From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors
Low-cost sensors for particulate matter mass (PM) enable spatially dense, high temporal resolution measurements of air quality that traditional reference monitoring cannot. Low-cost PM sensors are especially beneficial in low and middle-income countries where few, if any, reference grade measurement...
Saved in:
Published in | Journal of aerosol science Vol. 158; p. 105833 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low-cost sensors for particulate matter mass (PM) enable spatially dense, high temporal resolution measurements of air quality that traditional reference monitoring cannot. Low-cost PM sensors are especially beneficial in low and middle-income countries where few, if any, reference grade measurements exist and in areas where the concentration fields of air pollutants have significant spatial gradients. Unfortunately, low-cost PM sensors also come with a number of challenges that must be addressed if their data products are to be used for anything more than a qualitative characterization of air quality. The various PM sensors used in low-cost monitors are all subject to biases and calibration dependencies, corrections for which range from relatively straightforward (e.g. meteorology, age of sensor) to complex (e.g. aerosol source, composition, refractive index). The methods for correcting and calibrating these biases and dependencies that have been used in the literature likewise range from simple linear and quadratic models to complex machine learning algorithms. Here we review the needs and challenges when trying to get high-quality data from low-cost sensors. We also present a set of best practices to follow to obtain high-quality data from these low-cost sensors.
•Low-cost sensors (LCS) give air pollution data at high spatial/temporal resolution.•Challenges in obtaining high quality data from low-cost PM sensors are reviewed.•Current methods of correcting LCS data are reviewed, best practices are suggested.•To better evaluate LCS corrections, both accuracy and bias should be reported. |
---|---|
AbstractList | Low-cost sensors for particulate matter mass (PM) enable spatially dense, high temporal resolution measurements of air quality that traditional reference monitoring cannot. Low-cost PM sensors are especially beneficial in low and middle-income countries where few, if any, reference grade measurements exist and in areas where the concentration fields of air pollutants have significant spatial gradients. Unfortunately, low-cost PM sensors also come with a number of challenges that must be addressed if their data products are to be used for anything more than a qualitative characterization of air quality. The various PM sensors used in low-cost monitors are all subject to biases and calibration dependencies, corrections for which range from relatively straightforward (e.g. meteorology, age of sensor) to complex (e.g. aerosol source, composition, refractive index). The methods for correcting and calibrating these biases and dependencies that have been used in the literature likewise range from simple linear and quadratic models to complex machine learning algorithms. Here we review the needs and challenges when trying to get high-quality data from low-cost sensors. We also present a set of best practices to follow to obtain high-quality data from these low-cost sensors.
•Low-cost sensors (LCS) give air pollution data at high spatial/temporal resolution.•Challenges in obtaining high quality data from low-cost PM sensors are reviewed.•Current methods of correcting LCS data are reviewed, best practices are suggested.•To better evaluate LCS corrections, both accuracy and bias should be reported. Low-cost sensors for particulate matter mass (PM) enable spatially dense, high temporal resolution measurements of air quality that traditional reference monitoring cannot. Low-cost PM sensors are especially beneficial in low and middle-income countries where few, if any, reference grade measurements exist and in areas where the concentration fields of air pollutants have significant spatial gradients. Unfortunately, low-cost PM sensors also come with a number of challenges that must be addressed if their data products are to be used for anything more than a qualitative characterization of air quality. The various PM sensors used in low-cost monitors are all subject to biases and calibration dependencies, corrections for which range from relatively straightforward (e.g. meteorology, age of sensor) to complex (e.g. aerosol source, composition, refractive index). The methods for correcting and calibrating these biases and dependencies that have been used in the literature likewise range from simple linear and quadratic models to complex machine learning algorithms. Here we review the needs and challenges when trying to get high-quality data from low-cost sensors. We also present a set of best practices to follow to obtain high-quality data from these low-cost sensors. |
ArticleNumber | 105833 |
Author | Beekmann, Matthias Giordano, Michael R. McNeill, V.F. Presto, Albert A. Westervelt, Daniel M. Pandis, Spyros N. Subramanian, R. Malings, Carl |
Author_xml | – sequence: 1 givenname: Michael R. orcidid: 0000-0002-6820-6668 surname: Giordano fullname: Giordano, Michael R. email: mike@afriqair.org organization: Univ Paris Est Creteil, CNRS UMS 3563, Ecole Nationale des Ponts et Chaussés, Université de Paris, OSU-EFLUVE – Observatoire Sciences de L’Univers-Envelopes Fluides de La Ville à L’Exobiologie, F-94010 Créteil, France – sequence: 2 givenname: Carl orcidid: 0000-0002-2242-4328 surname: Malings fullname: Malings, Carl organization: NASA Postdoctoral Program Fellow, Goddard Space Flight Center, Greenbelt, MD, USA – sequence: 3 givenname: Spyros N. orcidid: 0000-0001-8085-9795 surname: Pandis fullname: Pandis, Spyros N. organization: Department of Chemical Engineering, University of Patras, Patras, Greece – sequence: 4 givenname: Albert A. orcidid: 0000-0002-9156-1094 surname: Presto fullname: Presto, Albert A. organization: Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 5 givenname: V.F. surname: McNeill fullname: McNeill, V.F. organization: Departments of Chemical Engineering and Earth and Environmental Sciences, Columbia University, New York, NY, USA – sequence: 6 givenname: Daniel M. orcidid: 0000-0003-0806-9961 surname: Westervelt fullname: Westervelt, Daniel M. organization: Lamont-Doherty Earth Observatory of Columbia University, New York, NY, USA – sequence: 7 givenname: Matthias surname: Beekmann fullname: Beekmann, Matthias organization: Univ Paris Est Creteil, CNRS UMS 3563, Ecole Nationale des Ponts et Chaussés, Université de Paris, OSU-EFLUVE – Observatoire Sciences de L’Univers-Envelopes Fluides de La Ville à L’Exobiologie, F-94010 Créteil, France – sequence: 8 givenname: R. orcidid: 0000-0002-5553-5913 surname: Subramanian fullname: Subramanian, R. email: subu@lisa.ipsl.fr, subu@cmu.edu organization: Univ Paris Est Creteil, CNRS UMS 3563, Ecole Nationale des Ponts et Chaussés, Université de Paris, OSU-EFLUVE – Observatoire Sciences de L’Univers-Envelopes Fluides de La Ville à L’Exobiologie, F-94010 Créteil, France |
BackLink | https://hal.science/hal-03442005$$DView record in HAL |
BookMark | eNqFUcFqGzEQFSGFOml_oejawzqSVrvShh5qQtMEDL20ZzGrHdky65UryS7-lv5sZFxTyCWnQaP3Zua9d0OupzAhIZ84m3PG27vNfAMYQ7J-Lpjgpdnour4iM65VV_GulddkxspPpRsm3pOblDaMMdXxZkb-PsawpWP4U9mQMk04pRATzYGu_Wpd_d7D6PORDpDhni5o2m-3EI80OGrXMI44rTBRmAbaY6HvItjsbWm5ECk6h-V5wPFIbZnTR8h-Wv3ftoNY0PsRMtIt5IyxlJQuV3wg7xyMCT_-q7fk1-O3nw9P1fLH9-eHxbKydSdzUdVobBulVIdSC9CtlKiUtm7ATjZSoWy4q7ngTlvRdwPUylnR9ih6DQzqW_L5PLcoMrvoTwpNAG-eFktz6rFaSsFYc-AF--WMtcXxFNEZ63ORFaYcwY-GM3MKxWzMJRRzCsWcQyn09hX9su9N4tczEYsRB4_RFAROFgcfi8lmCP6tES8lZrAt |
CitedBy_id | crossref_primary_10_1016_j_envint_2024_109069 crossref_primary_10_1016_j_apr_2024_102341 crossref_primary_10_1155_2024_2930582 crossref_primary_10_1016_j_apr_2025_102504 crossref_primary_10_5194_amt_16_5415_2023 crossref_primary_10_1016_j_agwat_2023_108489 crossref_primary_10_1021_acsestair_4c00224 crossref_primary_10_1109_TII_2022_3151782 crossref_primary_10_1016_j_scitotenv_2024_178190 crossref_primary_10_1039_D3EA00074E crossref_primary_10_1016_j_jaerosci_2023_106284 crossref_primary_10_1021_acs_est_2c08096 crossref_primary_10_1016_j_rse_2022_112890 crossref_primary_10_5194_amt_17_6425_2024 crossref_primary_10_1016_j_buildenv_2024_112099 crossref_primary_10_1021_acsearthspacechem_1c00391 crossref_primary_10_3390_su14105999 crossref_primary_10_1007_s11869_024_01687_z crossref_primary_10_3390_s23146541 crossref_primary_10_1021_acsearthspacechem_2c00257 crossref_primary_10_1038_s41612_022_00293_z crossref_primary_10_1007_s00542_025_05859_4 crossref_primary_10_1016_j_aej_2024_09_031 crossref_primary_10_1016_j_knosys_2024_111879 crossref_primary_10_1029_2024JH000183 crossref_primary_10_21062_mft_2023_110 crossref_primary_10_3390_s24082500 crossref_primary_10_1039_D2EA00142J crossref_primary_10_3390_atmos14020368 crossref_primary_10_1016_j_scitotenv_2023_168666 crossref_primary_10_1016_j_scitotenv_2023_169117 crossref_primary_10_3390_atmos15080879 crossref_primary_10_1021_acsestengg_1c00367 crossref_primary_10_1039_D2EA00085G crossref_primary_10_1177_09754253221122752 crossref_primary_10_1016_j_uclim_2023_101684 crossref_primary_10_1080_02786826_2024_2342722 crossref_primary_10_1016_j_engappai_2023_107591 crossref_primary_10_3390_ijerph18189811 crossref_primary_10_3390_environments11110237 crossref_primary_10_1016_j_buildenv_2021_108668 crossref_primary_10_1016_j_scitotenv_2023_164063 crossref_primary_10_3390_s25041265 crossref_primary_10_3390_atmos15030304 crossref_primary_10_3390_atmos14020354 crossref_primary_10_1038_s41370_022_00449_2 crossref_primary_10_1016_j_atmosenv_2024_120460 crossref_primary_10_22201_iingen_0718378xe_2023_16_3_86568 crossref_primary_10_1021_acs_est_4c09752 crossref_primary_10_1038_s41612_024_00812_0 crossref_primary_10_5194_amt_15_3353_2022 crossref_primary_10_3390_s23239446 crossref_primary_10_1080_02786826_2025_2475085 crossref_primary_10_3390_atmos16020172 crossref_primary_10_1016_j_atmosres_2024_107656 crossref_primary_10_1016_j_future_2023_11_029 crossref_primary_10_1016_j_jaerosci_2024_106456 crossref_primary_10_1021_acsestair_3c00024 crossref_primary_10_1016_j_jaerosci_2023_106181 crossref_primary_10_5194_amt_17_3809_2024 crossref_primary_10_1021_acsestair_4c00125 crossref_primary_10_1016_j_envpol_2023_121832 crossref_primary_10_1016_j_microc_2025_112666 crossref_primary_10_5194_amt_15_6309_2022 crossref_primary_10_2139_ssrn_4143147 crossref_primary_10_1021_acsestair_4c00126 crossref_primary_10_3390_s24113650 crossref_primary_10_3390_atmos13071061 crossref_primary_10_3390_pr11082338 crossref_primary_10_1016_j_eti_2022_102551 crossref_primary_10_1016_j_scitotenv_2023_161969 crossref_primary_10_3390_atmos15111326 crossref_primary_10_1007_s41810_024_00271_3 crossref_primary_10_3390_polym16131841 crossref_primary_10_1080_00207233_2024_2358716 crossref_primary_10_3390_atmos13040587 crossref_primary_10_1007_s10661_023_11438_9 crossref_primary_10_2298_TSCI221109221S crossref_primary_10_5194_amt_16_4709_2023 crossref_primary_10_1016_j_scitotenv_2023_166743 crossref_primary_10_1039_D4EA00140K crossref_primary_10_3390_asi6040069 crossref_primary_10_3390_s22249669 crossref_primary_10_3390_atmos15050594 crossref_primary_10_1016_j_scs_2023_104607 crossref_primary_10_3390_chemosensors13010025 crossref_primary_10_1007_s11276_024_03893_0 crossref_primary_10_5194_amt_15_4047_2022 crossref_primary_10_1039_D4CE00364K crossref_primary_10_1016_j_envres_2023_115685 crossref_primary_10_1088_1748_9326_ac6ad6 crossref_primary_10_1016_j_jaerosci_2024_106519 crossref_primary_10_1016_j_envint_2022_107645 crossref_primary_10_3390_atmos13030440 crossref_primary_10_3390_atmos14030496 crossref_primary_10_1016_j_atmosenv_2022_119251 crossref_primary_10_1016_j_apr_2023_102027 crossref_primary_10_1007_s11270_022_05679_6 crossref_primary_10_1088_2399_6528_aca45e crossref_primary_10_1016_j_jaerosci_2022_106114 crossref_primary_10_1016_j_atmosenv_2024_120888 crossref_primary_10_1021_acs_est_2c09264 crossref_primary_10_1016_j_atmosenv_2024_120887 crossref_primary_10_1016_j_microc_2024_112369 crossref_primary_10_1111_evj_14425 crossref_primary_10_1039_D2EA00025C crossref_primary_10_1016_j_envpol_2023_122701 crossref_primary_10_20517_jeea_2024_56 crossref_primary_10_1109_ACCESS_2023_3319092 crossref_primary_10_5194_amt_15_4091_2022 crossref_primary_10_3390_atmos15091056 crossref_primary_10_3390_atmos13111766 crossref_primary_10_3390_s24134052 crossref_primary_10_3390_chemosensors12120262 crossref_primary_10_1029_2021GH000451 crossref_primary_10_1093_jrsssc_qlaf007 crossref_primary_10_1016_j_envpol_2024_124900 crossref_primary_10_3390_s23020640 crossref_primary_10_1016_j_scitotenv_2024_174089 crossref_primary_10_1016_j_atmosenv_2023_120108 crossref_primary_10_1016_j_eti_2022_102974 crossref_primary_10_1016_j_atmosenv_2023_120107 crossref_primary_10_1109_JIOT_2024_3405623 crossref_primary_10_1021_acsaelm_4c02247 crossref_primary_10_5194_amt_17_6735_2024 crossref_primary_10_1088_1742_6596_2695_1_012002 crossref_primary_10_1007_s44273_024_00045_w crossref_primary_10_3390_atmos13091393 crossref_primary_10_3390_atmos13081218 crossref_primary_10_1021_acs_estlett_3c00030 crossref_primary_10_1111_ina_13132 crossref_primary_10_5194_amt_17_1051_2024 crossref_primary_10_1016_j_buildenv_2022_109380 crossref_primary_10_1016_j_uclim_2025_102344 crossref_primary_10_3390_s25051423 crossref_primary_10_1016_j_jaerosci_2023_106256 crossref_primary_10_1021_acsestair_3c00105 crossref_primary_10_1016_j_envpol_2024_124354 crossref_primary_10_1016_j_measurement_2024_114529 crossref_primary_10_1016_j_envsoft_2024_105955 crossref_primary_10_1016_j_atmosenv_2024_120945 crossref_primary_10_1016_j_apr_2024_102208 crossref_primary_10_5194_amt_17_3917_2024 crossref_primary_10_1039_D4EA00086B crossref_primary_10_3390_environments11110229 crossref_primary_10_1166_jno_2023_3396 crossref_primary_10_1080_02786826_2024_2427868 crossref_primary_10_1038_s41370_024_00661_2 crossref_primary_10_1016_j_buildenv_2022_109706 crossref_primary_10_1109_TIM_2023_3331428 crossref_primary_10_5194_amt_14_7369_2021 crossref_primary_10_1002_ail2_76 crossref_primary_10_1016_j_atmosenv_2023_119944 crossref_primary_10_3390_s24154765 crossref_primary_10_1016_j_jaerosci_2021_105872 crossref_primary_10_1016_j_jobe_2023_107774 crossref_primary_10_1016_j_ebiom_2023_104668 crossref_primary_10_1039_D4EA00012A crossref_primary_10_1016_j_dib_2024_110411 crossref_primary_10_1016_j_ohx_2022_e00266 crossref_primary_10_1016_j_apr_2024_102057 crossref_primary_10_3390_atmos15070790 crossref_primary_10_3390_s25010122 crossref_primary_10_1021_acsestair_4c00172 crossref_primary_10_1039_D2EA00055E crossref_primary_10_1016_j_oneear_2025_101237 crossref_primary_10_1155_2024_8799498 crossref_primary_10_3390_s23218977 crossref_primary_10_1016_j_aeaoa_2024_100271 crossref_primary_10_1039_D2EA00149G crossref_primary_10_3390_signals5010004 crossref_primary_10_1007_s10661_022_10290_7 crossref_primary_10_1016_j_trac_2024_117968 crossref_primary_10_5194_acp_22_4801_2022 crossref_primary_10_1007_s10661_024_13069_0 crossref_primary_10_3390_s22031008 crossref_primary_10_3390_air1020011 crossref_primary_10_3390_atmos16010042 |
Cites_doi | 10.1016/j.aeaoa.2019.100031 10.5194/amt-12-5431-2019 10.17159/caj/2020/30/2.8023 10.1016/j.atmosenv.2018.04.019 10.1038/s41598-019-43716-3 10.1016/j.scitotenv.2014.12.003 10.5194/amt-12-6385-2019 10.5194/amt-11-4823-2018 10.1080/10473289.2002.10470802 10.1016/j.envpol.2018.11.065 10.3390/atmos10020041 10.1080/02786826.2016.1162901 10.5194/amt-11-709-2018 10.1038/s41370-020-0255-x 10.1021/acs.jcim.5b00206 10.4209/aaqr.2017.10.0418 10.3390/s18092790 10.1080/02786826.2015.1100710 10.1016/j.atmosenv.2019.116946 10.1080/02786826.2019.1619915 10.1016/j.envint.2018.04.018 10.3390/atmos10090506 10.1016/j.envint.2019.105329 10.5194/amt-13-6343-2020 10.1016/j.atmosenv.2019.117067 10.5194/amt-10-4341-2017 10.1080/10962247.2016.1241195 10.4209/aaqr.2018.11.0394 10.1016/j.buildenv.2017.11.001 10.4209/aaqr.200619 10.1016/j.envpol.2015.01.013 10.1016/j.envint.2016.12.007 10.5194/amt-13-5441-2020 10.1016/j.jaerosci.2017.05.011 10.1371/journal.pone.0137789 10.3390/s20082219 10.1038/s41598-020-79064-w 10.4209/aaqr.2018.12.0485 10.1080/02786826.2019.1623863 10.1021/acs.est.0c02341 10.5194/acp-18-15403-2018 10.1016/j.envpol.2016.12.039 10.1021/acs.est.8b01826 10.1080/02786826.2019.1696015 10.5194/amt-9-5281-2016 10.1016/j.scitotenv.2016.09.061 10.4209/aaqr.2017.12.0611 10.1016/j.scitotenv.2020.141396 10.1021/acsearthspacechem.8b00079 10.1111/ina.12716 10.1080/02786826.2019.1697423 10.5194/amt-13-2413-2020 10.1016/j.jaerosci.2016.11.010 10.1016/j.atmosenv.2019.06.026 10.5194/amt-11-291-2018 10.3390/atmos11090926 10.5194/amt-12-903-2019 10.1016/j.csda.2017.11.003 10.1109/APCCAS.2018.8605619 10.3390/s20174796 10.1016/j.buildenv.2020.107415 10.1016/j.sna.2012.12.026 10.5194/amt-7-1121-2014 10.1016/j.atmosenv.2020.117292 10.1021/acs.est.8b05174 10.1080/02786820121582 10.1016/j.jaerosci.2021.105766 10.5194/amt-11-4883-2018 10.1016/j.atmosenv.2021.118432 10.1155/2018/5096540 10.1016/j.envpol.2019.03.121 10.5194/amt-13-1181-2020 10.1016/j.jaerosci.2020.105654 |
ContentType | Journal Article |
Copyright | 2021 The Authors Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 The Authors – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.jaerosci.2021.105833 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Engineering Physics Environmental Sciences |
EISSN | 1879-1964 |
ExternalDocumentID | oai_HAL_hal_03442005v1 10_1016_j_jaerosci_2021_105833 S0021850221005644 |
GroupedDBID | --- --K --M -~X .DC .HR .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY3 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SEN SEP SES SEW SPC SPCBC SPD SSE SSJ SSZ T5K TN5 WUQ ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC VOOES |
ID | FETCH-LOGICAL-c394t-8558e657779e482a8644e778cfde94547e451f3121f8c2b9da37fc26be2b8a0a3 |
IEDL.DBID | .~1 |
ISSN | 0021-8502 |
IngestDate | Thu Jul 10 06:45:23 EDT 2025 Tue Jul 01 01:37:23 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Fri Feb 23 02:43:01 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Low-cost sensors Air quality Air pollution Particulate matter |
Language | English |
License | This is an open access article under the CC BY license. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-8558e657779e482a8644e778cfde94547e451f3121f8c2b9da37fc26be2b8a0a3 |
ORCID | 0000-0002-2242-4328 0000-0002-5553-5913 0000-0002-6820-6668 0000-0003-0806-9961 0000-0002-9156-1094 0000-0001-8085-9795 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0021850221005644 |
ParticipantIDs | hal_primary_oai_HAL_hal_03442005v1 crossref_citationtrail_10_1016_j_jaerosci_2021_105833 crossref_primary_10_1016_j_jaerosci_2021_105833 elsevier_sciencedirect_doi_10_1016_j_jaerosci_2021_105833 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of aerosol science |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Ford, Pierce, Wendt, Long, Jathar, Mehaffy, Tryner, Quinn, van Zyl, L&apos, Orange, Miller-Lionberg, Volckens (bib28) 2019; 12 Tryner, Mehaffy, Miller-Lionberg, Volckens (bib69) 2020; 703 Karagulian, Barbiere, Kotsev, Spinelle, Gerboles, Lagler, Redon, Crunaire, Borowiak (bib42) 2019; 10 Sousan, Koehler, Thomas, Park, Hillman, Halterman, Peters (bib61) 2016; 50 Alpaydin (bib3) 2020 Feinberg, Williams, Hagler, Low, Smith, Brown, Garver, Davis, Morton, Schaefer, Campbell (bib26) 2019; 213 Subramanian, Kagabo, Baharane, Guhirwa, Sindayigaya, Malings, Williams, Kalisa, Li, Adams, Robinson, DeWitt, Gasore, Jaramillo (bib65) 2020; 30 Li, Mattewal, Patel, Biswas (bib49) 2020; 20 Barkjohn, Gantt, Clements (bib8) 2020 Han, Symanski, Stock (bib32) 2017; 67 (bib1) 2005 Mallia, Kochanski, Kelly, Whitaker, Xing, Mitchell, Jacques, Farguell, Mandel, Gaillardon, Becnel, Krueger (bib54) 2020; 125 Chu, Ali, He (bib17) 2020; 10 Holder, Mebust, Maghran, McGown, Stewart, Vallano, Elleman, Baker (bib36) 2020; 20 Friedlander (bib83) 2000 Kelly, Whitaker, Petty, Widmer, Dybwad, Sleeth, Martin, Butterfield (bib43) 2017; 221 Austin, Novosselov, Seto, Yost (bib5) 2015; 10 Demanega, Mujan, Singer, Anđelković, Babich, Licina (bib20) 2021; 187 Fishbain, Lerner, Castell, Cole-Hunter, Popoola, Broday, Martinez Iñiguez, Nieuwenhuijsen, Jovasevic-Stojanovic, Topalovic, Jones, Galea, Golumbic, Golumbic, Baram-Tsabari, Yacobi, Drahler, Robinson, Kocman, Bartonova (bib27) 2017; 575 Tanzer-Gruener, Li, Eilenberg, Robinson, Presto (bib66) 2020 Zikova, Hopke, Ferro (bib79) 2017; 105 Hagan, Kroll (bib30) 2020; 13 Kuula, Mäkelä, Aurela, Teinilä, Varjonen, González, Timonen (bib46) 2020; 13 Sayahi, Butterfield, Kelly (bib60) 2019; 245 Wendt, Quinn, Miller-Lionberg, Tryner, L'Orange, Ford, Yalin, Jeffrey, Jathar, Volckens (bib75) 2019; 12 Crilley, Shaw, Pound, Kramer, Price, Young, Lewis, Pope (bib18) 2018; 11 Di Antonio, Popoola, Ouyang, Saffell, Jones (bib21) 2018; 18 Subramanian, Ellis, Torres-Delgado, Tanzer, Malings, Rivera, Mayol-Bracero (bib87) 2018; 2 Eilenberg, Subramanian, Malings, Hauryliuk, Presto, Robinson (bib24) 2020; 30 Wang, Li, Jing, Zhang, Jiang, Biswas (bib73) 2015; 49 Duvall, Clements, Hagler, Kamal, Kilaru, Goodman, Frederick, Barkjohn, VonWald, Greene (bib23) 2021 Pope, Gatari, Ng’ang’a, Poynter, Blake (bib85) 2018; 18 Chadwick, Le, Pei, Sayahi, Rapp, Butterfield, Kelly (bib15) 2021; 155 Jayaratne, Liu, Thai, Dunbabin, Morawska (bib38) 2018; 11 Bergmeir, Hyndman, Koo (bib10) 2018; 120 Wallace, Bi, Ott, Sarnat, Liu (bib71) 2021; 256 Walser, Sauer, Spanu, Gasteiger, Weinzierl (bib72) 2017; 10 Bulot, Johnston, Basford, Easton, Apetroaie-Cristea, Foster, Morris, Cox, Loxham (bib11) 2019; 9 Jiao, Hagler, Williams, Sharpe, Brown, Garver, Judge, Caudill, Rickard, Davis, Weinstock, Zimmer-Dauphinee, Buckley (bib39) 2016; 9 Morawska, Thai, Liu, Asumadu-Sakyi, Ayoko, Bartonova, Bedini, Chai, Christensen, Dunbabin, Gao, Hagler, Jayaratne, Kumar, Lau, Louie, Mazaheri, Ning, Motta, Williams (bib56) 2018; 116 Williams, Kaufman, Hanley, Rice, Garvey (bib77) 2014 Barkjohn, Bergin, Norris, Schauer, Zhang, Black, Hu, Zhang (bib7) 2020; 20 Tryner, Good, Wilson, Clark, Peel, Volckens (bib67) 2019; 250 He, Kuerbanjiang, Dhaniyala (bib35) 2020; 54 Tryner, L'Orange, Mehaffy, Miller-Lionberg, Hofstetter, Wilson, Volckens (bib68) 2020; 220 Feenstra, Papapostolou, Hasheminassab, Zhang, Boghossian, Cocker, Polidori (bib25) 2019; 216 Badura, Batog, Drzeniecka-Osiadacz, Modzel (bib6) 2018 Malings, Tanzer, Hauryliuk, Saha, Robinson, Presto, Subramanian (bib53) 2020; 54 McFarlane, Isevulambire, Lumbuenamo, Ndinga, Dhammapala, Jin, Westervelt (bib84) 2021; 21 Hapidin, Saputra, Maulana, Munir, Khairurrijal (bib33) 2019; 19 Williams, Duvall, Kilaru, Hagler, Hassinger, Benedict, Rice, Kaufman, Judge, Pierce, Allen, Bergin, Cohen, Fransioli, Gerboles, Habre, Hannigan, Jack, Louie, Ning (bib76) 2019; 2 Hastie, Tibshirani, Friedman (bib34) 2001 Alexander, Tropsha, Winkler (bib2) 2015; 55 Li, Li, Ma, Wang, Abokifa, Lu, Biswas (bib48) 2018; 127 Carlton, Teitz (bib13) 2002; 52 Liu, Zhang, Jiang, Chen (bib51) 2017; 112 Barkjohn, Norris, Cui, Fang, Zheng, Schauer, Li, Zhang, Black, Zhang, Jim, Bergin (bib9) 2020; 31 Malings, Tanzer, Hauryliuk, Kumar, Zimmerman, Kara, Subramanian (bib86) 2019; 12 Bohren, Huffman (bib82) 1998 Zheng, Bergin, Johnson, Tripathi, Shirodkar, Landis, Sutaria, Carlson (bib78) 2018; 11 Castell, Dauge, Schneider, Vogt, Lerner, Fishbain, Broday, Bartonova (bib14) 2017; 99 Stavroulas, Grivas, Michalopoulos, Liakakou, Bougiatioti, Kalkavouras, Fameli, Hatzianastassiou, Mihalopoulos, Gerasopoulos (bib63) 2020; 11 Salimifard, Rim, Freihaut (bib59) 2020; 54 Johnson, Bonczak, Kontokosta (bib41) 2018; 184 Zimmerman, Presto, Kumar, Gu, Hauryliuk, Robinson, Robinson (bib80) 2018; 11 Tryner, Quinn, Windom, Volckens (bib70) 2019; 21 Paprotny, Doering, Solomon, White, Gundel (bib58) 2013; 201 Hagler, Williams, Papapostolou, Polidori (bib31) 2018; 52 Noble, Vanderpool, Peters, McElroy, Gemmill, Wiener (bib57) 2001; 34 Steinle, Reis, Sabel, Semple, Twigg, Braban, Leeson, Heal, Harrison, Lin, Wu (bib64) 2015; 508 Bulot, Russell, Rezaei, Johnson, Ossont, Morris, Cox (bib12) 2020; 20 Crilley, Singh, Kramer, Shaw, Alam, Apte, Bloss, Hildebrandt Ruiz, Fu, Fu, Gani, Gatari, Ilyinskaya, Lewis, Ng&apos, ang&apos, a, Sun, Whitty, Pope (bib19) 2020; 13 Chen, Kuo, Chen, Lin, Chue, Hsieh, Huang (bib16) 2018 Holstius, Pillarisetti, Smith, Seto (bib37) 2014; 7 Magi, Cupini, Francis, Green, Hauser (bib52) 2020; 54 Liu, Schneider, Haugen, Vogt (bib50) 2019; 10 Johnson, Bergin, Russell, Hagler (bib40) 2018; 18 (bib22) 2016 Masic, Bibic, Pikula, Blazevic, Huremovic, Zero (bib55) 2020 Ardon-Dryer, Dryer, Williams, Moghimi (bib4) 2020; 13 Kosmopoulos, Salamalikis, Pandis, Yannopoulos, Bloutsos, Kazantzidis (bib45) 2020; 748 Gao, Cao, Seto (bib29) 2015; 199 Wang, Li, Jing, Zhang, Jiang, Biswas (bib74) 2015; 49 Kelly, Xing, Sayahi, Mitchell, Becnel, Gaillardon, Meyer, Whitaker (bib44) 2021; 55 Stampfer, Austin, Ganuelas, Fiander, Seto, Karr (bib62) 2020; 224 Zusman, Schumacher, Gassett, Spalt, Austin, Larson, Carvlin, Seto, Kaufman, Sheppard (bib81) 2020; 134 Zamora, Xiong, Gentner, Kerkez, Kohrman-Glaser, Koehler (bib47) 2019; 53 Eilenberg (10.1016/j.jaerosci.2021.105833_bib24) 2020; 30 Han (10.1016/j.jaerosci.2021.105833_bib32) 2017; 67 Hapidin (10.1016/j.jaerosci.2021.105833_bib33) 2019; 19 Zusman (10.1016/j.jaerosci.2021.105833_bib81) 2020; 134 Chu (10.1016/j.jaerosci.2021.105833_bib17) 2020; 10 Badura (10.1016/j.jaerosci.2021.105833_bib6) 2018 Chen (10.1016/j.jaerosci.2021.105833_bib16) 2018 Friedlander (10.1016/j.jaerosci.2021.105833_bib83) 2000 Malings (10.1016/j.jaerosci.2021.105833_bib86) 2019; 12 Stavroulas (10.1016/j.jaerosci.2021.105833_bib63) 2020; 11 Liu (10.1016/j.jaerosci.2021.105833_bib51) 2017; 112 Tanzer-Gruener (10.1016/j.jaerosci.2021.105833_bib66) 2020 Salimifard (10.1016/j.jaerosci.2021.105833_bib59) 2020; 54 Kosmopoulos (10.1016/j.jaerosci.2021.105833_bib45) 2020; 748 Austin (10.1016/j.jaerosci.2021.105833_bib5) 2015; 10 Bulot (10.1016/j.jaerosci.2021.105833_bib11) 2019; 9 Tryner (10.1016/j.jaerosci.2021.105833_bib70) 2019; 21 Tryner (10.1016/j.jaerosci.2021.105833_bib68) 2020; 220 Wang (10.1016/j.jaerosci.2021.105833_bib73) 2015; 49 Barkjohn (10.1016/j.jaerosci.2021.105833_bib7) 2020; 20 Mallia (10.1016/j.jaerosci.2021.105833_bib54) 2020; 125 Duvall (10.1016/j.jaerosci.2021.105833_bib23) He (10.1016/j.jaerosci.2021.105833_bib35) 2020; 54 Wendt (10.1016/j.jaerosci.2021.105833_bib75) 2019; 12 Holstius (10.1016/j.jaerosci.2021.105833_bib37) 2014; 7 McFarlane (10.1016/j.jaerosci.2021.105833_bib84) 2021; 21 Feinberg (10.1016/j.jaerosci.2021.105833_bib26) 2019; 213 Barkjohn (10.1016/j.jaerosci.2021.105833_bib9) 2020; 31 Sousan (10.1016/j.jaerosci.2021.105833_bib61) 2016; 50 Masic (10.1016/j.jaerosci.2021.105833_bib55) 2020 Wang (10.1016/j.jaerosci.2021.105833_bib74) 2015; 49 Gao (10.1016/j.jaerosci.2021.105833_bib29) 2015; 199 Holder (10.1016/j.jaerosci.2021.105833_bib36) 2020; 20 Li (10.1016/j.jaerosci.2021.105833_bib49) 2020; 20 Kelly (10.1016/j.jaerosci.2021.105833_bib44) 2021; 55 Bergmeir (10.1016/j.jaerosci.2021.105833_bib10) 2018; 120 Zikova (10.1016/j.jaerosci.2021.105833_bib79) 2017; 105 Zimmerman (10.1016/j.jaerosci.2021.105833_bib80) 2018; 11 Bulot (10.1016/j.jaerosci.2021.105833_bib12) 2020; 20 Kelly (10.1016/j.jaerosci.2021.105833_bib43) 2017; 221 Williams (10.1016/j.jaerosci.2021.105833_bib76) 2019; 2 Chadwick (10.1016/j.jaerosci.2021.105833_bib15) 2021; 155 (10.1016/j.jaerosci.2021.105833_bib22) 2016 Subramanian (10.1016/j.jaerosci.2021.105833_bib65) 2020; 30 Jiao (10.1016/j.jaerosci.2021.105833_bib39) 2016; 9 Kuula (10.1016/j.jaerosci.2021.105833_bib46) 2020; 13 Ardon-Dryer (10.1016/j.jaerosci.2021.105833_bib4) 2020; 13 Li (10.1016/j.jaerosci.2021.105833_bib48) 2018; 127 Castell (10.1016/j.jaerosci.2021.105833_bib14) 2017; 99 Malings (10.1016/j.jaerosci.2021.105833_bib53) 2020; 54 Pope (10.1016/j.jaerosci.2021.105833_bib85) 2018; 18 Subramanian (10.1016/j.jaerosci.2021.105833_bib87) 2018; 2 Fishbain (10.1016/j.jaerosci.2021.105833_bib27) 2017; 575 Noble (10.1016/j.jaerosci.2021.105833_bib57) 2001; 34 Liu (10.1016/j.jaerosci.2021.105833_bib50) 2019; 10 Crilley (10.1016/j.jaerosci.2021.105833_bib18) 2018; 11 Di Antonio (10.1016/j.jaerosci.2021.105833_bib21) 2018; 18 Johnson (10.1016/j.jaerosci.2021.105833_bib41) 2018; 184 Ford (10.1016/j.jaerosci.2021.105833_bib28) 2019; 12 Jayaratne (10.1016/j.jaerosci.2021.105833_bib38) 2018; 11 Morawska (10.1016/j.jaerosci.2021.105833_bib56) 2018; 116 Zamora (10.1016/j.jaerosci.2021.105833_bib47) 2019; 53 Paprotny (10.1016/j.jaerosci.2021.105833_bib58) 2013; 201 Sayahi (10.1016/j.jaerosci.2021.105833_bib60) 2019; 245 Magi (10.1016/j.jaerosci.2021.105833_bib52) 2020; 54 Crilley (10.1016/j.jaerosci.2021.105833_bib19) 2020; 13 Stampfer (10.1016/j.jaerosci.2021.105833_bib62) 2020; 224 Hagan (10.1016/j.jaerosci.2021.105833_bib30) 2020; 13 Feenstra (10.1016/j.jaerosci.2021.105833_bib25) 2019; 216 Demanega (10.1016/j.jaerosci.2021.105833_bib20) 2021; 187 Williams (10.1016/j.jaerosci.2021.105833_bib77) 2014 Bohren (10.1016/j.jaerosci.2021.105833_bib82) 1998 Karagulian (10.1016/j.jaerosci.2021.105833_bib42) 2019; 10 Steinle (10.1016/j.jaerosci.2021.105833_bib64) 2015; 508 Alexander (10.1016/j.jaerosci.2021.105833_bib2) 2015; 55 Carlton (10.1016/j.jaerosci.2021.105833_bib13) 2002; 52 Hagler (10.1016/j.jaerosci.2021.105833_bib31) 2018; 52 Zheng (10.1016/j.jaerosci.2021.105833_bib78) 2018; 11 Alpaydin (10.1016/j.jaerosci.2021.105833_bib3) 2020 Tryner (10.1016/j.jaerosci.2021.105833_bib67) 2019; 250 Wallace (10.1016/j.jaerosci.2021.105833_bib71) 2021; 256 Hastie (10.1016/j.jaerosci.2021.105833_bib34) 2001 Tryner (10.1016/j.jaerosci.2021.105833_bib69) 2020; 703 Walser (10.1016/j.jaerosci.2021.105833_bib72) 2017; 10 Johnson (10.1016/j.jaerosci.2021.105833_bib40) 2018; 18 Barkjohn (10.1016/j.jaerosci.2021.105833_bib8) 2020 |
References_xml | – start-page: 1 year: 2020 end-page: 34 ident: bib8 article-title: Development and Application of a United States wide correction for PM publication-title: Atmospheric Measurement Techniques Discussions – year: 1998 ident: bib82 publication-title: Absorption and Scattering of Light by Small Particles – volume: 99 start-page: 293 year: 2017 end-page: 302 ident: bib14 article-title: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? publication-title: Environment International – volume: 52 start-page: 506 year: 2002 end-page: 510 ident: bib13 article-title: Design of a cost-effective weighing facility for PM2.5 quality assurance publication-title: Journal of the Air and Waste Management Association – volume: 49 start-page: 1063 year: 2015 end-page: 1077 ident: bib73 article-title: Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement publication-title: Aerosol Science and Technology – volume: 20 start-page: 4796 year: 2020 ident: bib36 article-title: Field evaluation of low-cost particulate matter sensors for measuring wildfire smoke publication-title: Sensors – year: 2021 ident: bib23 article-title: Performance testing protocols, metrics, and target values for fine particulate matter air SensorsUse in ambient, outdoor, fixed site, non-regulatory supplemental and informational monitoring applications – volume: 12 start-page: 6385 year: 2019 end-page: 6399 ident: bib28 article-title: A low-cost monitor for measurement of fine particulate matter and aerosol optical depth – Part 2: Citizen-science pilot campaign in northern Colorado publication-title: Atmospheric Measurement Techniques – volume: 125 year: 2020 ident: bib54 article-title: Evaluating wildfire smoke transport within a coupled fire‐atmosphere model using a high‐density observation network for an episodic smoke event along Utah's wasatch front publication-title: Journal of Geophysical Research: Atmosphere – volume: 18 start-page: 15403 year: 2018 end-page: 15418 ident: bib85 article-title: Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors publication-title: Atmos. Chem. Phys. – volume: 21 start-page: 1403 year: 2019 end-page: 1415 ident: bib70 article-title: Design and evaluation of a portable PM2.5 monitor featuring a low-cost sensor in line with an active filter sampler publication-title: Environmental Sciences: Processes and Impacts – volume: 10 start-page: 4341 year: 2017 end-page: 4361 ident: bib72 article-title: On the parametrization of optical particle counter response including instrument-induced broadening of size spectra and a self-consistent evaluation of calibration measurements publication-title: Atmospheric Measurement Techniques – volume: 10 year: 2015 ident: bib5 article-title: Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor publication-title: PloS One – year: 2000 ident: bib83 publication-title: Smoke, Dust, and Haze – volume: 508 start-page: 383 year: 2015 end-page: 394 ident: bib64 article-title: Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments publication-title: The Science of the Total Environment – volume: 10 start-page: 506 year: 2019 ident: bib42 article-title: Review of the performance of low-cost sensors for air quality monitoring publication-title: Atmosphere – volume: 54 start-page: 217 year: 2020 end-page: 231 ident: bib59 article-title: Evaluation of low-cost optical particle counters for monitoring individual indoor aerosol sources publication-title: Aerosol Science and Technology – volume: 54 start-page: 232 year: 2020 end-page: 241 ident: bib35 article-title: Performance characteristics of the low-cost Plantower PMS optical sensor publication-title: Aerosol Science and Technology – volume: 7 start-page: 1121 year: 2014 end-page: 1131 ident: bib37 article-title: Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California publication-title: Atmospheric Measurement Techniques – volume: 120 start-page: 70 year: 2018 end-page: 83 ident: bib10 article-title: A note on the validity of cross-validation for evaluating autoregressive time series prediction publication-title: Computational Statistics & Data Analysis – volume: 54 start-page: 147 year: 2020 end-page: 159 ident: bib52 article-title: Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor publication-title: Aerosol Science and Technology – start-page: 111 year: 2018 end-page: 114 ident: bib16 article-title: Calibration of low-cost particle sensors by using machine-learning method. 2018 IEEE Asia pacific conference on circuits and systems publication-title: Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) – volume: 13 start-page: 1181 year: 2020 end-page: 1193 ident: bib19 article-title: Effect of aerosol composition on the performance of low-cost optical particle counter correction factors publication-title: Atmospheric Measurement Techniques – year: 2016 ident: bib22 publication-title: Digital universal particle concentration sensor PMS5003 series data manual – volume: 224 start-page: 117292 year: 2020 ident: bib62 article-title: Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation publication-title: Atmospheric Environment – volume: 703 start-page: 105654 year: 2020 ident: bib69 article-title: Effects of aerosol type and simulated aging on performance of low-cost PM sensors publication-title: Journal of Aerosol Science – volume: 19 start-page: 181 year: 2019 end-page: 194 ident: bib33 article-title: Aerosol chamber characterization for commercial particulate matter (PM) sensor evaluation publication-title: Aerosol and Air Quality Research – start-page: 1 year: 2020 end-page: 22 ident: bib55 article-title: Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution publication-title: Atmospheric Measurement Techniques Discussions – volume: 34 start-page: 457 year: 2001 end-page: 464 ident: bib57 article-title: Federal reference and equivalent methods for measuring fine particulate matter publication-title: Aerosol Science and Technology – volume: 11 start-page: 926 year: 2020 ident: bib63 article-title: Field evaluation of low-cost PM sensors (purple air PA-II) under variable urban air quality conditions, in Greece publication-title: Atmosphere – year: 2018 ident: bib6 article-title: Evaluation of low-cost sensors for ambient PM2.5 monitoring publication-title: Journal of Sensors – volume: 12 start-page: 5431 year: 2019 end-page: 5441 ident: bib75 article-title: A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth - Part 1: Specifications and testing publication-title: Atmospheric Measurement Techniques – volume: 250 start-page: 251 year: 2019 end-page: 261 ident: bib67 article-title: Variation in gravimetric correction factors for nephelometer-derived estimates of personal exposure to PM2.5 publication-title: Environmental Pollution – volume: 10 start-page: 22079 year: 2020 ident: bib17 article-title: Spatial calibration and PM2.5 mapping of low-cost air quality sensors publication-title: Scientific Reports – year: 2014 ident: bib77 publication-title: Evaluation of field-deployed low cost PM sensors – volume: 11 start-page: 291 year: 2018 end-page: 313 ident: bib80 article-title: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring publication-title: Atmospheric Measurement Techniques – year: 2020 ident: bib3 article-title: Introduction to machine learning – volume: 213 start-page: 579 year: 2019 end-page: 584 ident: bib26 article-title: Examining spatiotemporal variability of urban particulate matter and application of high-time resolution data from a network of low-cost air pollution sensors publication-title: Atmospheric Environment – volume: 9 start-page: 5281 year: 2016 end-page: 5292 ident: bib39 article-title: Community air sensor network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States publication-title: Atmospheric Measurement Techniques – volume: 13 start-page: 6343 year: 2020 end-page: 6355 ident: bib30 article-title: Assessing the accuracy of low-cost optical particle sensors using a physics-based approach publication-title: Atmospheric Measurement Techniques – volume: 155 start-page: 105766 year: 2021 ident: bib15 article-title: Technical note: Understanding the effect of COVID-19 on particle pollution using a low-cost sensor network publication-title: Journal of Aerosol Science – year: 2005 ident: bib1 article-title: Particulate matter, ozone, nitrogen dioxide and sulfur dioxide – volume: 220 start-page: 117067 year: 2020 ident: bib68 article-title: Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers publication-title: Atmospheric Environment – volume: 105 start-page: 24 year: 2017 end-page: 34 ident: bib79 article-title: Evaluation of new low-cost particle monitors for PM2.5 concentrations measurements publication-title: Journal of Aerosol Science – volume: 10 year: 2019 ident: bib50 article-title: Performance assessment of a low-cost PM 2.5 sensor for a near four-month period in Oslo, Norway publication-title: Atmosphere – volume: 30 year: 2020 ident: bib65 article-title: Air pollution in Kigali, Rwanda: Spatial and temporal variability, source contributions, and the impact of car-free sundays publication-title: Clean Air Journal – volume: 134 start-page: 105329 year: 2020 ident: bib81 article-title: Calibration of low-cost particulate matter sensors: Model development for a multi-city epidemiological study publication-title: Environment International – volume: 20 start-page: 297 year: 2020 end-page: 313 ident: bib7 article-title: Using low-cost sensors to quantify the effects of air filtration on indoor and personal exposure relevant PM2.5 concentrations in beijing, China publication-title: Aerosol and Air Quality Research – volume: 256 start-page: 118432 year: 2021 ident: bib71 article-title: Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM publication-title: Atmospheric Environment – volume: 49 start-page: 1063 year: 2015 end-page: 1077 ident: bib74 article-title: Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement publication-title: Aerosol Science and Technology – volume: 31 start-page: 74 year: 2020 end-page: 87 ident: bib9 article-title: Real‐time measurements of PM 2.5 and ozone to assess the effectiveness of residential indoor air filtration in Shanghai homes publication-title: Indoor Air – volume: 201 start-page: 506 year: 2013 end-page: 516 ident: bib58 article-title: Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: Design, fabrication, and experimental results publication-title: Sensors and Actuators, A: Physical – volume: 116 start-page: 286 year: 2018 end-page: 299 ident: bib56 article-title: Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? publication-title: Environment International – volume: 52 start-page: 5530 year: 2018 end-page: 5531 ident: bib31 article-title: Air quality sensors and data adjustment algorithms: When is it No longer a measurement? publication-title: Environmental Science and Technology – volume: 20 start-page: 254 year: 2020 end-page: 270 ident: bib49 article-title: Evaluation of nine low-cost-sensor-based particulate matter monitors publication-title: Aerosol and Air Quality Research – volume: 9 year: 2019 ident: bib11 article-title: Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment publication-title: Scientific Reports – volume: 18 start-page: 2790 year: 2018 ident: bib21 article-title: Developing a relative humidity correction for low-cost sensors measuring ambient particulate matter publication-title: Sensors – volume: 187 start-page: 107415 year: 2021 ident: bib20 article-title: Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions publication-title: Building and Environment – volume: 216 start-page: 116946 year: 2019 ident: bib25 article-title: Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site publication-title: Atmospheric Environment – volume: 199 start-page: 56 year: 2015 end-page: 65 ident: bib29 article-title: A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China publication-title: Environmental Pollution – volume: 55 start-page: 120 year: 2021 end-page: 128 ident: bib44 article-title: Community-based measurements reveal unseen differences during air pollution episodes publication-title: Environmental Science and Technology – year: 2001 ident: bib34 article-title: Elements of statistical learning: Data mining, Inference, and prediction – volume: 2 start-page: 1179 year: 2018 end-page: 1186 ident: bib87 article-title: Air Quality in Puerto Rico in the Aftermath of Hurricane Maria: A Case Study on the Use of Lower Cost Air Quality Monitors publication-title: ACS Earth Space Chem. – volume: 221 start-page: 491 year: 2017 end-page: 500 ident: bib43 article-title: Ambient and laboratory evaluation of a low-cost particulate matter sensor publication-title: Environmental Pollution – volume: 55 start-page: 1316 year: 2015 end-page: 1322 ident: bib2 article-title: Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models publication-title: Journal of Chemical Information and Modeling – volume: 11 start-page: 4883 year: 2018 end-page: 4890 ident: bib38 article-title: The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog publication-title: Atmospheric Measurement Techniques – volume: 21 year: 2021 ident: bib84 article-title: First Measurements of Ambient PM publication-title: Aerosol Air Qual. Res. – volume: 13 start-page: 2413 year: 2020 end-page: 2423 ident: bib46 article-title: Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors publication-title: Atmospheric Measurement Techniques – volume: 748 start-page: 141396 year: 2020 ident: bib45 article-title: Low-cost sensors for measuring airborne particulate matter: Field evaluation and calibration at a South-Eastern European site publication-title: The Science of the Total Environment – volume: 2 start-page: 100031 year: 2019 ident: bib76 article-title: Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor progress publication-title: Atmospheric Environment X – volume: 575 start-page: 639 year: 2017 end-page: 648 ident: bib27 article-title: An evaluation tool kit of air quality micro-sensing units publication-title: The Science of the Total Environment – volume: 54 start-page: 160 year: 2020 end-page: 174 ident: bib53 article-title: Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation publication-title: Aerosol Science and Technology – volume: 67 start-page: 330 year: 2017 end-page: 340 ident: bib32 article-title: Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air publication-title: Journal of the Air & Waste Management Association – volume: 127 start-page: 138 year: 2018 end-page: 147 ident: bib48 article-title: Spatiotemporal distribution of indoor particulate matter concentration with a low-cost sensor network publication-title: Building and Environment – volume: 11 start-page: 709 year: 2018 end-page: 720 ident: bib18 article-title: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring publication-title: Atmospheric Measurement Techniques – volume: 13 start-page: 5441 year: 2020 end-page: 5458 ident: bib4 article-title: Measurements of PM2.5 with PurpleAir under atmospheric conditions publication-title: Atmospheric Measurement Techniques – volume: 11 start-page: 4823 year: 2018 end-page: 4846 ident: bib78 article-title: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments publication-title: Atmospheric Measurement Techniques – volume: 112 start-page: 1 year: 2017 end-page: 10 ident: bib51 article-title: Performance calibration of low-cost and portable particular matter (PM) sensors publication-title: Journal of Aerosol Science – volume: 30 start-page: 949 year: 2020 end-page: 961 ident: bib24 article-title: Using a network of lower-cost monitors to identify the influence of modifiable factors driving spatial patterns in fine particulate matter concentrations in an urban environment publication-title: Journal of Exposure Science and Environmental Epidemiology – volume: 20 year: 2020 ident: bib12 article-title: Laboratory comparison of low-cost particulate matter sensors to measure transient events of pollution publication-title: Sensors – volume: 245 start-page: 932 year: 2019 end-page: 940 ident: bib60 article-title: Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors publication-title: Environmental Pollution – volume: 53 start-page: 838 year: 2019 end-page: 849 ident: bib47 article-title: Field and laboratory evaluations of the low-cost plantower particulate matter sensor publication-title: Environmental Science and Technology – volume: 12 start-page: 903 year: 2019 end-page: 920 ident: bib86 article-title: Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring publication-title: Atmos. Meas. Tech. – year: 2020 ident: bib66 article-title: Impacts of Modifiable factors on ambient air pollution: A case study of COVID-19 Shutdowns – volume: 18 start-page: 565 year: 2018 end-page: 578 ident: bib40 article-title: Field test of several low-cost particulate matter sensors in high and low concentration urban environments publication-title: Aerosol and Air Quality Research – volume: 50 start-page: 462 year: 2016 end-page: 473 ident: bib61 article-title: Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols publication-title: Aerosol Science and Technology – volume: 184 start-page: 9 year: 2018 end-page: 16 ident: bib41 article-title: Using a gradient boosting model to improve the performance of low-cost aerosol monitors in a dense, heterogeneous urban environment publication-title: Atmospheric Environment – volume: 2 start-page: 100031 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib76 article-title: Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air sensor progress publication-title: Atmospheric Environment X doi: 10.1016/j.aeaoa.2019.100031 – volume: 12 start-page: 5431 issue: 10 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib75 article-title: A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth - Part 1: Specifications and testing publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-12-5431-2019 – volume: 30 issue: 2 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib65 article-title: Air pollution in Kigali, Rwanda: Spatial and temporal variability, source contributions, and the impact of car-free sundays publication-title: Clean Air Journal doi: 10.17159/caj/2020/30/2.8023 – volume: 184 start-page: 9 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib41 article-title: Using a gradient boosting model to improve the performance of low-cost aerosol monitors in a dense, heterogeneous urban environment publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2018.04.019 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib11 article-title: Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment publication-title: Scientific Reports doi: 10.1038/s41598-019-43716-3 – volume: 508 start-page: 383 year: 2015 ident: 10.1016/j.jaerosci.2021.105833_bib64 article-title: Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2014.12.003 – volume: 12 start-page: 6385 issue: 12 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib28 article-title: A low-cost monitor for measurement of fine particulate matter and aerosol optical depth - Part 2: Citizen-science pilot campaign in northern Colorado publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-12-6385-2019 – volume: 11 start-page: 4823 issue: 8 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib78 article-title: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-11-4823-2018 – volume: 52 start-page: 506 issue: 5 year: 2002 ident: 10.1016/j.jaerosci.2021.105833_bib13 article-title: Design of a cost-effective weighing facility for PM2.5 quality assurance publication-title: Journal of the Air and Waste Management Association doi: 10.1080/10473289.2002.10470802 – volume: 245 start-page: 932 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib60 article-title: Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors publication-title: Environmental Pollution doi: 10.1016/j.envpol.2018.11.065 – volume: 10 issue: 2 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib50 article-title: Performance assessment of a low-cost PM 2.5 sensor for a near four-month period in Oslo, Norway publication-title: Atmosphere doi: 10.3390/atmos10020041 – volume: 50 start-page: 462 issue: 5 year: 2016 ident: 10.1016/j.jaerosci.2021.105833_bib61 article-title: Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2016.1162901 – volume: 11 start-page: 709 issue: 2 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib18 article-title: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-11-709-2018 – volume: 30 start-page: 949 issue: 6 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib24 article-title: Using a network of lower-cost monitors to identify the influence of modifiable factors driving spatial patterns in fine particulate matter concentrations in an urban environment publication-title: Journal of Exposure Science and Environmental Epidemiology doi: 10.1038/s41370-020-0255-x – volume: 55 start-page: 1316 issue: 7 year: 2015 ident: 10.1016/j.jaerosci.2021.105833_bib2 article-title: Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models publication-title: Journal of Chemical Information and Modeling doi: 10.1021/acs.jcim.5b00206 – volume: 18 start-page: 565 issue: 3 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib40 article-title: Field test of several low-cost particulate matter sensors in high and low concentration urban environments publication-title: Aerosol and Air Quality Research doi: 10.4209/aaqr.2017.10.0418 – volume: 18 start-page: 2790 issue: 9 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib21 article-title: Developing a relative humidity correction for low-cost sensors measuring ambient particulate matter publication-title: Sensors doi: 10.3390/s18092790 – volume: 49 start-page: 1063 issue: 11 year: 2015 ident: 10.1016/j.jaerosci.2021.105833_bib73 article-title: Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2015.1100710 – volume: 216 start-page: 116946 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib25 article-title: Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2019.116946 – year: 2001 ident: 10.1016/j.jaerosci.2021.105833_bib34 – volume: 54 start-page: 147 issue: 2 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib52 article-title: Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2019.1619915 – volume: 116 start-page: 286 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib56 article-title: Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? publication-title: Environment International doi: 10.1016/j.envint.2018.04.018 – volume: 10 start-page: 506 issue: 9 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib42 article-title: Review of the performance of low-cost sensors for air quality monitoring publication-title: Atmosphere doi: 10.3390/atmos10090506 – volume: 134 start-page: 105329 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib81 article-title: Calibration of low-cost particulate matter sensors: Model development for a multi-city epidemiological study publication-title: Environment International doi: 10.1016/j.envint.2019.105329 – volume: 13 start-page: 6343 issue: 11 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib30 article-title: Assessing the accuracy of low-cost optical particle sensors using a physics-based approach publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-13-6343-2020 – volume: 125 issue: 20 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib54 article-title: Evaluating wildfire smoke transport within a coupled fire‐atmosphere model using a high‐density observation network for an episodic smoke event along Utah's wasatch front publication-title: Journal of Geophysical Research: Atmosphere – year: 2014 ident: 10.1016/j.jaerosci.2021.105833_bib77 – volume: 220 start-page: 117067 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib68 article-title: Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2019.117067 – volume: 21 start-page: 1403 issue: 8 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib70 article-title: Design and evaluation of a portable PM2.5 monitor featuring a low-cost sensor in line with an active filter sampler publication-title: Environmental Sciences: Processes and Impacts – volume: 10 start-page: 4341 issue: 11 year: 2017 ident: 10.1016/j.jaerosci.2021.105833_bib72 article-title: On the parametrization of optical particle counter response including instrument-induced broadening of size spectra and a self-consistent evaluation of calibration measurements publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-10-4341-2017 – volume: 67 start-page: 330 issue: 3 year: 2017 ident: 10.1016/j.jaerosci.2021.105833_bib32 article-title: Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air publication-title: Journal of the Air & Waste Management Association doi: 10.1080/10962247.2016.1241195 – volume: 20 start-page: 297 issue: 2 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib7 article-title: Using low-cost sensors to quantify the effects of air filtration on indoor and personal exposure relevant PM2.5 concentrations in beijing, China publication-title: Aerosol and Air Quality Research doi: 10.4209/aaqr.2018.11.0394 – ident: 10.1016/j.jaerosci.2021.105833_bib23 – volume: 127 start-page: 138 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib48 article-title: Spatiotemporal distribution of indoor particulate matter concentration with a low-cost sensor network publication-title: Building and Environment doi: 10.1016/j.buildenv.2017.11.001 – volume: 21 issue: 7 year: 2021 ident: 10.1016/j.jaerosci.2021.105833_bib84 article-title: First Measurements of Ambient PM2.5 in Kinshasa, Democratic Republic of Congo and Brazzaville, Republic of Congo Using Field-calibrated Low-cost Sensors publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.200619 – volume: 199 start-page: 56 year: 2015 ident: 10.1016/j.jaerosci.2021.105833_bib29 article-title: A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China publication-title: Environmental Pollution doi: 10.1016/j.envpol.2015.01.013 – volume: 99 start-page: 293 year: 2017 ident: 10.1016/j.jaerosci.2021.105833_bib14 article-title: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? publication-title: Environment International doi: 10.1016/j.envint.2016.12.007 – volume: 13 start-page: 5441 issue: 10 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib4 article-title: Measurements of PM2.5 with PurpleAir under atmospheric conditions publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-13-5441-2020 – volume: 112 start-page: 1 year: 2017 ident: 10.1016/j.jaerosci.2021.105833_bib51 article-title: Performance calibration of low-cost and portable particular matter (PM) sensors publication-title: Journal of Aerosol Science doi: 10.1016/j.jaerosci.2017.05.011 – volume: 10 issue: 9 year: 2015 ident: 10.1016/j.jaerosci.2021.105833_bib5 article-title: Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor publication-title: PloS One doi: 10.1371/journal.pone.0137789 – volume: 20 issue: 8 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib12 article-title: Laboratory comparison of low-cost particulate matter sensors to measure transient events of pollution publication-title: Sensors doi: 10.3390/s20082219 – volume: 10 start-page: 22079 issue: 1 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib17 article-title: Spatial calibration and PM2.5 mapping of low-cost air quality sensors publication-title: Scientific Reports doi: 10.1038/s41598-020-79064-w – volume: 20 start-page: 254 issue: 2 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib49 article-title: Evaluation of nine low-cost-sensor-based particulate matter monitors publication-title: Aerosol and Air Quality Research doi: 10.4209/aaqr.2018.12.0485 – volume: 54 start-page: 160 issue: 2 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib53 article-title: Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2019.1623863 – volume: 55 start-page: 120 issue: 1 year: 2021 ident: 10.1016/j.jaerosci.2021.105833_bib44 article-title: Community-based measurements reveal unseen differences during air pollution episodes publication-title: Environmental Science and Technology doi: 10.1021/acs.est.0c02341 – volume: 18 start-page: 15403 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib85 article-title: Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-15403-2018 – year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib66 – volume: 221 start-page: 491 year: 2017 ident: 10.1016/j.jaerosci.2021.105833_bib43 article-title: Ambient and laboratory evaluation of a low-cost particulate matter sensor publication-title: Environmental Pollution doi: 10.1016/j.envpol.2016.12.039 – volume: 52 start-page: 5530 issue: 10 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib31 article-title: Air quality sensors and data adjustment algorithms: When is it No longer a measurement? publication-title: Environmental Science and Technology doi: 10.1021/acs.est.8b01826 – volume: 54 start-page: 232 issue: 2 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib35 article-title: Performance characteristics of the low-cost Plantower PMS optical sensor publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2019.1696015 – volume: 9 start-page: 5281 issue: 11 year: 2016 ident: 10.1016/j.jaerosci.2021.105833_bib39 article-title: Community air sensor network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-9-5281-2016 – volume: 575 start-page: 639 year: 2017 ident: 10.1016/j.jaerosci.2021.105833_bib27 article-title: An evaluation tool kit of air quality micro-sensing units publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2016.09.061 – volume: 19 start-page: 181 issue: 1 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib33 article-title: Aerosol chamber characterization for commercial particulate matter (PM) sensor evaluation publication-title: Aerosol and Air Quality Research doi: 10.4209/aaqr.2017.12.0611 – year: 2000 ident: 10.1016/j.jaerosci.2021.105833_bib83 – volume: 748 start-page: 141396 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib45 article-title: Low-cost sensors for measuring airborne particulate matter: Field evaluation and calibration at a South-Eastern European site publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2020.141396 – volume: 2 start-page: 1179 issue: 11 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib87 article-title: Air Quality in Puerto Rico in the Aftermath of Hurricane Maria: A Case Study on the Use of Lower Cost Air Quality Monitors publication-title: ACS Earth Space Chem. doi: 10.1021/acsearthspacechem.8b00079 – volume: 31 start-page: 74 issue: 1 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib9 article-title: Real‐time measurements of PM 2.5 and ozone to assess the effectiveness of residential indoor air filtration in Shanghai homes publication-title: Indoor Air doi: 10.1111/ina.12716 – volume: 54 start-page: 217 issue: 2 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib59 article-title: Evaluation of low-cost optical particle counters for monitoring individual indoor aerosol sources publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2019.1697423 – volume: 13 start-page: 2413 issue: 5 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib46 article-title: Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-13-2413-2020 – volume: 105 start-page: 24 year: 2017 ident: 10.1016/j.jaerosci.2021.105833_bib79 article-title: Evaluation of new low-cost particle monitors for PM2.5 concentrations measurements publication-title: Journal of Aerosol Science doi: 10.1016/j.jaerosci.2016.11.010 – volume: 49 start-page: 1063 issue: 11 year: 2015 ident: 10.1016/j.jaerosci.2021.105833_bib74 article-title: Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement publication-title: Aerosol Science and Technology doi: 10.1080/02786826.2015.1100710 – year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib3 – volume: 213 start-page: 579 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib26 article-title: Examining spatiotemporal variability of urban particulate matter and application of high-time resolution data from a network of low-cost air pollution sensors publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2019.06.026 – volume: 11 start-page: 291 issue: 1 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib80 article-title: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-11-291-2018 – volume: 11 start-page: 926 issue: 9 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib63 article-title: Field evaluation of low-cost PM sensors (purple air PA-II) under variable urban air quality conditions, in Greece publication-title: Atmosphere doi: 10.3390/atmos11090926 – volume: 12 start-page: 903 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib86 article-title: Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-12-903-2019 – year: 2016 ident: 10.1016/j.jaerosci.2021.105833_bib22 – volume: 120 start-page: 70 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib10 article-title: A note on the validity of cross-validation for evaluating autoregressive time series prediction publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2017.11.003 – start-page: 111 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib16 article-title: Calibration of low-cost particle sensors by using machine-learning method. 2018 IEEE Asia pacific conference on circuits and systems publication-title: Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) doi: 10.1109/APCCAS.2018.8605619 – volume: 20 start-page: 4796 issue: 17 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib36 article-title: Field evaluation of low-cost particulate matter sensors for measuring wildfire smoke publication-title: Sensors doi: 10.3390/s20174796 – volume: 187 start-page: 107415 year: 2021 ident: 10.1016/j.jaerosci.2021.105833_bib20 article-title: Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions publication-title: Building and Environment doi: 10.1016/j.buildenv.2020.107415 – start-page: 1 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib55 article-title: Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution publication-title: Atmospheric Measurement Techniques Discussions – volume: 201 start-page: 506 year: 2013 ident: 10.1016/j.jaerosci.2021.105833_bib58 article-title: Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: Design, fabrication, and experimental results publication-title: Sensors and Actuators, A: Physical doi: 10.1016/j.sna.2012.12.026 – year: 1998 ident: 10.1016/j.jaerosci.2021.105833_bib82 – volume: 7 start-page: 1121 issue: 4 year: 2014 ident: 10.1016/j.jaerosci.2021.105833_bib37 article-title: Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-7-1121-2014 – volume: 224 start-page: 117292 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib62 article-title: Use of low-cost PM monitors and a multi-wavelength aethalometer to characterize PM2.5 in the Yakama Nation reservation publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2020.117292 – volume: 53 start-page: 838 issue: 2 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib47 article-title: Field and laboratory evaluations of the low-cost plantower particulate matter sensor publication-title: Environmental Science and Technology doi: 10.1021/acs.est.8b05174 – volume: 34 start-page: 457 issue: 5 year: 2001 ident: 10.1016/j.jaerosci.2021.105833_bib57 article-title: Federal reference and equivalent methods for measuring fine particulate matter publication-title: Aerosol Science and Technology doi: 10.1080/02786820121582 – volume: 155 start-page: 105766 year: 2021 ident: 10.1016/j.jaerosci.2021.105833_bib15 article-title: Technical note: Understanding the effect of COVID-19 on particle pollution using a low-cost sensor network publication-title: Journal of Aerosol Science doi: 10.1016/j.jaerosci.2021.105766 – volume: 11 start-page: 4883 issue: 8 year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib38 article-title: The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-11-4883-2018 – volume: 256 start-page: 118432 issue: 7 year: 2021 ident: 10.1016/j.jaerosci.2021.105833_bib71 article-title: Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM2.5 publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2021.118432 – year: 2018 ident: 10.1016/j.jaerosci.2021.105833_bib6 article-title: Evaluation of low-cost sensors for ambient PM2.5 monitoring publication-title: Journal of Sensors doi: 10.1155/2018/5096540 – start-page: 1 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib8 article-title: Development and Application of a United States wide correction for PM2.5 data collected with the PurpleAir sensor publication-title: Atmospheric Measurement Techniques Discussions – volume: 250 start-page: 251 year: 2019 ident: 10.1016/j.jaerosci.2021.105833_bib67 article-title: Variation in gravimetric correction factors for nephelometer-derived estimates of personal exposure to PM2.5 publication-title: Environmental Pollution doi: 10.1016/j.envpol.2019.03.121 – volume: 13 start-page: 1181 issue: 3 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib19 article-title: Effect of aerosol composition on the performance of low-cost optical particle counter correction factors publication-title: Atmospheric Measurement Techniques doi: 10.5194/amt-13-1181-2020 – volume: 703 start-page: 105654 year: 2020 ident: 10.1016/j.jaerosci.2021.105833_bib69 article-title: Effects of aerosol type and simulated aging on performance of low-cost PM sensors publication-title: Journal of Aerosol Science doi: 10.1016/j.jaerosci.2020.105654 |
SSID | ssj0007915 |
Score | 2.6804972 |
Snippet | Low-cost sensors for particulate matter mass (PM) enable spatially dense, high temporal resolution measurements of air quality that traditional reference... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 105833 |
SubjectTerms | Air pollution Air quality Atmospheric and Oceanic Physics Environmental Engineering Environmental Sciences Low-cost sensors Particulate matter Physics |
Title | From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors |
URI | https://dx.doi.org/10.1016/j.jaerosci.2021.105833 https://hal.science/hal-03442005 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOXFApYBYCtUIIW7p1rETO9xWK1bLoz1RqbfIdhyxq-1mtQmteuGP9M92xonbckA9cIpi2bI1M5qXZr5h7KO0uhJa24RsTyIzFGNd5z5xpjqmiEjIML7t5DSfn8lv59n5DpvGXhgqqxx0f6_Tg7YeVsYDNcebxYJ6fNE8ZWiDOOFZSsIElVKRlB_9uS_zUMUwxSDlCe1-0CW8PFoaHzAjMU5MOY281UL8y0A9-RVTrcH0zPbY88FnhEn_rBdsx6_32bMHSIL7bHSCzm-zDTly-ATT1QI90fD3kt3Mts0FrJqrxDVtBy0Grs22ha4BwipO-rbKa6Ba0c8wgaGdDZoaXJy00oJZV2DRgkBsq2oB3V3oy0FQY66uAblNsTfVUd_ftgnEpBlhHi4Clid-2ja-4hU7m335OZ0nw0yGxIlCdkjCTPs8U0oVXurUaCS8V0q7uvIFgYN5mfFa8JTX2qW2qIxQtUtz61OrzbERr9nuuln7Nww4t7kQPjW5EzJTwlRaVtwqYwtjRWFHLIuMKN0AWE5zM1ZlrExblpGBJTGw7Bk4YuO7c5sesuPRE0Xkc_mX8JVoVx49-wF5cXcRoXXPJz9KWiM0RUraXfK3_3HBAaUSCMmT0j7v2G63_e3foyPU2cMg6Yfs6eTr9_npLRciCmY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLa2cUAc0BggOsH2hBC3rHPsxA63qlpVoN1pk3azbMcRrbqmasKmXfhH-Gfxc-JtHNAOnKJYsWy957wf1nvfR8gnbmTJpDQJ-p6EZ_4Yyyp3idXlKWZEjAf6tvl5Pr3k366yqx0yjr0wWFbZ2_7Opgdr3Y8Me2kON4sF9vh695R5H0QRz5LzXfKM-98XaQxOfj3UeYiipzFIaYKfP2oTXp4stQugkT5RTCly3krG_uWhdn_Eu9bgeyb75GUfNMKo29crsuPWB-TFIyjBAzKY--i33oZLcvgM49XCh6Lh7TX5PdnW17CqbxNbNy00PnOttw20NSBYcdL1Vd4BFot-gRH0_WxQV2Aj1UoDel2C8S4EYl9VAz7eha4exJvM1R14dWPyjYXUD6ttgjSRJMzBdQDz9I-mibt4Qy4nZxfjadKTMiSWFbz1IsykyzMhROG4TLX0kndCSFuVrkB0MMczWjGa0kra1BSlZqKyaW5caqQ-1ewt2VvXa_eOAKUmZ8ylOreMZ4LpUvKSGqFNoQ0rzIBkURHK9ojlSJyxUrE0bamiAhUqUHUKHJDh_bxNh9nx5Iwi6ln9dfqUdyxPzv3odXG_EMJ1T0czhWMIp4i3djf08D8WOCbPpxfzmZp9Pf_-nuy125_ugw-EWnMUDvofkt4J6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+low-cost+sensors+to+high-quality+data%3A+A+summary+of+challenges+and+best+practices+for+effectively+calibrating+low-cost+particulate+matter+mass+sensors&rft.jtitle=Journal+of+aerosol+science&rft.au=Giordano%2C+Michael+R&rft.au=Malings%2C+Carl&rft.au=Pandis%2C+Spyros+N&rft.au=Presto%2C+Albert+A&rft.date=2021-11-01&rft.pub=Elsevier&rft.issn=0021-8502&rft.eissn=1879-1964&rft.volume=158&rft_id=info:doi/10.1016%2Fj.jaerosci.2021.105833&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03442005v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8502&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8502&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8502&client=summon |