Retrieval of Grassland Aboveground Biomass through Inversion of the PROSAIL Model with MODIS Imagery
The estimation of aboveground biomass (AGB), an important indicator of grassland production, is crucial for evaluating livestock carrying capacity, understanding the response and feedback to climate change, and achieving sustainable development. Most existing grassland AGB estimation studies were ba...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 13; p. 1597 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The estimation of aboveground biomass (AGB), an important indicator of grassland production, is crucial for evaluating livestock carrying capacity, understanding the response and feedback to climate change, and achieving sustainable development. Most existing grassland AGB estimation studies were based on empirical methods, in which field measurements are indispensable, hindering their operational use. This study proposed a novel physically-based grassland AGB retrieval method through the inversion of PROSAIL model against MCD43A4 imagery. This method relies on the basic understanding that grassland is herbaceous, and therefore AGB can be represented as the product of leaf dry matter content (Cm) and leaf area index (LAI), i.e., AGB = Cm × LAI. First, the PROSAIL model was parameterized according to the literature regarding grassland parameters retrieval, then Cm and LAI were retrieved using a lookup table (LUT) algorithm, finally, the retrieved Cm and LAI were multiplied to obtain the AGB. The method was assessed in Zoige Plateau, China. Results show that it could reproduce the reference AGB map, which is generated by upscaling the field measurements, in terms of magnitude (with RMSE and R-RMSE of 60.06 g·m−2 and 18.1%, respectively) and spatial distribution. The estimated AGB time series also agreed reasonably well with the expected temporal dynamic trends of the grassland in our study area. The greatest advantage of our method is its fully physical nature, i.e., no field measurement is needed. Our method has the potential for operational monitoring of grassland AGB at regional and even larger scales. |
---|---|
AbstractList | The estimation of aboveground biomass (AGB), an important indicator of grassland production, is crucial for evaluating livestock carrying capacity, understanding the response and feedback to climate change, and achieving sustainable development. Most existing grassland AGB estimation studies were based on empirical methods, in which field measurements are indispensable, hindering their operational use. This study proposed a novel physically-based grassland AGB retrieval method through the inversion of PROSAIL model against MCD43A4 imagery. This method relies on the basic understanding that grassland is herbaceous, and therefore AGB can be represented as the product of leaf dry matter content (Cm) and leaf area index (LAI), i.e., AGB = Cm × LAI. First, the PROSAIL model was parameterized according to the literature regarding grassland parameters retrieval, then Cm and LAI were retrieved using a lookup table (LUT) algorithm, finally, the retrieved Cm and LAI were multiplied to obtain the AGB. The method was assessed in Zoige Plateau, China. Results show that it could reproduce the reference AGB map, which is generated by upscaling the field measurements, in terms of magnitude (with RMSE and R-RMSE of 60.06 g·m−2 and 18.1%, respectively) and spatial distribution. The estimated AGB time series also agreed reasonably well with the expected temporal dynamic trends of the grassland in our study area. The greatest advantage of our method is its fully physical nature, i.e., no field measurement is needed. Our method has the potential for operational monitoring of grassland AGB at regional and even larger scales. [...]the amount of the leaves can also be depicted by leaf area index, which is an important input of many canopy scale models, such as SAILH [21]. [...]a physically-based model to retrieve grassland AGB is possible, given the fact that grassland AGB is the product of leaf dry matter content and leaf area index (AGB = Cm × LAI). Cm and LAI are vegetation parameters at leaf and canopy scales, respectively. [...]it is feasible to develop a physically-based grassland AGB retrieval method if a vegetation radiative transfer model contains the above two parameters. The most obvious advantage of the physical method over empirical ones does not lie in the accuracy, but in its generality [45]. Besides the time-consuming and labor-intensive nature, the empirical methods are also subject to the representativeness of the field measurement, and therefore, are time- and site-specific. Conversely, the fully physical nature of our method makes it feasible for other grassland areas. Besides the calibration procedure, the data sources are also different between our method and other physically-based methods: MODIS was employed rather than Landsat or Sentinel data as in [22,23], respectively. |
Author | Yin, Gaofei Bian, Jinhu Li, Ainong He, Li Nan, Xi |
Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0002-1932-8861 surname: He fullname: He, Li – sequence: 2 givenname: Ainong surname: Li fullname: Li, Ainong – sequence: 3 givenname: Gaofei surname: Yin fullname: Yin, Gaofei – sequence: 4 givenname: Xi surname: Nan fullname: Nan, Xi – sequence: 5 givenname: Jinhu orcidid: 0000-0003-1472-5259 surname: Bian fullname: Bian, Jinhu |
BookMark | eNptkdtuEzEQhleoSJS2NzyBJW4QUsDHPVyGAmWlVKlauLbG63HiaLMuthPUt8chIKqqczMHff8vzczr6mQKE1bVG0Y_CNHRjzExxgRTXfOiOuW04TPJO37yqH5VXaS0oSWEYB2Vp5W9xRw97mEkwZGrCCmNMFkyN2GPqxh2pf7kw7bMSV6XfrUm_bTHmHyYDpK8RnJzu7yb9wtyHSyO5JfPa3K9_NzfkX4LK4wP59VLB2PCi7_5rPrx9cv3y2-zxfKqv5wvZoPoZJ61kjuknLGGuRrrxlhmsBEAtpFOGdkNBg1tQFmkpnXGtAcI7ABYiw6cOKv6o68NsNH30W8hPugAXv8ZhLjSELMfRtQttCiRK2EtlzVTwJ1izjLlsDaDMMXr3dHrPoafO0xZb30acCzXwbBLmnetUrVolSjo2yfoJuziVDbVXDDOOyWlKhQ9UkMMKUV0evAZcjljjuBHzag-fFH__2KRvH8i-bfTM_Bvdxqe0w |
CitedBy_id | crossref_primary_10_1109_JSTARS_2022_3232665 crossref_primary_10_3390_rs15112918 crossref_primary_10_3390_rs16152806 crossref_primary_10_3390_rs16234547 crossref_primary_10_1016_j_rse_2021_112578 crossref_primary_10_3389_fevo_2022_1048607 crossref_primary_10_3390_make6030079 crossref_primary_10_1016_j_agrformet_2021_108466 crossref_primary_10_1080_17538947_2024_2316840 crossref_primary_10_1016_j_asr_2025_02_052 crossref_primary_10_3390_rs16071117 crossref_primary_10_5194_essd_15_821_2023 crossref_primary_10_3390_rs13234859 crossref_primary_10_1016_j_ecoinf_2023_102421 crossref_primary_10_1016_j_rse_2022_113385 crossref_primary_10_1016_j_landurbplan_2021_104225 crossref_primary_10_3390_su13063123 crossref_primary_10_3390_rs15051404 crossref_primary_10_1080_10106049_2023_2186497 crossref_primary_10_1080_17538947_2024_2329817 crossref_primary_10_1038_s41597_020_00651_7 crossref_primary_10_1016_j_compag_2024_109565 crossref_primary_10_1016_j_ecoinf_2023_102251 crossref_primary_10_1109_TGRS_2022_3227565 crossref_primary_10_3390_rs13122352 crossref_primary_10_1016_j_ecolmodel_2022_110079 |
Cites_doi | 10.1016/j.isprsjprs.2016.08.001 10.1016/j.rse.2006.07.013 10.1016/j.rse.2008.11.007 10.3390/rs70404604 10.1016/j.rse.2018.09.028 10.3390/rs8030168 10.1109/TGRS.2006.872529 10.3390/rs9121217 10.1016/j.rse.2015.04.027 10.3390/rs6021496 10.1016/S0034-4257(02)00035-4 10.1016/j.rse.2016.08.014 10.3390/ijgi7070242 10.1016/j.rse.2012.12.027 10.1016/j.rse.2016.10.009 10.1109/TGRS.2016.2547326 10.1016/j.isprsjprs.2015.05.005 10.1371/journal.pone.0083824 10.1109/TGRS.2018.2791930 10.1016/j.rse.2010.11.011 10.1016/j.isprsjprs.2015.10.005 10.3390/rs8010010 10.1016/S0034-4257(02)00173-6 10.1016/j.rse.2007.12.003 10.1016/j.rse.2010.09.012 10.1016/j.ecolind.2014.01.015 10.1109/JSTARS.2014.2360676 10.1016/j.ecolmodel.2009.04.025 10.3390/rs9090935 10.1016/S0038-092X(00)00156-0 10.1038/s41598-017-04038-4 10.1109/LGRS.2014.2341925 10.1016/j.ecolind.2015.09.001 10.1109/TGRS.2017.2694483 10.1016/S0034-4257(02)00091-3 10.1016/j.ecolind.2015.11.005 10.1029/2005GB002634 10.1016/j.rse.2008.01.026 10.1109/JSTARS.2017.2690623 10.1016/j.rse.2019.01.039 10.1002/jgrd.50497 10.1016/0034-4257(84)90057-9 10.1109/TGRS.2013.2238242 10.1016/j.jaridenv.2008.09.027 10.1016/S0168-1923(03)00109-6 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs11131597 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_8a8e4e253dd24615a2f51fd15fe6bc3b 10_3390_rs11131597 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-842fe021171f6e67bd1be73aad74f5b49cbeb07a5de0b8fbb8e67badcae639af3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:24:08 EDT 2025 Fri Jul 11 11:41:40 EDT 2025 Fri Jul 25 10:02:14 EDT 2025 Thu Apr 24 22:59:18 EDT 2025 Tue Jul 01 04:14:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-842fe021171f6e67bd1be73aad74f5b49cbeb07a5de0b8fbb8e67badcae639af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1932-8861 0000-0003-1472-5259 |
OpenAccessLink | https://doaj.org/article/8a8e4e253dd24615a2f51fd15fe6bc3b |
PQID | 2312295445 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8a8e4e253dd24615a2f51fd15fe6bc3b proquest_miscellaneous_2985563853 proquest_journals_2312295445 crossref_citationtrail_10_3390_rs11131597 crossref_primary_10_3390_rs11131597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Combal (ref_39) 2003; 84 Pasolli (ref_37) 2015; 165 Duursma (ref_12) 2003; 118 Baret (ref_19) 2013; 137 Quan (ref_23) 2017; 54 ref_13 Ullah (ref_26) 2012; 19 Verhoef (ref_21) 1984; 16 Yang (ref_29) 2009; 73 Jay (ref_25) 2018; 217 Verger (ref_38) 2011; 115 Jacquemoud (ref_20) 2009; 113 Baldridge (ref_48) 2009; 113 Jia (ref_5) 2016; 60 Xie (ref_14) 2009; 220 Dusseux (ref_1) 2015; 38 Widlowski (ref_15) 2013; 118 Punalekar (ref_22) 2018; 218 Qiu (ref_49) 2018; 56 Shoko (ref_7) 2016; 120 He (ref_44) 2015; 8 Zeng (ref_17) 2016; 54 Verrelst (ref_45) 2015; 108 Fu (ref_2) 2014; 40 Morisette (ref_43) 2006; 44 Cohen (ref_46) 2003; 84 Garrigues (ref_40) 2006; 105 Wang (ref_24) 2011; 115 Yin (ref_33) 2015; 7 ref_30 Sibanda (ref_27) 2015; 110 Darvishzadeh (ref_34) 2008; 112 Verrelst (ref_18) 2014; 52 Xu (ref_35) 2019; 224 Yin (ref_42) 2015; 12 ref_47 Li (ref_10) 2016; 62 Schaaf (ref_31) 2002; 83 Liang (ref_11) 2016; 186 (ref_32) 2001; 70 ref_41 ref_3 Yin (ref_16) 2017; 55 Jin (ref_9) 2014; 6 ref_8 ref_4 ref_6 Liu (ref_28) 2017; 7 Nutini (ref_36) 2016; 187 |
References_xml | – volume: 120 start-page: 13 year: 2016 ident: ref_7 article-title: Progress in the remote sensing of C3 and C4 grass species aboveground biomass over time and space publication-title: ISPRS J. Photogramm. doi: 10.1016/j.isprsjprs.2016.08.001 – volume: 105 start-page: 286 year: 2006 ident: ref_40 article-title: Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.07.013 – volume: 113 start-page: 711 year: 2009 ident: ref_48 article-title: The ASTER spectral library version 2.0 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.11.007 – volume: 7 start-page: 4604 year: 2015 ident: ref_33 article-title: Regional leaf area index retrieval based on remote sensing: the role of radiative transfer model selection publication-title: Remote Sens. doi: 10.3390/rs70404604 – volume: 218 start-page: 207 year: 2018 ident: ref_22 article-title: Application of Sentinel-2A data for pasture biomass monitoring using a physically based radiative transfer model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.028 – ident: ref_30 doi: 10.3390/rs8030168 – volume: 44 start-page: 1804 year: 2006 ident: ref_43 article-title: Validation of global moderate-resolution LAI products: A framework proposed within the CEOS Land Product Validation subgroup publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.872529 – ident: ref_41 doi: 10.3390/rs9121217 – volume: 165 start-page: 159 year: 2015 ident: ref_37 article-title: Retrieval of leaf area index in mountain grasslands in the Alps from MODIS satellite imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.04.027 – volume: 6 start-page: 1496 year: 2014 ident: ref_9 article-title: Remote sensing-based biomass estimation and its spatio-temporal variations in temperate grassland, Northern China publication-title: Remote Sens. doi: 10.3390/rs6021496 – volume: 217 start-page: 110959 year: 2018 ident: ref_25 article-title: Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning publication-title: Remote Sens. Environ. – volume: 84 start-page: 1 year: 2003 ident: ref_39 article-title: Retrieval of canopy biophysical variables from bidirectional reflectance—Using prior information to solve the ill-posed inverse problem publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00035-4 – volume: 186 start-page: 164 year: 2016 ident: ref_11 article-title: Multi-factor modeling of above-ground biomass in alpine grassland: A case study in the Three-River Headwaters Region, China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.014 – ident: ref_6 doi: 10.3390/ijgi7070242 – volume: 137 start-page: 299 year: 2013 ident: ref_19 article-title: GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.027 – volume: 187 start-page: 102 year: 2016 ident: ref_36 article-title: Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.009 – volume: 54 start-page: 159 year: 2017 ident: ref_23 article-title: A radiative transfer model-based method for the estimation of grassland aboveground biomass publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 54 start-page: 4613 year: 2016 ident: ref_17 article-title: A radiative transfer model for heterogeneous agro-forestry scenarios publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2547326 – volume: 108 start-page: 273 year: 2015 ident: ref_45 article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.05.005 – ident: ref_8 doi: 10.1371/journal.pone.0083824 – volume: 56 start-page: 3119 year: 2018 ident: ref_49 article-title: Improving the PROSPECT model to consider anisotropic scattering of leaf internal materials and its use for retrieving leaf biomass in fresh leaves publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2791930 – volume: 115 start-page: 836 year: 2011 ident: ref_24 article-title: Towards estimation of canopy foliar biomass with spectral reflectance measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.11.011 – volume: 110 start-page: 55 year: 2015 ident: ref_27 article-title: Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments publication-title: Isprs J. Photogramm. doi: 10.1016/j.isprsjprs.2015.10.005 – ident: ref_13 doi: 10.3390/rs8010010 – volume: 84 start-page: 561 year: 2003 ident: ref_46 article-title: An improved strategy for regression of biophysical variables and Landsat ETM+ data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00173-6 – volume: 112 start-page: 2592 year: 2008 ident: ref_34 article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.12.003 – volume: 115 start-page: 415 year: 2011 ident: ref_38 article-title: Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.09.012 – volume: 40 start-page: 102 year: 2014 ident: ref_2 article-title: An improved indicator of simulated grassland production based on MODIS NDVI and GPP data: A case study in the Sichuan province, China publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.01.015 – volume: 8 start-page: 550 year: 2015 ident: ref_44 article-title: Estimating the aboveground dry biomass of grass by assimilation of retrieved LAI into a crop growth model publication-title: IEEE J. Sel. Top. App. Ear. Obsev. Remote Sens. doi: 10.1109/JSTARS.2014.2360676 – volume: 220 start-page: 1810 year: 2009 ident: ref_14 article-title: A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2009.04.025 – ident: ref_3 doi: 10.3390/rs9090935 – volume: 70 start-page: 431 year: 2001 ident: ref_32 article-title: Computing the solar vector publication-title: Sol. Energy doi: 10.1016/S0038-092X(00)00156-0 – volume: 7 start-page: 4182 year: 2017 ident: ref_28 article-title: Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI publication-title: Sci. Rep. doi: 10.1038/s41598-017-04038-4 – volume: 12 start-page: 359 year: 2015 ident: ref_42 article-title: Improving leaf area index retrieval over heterogeneous surface by integrating textural and contextual information: A case study in the Heihe River Basin publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2341925 – volume: 60 start-page: 1031 year: 2016 ident: ref_5 article-title: Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.09.001 – volume: 55 start-page: 4597 year: 2017 ident: ref_16 article-title: Modeling canopy reflectance over sloping terrain based on path length correction publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2694483 – volume: 83 start-page: 135 year: 2002 ident: ref_31 article-title: First operational BRDF, albedo nadir reflectance products from MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00091-3 – volume: 62 start-page: 279 year: 2016 ident: ref_10 article-title: Modeling grassland aboveground biomass using a pure vegetation index publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.11.005 – ident: ref_4 doi: 10.1029/2005GB002634 – volume: 113 start-page: S56 year: 2009 ident: ref_20 article-title: PROSPECT plus SAIL models: A review of use for vegetation characterization publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.01.026 – ident: ref_47 doi: 10.1109/JSTARS.2017.2690623 – volume: 224 start-page: 60 year: 2019 ident: ref_35 article-title: Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.039 – volume: 118 start-page: 6869 year: 2013 ident: ref_15 article-title: The fourth radiation transfer model intercomparison (RAMI-IV): Proficiency testing of canopy reflectance models with ISO-13528 publication-title: J. Geophys. Res. Atmos. doi: 10.1002/jgrd.50497 – volume: 19 start-page: 196 year: 2012 ident: ref_26 article-title: Estimation of grassland biomass and nitrogen using MERIS data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 16 start-page: 125 year: 1984 ident: ref_21 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(84)90057-9 – volume: 52 start-page: 257 year: 2014 ident: ref_18 article-title: Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from sentinel-2 and-3 data: Role of cost functions publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2238242 – volume: 73 start-page: 91 year: 2009 ident: ref_29 article-title: Aboveground biomass in Tibetan grasslands publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2008.09.027 – volume: 38 start-page: 72 year: 2015 ident: ref_1 article-title: Evaluation of SPOT imagery for the estimation of grassland biomass publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 118 start-page: 221 year: 2003 ident: ref_12 article-title: Leaf area index inferred from solar beam transmission in mixed conifer forests on complex terrain publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(03)00109-6 |
SSID | ssj0000331904 |
Score | 2.3569756 |
Snippet | The estimation of aboveground biomass (AGB), an important indicator of grassland production, is crucial for evaluating livestock carrying capacity,... [...]the amount of the leaves can also be depicted by leaf area index, which is an important input of many canopy scale models, such as SAILH [21]. [...]a... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1597 |
SubjectTerms | aboveground biomass aboveground biomass (AGB) algorithms Biomass Canopies carrying capacity China climate change Dry matter empirical research grassland Grasslands Growth models Imagery Landsat Landsat satellites Leaf area Leaf area index leaf dry matter content Leaves livestock Mathematical models MCD43A4 Methods moderate resolution imaging spectroradiometer MODIS monitoring Neural networks Parameters PROSAIL Radiative transfer Remote sensing Retrieval Scale models sustainable development time series analysis Variables Vegetation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgPcAFUT7EQqmM4MIhahLbiXNCu_2gi6CttlTqLfLY44JUNmV3i9R_z0zWuxUCcYuSSQ7OeOZ5PH5PiHehBj51UGWlxSbTBDCyxoDJgvKVLaFyLvZdvsfV0bn-dGEuUsFtntoqVzGxD9Sh81wj3yUcwsrTWpsP1z8zVo3i3dUkoXFfbFIItrT42hwdHJ9O1lWWXJGL5XrJS6pofb87m7O4OiXx-o9M1BP2_xWP-yRz-Fg8SuhQDpe_c0vcw-kT8SAJlX-7fSrCpFfAIveQXZQfZwR9uTVRDqH7hXxCg65H37nnZy6TBI9kKo2-KMavEN6Tp5OTs-H4s2QdtCvJlVj55WR_fCbHP5jR4vaZOD88-Lp3lCWhhMyrRi8yq8uIlKyLuogVVjWEArBWzoVaRwO68YCQ184EzMFGAMtGLniHBFBcVM_FxrSb4gshrUaCLL4MwUVNyR9iZZrcAR_Q9RjVQLxfDVrrE4s4i1lctbSa4AFu7wZ4IN6uba-X3Bn_tBrx2K8tmO-6v9HNLts0fVrrLGosjQqBCfCMK6MpYihMxAq8goHYXv25Nk3CeXvnMgPxZv2Ypg_vibgpdjdk01imSCPQ8vL_n3glHhJWapaduttiYzG7wdeERxawk5zuN3kE4Zc priority: 102 providerName: ProQuest |
Title | Retrieval of Grassland Aboveground Biomass through Inversion of the PROSAIL Model with MODIS Imagery |
URI | https://www.proquest.com/docview/2312295445 https://www.proquest.com/docview/2985563853 https://doaj.org/article/8a8e4e253dd24615a2f51fd15fe6bc3b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BeIAXxE9RNiojeOEhWhPbifPYsnUr2i-1TNpb5IvPGtJop7ZD2n_PXZKVIZB44SlRcpGsO9v32Tl_H8DHUKCcOsiTzFGZGAYYSWnRJkHXucsw9z42Vb4n-eG5-XJhL-5JfUlNWEsP3Dpu13lHhjKrQxDqM-uzaNMYUhspx1qjzL6c8-4tppo5WHPXGpiWj1Tzun53uRJRdU7exW8ZqCHq_2MebpLL-Bk87VChGrateQ4PaP4CHncC5Ze3LyFMG-Ur7hZqEdXBkiGvlCSqIS5-kJzM4PvRN6n1WalOekcJhUazGSafMM5TZ9PT2XBypET_7ErJDqw6Pt2bzNTkuzBZ3L6C8_H-18-HSSeQkNS6NOvEmSwSJ-m0SGNOeYEhRSq096Ew0aIpayQcFN4GGqCLiE6MfKg9MTDxUb-GrfliTm9AOUMMVeosBB8NJ32MuS0HHuVgbk1R9-DTndOqumMPFxGLq4pXEeLg6peDe_BhY3vdcmb81Wokvt9YCM9184CjX3XRr_4V_R7s3EWu6gbfqmLIKiLlxtgevN-85mEj_0L8nBY3bFM6oUZjsPL2f7RjG54wkirbOt4d2Fovb-gdo5U19uGhGx_04dFw7_hoxtfR_snZtN90159MD-2e |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigX1PIQS0sxAg4coiaxnTgHhLaU7YZuW9SH1FtqxzZUajdldwvaP8VvZCaPrRCIW29RMvFhPOP5bM_MB_DGpoaqDpIgVi4LBAKMIJNGBpaXiYpNorWvs3wPkuGp-Hwmz5bgV1cLQ2mV3ZpYL9S2KumMfAtxCDFPCyE_XH8PiDWKblc7Co3GLPbc_Cdu2abv8x2c37dxPPh08nEYtKwCQckzMQuUiL3DyBalkU9ckhobGZdyrW0qvDQiK40zYaqldaFR3hhFQtqW2mE0157juPfgvuA8I49Sg93FmU7I0aBD0XRBxe_h1mRKVO4IGdI_4l5ND_DX6l-HtMEqPGyxKOs3xrMGS278CFZaWvRv88dgj2q-LTRGVnm2O0GgTYmQrG-qH47qQfB5-4IyjKasJfxh1LijPoKjXxBdsi9Hh8f9fMSIde2S0bkv2z_cyY9ZfkX9M-ZP4PROFPgUlsfV2D0DpoRDgFTG1movEGoYn8gs1IbKgUvneQ_edUoryrZnOVFnXBa4dyEFF7cK7sHrhex106njn1LbpPuFBHXXrl9Uk69F66yF0soJF0tuLbXbkzr2MvI2kt4lpuSmBxvdzBWty0-LWwPtwavFZ3RWuoHRY1fdoEymqCEbQqTn_x_iJawMT_ZHxSg_2FuHB4jSsiZHeAOWZ5Mb9wKR0Mxs1ubH4Pyu7f039osgSA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiKcILWAEHDissru293GoUEIaurSkUUql3rb22gakNluStCh_jV_HzD5SIRC33la7sz6Mx57P45n5AN6YWFPVQeSFiU09gQDDS6WWnuFFlIQ6UspVWb7jaO9YfDqRJxvwq62FobTKdk-sNmpTFhQj7yEOIeZpIWTPNWkRk-Ho_cUPjxik6Ka1pdOoTWTfrn7i8W2xkw1xrt-G4Wj3y4c9r2EY8AqeiqWXiNBZ9HJBHLjIRrE2gbYxV8rEwkkt0kJb7cdKGuvrxGmdkJAyhbLo2ZXjOO4t2IzxVOR3YHOwO55M1xEen6N5-6Luicp56vfmCyJ2RwAR_-EFK7KAv3xB5eBG9-Feg0xZvzalB7BhZw_hTkOS_m31CMy0Yt9C02SlYx_nCLspLZL1dXllqToEnwffKd9owRr6H0ZtPKqAHP2CWJNNpodH_eyAEQfbGaMoMPt8OMyOWHZO3TRWj-H4RlT4BDqzcmafAkuERbhUhMYoJxB4aBfJ1FeaioML63gX3rVKy4umgzkRaZzleJIhBefXCu7C67XsRd23459SA9L9WoJ6bVcvyvnXvFm6eaISK2wouTHUfE-q0MnAmUA6G-mC6y5stzOXNxvAIr821y68Wn_GpUv3MWpmy0uUSRNqz4aA6dn_h3gJt9HW84NsvL8FdxGypXXC8DZ0lvNL-xxh0VK_aOyPwelNm_xvxDcl2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retrieval+of+Grassland+Aboveground+Biomass+through+Inversion+of+the+PROSAIL+Model+with+MODIS+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=He%2C+Li&rft.au=Li%2C+Ainong&rft.au=Yin%2C+Gaofei&rft.au=Nan%2C+Xi&rft.date=2019-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=13&rft.spage=1597&rft_id=info:doi/10.3390%2Frs11131597&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11131597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |