac7408ab5ce7642f998ca11 proquest_miscellaneous_2986855713 proquest_journals_2304046487 crossref_primary_10_3390_rs11141708 crossref_citationtrail_10_3390_rs11141708 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190719 |
PublicationDateYYYYMMDD | 2019-07-19 |
PublicationDate_xml | – month: 07 year: 2019 text: 20190719 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Chen (ref_29) 2016; 54 Schilling (ref_34) 2018; 136 ref_57 ref_55 ref_10 Xu (ref_19) 2017; 18 ref_53 ref_52 ref_51 Cao (ref_7) 2017; 64 Liu (ref_1) 2011; 4 ref_18 ref_59 Zhou (ref_16) 2017; 53 Zheng (ref_12) 2013; 6 Niu (ref_15) 2006; 61 Salakhutdinov (ref_37) 2013; 35 Zhang (ref_43) 2018; 140 Zhou (ref_2) 2017; 18 Bazi (ref_31) 2018; 56 ref_23 ref_20 Wu (ref_47) 2019; 16 ref_28 Elmikaty (ref_32) 2018; 54 Wang (ref_44) 2018; 145 Lowe (ref_56) 2004; 60 Holt (ref_14) 2009; 75 Li (ref_3) 2016; 44 Razakarivony (ref_25) 2016; 34 Chen (ref_38) 2018; 11 Moranduzzo (ref_24) 2013; 52 Ren (ref_36) 2017; 39 Han (ref_42) 2018; 145 Zhou (ref_8) 2018; 56 ref_35 Deng (ref_49) 2017; 10 ref_33 Jiang (ref_58) 2007; 29 Liu (ref_21) 2015; 12 Zhang (ref_30) 2017; 14 Yu (ref_41) 2016; 112 Chen (ref_13) 2016; 17 Ding (ref_40) 2018; 141 Mokhtarzade (ref_4) 2007; 9 Kemker (ref_39) 2018; 145 Mou (ref_46) 2018; 56 Wan (ref_17) 2017; 14 ref_45 Achanta (ref_54) 2012; 34 Cao (ref_26) 2016; 215 Tuermer (ref_22) 2013; 6 Pan (ref_6) 2018; 11 ref_48 ref_9 Schilling (ref_50) 2018; 11 Cao (ref_27) 2016; 366 ref_5 Kembhavi (ref_11) 2011; 33 |
References_xml | – ident: ref_28 doi: 10.3390/rs9040312 – volume: 10 start-page: 3652 year: 2017 ident: ref_49 article-title: Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2694890 – volume: 56 start-page: 6699 year: 2018 ident: ref_46 article-title: Vehicle instance segmentation from aerial image and video using a multitask learning residual fully convolutional network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2841808 – volume: 12 start-page: 1938 year: 2015 ident: ref_21 article-title: Fast multiclass vehicle detection on aerial images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2439517 – volume: 39 start-page: 1137 year: 2017 ident: ref_36 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 4 start-page: 75 year: 2011 ident: ref_1 article-title: Automated vehicle extraction and speed determination from QuickBird satellite images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2010.2069555 – ident: ref_48 doi: 10.3390/s17020336 – volume: 6 start-page: 2327 year: 2013 ident: ref_22 article-title: Airborne vehicle detection in dense urban areas using HOG features and disparity maps publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2242846 – volume: 44 start-page: 217 year: 2016 ident: ref_3 article-title: Region-based urban road extraction from VHR satellite images using binary partition tree publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 29 start-page: 959 year: 2007 ident: ref_58 article-title: Matching by linear programming and successive convexification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1048 – volume: 141 start-page: 208 year: 2018 ident: ref_40 article-title: A light and faster regional convolutional neural network for object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.05.005 – ident: ref_35 – volume: 14 start-page: 1116 year: 2017 ident: ref_17 article-title: Affine invariant description and large-margin dimensionality reduction for target detection in optical remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2699329 – ident: ref_20 doi: 10.3390/rs9040368 – volume: 34 start-page: 187 year: 2016 ident: ref_25 article-title: Vehicle detection in aerial imagery: A small target detection benchmark publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2015.11.002 – volume: 145 start-page: 60 year: 2018 ident: ref_39 article-title: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.014 – volume: 34 start-page: 2274 year: 2012 ident: ref_54 article-title: SLIC superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – ident: ref_33 doi: 10.1109/IGARSS.2016.7729354 – ident: ref_9 doi: 10.1109/ICCET.2010.5486343 – volume: 11 start-page: 1633 year: 2018 ident: ref_38 article-title: Symmetrical dense-shortcut deep fully convolutional networks for semantic segmentation of very-high-resolution remote sensing images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2810320 – volume: 9 start-page: 32 year: 2007 ident: ref_4 article-title: Road detection from high-resolution satellite images using artificial neural networks publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 18 start-page: 1845 year: 2017 ident: ref_19 article-title: An enhanced Viola-Jones vehicle detection method from unmanned aerial vehicles imagery publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2617202 – ident: ref_18 doi: 10.3390/s16081325 – volume: 11 start-page: 4299 year: 2018 ident: ref_50 article-title: Detection of vehicles in multisensor data via multibranch convolutional neural networks publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2825099 – ident: ref_52 doi: 10.3390/ijgi7070249 – ident: ref_53 doi: 10.3390/rs9111170 – volume: 136 start-page: 85 year: 2018 ident: ref_34 article-title: Object-based detection of vehicles using combined optical and elevation data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.023 – ident: ref_55 doi: 10.1109/ICPR.2006.479 – volume: 54 start-page: 103 year: 2016 ident: ref_29 article-title: Vehicle detection in high-resolution aerial images via sparse representation and superpixels publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2451002 – volume: 145 start-page: 23 year: 2018 ident: ref_42 article-title: A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.004 – volume: 60 start-page: 91 year: 2004 ident: ref_56 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 145 start-page: 148 year: 2018 ident: ref_44 article-title: A deep learning framework for remote sensing image registration publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.12.012 – ident: ref_59 – ident: ref_10 doi: 10.1109/ICCWAMTIP.2017.8301495 – volume: 112 start-page: 50 year: 2016 ident: ref_41 article-title: Rotation-and-scale-invariant airplane detection in high-resolution satellite images based on deep-Hough-forests publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.04.014 – volume: 56 start-page: 7074 year: 2018 ident: ref_8 article-title: Robust vehicle detection in aerial images using bag-of-words and orientation aware scanning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2848243 – ident: ref_51 doi: 10.3390/s17122720 – volume: 18 start-page: 1713 year: 2017 ident: ref_2 article-title: On detecting road regions in a single UAV image publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2622280 – ident: ref_5 doi: 10.1109/ICSPS.2010.5555636 – volume: 215 start-page: 225 year: 2016 ident: ref_26 article-title: Robust vehicle detection by combining deep features with exemplar classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.094 – volume: 366 start-page: 177 year: 2016 ident: ref_27 article-title: Vehicle detection from highway satellite images via transfer learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.01.004 – volume: 17 start-page: 2296 year: 2016 ident: ref_13 article-title: Vehicle detection in high-resolution aerial images based on fast sparse representation classification and multiorder feature publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2517826 – volume: 35 start-page: 1958 year: 2013 ident: ref_37 article-title: Learning with hierarchical-deep models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.269 – volume: 52 start-page: 6356 year: 2013 ident: ref_24 article-title: Detecting cars in UAV images with a catalog-based approach publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2296351 – volume: 64 start-page: 417 year: 2017 ident: ref_7 article-title: Weakly supervised vehicle detection in satellite images via multi-instance discriminative learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.10.033 – volume: 14 start-page: 1198 year: 2017 ident: ref_30 article-title: An on-road vehicle detection method for high-resolution aerial images based on local and global structure learning publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2701902 – ident: ref_45 doi: 10.1109/WACV.2017.41 – ident: ref_57 doi: 10.1109/IM.2003.1240284 – volume: 140 start-page: 133 year: 2018 ident: ref_43 article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.07.014 – volume: 11 start-page: 3701 year: 2018 ident: ref_6 article-title: Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2865528 – volume: 54 start-page: 51 year: 2018 ident: ref_32 article-title: Car detection in aerial images of dense urban areas publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2017.2732832 – volume: 16 start-page: 105 year: 2019 ident: ref_47 article-title: Vehicle detection in high-resolution images using superpixel segmentation and CNN iteration strategy publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2866816 – volume: 6 start-page: 2338 year: 2013 ident: ref_12 article-title: A novel vehicle detection method with high resolution highway aerial image publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2266131 – volume: 33 start-page: 1250 year: 2011 ident: ref_11 article-title: Vehicle detection using partial least squares publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.182 – volume: 61 start-page: 170 year: 2006 ident: ref_15 article-title: A semi-automatic framework for highway extraction and vehicle detection based on a geometric deformable model publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2006.08.004 – volume: 53 start-page: 1406 year: 2017 ident: ref_16 article-title: Orientation aware vehicle detection in aerial images publication-title: Electron. Lett. doi: 10.1049/el.2017.2087 – volume: 56 start-page: 3107 year: 2018 ident: ref_31 article-title: Convolutional SVM networks for object detection in UAV imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2790926 – ident: ref_23 doi: 10.3390/rs10010124 – volume: 75 start-page: 871 year: 2009 ident: ref_14 article-title: Object-based detection and classification of vehicles from high-resolution aerial photography publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.75.7.871 |
SSID | ssj0000331904 |
Score | 2.2748394 |
Snippet | Vehicle detection from remote sensing images plays a significant role in transportation related applications. However, the scale variations, orientation... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1708 |
SubjectTerms | Classification Comparative studies comparative study Construction data collection Deep learning Genetic transformation Image detection Image processing Image segmentation Information science International conferences lighting Linear programming Matching Neural networks object matching quantitative analysis Remote sensing remote sensing imagery Response elimination Roads & highways Semantics Sensors superpixel segmentation Traffic police unmanned aerial vehicle Unmanned aerial vehicles Variation vehicle detection Vehicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF1gQT1EoyAgWBqtN48TJ2AJVQSosLeoW-akOkKA2HfrvuUvSEAkkFtb4HEXnO3_f2bk7Qm59ZQRXgWDWSMm4UzFTBmIeFwWW876xWmHu8OQlHM_48zyYN1p94T9hZXngUnFdoT1tHPBqqQXvRVIF2gogzQ7iBC3LrF7AvEYwVezBPphWj5f1SH2I67vLFXg19wT2kWwgUFGo_8c-XIDL6IDsV6yQDsqvOSQ7Nj0iu1WD8sXmmGQD54APshHAEKqSThuEM0vZEMDI0FeFpyp0AtsrHixRGKdvdoHvpA82t-VUzCihs_RD4hZLB4UJ1mJPH1jUYnNCZqPH6f2YVb0SmPZjnrMo9LSQTgK4CGdC0Ejs9VVPAwPQgOhYEifmIpSgfmQsti9C5by-A0OCKVb7p6SVZqk9I9RKpzmgvAl5DyDOKGGkH4dOKmXAv12b3G31l-iqkDj2s3hPIKBAXSffum6Tm1r2syyf8avUEJehlsCS18UDMISkMoTkL0Nok852EZPKD1cJHnnj5W0k2uS6HgYPwmsRmdpsDTJxFEZBANH6-X98xwXZA1KFmWHMizuklS_X9hKIS66uChv9AuhF7Yg priority: 102 providerName: Directory of Open Access Journals |
Title | Affine-Function Transformation-Based Object Matching for Vehicle Detection from Unmanned Aerial Vehicle Imagery |
URI | https://www.proquest.com/docview/2304046487 https://www.proquest.com/docview/2986855713 https://doaj.org/article/7c1cdf548ac7408ab5ce7642f998ca11 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6V5NBeKiitmpZGi8qFw4psvPbaJ5QAgVYNIEoqbtY-y6HYNAkH_n1nnI1BatWrd3YP855Z7zcAe4lxSppUce-05jKYghuHNU_IUy_l0Hlr6O3w9Dw7m8mvN-lNbLgt4m-Va5_YOGpXW-qRH1Dzkq7hcnV4_5vT1Ci6XY0jNDagiy44TzvQHZ-cX161XZZBgio2kCtc0gTr-4P5Aq1bCkXzJJ9Fogaw_y9_3ASZySa8jtkhG63EuQUvfPUGXsZB5beP21CPQsC8kE8wHBFL2fWzxLOu-BiDkmMXhrorbIpulhpMDNfZD39LZ7Jjv_SrrfSyhM2qO02ulo0aVWzJvtwRuMXjW5hNTq6PznicmcBtUsglzzNhlQ4ag4wKLsNsoBBDM7CYCViM7ASNU0iVaRQDZS5-qDITxDCgQuEWb5N30Knqyr8H5nWwEqO9y5DxgnCYnU6KLGhjHNp56MH-mn-ljYDiNNfiV4mFBfG6fOJ1Dz63tPcrGI1_Uo1JDC0FQV83H-r5zzJaUqmssC5goaWtkoNcm9R6hVVUwMLRaiF6sLMWYhntcVE-aU8PdttltCS6HtGVrx-QpsizPE2xav_w_yM-witMm-jtFxfFDnSW8wf_CVOTpenDRj457UN3dDz99r0ftbHfFPp_AGXN6Uw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lAuFeUh0payCDhwWNVrr732AaGENkpoExBKUG9mn_TQ2iVJhfKn-I3M-NVKIG692rMra2b2m8d6Zgh5E2krhY4lc1YpJrzOmLYQ8_g0dkKE1hmNtcOTaTKai0_n8fkG-d3WwuBvlS0mVkBtS4M58iNMXuI1XCo_XP9kODUKb1fbERq1Wpy69S8I2Zbvx8cg37dhODyZfRyxZqoAM1EmVixNuJHKK4Bh6W0C9jLjoQ4M2EoDtg-bx2RCJgo-FG27C2WiPQ89sByWOBPBvg_IFrgZGZyircHJ9MvXLqsTRKDSgaj7oEZRFhwtloAmgkucX3nH8lUDAv7C_8qoDR-RncYbpf1afXbJhisek-1mMPrF-gkp-96DH8qGYP5QhHR2x9EtCzYAI2jpZ43ZHDoBWMeEFoX39Ju7wD3psVu5eilWstB5caUQ2mm_Uv2ObHyFzTTWT8n8Xrj5jGwWZeGeE-qUNwK8C5uAoDn2fbYqyhKvtLaAK75H3rX8y03TwBznaFzmEMggr_NbXvfI6472um7b8U-qAYqho8BW29WDcvEjb05uLg031kNgp4wUQap0bJyEqM1DoGoU5z1y0Aoxb87_Mr_V1h551b2Gk4vXMapw5Q3QZGmSxrHk0d7_t3hJtkezyVl-Np6e7pOH4LJh3Rnj2QHZXC1u3Atwi1b6sNFFSr7ft_r_ASNyIU0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKdIKbAIOHCwkrXXXvuAUEIaNZSGCjWoN7NPemjtkqRC-Wv8Omb8aiUQt169sytrZna-mdndGYA3kbZS6FgGzioVCK-zQFuMeXwaOyFC64ymt8OH82R_IT6dxCdb8Lt9C0PXKlubWBlqWxrKkQ8oeUnHcKkc-OZaxNFk-uHiZ0AdpOiktW2nUavIgdv8wvBt9X42QVm_DcPp3vHH_aDpMBCYKBPrIE24kcorNMnS2wSxM-OhHhrETYM4SIVkMiEThT9NOO9CmWjPQ4_sxynORLjuLdiWiIppD7bHe_Ojr12GZxiheg9FXRM1irLhYLlCyyK4pF6W11CwahbwFxZUADe9D_caz5SNalV6AFuueAh3mibpp5tHUI68R580mCIUkjjZ8TWntyyCMQKiZV80ZXbYIZp4Sm4xHGff3CmtySZu7eqp9KqFLYpzRWaejapt0JHNzqmwxuYxLG6Em0-gV5SFewrMKW8Eeho2QaFzqgFtVZQlXmlt0cb4Prxr-Zebppg59dQ4yzGoIV7nV7zuw-uO9qIu4fFPqjGJoaOgstvVh3L5I292cS4NN9ZjkKcMyjxVOjZOYgTnMWg1ivM-7LZCzBtbsMqvNLcPr7ph3MV0NKMKV14iTZYmaRxLHu38f4mXcBvVPv88mx88g7vovdETtIBnu9BbLy_dc_SQ1vpFo4oMvt-09v8BUYgleQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affine-Function+Transformation-Based+Object+Matching+for+Vehicle+Detection+from+Unmanned+Aerial+Vehicle+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Cao%2C+Shuang&rft.au=Yu%2C+Yongtao&rft.au=Guan%2C+Haiyan&rft.au=Peng%2C+Daifeng&rft.date=2019-07-19&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=14&rft_id=info:doi/10.3390%2Frs11141708&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |