From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors

Low-cost sensors for particulate matter mass (PM) enable spatially dense, high temporal resolution measurements of air quality that traditional reference monitoring cannot. Low-cost PM sensors are especially beneficial in low and middle-income countries where few, if any, reference grade measurement...

Full description

Saved in:
Bibliographic Details
Published inJournal of aerosol science Vol. 158; p. 105833
Main Authors Giordano, Michael R., Malings, Carl, Pandis, Spyros N., Presto, Albert A., McNeill, V.F., Westervelt, Daniel M., Beekmann, Matthias, Subramanian, R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low-cost sensors for particulate matter mass (PM) enable spatially dense, high temporal resolution measurements of air quality that traditional reference monitoring cannot. Low-cost PM sensors are especially beneficial in low and middle-income countries where few, if any, reference grade measurements exist and in areas where the concentration fields of air pollutants have significant spatial gradients. Unfortunately, low-cost PM sensors also come with a number of challenges that must be addressed if their data products are to be used for anything more than a qualitative characterization of air quality. The various PM sensors used in low-cost monitors are all subject to biases and calibration dependencies, corrections for which range from relatively straightforward (e.g. meteorology, age of sensor) to complex (e.g. aerosol source, composition, refractive index). The methods for correcting and calibrating these biases and dependencies that have been used in the literature likewise range from simple linear and quadratic models to complex machine learning algorithms. Here we review the needs and challenges when trying to get high-quality data from low-cost sensors. We also present a set of best practices to follow to obtain high-quality data from these low-cost sensors. •Low-cost sensors (LCS) give air pollution data at high spatial/temporal resolution.•Challenges in obtaining high quality data from low-cost PM sensors are reviewed.•Current methods of correcting LCS data are reviewed, best practices are suggested.•To better evaluate LCS corrections, both accuracy and bias should be reported.
AbstractList Low-cost sensors for particulate matter mass (PM) enable spatially dense, high temporal resolution measurements of air quality that traditional reference monitoring cannot. Low-cost PM sensors are especially beneficial in low and middle-income countries where few, if any, reference grade measurements exist and in areas where the concentration fields of air pollutants have significant spatial gradients. Unfortunately, low-cost PM sensors also come with a number of challenges that must be addressed if their data products are to be used for anything more than a qualitative characterization of air quality. The various PM sensors used in low-cost monitors are all subject to biases and calibration dependencies, corrections for which range from relatively straightforward (e.g. meteorology, age of sensor) to complex (e.g. aerosol source, composition, refractive index). The methods for correcting and calibrating these biases and dependencies that have been used in the literature likewise range from simple linear and quadratic models to complex machine learning algorithms. Here we review the needs and challenges when trying to get high-quality data from low-cost sensors. We also present a set of best practices to follow to obtain high-quality data from these low-cost sensors. •Low-cost sensors (LCS) give air pollution data at high spatial/temporal resolution.•Challenges in obtaining high quality data from low-cost PM sensors are reviewed.•Current methods of correcting LCS data are reviewed, best practices are suggested.•To better evaluate LCS corrections, both accuracy and bias should be reported.
Low-cost sensors for particulate matter mass (PM) enable spatially dense, high temporal resolution measurements of air quality that traditional reference monitoring cannot. Low-cost PM sensors are especially beneficial in low and middle-income countries where few, if any, reference grade measurements exist and in areas where the concentration fields of air pollutants have significant spatial gradients. Unfortunately, low-cost PM sensors also come with a number of challenges that must be addressed if their data products are to be used for anything more than a qualitative characterization of air quality. The various PM sensors used in low-cost monitors are all subject to biases and calibration dependencies, corrections for which range from relatively straightforward (e.g. meteorology, age of sensor) to complex (e.g. aerosol source, composition, refractive index). The methods for correcting and calibrating these biases and dependencies that have been used in the literature likewise range from simple linear and quadratic models to complex machine learning algorithms. Here we review the needs and challenges when trying to get high-quality data from low-cost sensors. We also present a set of best practices to follow to obtain high-quality data from these low-cost sensors.
ArticleNumber 105833
Author Beekmann, Matthias
Giordano, Michael R.
McNeill, V.F.
Presto, Albert A.
Westervelt, Daniel M.
Pandis, Spyros N.
Subramanian, R.
Malings, Carl
Author_xml – sequence: 1
  givenname: Michael R.
  orcidid: 0000-0002-6820-6668
  surname: Giordano
  fullname: Giordano, Michael R.
  email: mike@afriqair.org
  organization: Univ Paris Est Creteil, CNRS UMS 3563, Ecole Nationale des Ponts et Chaussés, Université de Paris, OSU-EFLUVE – Observatoire Sciences de L’Univers-Envelopes Fluides de La Ville à L’Exobiologie, F-94010 Créteil, France
– sequence: 2
  givenname: Carl
  orcidid: 0000-0002-2242-4328
  surname: Malings
  fullname: Malings, Carl
  organization: NASA Postdoctoral Program Fellow, Goddard Space Flight Center, Greenbelt, MD, USA
– sequence: 3
  givenname: Spyros N.
  orcidid: 0000-0001-8085-9795
  surname: Pandis
  fullname: Pandis, Spyros N.
  organization: Department of Chemical Engineering, University of Patras, Patras, Greece
– sequence: 4
  givenname: Albert A.
  orcidid: 0000-0002-9156-1094
  surname: Presto
  fullname: Presto, Albert A.
  organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 5
  givenname: V.F.
  surname: McNeill
  fullname: McNeill, V.F.
  organization: Departments of Chemical Engineering and Earth and Environmental Sciences, Columbia University, New York, NY, USA
– sequence: 6
  givenname: Daniel M.
  orcidid: 0000-0003-0806-9961
  surname: Westervelt
  fullname: Westervelt, Daniel M.
  organization: Lamont-Doherty Earth Observatory of Columbia University, New York, NY, USA
– sequence: 7
  givenname: Matthias
  surname: Beekmann
  fullname: Beekmann, Matthias
  organization: Univ Paris Est Creteil, CNRS UMS 3563, Ecole Nationale des Ponts et Chaussés, Université de Paris, OSU-EFLUVE – Observatoire Sciences de L’Univers-Envelopes Fluides de La Ville à L’Exobiologie, F-94010 Créteil, France
– sequence: 8
  givenname: R.
  orcidid: 0000-0002-5553-5913
  surname: Subramanian
  fullname: Subramanian, R.
  email: subu@lisa.ipsl.fr, subu@cmu.edu
  organization: Univ Paris Est Creteil, CNRS UMS 3563, Ecole Nationale des Ponts et Chaussés, Université de Paris, OSU-EFLUVE – Observatoire Sciences de L’Univers-Envelopes Fluides de La Ville à L’Exobiologie, F-94010 Créteil, France
BackLink https://hal.science/hal-03442005$$DView record in HAL
BookMark eNqFUcFqGzEQFSGFOml_oejawzqSVrvShh5qQtMEDL20ZzGrHdky65UryS7-lv5sZFxTyCWnQaP3Zua9d0OupzAhIZ84m3PG27vNfAMYQ7J-Lpjgpdnour4iM65VV_GulddkxspPpRsm3pOblDaMMdXxZkb-PsawpWP4U9mQMk04pRATzYGu_Wpd_d7D6PORDpDhni5o2m-3EI80OGrXMI44rTBRmAbaY6HvItjsbWm5ECk6h-V5wPFIbZnTR8h-Wv3ftoNY0PsRMtIt5IyxlJQuV3wg7xyMCT_-q7fk1-O3nw9P1fLH9-eHxbKydSdzUdVobBulVIdSC9CtlKiUtm7ATjZSoWy4q7ngTlvRdwPUylnR9ih6DQzqW_L5PLcoMrvoTwpNAG-eFktz6rFaSsFYc-AF--WMtcXxFNEZ63ORFaYcwY-GM3MKxWzMJRRzCsWcQyn09hX9su9N4tczEYsRB4_RFAROFgcfi8lmCP6tES8lZrAt
CitedBy_id crossref_primary_10_1016_j_envint_2024_109069
crossref_primary_10_1016_j_apr_2024_102341
crossref_primary_10_1155_2024_2930582
crossref_primary_10_1016_j_apr_2025_102504
crossref_primary_10_5194_amt_16_5415_2023
crossref_primary_10_1016_j_agwat_2023_108489
crossref_primary_10_1021_acsestair_4c00224
crossref_primary_10_1109_TII_2022_3151782
crossref_primary_10_1016_j_scitotenv_2024_178190
crossref_primary_10_1039_D3EA00074E
crossref_primary_10_1016_j_jaerosci_2023_106284
crossref_primary_10_1021_acs_est_2c08096
crossref_primary_10_1016_j_rse_2022_112890
crossref_primary_10_5194_amt_17_6425_2024
crossref_primary_10_1016_j_buildenv_2024_112099
crossref_primary_10_1021_acsearthspacechem_1c00391
crossref_primary_10_3390_su14105999
crossref_primary_10_1007_s11869_024_01687_z
crossref_primary_10_3390_s23146541
crossref_primary_10_1021_acsearthspacechem_2c00257
crossref_primary_10_1038_s41612_022_00293_z
crossref_primary_10_1007_s00542_025_05859_4
crossref_primary_10_1016_j_aej_2024_09_031
crossref_primary_10_1016_j_knosys_2024_111879
crossref_primary_10_1029_2024JH000183
crossref_primary_10_21062_mft_2023_110
crossref_primary_10_3390_s24082500
crossref_primary_10_1039_D2EA00142J
crossref_primary_10_3390_atmos14020368
crossref_primary_10_1016_j_scitotenv_2023_168666
crossref_primary_10_1016_j_scitotenv_2023_169117
crossref_primary_10_3390_atmos15080879
crossref_primary_10_1021_acsestengg_1c00367
crossref_primary_10_1039_D2EA00085G
crossref_primary_10_1177_09754253221122752
crossref_primary_10_1016_j_uclim_2023_101684
crossref_primary_10_1080_02786826_2024_2342722
crossref_primary_10_1016_j_engappai_2023_107591
crossref_primary_10_3390_ijerph18189811
crossref_primary_10_3390_environments11110237
crossref_primary_10_1016_j_buildenv_2021_108668
crossref_primary_10_1016_j_scitotenv_2023_164063
crossref_primary_10_3390_s25041265
crossref_primary_10_3390_atmos15030304
crossref_primary_10_3390_atmos14020354
crossref_primary_10_1038_s41370_022_00449_2
crossref_primary_10_1016_j_atmosenv_2024_120460
crossref_primary_10_22201_iingen_0718378xe_2023_16_3_86568
crossref_primary_10_1021_acs_est_4c09752
crossref_primary_10_1038_s41612_024_00812_0
crossref_primary_10_5194_amt_15_3353_2022
crossref_primary_10_3390_s23239446
crossref_primary_10_1080_02786826_2025_2475085
crossref_primary_10_3390_atmos16020172
crossref_primary_10_1016_j_atmosres_2024_107656
crossref_primary_10_1016_j_future_2023_11_029
crossref_primary_10_1016_j_jaerosci_2024_106456
crossref_primary_10_1021_acsestair_3c00024
crossref_primary_10_1016_j_jaerosci_2023_106181
crossref_primary_10_5194_amt_17_3809_2024
crossref_primary_10_1021_acsestair_4c00125
crossref_primary_10_1016_j_envpol_2023_121832
crossref_primary_10_1016_j_microc_2025_112666
crossref_primary_10_5194_amt_15_6309_2022
crossref_primary_10_2139_ssrn_4143147
crossref_primary_10_1021_acsestair_4c00126
crossref_primary_10_3390_s24113650
crossref_primary_10_3390_atmos13071061
crossref_primary_10_3390_pr11082338
crossref_primary_10_1016_j_eti_2022_102551
crossref_primary_10_1016_j_scitotenv_2023_161969
crossref_primary_10_3390_atmos15111326
crossref_primary_10_1007_s41810_024_00271_3
crossref_primary_10_3390_polym16131841
crossref_primary_10_1080_00207233_2024_2358716
crossref_primary_10_3390_atmos13040587
crossref_primary_10_1007_s10661_023_11438_9
crossref_primary_10_2298_TSCI221109221S
crossref_primary_10_5194_amt_16_4709_2023
crossref_primary_10_1016_j_scitotenv_2023_166743
crossref_primary_10_1039_D4EA00140K
crossref_primary_10_3390_asi6040069
crossref_primary_10_3390_s22249669
crossref_primary_10_3390_atmos15050594
crossref_primary_10_1016_j_scs_2023_104607
crossref_primary_10_3390_chemosensors13010025
crossref_primary_10_1007_s11276_024_03893_0
crossref_primary_10_5194_amt_15_4047_2022
crossref_primary_10_1039_D4CE00364K
crossref_primary_10_1016_j_envres_2023_115685
crossref_primary_10_1088_1748_9326_ac6ad6
crossref_primary_10_1016_j_jaerosci_2024_106519
crossref_primary_10_1016_j_envint_2022_107645
crossref_primary_10_3390_atmos13030440
crossref_primary_10_3390_atmos14030496
crossref_primary_10_1016_j_atmosenv_2022_119251
crossref_primary_10_1016_j_apr_2023_102027
crossref_primary_10_1007_s11270_022_05679_6
crossref_primary_10_1088_2399_6528_aca45e
crossref_primary_10_1016_j_jaerosci_2022_106114
crossref_primary_10_1016_j_atmosenv_2024_120888
crossref_primary_10_1021_acs_est_2c09264
crossref_primary_10_1016_j_atmosenv_2024_120887
crossref_primary_10_1016_j_microc_2024_112369
crossref_primary_10_1111_evj_14425
crossref_primary_10_1039_D2EA00025C
crossref_primary_10_1016_j_envpol_2023_122701
crossref_primary_10_20517_jeea_2024_56
crossref_primary_10_1109_ACCESS_2023_3319092
crossref_primary_10_5194_amt_15_4091_2022
crossref_primary_10_3390_atmos15091056
crossref_primary_10_3390_atmos13111766
crossref_primary_10_3390_s24134052
crossref_primary_10_3390_chemosensors12120262
crossref_primary_10_1029_2021GH000451
crossref_primary_10_1093_jrsssc_qlaf007
crossref_primary_10_1016_j_envpol_2024_124900
crossref_primary_10_3390_s23020640
crossref_primary_10_1016_j_scitotenv_2024_174089
crossref_primary_10_1016_j_atmosenv_2023_120108
crossref_primary_10_1016_j_eti_2022_102974
crossref_primary_10_1016_j_atmosenv_2023_120107
crossref_primary_10_1109_JIOT_2024_3405623
crossref_primary_10_1021_acsaelm_4c02247
crossref_primary_10_5194_amt_17_6735_2024
crossref_primary_10_1088_1742_6596_2695_1_012002
crossref_primary_10_1007_s44273_024_00045_w
crossref_primary_10_3390_atmos13091393
crossref_primary_10_3390_atmos13081218
crossref_primary_10_1021_acs_estlett_3c00030
crossref_primary_10_1111_ina_13132
crossref_primary_10_5194_amt_17_1051_2024
crossref_primary_10_1016_j_buildenv_2022_109380
crossref_primary_10_1016_j_uclim_2025_102344
crossref_primary_10_3390_s25051423
crossref_primary_10_1016_j_jaerosci_2023_106256
crossref_primary_10_1021_acsestair_3c00105
crossref_primary_10_1016_j_envpol_2024_124354
crossref_primary_10_1016_j_measurement_2024_114529
crossref_primary_10_1016_j_envsoft_2024_105955
crossref_primary_10_1016_j_atmosenv_2024_120945
crossref_primary_10_1016_j_apr_2024_102208
crossref_primary_10_5194_amt_17_3917_2024
crossref_primary_10_1039_D4EA00086B
crossref_primary_10_3390_environments11110229
crossref_primary_10_1166_jno_2023_3396
crossref_primary_10_1080_02786826_2024_2427868
crossref_primary_10_1038_s41370_024_00661_2
crossref_primary_10_1016_j_buildenv_2022_109706
crossref_primary_10_1109_TIM_2023_3331428
crossref_primary_10_5194_amt_14_7369_2021
crossref_primary_10_1002_ail2_76
crossref_primary_10_1016_j_atmosenv_2023_119944
crossref_primary_10_3390_s24154765
crossref_primary_10_1016_j_jaerosci_2021_105872
crossref_primary_10_1016_j_jobe_2023_107774
crossref_primary_10_1016_j_ebiom_2023_104668
crossref_primary_10_1039_D4EA00012A
crossref_primary_10_1016_j_dib_2024_110411
crossref_primary_10_1016_j_ohx_2022_e00266
crossref_primary_10_1016_j_apr_2024_102057
crossref_primary_10_3390_atmos15070790
crossref_primary_10_3390_s25010122
crossref_primary_10_1021_acsestair_4c00172
crossref_primary_10_1039_D2EA00055E
crossref_primary_10_1016_j_oneear_2025_101237
crossref_primary_10_1155_2024_8799498
crossref_primary_10_3390_s23218977
crossref_primary_10_1016_j_aeaoa_2024_100271
crossref_primary_10_1039_D2EA00149G
crossref_primary_10_3390_signals5010004
crossref_primary_10_1007_s10661_022_10290_7
crossref_primary_10_1016_j_trac_2024_117968
crossref_primary_10_5194_acp_22_4801_2022
crossref_primary_10_1007_s10661_024_13069_0
crossref_primary_10_3390_s22031008
crossref_primary_10_3390_air1020011
crossref_primary_10_3390_atmos16010042
Cites_doi 10.1016/j.aeaoa.2019.100031
10.5194/amt-12-5431-2019
10.17159/caj/2020/30/2.8023
10.1016/j.atmosenv.2018.04.019
10.1038/s41598-019-43716-3
10.1016/j.scitotenv.2014.12.003
10.5194/amt-12-6385-2019
10.5194/amt-11-4823-2018
10.1080/10473289.2002.10470802
10.1016/j.envpol.2018.11.065
10.3390/atmos10020041
10.1080/02786826.2016.1162901
10.5194/amt-11-709-2018
10.1038/s41370-020-0255-x
10.1021/acs.jcim.5b00206
10.4209/aaqr.2017.10.0418
10.3390/s18092790
10.1080/02786826.2015.1100710
10.1016/j.atmosenv.2019.116946
10.1080/02786826.2019.1619915
10.1016/j.envint.2018.04.018
10.3390/atmos10090506
10.1016/j.envint.2019.105329
10.5194/amt-13-6343-2020
10.1016/j.atmosenv.2019.117067
10.5194/amt-10-4341-2017
10.1080/10962247.2016.1241195
10.4209/aaqr.2018.11.0394
10.1016/j.buildenv.2017.11.001
10.4209/aaqr.200619
10.1016/j.envpol.2015.01.013
10.1016/j.envint.2016.12.007
10.5194/amt-13-5441-2020
10.1016/j.jaerosci.2017.05.011
10.1371/journal.pone.0137789
10.3390/s20082219
10.1038/s41598-020-79064-w
10.4209/aaqr.2018.12.0485
10.1080/02786826.2019.1623863
10.1021/acs.est.0c02341
10.5194/acp-18-15403-2018
10.1016/j.envpol.2016.12.039
10.1021/acs.est.8b01826
10.1080/02786826.2019.1696015
10.5194/amt-9-5281-2016
10.1016/j.scitotenv.2016.09.061
10.4209/aaqr.2017.12.0611
10.1016/j.scitotenv.2020.141396
10.1021/acsearthspacechem.8b00079
10.1111/ina.12716
10.1080/02786826.2019.1697423
10.5194/amt-13-2413-2020
10.1016/j.jaerosci.2016.11.010
10.1016/j.atmosenv.2019.06.026
10.5194/amt-11-291-2018
10.3390/atmos11090926
10.5194/amt-12-903-2019
10.1016/j.csda.2017.11.003
10.1109/APCCAS.2018.8605619
10.3390/s20174796
10.1016/j.buildenv.2020.107415
10.1016/j.sna.2012.12.026
10.5194/amt-7-1121-2014
10.1016/j.atmosenv.2020.117292
10.1021/acs.est.8b05174
10.1080/02786820121582
10.1016/j.jaerosci.2021.105766
10.5194/amt-11-4883-2018
10.1016/j.atmosenv.2021.118432
10.1155/2018/5096540
10.1016/j.envpol.2019.03.121
10.5194/amt-13-1181-2020
10.1016/j.jaerosci.2020.105654
ContentType Journal Article
Copyright 2021 The Authors
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 The Authors
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.jaerosci.2021.105833
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Engineering
Physics
Environmental Sciences
EISSN 1879-1964
ExternalDocumentID oai_HAL_hal_03442005v1
10_1016_j_jaerosci_2021_105833
S0021850221005644
GroupedDBID ---
--K
--M
-~X
.DC
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SPD
SSE
SSJ
SSZ
T5K
TN5
WUQ
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
VOOES
ID FETCH-LOGICAL-c394t-8558e657779e482a8644e778cfde94547e451f3121f8c2b9da37fc26be2b8a0a3
IEDL.DBID .~1
ISSN 0021-8502
IngestDate Thu Jul 10 06:45:23 EDT 2025
Tue Jul 01 01:37:23 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Fri Feb 23 02:43:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Low-cost sensors
Air quality
Air pollution
Particulate matter
Language English
License This is an open access article under the CC BY license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-8558e657779e482a8644e778cfde94547e451f3121f8c2b9da37fc26be2b8a0a3
ORCID 0000-0002-2242-4328
0000-0002-5553-5913
0000-0002-6820-6668
0000-0003-0806-9961
0000-0002-9156-1094
0000-0001-8085-9795
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0021850221005644
ParticipantIDs hal_primary_oai_HAL_hal_03442005v1
crossref_citationtrail_10_1016_j_jaerosci_2021_105833
crossref_primary_10_1016_j_jaerosci_2021_105833
elsevier_sciencedirect_doi_10_1016_j_jaerosci_2021_105833
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of aerosol science
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ford, Pierce, Wendt, Long, Jathar, Mehaffy, Tryner, Quinn, van Zyl, L&apos, Orange, Miller-Lionberg, Volckens (bib28) 2019; 12
Tryner, Mehaffy, Miller-Lionberg, Volckens (bib69) 2020; 703
Karagulian, Barbiere, Kotsev, Spinelle, Gerboles, Lagler, Redon, Crunaire, Borowiak (bib42) 2019; 10
Sousan, Koehler, Thomas, Park, Hillman, Halterman, Peters (bib61) 2016; 50
Alpaydin (bib3) 2020
Feinberg, Williams, Hagler, Low, Smith, Brown, Garver, Davis, Morton, Schaefer, Campbell (bib26) 2019; 213
Subramanian, Kagabo, Baharane, Guhirwa, Sindayigaya, Malings, Williams, Kalisa, Li, Adams, Robinson, DeWitt, Gasore, Jaramillo (bib65) 2020; 30
Li, Mattewal, Patel, Biswas (bib49) 2020; 20
Barkjohn, Gantt, Clements (bib8) 2020
Han, Symanski, Stock (bib32) 2017; 67
(bib1) 2005
Mallia, Kochanski, Kelly, Whitaker, Xing, Mitchell, Jacques, Farguell, Mandel, Gaillardon, Becnel, Krueger (bib54) 2020; 125
Chu, Ali, He (bib17) 2020; 10
Holder, Mebust, Maghran, McGown, Stewart, Vallano, Elleman, Baker (bib36) 2020; 20
Friedlander (bib83) 2000
Kelly, Whitaker, Petty, Widmer, Dybwad, Sleeth, Martin, Butterfield (bib43) 2017; 221
Austin, Novosselov, Seto, Yost (bib5) 2015; 10
Demanega, Mujan, Singer, Anđelković, Babich, Licina (bib20) 2021; 187
Fishbain, Lerner, Castell, Cole-Hunter, Popoola, Broday, Martinez Iñiguez, Nieuwenhuijsen, Jovasevic-Stojanovic, Topalovic, Jones, Galea, Golumbic, Golumbic, Baram-Tsabari, Yacobi, Drahler, Robinson, Kocman, Bartonova (bib27) 2017; 575
Tanzer-Gruener, Li, Eilenberg, Robinson, Presto (bib66) 2020
Zikova, Hopke, Ferro (bib79) 2017; 105
Hagan, Kroll (bib30) 2020; 13
Kuula, Mäkelä, Aurela, Teinilä, Varjonen, González, Timonen (bib46) 2020; 13
Sayahi, Butterfield, Kelly (bib60) 2019; 245
Wendt, Quinn, Miller-Lionberg, Tryner, L'Orange, Ford, Yalin, Jeffrey, Jathar, Volckens (bib75) 2019; 12
Crilley, Shaw, Pound, Kramer, Price, Young, Lewis, Pope (bib18) 2018; 11
Di Antonio, Popoola, Ouyang, Saffell, Jones (bib21) 2018; 18
Subramanian, Ellis, Torres-Delgado, Tanzer, Malings, Rivera, Mayol-Bracero (bib87) 2018; 2
Eilenberg, Subramanian, Malings, Hauryliuk, Presto, Robinson (bib24) 2020; 30
Wang, Li, Jing, Zhang, Jiang, Biswas (bib73) 2015; 49
Duvall, Clements, Hagler, Kamal, Kilaru, Goodman, Frederick, Barkjohn, VonWald, Greene (bib23) 2021
Pope, Gatari, Ng’ang’a, Poynter, Blake (bib85) 2018; 18
Chadwick, Le, Pei, Sayahi, Rapp, Butterfield, Kelly (bib15) 2021; 155
Jayaratne, Liu, Thai, Dunbabin, Morawska (bib38) 2018; 11
Bergmeir, Hyndman, Koo (bib10) 2018; 120
Wallace, Bi, Ott, Sarnat, Liu (bib71) 2021; 256
Walser, Sauer, Spanu, Gasteiger, Weinzierl (bib72) 2017; 10
Bulot, Johnston, Basford, Easton, Apetroaie-Cristea, Foster, Morris, Cox, Loxham (bib11) 2019; 9
Jiao, Hagler, Williams, Sharpe, Brown, Garver, Judge, Caudill, Rickard, Davis, Weinstock, Zimmer-Dauphinee, Buckley (bib39) 2016; 9
Morawska, Thai, Liu, Asumadu-Sakyi, Ayoko, Bartonova, Bedini, Chai, Christensen, Dunbabin, Gao, Hagler, Jayaratne, Kumar, Lau, Louie, Mazaheri, Ning, Motta, Williams (bib56) 2018; 116
Williams, Kaufman, Hanley, Rice, Garvey (bib77) 2014
Barkjohn, Bergin, Norris, Schauer, Zhang, Black, Hu, Zhang (bib7) 2020; 20
Tryner, Good, Wilson, Clark, Peel, Volckens (bib67) 2019; 250
He, Kuerbanjiang, Dhaniyala (bib35) 2020; 54
Tryner, L'Orange, Mehaffy, Miller-Lionberg, Hofstetter, Wilson, Volckens (bib68) 2020; 220
Feenstra, Papapostolou, Hasheminassab, Zhang, Boghossian, Cocker, Polidori (bib25) 2019; 216
Badura, Batog, Drzeniecka-Osiadacz, Modzel (bib6) 2018
Malings, Tanzer, Hauryliuk, Saha, Robinson, Presto, Subramanian (bib53) 2020; 54
McFarlane, Isevulambire, Lumbuenamo, Ndinga, Dhammapala, Jin, Westervelt (bib84) 2021; 21
Hapidin, Saputra, Maulana, Munir, Khairurrijal (bib33) 2019; 19
Williams, Duvall, Kilaru, Hagler, Hassinger, Benedict, Rice, Kaufman, Judge, Pierce, Allen, Bergin, Cohen, Fransioli, Gerboles, Habre, Hannigan, Jack, Louie, Ning (bib76) 2019; 2
Hastie, Tibshirani, Friedman (bib34) 2001
Alexander, Tropsha, Winkler (bib2) 2015; 55
Li, Li, Ma, Wang, Abokifa, Lu, Biswas (bib48) 2018; 127
Carlton, Teitz (bib13) 2002; 52
Liu, Zhang, Jiang, Chen (bib51) 2017; 112
Barkjohn, Norris, Cui, Fang, Zheng, Schauer, Li, Zhang, Black, Zhang, Jim, Bergin (bib9) 2020; 31
Malings, Tanzer, Hauryliuk, Kumar, Zimmerman, Kara, Subramanian (bib86) 2019; 12
Bohren, Huffman (bib82) 1998
Zheng, Bergin, Johnson, Tripathi, Shirodkar, Landis, Sutaria, Carlson (bib78) 2018; 11
Castell, Dauge, Schneider, Vogt, Lerner, Fishbain, Broday, Bartonova (bib14) 2017; 99
Stavroulas, Grivas, Michalopoulos, Liakakou, Bougiatioti, Kalkavouras, Fameli, Hatzianastassiou, Mihalopoulos, Gerasopoulos (bib63) 2020; 11
Salimifard, Rim, Freihaut (bib59) 2020; 54
Johnson, Bonczak, Kontokosta (bib41) 2018; 184
Zimmerman, Presto, Kumar, Gu, Hauryliuk, Robinson, Robinson (bib80) 2018; 11
Tryner, Quinn, Windom, Volckens (bib70) 2019; 21
Paprotny, Doering, Solomon, White, Gundel (bib58) 2013; 201
Hagler, Williams, Papapostolou, Polidori (bib31) 2018; 52
Noble, Vanderpool, Peters, McElroy, Gemmill, Wiener (bib57) 2001; 34
Steinle, Reis, Sabel, Semple, Twigg, Braban, Leeson, Heal, Harrison, Lin, Wu (bib64) 2015; 508
Bulot, Russell, Rezaei, Johnson, Ossont, Morris, Cox (bib12) 2020; 20
Crilley, Singh, Kramer, Shaw, Alam, Apte, Bloss, Hildebrandt Ruiz, Fu, Fu, Gani, Gatari, Ilyinskaya, Lewis, Ng&apos, ang&apos, a, Sun, Whitty, Pope (bib19) 2020; 13
Chen, Kuo, Chen, Lin, Chue, Hsieh, Huang (bib16) 2018
Holstius, Pillarisetti, Smith, Seto (bib37) 2014; 7
Magi, Cupini, Francis, Green, Hauser (bib52) 2020; 54
Liu, Schneider, Haugen, Vogt (bib50) 2019; 10
Johnson, Bergin, Russell, Hagler (bib40) 2018; 18
(bib22) 2016
Masic, Bibic, Pikula, Blazevic, Huremovic, Zero (bib55) 2020
Ardon-Dryer, Dryer, Williams, Moghimi (bib4) 2020; 13
Kosmopoulos, Salamalikis, Pandis, Yannopoulos, Bloutsos, Kazantzidis (bib45) 2020; 748
Gao, Cao, Seto (bib29) 2015; 199
Wang, Li, Jing, Zhang, Jiang, Biswas (bib74) 2015; 49
Kelly, Xing, Sayahi, Mitchell, Becnel, Gaillardon, Meyer, Whitaker (bib44) 2021; 55
Stampfer, Austin, Ganuelas, Fiander, Seto, Karr (bib62) 2020; 224
Zusman, Schumacher, Gassett, Spalt, Austin, Larson, Carvlin, Seto, Kaufman, Sheppard (bib81) 2020; 134
Zamora, Xiong, Gentner, Kerkez, Kohrman-Glaser, Koehler (bib47) 2019; 53
Eilenberg (10.1016/j.jaerosci.2021.105833_bib24) 2020; 30
Han (10.1016/j.jaerosci.2021.105833_bib32) 2017; 67
Hapidin (10.1016/j.jaerosci.2021.105833_bib33) 2019; 19
Zusman (10.1016/j.jaerosci.2021.105833_bib81) 2020; 134
Chu (10.1016/j.jaerosci.2021.105833_bib17) 2020; 10
Badura (10.1016/j.jaerosci.2021.105833_bib6) 2018
Chen (10.1016/j.jaerosci.2021.105833_bib16) 2018
Friedlander (10.1016/j.jaerosci.2021.105833_bib83) 2000
Malings (10.1016/j.jaerosci.2021.105833_bib86) 2019; 12
Stavroulas (10.1016/j.jaerosci.2021.105833_bib63) 2020; 11
Liu (10.1016/j.jaerosci.2021.105833_bib51) 2017; 112
Tanzer-Gruener (10.1016/j.jaerosci.2021.105833_bib66) 2020
Salimifard (10.1016/j.jaerosci.2021.105833_bib59) 2020; 54
Kosmopoulos (10.1016/j.jaerosci.2021.105833_bib45) 2020; 748
Austin (10.1016/j.jaerosci.2021.105833_bib5) 2015; 10
Bulot (10.1016/j.jaerosci.2021.105833_bib11) 2019; 9
Tryner (10.1016/j.jaerosci.2021.105833_bib70) 2019; 21
Tryner (10.1016/j.jaerosci.2021.105833_bib68) 2020; 220
Wang (10.1016/j.jaerosci.2021.105833_bib73) 2015; 49
Barkjohn (10.1016/j.jaerosci.2021.105833_bib7) 2020; 20
Mallia (10.1016/j.jaerosci.2021.105833_bib54) 2020; 125
Duvall (10.1016/j.jaerosci.2021.105833_bib23)
He (10.1016/j.jaerosci.2021.105833_bib35) 2020; 54
Wendt (10.1016/j.jaerosci.2021.105833_bib75) 2019; 12
Holstius (10.1016/j.jaerosci.2021.105833_bib37) 2014; 7
McFarlane (10.1016/j.jaerosci.2021.105833_bib84) 2021; 21
Feinberg (10.1016/j.jaerosci.2021.105833_bib26) 2019; 213
Barkjohn (10.1016/j.jaerosci.2021.105833_bib9) 2020; 31
Sousan (10.1016/j.jaerosci.2021.105833_bib61) 2016; 50
Masic (10.1016/j.jaerosci.2021.105833_bib55) 2020
Wang (10.1016/j.jaerosci.2021.105833_bib74) 2015; 49
Gao (10.1016/j.jaerosci.2021.105833_bib29) 2015; 199
Holder (10.1016/j.jaerosci.2021.105833_bib36) 2020; 20
Li (10.1016/j.jaerosci.2021.105833_bib49) 2020; 20
Kelly (10.1016/j.jaerosci.2021.105833_bib44) 2021; 55
Bergmeir (10.1016/j.jaerosci.2021.105833_bib10) 2018; 120
Zikova (10.1016/j.jaerosci.2021.105833_bib79) 2017; 105
Zimmerman (10.1016/j.jaerosci.2021.105833_bib80) 2018; 11
Bulot (10.1016/j.jaerosci.2021.105833_bib12) 2020; 20
Kelly (10.1016/j.jaerosci.2021.105833_bib43) 2017; 221
Williams (10.1016/j.jaerosci.2021.105833_bib76) 2019; 2
Chadwick (10.1016/j.jaerosci.2021.105833_bib15) 2021; 155
(10.1016/j.jaerosci.2021.105833_bib22) 2016
Subramanian (10.1016/j.jaerosci.2021.105833_bib65) 2020; 30
Jiao (10.1016/j.jaerosci.2021.105833_bib39) 2016; 9
Kuula (10.1016/j.jaerosci.2021.105833_bib46) 2020; 13
Ardon-Dryer (10.1016/j.jaerosci.2021.105833_bib4) 2020; 13
Li (10.1016/j.jaerosci.2021.105833_bib48) 2018; 127
Castell (10.1016/j.jaerosci.2021.105833_bib14) 2017; 99
Malings (10.1016/j.jaerosci.2021.105833_bib53) 2020; 54
Pope (10.1016/j.jaerosci.2021.105833_bib85) 2018; 18
Subramanian (10.1016/j.jaerosci.2021.105833_bib87) 2018; 2
Fishbain (10.1016/j.jaerosci.2021.105833_bib27) 2017; 575
Noble (10.1016/j.jaerosci.2021.105833_bib57) 2001; 34
Liu (10.1016/j.jaerosci.2021.105833_bib50) 2019; 10
Crilley (10.1016/j.jaerosci.2021.105833_bib18) 2018; 11
Di Antonio (10.1016/j.jaerosci.2021.105833_bib21) 2018; 18
Johnson (10.1016/j.jaerosci.2021.105833_bib41) 2018; 184
Ford (10.1016/j.jaerosci.2021.105833_bib28) 2019; 12
Jayaratne (10.1016/j.jaerosci.2021.105833_bib38) 2018; 11
Morawska (10.1016/j.jaerosci.2021.105833_bib56) 2018; 116
Zamora (10.1016/j.jaerosci.2021.105833_bib47) 2019; 53
Paprotny (10.1016/j.jaerosci.2021.105833_bib58) 2013; 201
Sayahi (10.1016/j.jaerosci.2021.105833_bib60) 2019; 245
Magi (10.1016/j.jaerosci.2021.105833_bib52) 2020; 54
Crilley (10.1016/j.jaerosci.2021.105833_bib19) 2020; 13
Stampfer (10.1016/j.jaerosci.2021.105833_bib62) 2020; 224
Hagan (10.1016/j.jaerosci.2021.105833_bib30) 2020; 13
Feenstra (10.1016/j.jaerosci.2021.105833_bib25) 2019; 216
Demanega (10.1016/j.jaerosci.2021.105833_bib20) 2021; 187
Williams (10.1016/j.jaerosci.2021.105833_bib77) 2014
Bohren (10.1016/j.jaerosci.2021.105833_bib82) 1998
Karagulian (10.1016/j.jaerosci.2021.105833_bib42) 2019; 10
Steinle (10.1016/j.jaerosci.2021.105833_bib64) 2015; 508
Alexander (10.1016/j.jaerosci.2021.105833_bib2) 2015; 55
Carlton (10.1016/j.jaerosci.2021.105833_bib13) 2002; 52
Hagler (10.1016/j.jaerosci.2021.105833_bib31) 2018; 52
Zheng (10.1016/j.jaerosci.2021.105833_bib78) 2018; 11
Alpaydin (10.1016/j.jaerosci.2021.105833_bib3) 2020
Tryner (10.1016/j.jaerosci.2021.105833_bib67) 2019; 250
Wallace (10.1016/j.jaerosci.2021.105833_bib71) 2021; 256
Hastie (10.1016/j.jaerosci.2021.105833_bib34) 2001
Tryner (10.1016/j.jaerosci.2021.105833_bib69) 2020; 703
Walser (10.1016/j.jaerosci.2021.105833_bib72) 2017; 10
Johnson (10.1016/j.jaerosci.2021.105833_bib40) 2018; 18
Barkjohn (10.1016/j.jaerosci.2021.105833_bib8) 2020
References_xml – start-page: 1
  year: 2020
  end-page: 34
  ident: bib8
  article-title: Development and Application of a United States wide correction for PM
  publication-title: Atmospheric Measurement Techniques Discussions
– year: 1998
  ident: bib82
  publication-title: Absorption and Scattering of Light by Small Particles
– volume: 99
  start-page: 293
  year: 2017
  end-page: 302
  ident: bib14
  article-title: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?
  publication-title: Environment International
– volume: 52
  start-page: 506
  year: 2002
  end-page: 510
  ident: bib13
  article-title: Design of a cost-effective weighing facility for PM2.5 quality assurance
  publication-title: Journal of the Air and Waste Management Association
– volume: 49
  start-page: 1063
  year: 2015
  end-page: 1077
  ident: bib73
  article-title: Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement
  publication-title: Aerosol Science and Technology
– volume: 20
  start-page: 4796
  year: 2020
  ident: bib36
  article-title: Field evaluation of low-cost particulate matter sensors for measuring wildfire smoke
  publication-title: Sensors
– year: 2021
  ident: bib23
  article-title: Performance testing protocols, metrics, and target values for fine particulate matter air SensorsUse in ambient, outdoor, fixed site, non-regulatory supplemental and informational monitoring applications
– volume: 12
  start-page: 6385
  year: 2019
  end-page: 6399
  ident: bib28
  article-title: A low-cost monitor for measurement of fine particulate matter and aerosol optical depth – Part 2: Citizen-science pilot campaign in northern Colorado
  publication-title: Atmospheric Measurement Techniques
– volume: 125
  year: 2020
  ident: bib54
  article-title: Evaluating wildfire smoke transport within a coupled fire‐atmosphere model using a high‐density observation network for an episodic smoke event along Utah's wasatch front
  publication-title: Journal of Geophysical Research: Atmosphere
– volume: 18
  start-page: 15403
  year: 2018
  end-page: 15418
  ident: bib85
  article-title: Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors
  publication-title: Atmos. Chem. Phys.
– volume: 21
  start-page: 1403
  year: 2019
  end-page: 1415
  ident: bib70
  article-title: Design and evaluation of a portable PM2.5 monitor featuring a low-cost sensor in line with an active filter sampler
  publication-title: Environmental Sciences: Processes and Impacts
– volume: 10
  start-page: 4341
  year: 2017
  end-page: 4361
  ident: bib72
  article-title: On the parametrization of optical particle counter response including instrument-induced broadening of size spectra and a self-consistent evaluation of calibration measurements
  publication-title: Atmospheric Measurement Techniques
– volume: 10
  year: 2015
  ident: bib5
  article-title: Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor
  publication-title: PloS One
– year: 2000
  ident: bib83
  publication-title: Smoke, Dust, and Haze
– volume: 508
  start-page: 383
  year: 2015
  end-page: 394
  ident: bib64
  article-title: Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments
  publication-title: The Science of the Total Environment
– volume: 10
  start-page: 506
  year: 2019
  ident: bib42
  article-title: Review of the performance of low-cost sensors for air quality monitoring
  publication-title: Atmosphere
– volume: 54
  start-page: 217
  year: 2020
  end-page: 231
  ident: bib59
  article-title: Evaluation of low-cost optical particle counters for monitoring individual indoor aerosol sources
  publication-title: Aerosol Science and Technology
– volume: 54
  start-page: 232
  year: 2020
  end-page: 241
  ident: bib35
  article-title: Performance characteristics of the low-cost Plantower PMS optical sensor
  publication-title: Aerosol Science and Technology
– volume: 7
  start-page: 1121
  year: 2014
  end-page: 1131
  ident: bib37
  article-title: Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California
  publication-title: Atmospheric Measurement Techniques
– volume: 120
  start-page: 70
  year: 2018
  end-page: 83
  ident: bib10
  article-title: A note on the validity of cross-validation for evaluating autoregressive time series prediction
  publication-title: Computational Statistics & Data Analysis
– volume: 54
  start-page: 147
  year: 2020
  end-page: 159
  ident: bib52
  article-title: Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor
  publication-title: Aerosol Science and Technology
– start-page: 111
  year: 2018
  end-page: 114
  ident: bib16
  article-title: Calibration of low-cost particle sensors by using machine-learning method. 2018 IEEE Asia pacific conference on circuits and systems
  publication-title: Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)
– volume: 13
  start-page: 1181
  year: 2020
  end-page: 1193
  ident: bib19
  article-title: Effect of aerosol composition on the performance of low-cost optical particle counter correction factors
  publication-title: Atmospheric Measurement Techniques
– year: 2016
  ident: bib22
  publication-title: Digital universal particle concentration sensor PMS5003 series data manual
– volume: 224
  start-page: 117292
  year: 2020
  ident: bib62
  article-title: Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation
  publication-title: Atmospheric Environment
– volume: 703
  start-page: 105654
  year: 2020
  ident: bib69
  article-title: Effects of aerosol type and simulated aging on performance of low-cost PM sensors
  publication-title: Journal of Aerosol Science
– volume: 19
  start-page: 181
  year: 2019
  end-page: 194
  ident: bib33
  article-title: Aerosol chamber characterization for commercial particulate matter (PM) sensor evaluation
  publication-title: Aerosol and Air Quality Research
– start-page: 1
  year: 2020
  end-page: 22
  ident: bib55
  article-title: Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution
  publication-title: Atmospheric Measurement Techniques Discussions
– volume: 34
  start-page: 457
  year: 2001
  end-page: 464
  ident: bib57
  article-title: Federal reference and equivalent methods for measuring fine particulate matter
  publication-title: Aerosol Science and Technology
– volume: 11
  start-page: 926
  year: 2020
  ident: bib63
  article-title: Field evaluation of low-cost PM sensors (purple air PA-II) under variable urban air quality conditions, in Greece
  publication-title: Atmosphere
– year: 2018
  ident: bib6
  article-title: Evaluation of low-cost sensors for ambient PM2.5 monitoring
  publication-title: Journal of Sensors
– volume: 12
  start-page: 5431
  year: 2019
  end-page: 5441
  ident: bib75
  article-title: A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth - Part 1: Specifications and testing
  publication-title: Atmospheric Measurement Techniques
– volume: 250
  start-page: 251
  year: 2019
  end-page: 261
  ident: bib67
  article-title: Variation in gravimetric correction factors for nephelometer-derived estimates of personal exposure to PM2.5
  publication-title: Environmental Pollution
– volume: 10
  start-page: 22079
  year: 2020
  ident: bib17
  article-title: Spatial calibration and PM2.5 mapping of low-cost air quality sensors
  publication-title: Scientific Reports
– year: 2014
  ident: bib77
  publication-title: Evaluation of field-deployed low cost PM sensors
– volume: 11
  start-page: 291
  year: 2018
  end-page: 313
  ident: bib80
  article-title: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring
  publication-title: Atmospheric Measurement Techniques
– year: 2020
  ident: bib3
  article-title: Introduction to machine learning
– volume: 213
  start-page: 579
  year: 2019
  end-page: 584
  ident: bib26
  article-title: Examining spatiotemporal variability of urban particulate matter and application of high-time resolution data from a network of low-cost air pollution sensors
  publication-title: Atmospheric Environment
– volume: 9
  start-page: 5281
  year: 2016
  end-page: 5292
  ident: bib39
  article-title: Community air sensor network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States
  publication-title: Atmospheric Measurement Techniques
– volume: 13
  start-page: 6343
  year: 2020
  end-page: 6355
  ident: bib30
  article-title: Assessing the accuracy of low-cost optical particle sensors using a physics-based approach
  publication-title: Atmospheric Measurement Techniques
– volume: 155
  start-page: 105766
  year: 2021
  ident: bib15
  article-title: Technical note: Understanding the effect of COVID-19 on particle pollution using a low-cost sensor network
  publication-title: Journal of Aerosol Science
– year: 2005
  ident: bib1
  article-title: Particulate matter, ozone, nitrogen dioxide and sulfur dioxide
– volume: 220
  start-page: 117067
  year: 2020
  ident: bib68
  article-title: Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers
  publication-title: Atmospheric Environment
– volume: 105
  start-page: 24
  year: 2017
  end-page: 34
  ident: bib79
  article-title: Evaluation of new low-cost particle monitors for PM2.5 concentrations measurements
  publication-title: Journal of Aerosol Science
– volume: 10
  year: 2019
  ident: bib50
  article-title: Performance assessment of a low-cost PM 2.5 sensor for a near four-month period in Oslo, Norway
  publication-title: Atmosphere
– volume: 30
  year: 2020
  ident: bib65
  article-title: Air pollution in Kigali, Rwanda: Spatial and temporal variability, source contributions, and the impact of car-free sundays
  publication-title: Clean Air Journal
– volume: 134
  start-page: 105329
  year: 2020
  ident: bib81
  article-title: Calibration of low-cost particulate matter sensors: Model development for a multi-city epidemiological study
  publication-title: Environment International
– volume: 20
  start-page: 297
  year: 2020
  end-page: 313
  ident: bib7
  article-title: Using low-cost sensors to quantify the effects of air filtration on indoor and personal exposure relevant PM2.5 concentrations in beijing, China
  publication-title: Aerosol and Air Quality Research
– volume: 256
  start-page: 118432
  year: 2021
  ident: bib71
  article-title: Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM
  publication-title: Atmospheric Environment
– volume: 49
  start-page: 1063
  year: 2015
  end-page: 1077
  ident: bib74
  article-title: Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement
  publication-title: Aerosol Science and Technology
– volume: 31
  start-page: 74
  year: 2020
  end-page: 87
  ident: bib9
  article-title: Real‐time measurements of PM 2.5 and ozone to assess the effectiveness of residential indoor air filtration in Shanghai homes
  publication-title: Indoor Air
– volume: 201
  start-page: 506
  year: 2013
  end-page: 516
  ident: bib58
  article-title: Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: Design, fabrication, and experimental results
  publication-title: Sensors and Actuators, A: Physical
– volume: 116
  start-page: 286
  year: 2018
  end-page: 299
  ident: bib56
  article-title: Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?
  publication-title: Environment International
– volume: 52
  start-page: 5530
  year: 2018
  end-page: 5531
  ident: bib31
  article-title: Air quality sensors and data adjustment algorithms: When is it No longer a measurement?
  publication-title: Environmental Science and Technology
– volume: 20
  start-page: 254
  year: 2020
  end-page: 270
  ident: bib49
  article-title: Evaluation of nine low-cost-sensor-based particulate matter monitors
  publication-title: Aerosol and Air Quality Research
– volume: 9
  year: 2019
  ident: bib11
  article-title: Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment
  publication-title: Scientific Reports
– volume: 18
  start-page: 2790
  year: 2018
  ident: bib21
  article-title: Developing a relative humidity correction for low-cost sensors measuring ambient particulate matter
  publication-title: Sensors
– volume: 187
  start-page: 107415
  year: 2021
  ident: bib20
  article-title: Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions
  publication-title: Building and Environment
– volume: 216
  start-page: 116946
  year: 2019
  ident: bib25
  article-title: Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site
  publication-title: Atmospheric Environment
– volume: 199
  start-page: 56
  year: 2015
  end-page: 65
  ident: bib29
  article-title: A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China
  publication-title: Environmental Pollution
– volume: 55
  start-page: 120
  year: 2021
  end-page: 128
  ident: bib44
  article-title: Community-based measurements reveal unseen differences during air pollution episodes
  publication-title: Environmental Science and Technology
– year: 2001
  ident: bib34
  article-title: Elements of statistical learning: Data mining, Inference, and prediction
– volume: 2
  start-page: 1179
  year: 2018
  end-page: 1186
  ident: bib87
  article-title: Air Quality in Puerto Rico in the Aftermath of Hurricane Maria: A Case Study on the Use of Lower Cost Air Quality Monitors
  publication-title: ACS Earth Space Chem.
– volume: 221
  start-page: 491
  year: 2017
  end-page: 500
  ident: bib43
  article-title: Ambient and laboratory evaluation of a low-cost particulate matter sensor
  publication-title: Environmental Pollution
– volume: 55
  start-page: 1316
  year: 2015
  end-page: 1322
  ident: bib2
  article-title: Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models
  publication-title: Journal of Chemical Information and Modeling
– volume: 11
  start-page: 4883
  year: 2018
  end-page: 4890
  ident: bib38
  article-title: The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog
  publication-title: Atmospheric Measurement Techniques
– volume: 21
  year: 2021
  ident: bib84
  article-title: First Measurements of Ambient PM
  publication-title: Aerosol Air Qual. Res.
– volume: 13
  start-page: 2413
  year: 2020
  end-page: 2423
  ident: bib46
  article-title: Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors
  publication-title: Atmospheric Measurement Techniques
– volume: 748
  start-page: 141396
  year: 2020
  ident: bib45
  article-title: Low-cost sensors for measuring airborne particulate matter: Field evaluation and calibration at a South-Eastern European site
  publication-title: The Science of the Total Environment
– volume: 2
  start-page: 100031
  year: 2019
  ident: bib76
  article-title: Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor progress
  publication-title: Atmospheric Environment X
– volume: 575
  start-page: 639
  year: 2017
  end-page: 648
  ident: bib27
  article-title: An evaluation tool kit of air quality micro-sensing units
  publication-title: The Science of the Total Environment
– volume: 54
  start-page: 160
  year: 2020
  end-page: 174
  ident: bib53
  article-title: Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation
  publication-title: Aerosol Science and Technology
– volume: 67
  start-page: 330
  year: 2017
  end-page: 340
  ident: bib32
  article-title: Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air
  publication-title: Journal of the Air & Waste Management Association
– volume: 127
  start-page: 138
  year: 2018
  end-page: 147
  ident: bib48
  article-title: Spatiotemporal distribution of indoor particulate matter concentration with a low-cost sensor network
  publication-title: Building and Environment
– volume: 11
  start-page: 709
  year: 2018
  end-page: 720
  ident: bib18
  article-title: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring
  publication-title: Atmospheric Measurement Techniques
– volume: 13
  start-page: 5441
  year: 2020
  end-page: 5458
  ident: bib4
  article-title: Measurements of PM2.5 with PurpleAir under atmospheric conditions
  publication-title: Atmospheric Measurement Techniques
– volume: 11
  start-page: 4823
  year: 2018
  end-page: 4846
  ident: bib78
  article-title: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments
  publication-title: Atmospheric Measurement Techniques
– volume: 112
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib51
  article-title: Performance calibration of low-cost and portable particular matter (PM) sensors
  publication-title: Journal of Aerosol Science
– volume: 30
  start-page: 949
  year: 2020
  end-page: 961
  ident: bib24
  article-title: Using a network of lower-cost monitors to identify the influence of modifiable factors driving spatial patterns in fine particulate matter concentrations in an urban environment
  publication-title: Journal of Exposure Science and Environmental Epidemiology
– volume: 20
  year: 2020
  ident: bib12
  article-title: Laboratory comparison of low-cost particulate matter sensors to measure transient events of pollution
  publication-title: Sensors
– volume: 245
  start-page: 932
  year: 2019
  end-page: 940
  ident: bib60
  article-title: Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors
  publication-title: Environmental Pollution
– volume: 53
  start-page: 838
  year: 2019
  end-page: 849
  ident: bib47
  article-title: Field and laboratory evaluations of the low-cost plantower particulate matter sensor
  publication-title: Environmental Science and Technology
– volume: 12
  start-page: 903
  year: 2019
  end-page: 920
  ident: bib86
  article-title: Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring
  publication-title: Atmos. Meas. Tech.
– year: 2020
  ident: bib66
  article-title: Impacts of Modifiable factors on ambient air pollution: A case study of COVID-19 Shutdowns
– volume: 18
  start-page: 565
  year: 2018
  end-page: 578
  ident: bib40
  article-title: Field test of several low-cost particulate matter sensors in high and low concentration urban environments
  publication-title: Aerosol and Air Quality Research
– volume: 50
  start-page: 462
  year: 2016
  end-page: 473
  ident: bib61
  article-title: Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols
  publication-title: Aerosol Science and Technology
– volume: 184
  start-page: 9
  year: 2018
  end-page: 16
  ident: bib41
  article-title: Using a gradient boosting model to improve the performance of low-cost aerosol monitors in a dense, heterogeneous urban environment
  publication-title: Atmospheric Environment
– volume: 2
  start-page: 100031
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib76
  article-title: Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor progress
  publication-title: Atmospheric Environment X
  doi: 10.1016/j.aeaoa.2019.100031
– volume: 12
  start-page: 5431
  issue: 10
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib75
  article-title: A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth - Part 1: Specifications and testing
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-12-5431-2019
– volume: 30
  issue: 2
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib65
  article-title: Air pollution in Kigali, Rwanda: Spatial and temporal variability, source contributions, and the impact of car-free sundays
  publication-title: Clean Air Journal
  doi: 10.17159/caj/2020/30/2.8023
– volume: 184
  start-page: 9
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib41
  article-title: Using a gradient boosting model to improve the performance of low-cost aerosol monitors in a dense, heterogeneous urban environment
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2018.04.019
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib11
  article-title: Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-43716-3
– volume: 508
  start-page: 383
  year: 2015
  ident: 10.1016/j.jaerosci.2021.105833_bib64
  article-title: Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2014.12.003
– volume: 12
  start-page: 6385
  issue: 12
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib28
  article-title: A low-cost monitor for measurement of fine particulate matter and aerosol optical depth - Part 2: Citizen-science pilot campaign in northern Colorado
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-12-6385-2019
– volume: 11
  start-page: 4823
  issue: 8
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib78
  article-title: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-11-4823-2018
– volume: 52
  start-page: 506
  issue: 5
  year: 2002
  ident: 10.1016/j.jaerosci.2021.105833_bib13
  article-title: Design of a cost-effective weighing facility for PM2.5 quality assurance
  publication-title: Journal of the Air and Waste Management Association
  doi: 10.1080/10473289.2002.10470802
– volume: 245
  start-page: 932
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib60
  article-title: Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2018.11.065
– volume: 10
  issue: 2
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib50
  article-title: Performance assessment of a low-cost PM 2.5 sensor for a near four-month period in Oslo, Norway
  publication-title: Atmosphere
  doi: 10.3390/atmos10020041
– volume: 50
  start-page: 462
  issue: 5
  year: 2016
  ident: 10.1016/j.jaerosci.2021.105833_bib61
  article-title: Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2016.1162901
– volume: 11
  start-page: 709
  issue: 2
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib18
  article-title: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-11-709-2018
– volume: 30
  start-page: 949
  issue: 6
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib24
  article-title: Using a network of lower-cost monitors to identify the influence of modifiable factors driving spatial patterns in fine particulate matter concentrations in an urban environment
  publication-title: Journal of Exposure Science and Environmental Epidemiology
  doi: 10.1038/s41370-020-0255-x
– volume: 55
  start-page: 1316
  issue: 7
  year: 2015
  ident: 10.1016/j.jaerosci.2021.105833_bib2
  article-title: Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/acs.jcim.5b00206
– volume: 18
  start-page: 565
  issue: 3
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib40
  article-title: Field test of several low-cost particulate matter sensors in high and low concentration urban environments
  publication-title: Aerosol and Air Quality Research
  doi: 10.4209/aaqr.2017.10.0418
– volume: 18
  start-page: 2790
  issue: 9
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib21
  article-title: Developing a relative humidity correction for low-cost sensors measuring ambient particulate matter
  publication-title: Sensors
  doi: 10.3390/s18092790
– volume: 49
  start-page: 1063
  issue: 11
  year: 2015
  ident: 10.1016/j.jaerosci.2021.105833_bib73
  article-title: Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2015.1100710
– volume: 216
  start-page: 116946
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib25
  article-title: Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2019.116946
– year: 2001
  ident: 10.1016/j.jaerosci.2021.105833_bib34
– volume: 54
  start-page: 147
  issue: 2
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib52
  article-title: Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2019.1619915
– volume: 116
  start-page: 286
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib56
  article-title: Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?
  publication-title: Environment International
  doi: 10.1016/j.envint.2018.04.018
– volume: 10
  start-page: 506
  issue: 9
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib42
  article-title: Review of the performance of low-cost sensors for air quality monitoring
  publication-title: Atmosphere
  doi: 10.3390/atmos10090506
– volume: 134
  start-page: 105329
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib81
  article-title: Calibration of low-cost particulate matter sensors: Model development for a multi-city epidemiological study
  publication-title: Environment International
  doi: 10.1016/j.envint.2019.105329
– volume: 13
  start-page: 6343
  issue: 11
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib30
  article-title: Assessing the accuracy of low-cost optical particle sensors using a physics-based approach
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-13-6343-2020
– volume: 125
  issue: 20
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib54
  article-title: Evaluating wildfire smoke transport within a coupled fire‐atmosphere model using a high‐density observation network for an episodic smoke event along Utah's wasatch front
  publication-title: Journal of Geophysical Research: Atmosphere
– year: 2014
  ident: 10.1016/j.jaerosci.2021.105833_bib77
– volume: 220
  start-page: 117067
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib68
  article-title: Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2019.117067
– volume: 21
  start-page: 1403
  issue: 8
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib70
  article-title: Design and evaluation of a portable PM2.5 monitor featuring a low-cost sensor in line with an active filter sampler
  publication-title: Environmental Sciences: Processes and Impacts
– volume: 10
  start-page: 4341
  issue: 11
  year: 2017
  ident: 10.1016/j.jaerosci.2021.105833_bib72
  article-title: On the parametrization of optical particle counter response including instrument-induced broadening of size spectra and a self-consistent evaluation of calibration measurements
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-10-4341-2017
– volume: 67
  start-page: 330
  issue: 3
  year: 2017
  ident: 10.1016/j.jaerosci.2021.105833_bib32
  article-title: Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air
  publication-title: Journal of the Air & Waste Management Association
  doi: 10.1080/10962247.2016.1241195
– volume: 20
  start-page: 297
  issue: 2
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib7
  article-title: Using low-cost sensors to quantify the effects of air filtration on indoor and personal exposure relevant PM2.5 concentrations in beijing, China
  publication-title: Aerosol and Air Quality Research
  doi: 10.4209/aaqr.2018.11.0394
– ident: 10.1016/j.jaerosci.2021.105833_bib23
– volume: 127
  start-page: 138
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib48
  article-title: Spatiotemporal distribution of indoor particulate matter concentration with a low-cost sensor network
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2017.11.001
– volume: 21
  issue: 7
  year: 2021
  ident: 10.1016/j.jaerosci.2021.105833_bib84
  article-title: First Measurements of Ambient PM2.5 in Kinshasa, Democratic Republic of Congo and Brazzaville, Republic of Congo Using Field-calibrated Low-cost Sensors
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.200619
– volume: 199
  start-page: 56
  year: 2015
  ident: 10.1016/j.jaerosci.2021.105833_bib29
  article-title: A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2015.01.013
– volume: 99
  start-page: 293
  year: 2017
  ident: 10.1016/j.jaerosci.2021.105833_bib14
  article-title: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?
  publication-title: Environment International
  doi: 10.1016/j.envint.2016.12.007
– volume: 13
  start-page: 5441
  issue: 10
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib4
  article-title: Measurements of PM2.5 with PurpleAir under atmospheric conditions
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-13-5441-2020
– volume: 112
  start-page: 1
  year: 2017
  ident: 10.1016/j.jaerosci.2021.105833_bib51
  article-title: Performance calibration of low-cost and portable particular matter (PM) sensors
  publication-title: Journal of Aerosol Science
  doi: 10.1016/j.jaerosci.2017.05.011
– volume: 10
  issue: 9
  year: 2015
  ident: 10.1016/j.jaerosci.2021.105833_bib5
  article-title: Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor
  publication-title: PloS One
  doi: 10.1371/journal.pone.0137789
– volume: 20
  issue: 8
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib12
  article-title: Laboratory comparison of low-cost particulate matter sensors to measure transient events of pollution
  publication-title: Sensors
  doi: 10.3390/s20082219
– volume: 10
  start-page: 22079
  issue: 1
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib17
  article-title: Spatial calibration and PM2.5 mapping of low-cost air quality sensors
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-79064-w
– volume: 20
  start-page: 254
  issue: 2
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib49
  article-title: Evaluation of nine low-cost-sensor-based particulate matter monitors
  publication-title: Aerosol and Air Quality Research
  doi: 10.4209/aaqr.2018.12.0485
– volume: 54
  start-page: 160
  issue: 2
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib53
  article-title: Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2019.1623863
– volume: 55
  start-page: 120
  issue: 1
  year: 2021
  ident: 10.1016/j.jaerosci.2021.105833_bib44
  article-title: Community-based measurements reveal unseen differences during air pollution episodes
  publication-title: Environmental Science and Technology
  doi: 10.1021/acs.est.0c02341
– volume: 18
  start-page: 15403
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib85
  article-title: Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-15403-2018
– year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib66
– volume: 221
  start-page: 491
  year: 2017
  ident: 10.1016/j.jaerosci.2021.105833_bib43
  article-title: Ambient and laboratory evaluation of a low-cost particulate matter sensor
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2016.12.039
– volume: 52
  start-page: 5530
  issue: 10
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib31
  article-title: Air quality sensors and data adjustment algorithms: When is it No longer a measurement?
  publication-title: Environmental Science and Technology
  doi: 10.1021/acs.est.8b01826
– volume: 54
  start-page: 232
  issue: 2
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib35
  article-title: Performance characteristics of the low-cost Plantower PMS optical sensor
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2019.1696015
– volume: 9
  start-page: 5281
  issue: 11
  year: 2016
  ident: 10.1016/j.jaerosci.2021.105833_bib39
  article-title: Community air sensor network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-9-5281-2016
– volume: 575
  start-page: 639
  year: 2017
  ident: 10.1016/j.jaerosci.2021.105833_bib27
  article-title: An evaluation tool kit of air quality micro-sensing units
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2016.09.061
– volume: 19
  start-page: 181
  issue: 1
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib33
  article-title: Aerosol chamber characterization for commercial particulate matter (PM) sensor evaluation
  publication-title: Aerosol and Air Quality Research
  doi: 10.4209/aaqr.2017.12.0611
– year: 2000
  ident: 10.1016/j.jaerosci.2021.105833_bib83
– volume: 748
  start-page: 141396
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib45
  article-title: Low-cost sensors for measuring airborne particulate matter: Field evaluation and calibration at a South-Eastern European site
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2020.141396
– volume: 2
  start-page: 1179
  issue: 11
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib87
  article-title: Air Quality in Puerto Rico in the Aftermath of Hurricane Maria: A Case Study on the Use of Lower Cost Air Quality Monitors
  publication-title: ACS Earth Space Chem.
  doi: 10.1021/acsearthspacechem.8b00079
– volume: 31
  start-page: 74
  issue: 1
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib9
  article-title: Real‐time measurements of PM 2.5 and ozone to assess the effectiveness of residential indoor air filtration in Shanghai homes
  publication-title: Indoor Air
  doi: 10.1111/ina.12716
– volume: 54
  start-page: 217
  issue: 2
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib59
  article-title: Evaluation of low-cost optical particle counters for monitoring individual indoor aerosol sources
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2019.1697423
– volume: 13
  start-page: 2413
  issue: 5
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib46
  article-title: Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-13-2413-2020
– volume: 105
  start-page: 24
  year: 2017
  ident: 10.1016/j.jaerosci.2021.105833_bib79
  article-title: Evaluation of new low-cost particle monitors for PM2.5 concentrations measurements
  publication-title: Journal of Aerosol Science
  doi: 10.1016/j.jaerosci.2016.11.010
– volume: 49
  start-page: 1063
  issue: 11
  year: 2015
  ident: 10.1016/j.jaerosci.2021.105833_bib74
  article-title: Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786826.2015.1100710
– year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib3
– volume: 213
  start-page: 579
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib26
  article-title: Examining spatiotemporal variability of urban particulate matter and application of high-time resolution data from a network of low-cost air pollution sensors
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2019.06.026
– volume: 11
  start-page: 291
  issue: 1
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib80
  article-title: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-11-291-2018
– volume: 11
  start-page: 926
  issue: 9
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib63
  article-title: Field evaluation of low-cost PM sensors (purple air PA-II) under variable urban air quality conditions, in Greece
  publication-title: Atmosphere
  doi: 10.3390/atmos11090926
– volume: 12
  start-page: 903
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib86
  article-title: Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-12-903-2019
– year: 2016
  ident: 10.1016/j.jaerosci.2021.105833_bib22
– volume: 120
  start-page: 70
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib10
  article-title: A note on the validity of cross-validation for evaluating autoregressive time series prediction
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2017.11.003
– start-page: 111
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib16
  article-title: Calibration of low-cost particle sensors by using machine-learning method. 2018 IEEE Asia pacific conference on circuits and systems
  publication-title: Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)
  doi: 10.1109/APCCAS.2018.8605619
– volume: 20
  start-page: 4796
  issue: 17
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib36
  article-title: Field evaluation of low-cost particulate matter sensors for measuring wildfire smoke
  publication-title: Sensors
  doi: 10.3390/s20174796
– volume: 187
  start-page: 107415
  year: 2021
  ident: 10.1016/j.jaerosci.2021.105833_bib20
  article-title: Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2020.107415
– start-page: 1
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib55
  article-title: Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution
  publication-title: Atmospheric Measurement Techniques Discussions
– volume: 201
  start-page: 506
  year: 2013
  ident: 10.1016/j.jaerosci.2021.105833_bib58
  article-title: Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: Design, fabrication, and experimental results
  publication-title: Sensors and Actuators, A: Physical
  doi: 10.1016/j.sna.2012.12.026
– year: 1998
  ident: 10.1016/j.jaerosci.2021.105833_bib82
– volume: 7
  start-page: 1121
  issue: 4
  year: 2014
  ident: 10.1016/j.jaerosci.2021.105833_bib37
  article-title: Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-7-1121-2014
– volume: 224
  start-page: 117292
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib62
  article-title: Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2020.117292
– volume: 53
  start-page: 838
  issue: 2
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib47
  article-title: Field and laboratory evaluations of the low-cost plantower particulate matter sensor
  publication-title: Environmental Science and Technology
  doi: 10.1021/acs.est.8b05174
– volume: 34
  start-page: 457
  issue: 5
  year: 2001
  ident: 10.1016/j.jaerosci.2021.105833_bib57
  article-title: Federal reference and equivalent methods for measuring fine particulate matter
  publication-title: Aerosol Science and Technology
  doi: 10.1080/02786820121582
– volume: 155
  start-page: 105766
  year: 2021
  ident: 10.1016/j.jaerosci.2021.105833_bib15
  article-title: Technical note: Understanding the effect of COVID-19 on particle pollution using a low-cost sensor network
  publication-title: Journal of Aerosol Science
  doi: 10.1016/j.jaerosci.2021.105766
– volume: 11
  start-page: 4883
  issue: 8
  year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib38
  article-title: The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-11-4883-2018
– volume: 256
  start-page: 118432
  issue: 7
  year: 2021
  ident: 10.1016/j.jaerosci.2021.105833_bib71
  article-title: Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM2.5
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2021.118432
– year: 2018
  ident: 10.1016/j.jaerosci.2021.105833_bib6
  article-title: Evaluation of low-cost sensors for ambient PM2.5 monitoring
  publication-title: Journal of Sensors
  doi: 10.1155/2018/5096540
– start-page: 1
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib8
  article-title: Development and Application of a United States wide correction for PM2.5 data collected with the PurpleAir sensor
  publication-title: Atmospheric Measurement Techniques Discussions
– volume: 250
  start-page: 251
  year: 2019
  ident: 10.1016/j.jaerosci.2021.105833_bib67
  article-title: Variation in gravimetric correction factors for nephelometer-derived estimates of personal exposure to PM2.5
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2019.03.121
– volume: 13
  start-page: 1181
  issue: 3
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib19
  article-title: Effect of aerosol composition on the performance of low-cost optical particle counter correction factors
  publication-title: Atmospheric Measurement Techniques
  doi: 10.5194/amt-13-1181-2020
– volume: 703
  start-page: 105654
  year: 2020
  ident: 10.1016/j.jaerosci.2021.105833_bib69
  article-title: Effects of aerosol type and simulated aging on performance of low-cost PM sensors
  publication-title: Journal of Aerosol Science
  doi: 10.1016/j.jaerosci.2020.105654
SSID ssj0007915
Score 2.6804972
Snippet Low-cost sensors for particulate matter mass (PM) enable spatially dense, high temporal resolution measurements of air quality that traditional reference...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 105833
SubjectTerms Air pollution
Air quality
Atmospheric and Oceanic Physics
Environmental Engineering
Environmental Sciences
Low-cost sensors
Particulate matter
Physics
Title From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors
URI https://dx.doi.org/10.1016/j.jaerosci.2021.105833
https://hal.science/hal-03442005
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOXFApYBYCtUIIW7p1rETO9xWK1bLoz1RqbfIdhyxq-1mtQmteuGP9M92xonbckA9cIpi2bI1M5qXZr5h7KO0uhJa24RsTyIzFGNd5z5xpjqmiEjIML7t5DSfn8lv59n5DpvGXhgqqxx0f6_Tg7YeVsYDNcebxYJ6fNE8ZWiDOOFZSsIElVKRlB_9uS_zUMUwxSDlCe1-0CW8PFoaHzAjMU5MOY281UL8y0A9-RVTrcH0zPbY88FnhEn_rBdsx6_32bMHSIL7bHSCzm-zDTly-ATT1QI90fD3kt3Mts0FrJqrxDVtBy0Grs22ha4BwipO-rbKa6Ba0c8wgaGdDZoaXJy00oJZV2DRgkBsq2oB3V3oy0FQY66uAblNsTfVUd_ftgnEpBlhHi4Clid-2ja-4hU7m335OZ0nw0yGxIlCdkjCTPs8U0oVXurUaCS8V0q7uvIFgYN5mfFa8JTX2qW2qIxQtUtz61OrzbERr9nuuln7Nww4t7kQPjW5EzJTwlRaVtwqYwtjRWFHLIuMKN0AWE5zM1ZlrExblpGBJTGw7Bk4YuO7c5sesuPRE0Xkc_mX8JVoVx49-wF5cXcRoXXPJz9KWiM0RUraXfK3_3HBAaUSCMmT0j7v2G63_e3foyPU2cMg6Yfs6eTr9_npLRciCmY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLa2cUAc0BggOsH2hBC3rHPsxA63qlpVoN1pk3azbMcRrbqmasKmXfhH-Gfxc-JtHNAOnKJYsWy957wf1nvfR8gnbmTJpDQJ-p6EZ_4Yyyp3idXlKWZEjAf6tvl5Pr3k366yqx0yjr0wWFbZ2_7Opgdr3Y8Me2kON4sF9vh695R5H0QRz5LzXfKM-98XaQxOfj3UeYiipzFIaYKfP2oTXp4stQugkT5RTCly3krG_uWhdn_Eu9bgeyb75GUfNMKo29crsuPWB-TFIyjBAzKY--i33oZLcvgM49XCh6Lh7TX5PdnW17CqbxNbNy00PnOttw20NSBYcdL1Vd4BFot-gRH0_WxQV2Aj1UoDel2C8S4EYl9VAz7eha4exJvM1R14dWPyjYXUD6ttgjSRJMzBdQDz9I-mibt4Qy4nZxfjadKTMiSWFbz1IsykyzMhROG4TLX0kndCSFuVrkB0MMczWjGa0kra1BSlZqKyaW5caqQ-1ewt2VvXa_eOAKUmZ8ylOreMZ4LpUvKSGqFNoQ0rzIBkURHK9ojlSJyxUrE0bamiAhUqUHUKHJDh_bxNh9nx5Iwi6ln9dfqUdyxPzv3odXG_EMJ1T0czhWMIp4i3djf08D8WOCbPpxfzmZp9Pf_-nuy125_ugw-EWnMUDvofkt4J6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+low-cost+sensors+to+high-quality+data%3A+A+summary+of+challenges+and+best+practices+for+effectively+calibrating+low-cost+particulate+matter+mass+sensors&rft.jtitle=Journal+of+aerosol+science&rft.au=Giordano%2C+Michael+R&rft.au=Malings%2C+Carl&rft.au=Pandis%2C+Spyros+N&rft.au=Presto%2C+Albert+A&rft.date=2021-11-01&rft.pub=Elsevier&rft.issn=0021-8502&rft.eissn=1879-1964&rft.volume=158&rft_id=info:doi/10.1016%2Fj.jaerosci.2021.105833&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03442005v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8502&client=summon