Retrieval of Grassland Aboveground Biomass through Inversion of the PROSAIL Model with MODIS Imagery

The estimation of aboveground biomass (AGB), an important indicator of grassland production, is crucial for evaluating livestock carrying capacity, understanding the response and feedback to climate change, and achieving sustainable development. Most existing grassland AGB estimation studies were ba...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 13; p. 1597
Main Authors He, Li, Li, Ainong, Yin, Gaofei, Nan, Xi, Bian, Jinhu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The estimation of aboveground biomass (AGB), an important indicator of grassland production, is crucial for evaluating livestock carrying capacity, understanding the response and feedback to climate change, and achieving sustainable development. Most existing grassland AGB estimation studies were based on empirical methods, in which field measurements are indispensable, hindering their operational use. This study proposed a novel physically-based grassland AGB retrieval method through the inversion of PROSAIL model against MCD43A4 imagery. This method relies on the basic understanding that grassland is herbaceous, and therefore AGB can be represented as the product of leaf dry matter content (Cm) and leaf area index (LAI), i.e., AGB = Cm × LAI. First, the PROSAIL model was parameterized according to the literature regarding grassland parameters retrieval, then Cm and LAI were retrieved using a lookup table (LUT) algorithm, finally, the retrieved Cm and LAI were multiplied to obtain the AGB. The method was assessed in Zoige Plateau, China. Results show that it could reproduce the reference AGB map, which is generated by upscaling the field measurements, in terms of magnitude (with RMSE and R-RMSE of 60.06 g·m−2 and 18.1%, respectively) and spatial distribution. The estimated AGB time series also agreed reasonably well with the expected temporal dynamic trends of the grassland in our study area. The greatest advantage of our method is its fully physical nature, i.e., no field measurement is needed. Our method has the potential for operational monitoring of grassland AGB at regional and even larger scales.
AbstractList The estimation of aboveground biomass (AGB), an important indicator of grassland production, is crucial for evaluating livestock carrying capacity, understanding the response and feedback to climate change, and achieving sustainable development. Most existing grassland AGB estimation studies were based on empirical methods, in which field measurements are indispensable, hindering their operational use. This study proposed a novel physically-based grassland AGB retrieval method through the inversion of PROSAIL model against MCD43A4 imagery. This method relies on the basic understanding that grassland is herbaceous, and therefore AGB can be represented as the product of leaf dry matter content (Cm) and leaf area index (LAI), i.e., AGB = Cm × LAI. First, the PROSAIL model was parameterized according to the literature regarding grassland parameters retrieval, then Cm and LAI were retrieved using a lookup table (LUT) algorithm, finally, the retrieved Cm and LAI were multiplied to obtain the AGB. The method was assessed in Zoige Plateau, China. Results show that it could reproduce the reference AGB map, which is generated by upscaling the field measurements, in terms of magnitude (with RMSE and R-RMSE of 60.06 g·m−2 and 18.1%, respectively) and spatial distribution. The estimated AGB time series also agreed reasonably well with the expected temporal dynamic trends of the grassland in our study area. The greatest advantage of our method is its fully physical nature, i.e., no field measurement is needed. Our method has the potential for operational monitoring of grassland AGB at regional and even larger scales.
[...]the amount of the leaves can also be depicted by leaf area index, which is an important input of many canopy scale models, such as SAILH [21]. [...]a physically-based model to retrieve grassland AGB is possible, given the fact that grassland AGB is the product of leaf dry matter content and leaf area index (AGB = Cm × LAI). Cm and LAI are vegetation parameters at leaf and canopy scales, respectively. [...]it is feasible to develop a physically-based grassland AGB retrieval method if a vegetation radiative transfer model contains the above two parameters. The most obvious advantage of the physical method over empirical ones does not lie in the accuracy, but in its generality [45]. Besides the time-consuming and labor-intensive nature, the empirical methods are also subject to the representativeness of the field measurement, and therefore, are time- and site-specific. Conversely, the fully physical nature of our method makes it feasible for other grassland areas. Besides the calibration procedure, the data sources are also different between our method and other physically-based methods: MODIS was employed rather than Landsat or Sentinel data as in [22,23], respectively.
Author Yin, Gaofei
Bian, Jinhu
Li, Ainong
He, Li
Nan, Xi
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0002-1932-8861
  surname: He
  fullname: He, Li
– sequence: 2
  givenname: Ainong
  surname: Li
  fullname: Li, Ainong
– sequence: 3
  givenname: Gaofei
  surname: Yin
  fullname: Yin, Gaofei
– sequence: 4
  givenname: Xi
  surname: Nan
  fullname: Nan, Xi
– sequence: 5
  givenname: Jinhu
  orcidid: 0000-0003-1472-5259
  surname: Bian
  fullname: Bian, Jinhu
BookMark eNptkdtuEzEQhleoSJS2NzyBJW4QUsDHPVyGAmWlVKlauLbG63HiaLMuthPUt8chIKqqczMHff8vzczr6mQKE1bVG0Y_CNHRjzExxgRTXfOiOuW04TPJO37yqH5VXaS0oSWEYB2Vp5W9xRw97mEkwZGrCCmNMFkyN2GPqxh2pf7kw7bMSV6XfrUm_bTHmHyYDpK8RnJzu7yb9wtyHSyO5JfPa3K9_NzfkX4LK4wP59VLB2PCi7_5rPrx9cv3y2-zxfKqv5wvZoPoZJ61kjuknLGGuRrrxlhmsBEAtpFOGdkNBg1tQFmkpnXGtAcI7ABYiw6cOKv6o68NsNH30W8hPugAXv8ZhLjSELMfRtQttCiRK2EtlzVTwJ1izjLlsDaDMMXr3dHrPoafO0xZb30acCzXwbBLmnetUrVolSjo2yfoJuziVDbVXDDOOyWlKhQ9UkMMKUV0evAZcjljjuBHzag-fFH__2KRvH8i-bfTM_Bvdxqe0w
CitedBy_id crossref_primary_10_1109_JSTARS_2022_3232665
crossref_primary_10_3390_rs15112918
crossref_primary_10_3390_rs16152806
crossref_primary_10_3390_rs16234547
crossref_primary_10_1016_j_rse_2021_112578
crossref_primary_10_3389_fevo_2022_1048607
crossref_primary_10_3390_make6030079
crossref_primary_10_1016_j_agrformet_2021_108466
crossref_primary_10_1080_17538947_2024_2316840
crossref_primary_10_1016_j_asr_2025_02_052
crossref_primary_10_3390_rs16071117
crossref_primary_10_5194_essd_15_821_2023
crossref_primary_10_3390_rs13234859
crossref_primary_10_1016_j_ecoinf_2023_102421
crossref_primary_10_1016_j_rse_2022_113385
crossref_primary_10_1016_j_landurbplan_2021_104225
crossref_primary_10_3390_su13063123
crossref_primary_10_3390_rs15051404
crossref_primary_10_1080_10106049_2023_2186497
crossref_primary_10_1080_17538947_2024_2329817
crossref_primary_10_1038_s41597_020_00651_7
crossref_primary_10_1016_j_compag_2024_109565
crossref_primary_10_1016_j_ecoinf_2023_102251
crossref_primary_10_1109_TGRS_2022_3227565
crossref_primary_10_3390_rs13122352
crossref_primary_10_1016_j_ecolmodel_2022_110079
Cites_doi 10.1016/j.isprsjprs.2016.08.001
10.1016/j.rse.2006.07.013
10.1016/j.rse.2008.11.007
10.3390/rs70404604
10.1016/j.rse.2018.09.028
10.3390/rs8030168
10.1109/TGRS.2006.872529
10.3390/rs9121217
10.1016/j.rse.2015.04.027
10.3390/rs6021496
10.1016/S0034-4257(02)00035-4
10.1016/j.rse.2016.08.014
10.3390/ijgi7070242
10.1016/j.rse.2012.12.027
10.1016/j.rse.2016.10.009
10.1109/TGRS.2016.2547326
10.1016/j.isprsjprs.2015.05.005
10.1371/journal.pone.0083824
10.1109/TGRS.2018.2791930
10.1016/j.rse.2010.11.011
10.1016/j.isprsjprs.2015.10.005
10.3390/rs8010010
10.1016/S0034-4257(02)00173-6
10.1016/j.rse.2007.12.003
10.1016/j.rse.2010.09.012
10.1016/j.ecolind.2014.01.015
10.1109/JSTARS.2014.2360676
10.1016/j.ecolmodel.2009.04.025
10.3390/rs9090935
10.1016/S0038-092X(00)00156-0
10.1038/s41598-017-04038-4
10.1109/LGRS.2014.2341925
10.1016/j.ecolind.2015.09.001
10.1109/TGRS.2017.2694483
10.1016/S0034-4257(02)00091-3
10.1016/j.ecolind.2015.11.005
10.1029/2005GB002634
10.1016/j.rse.2008.01.026
10.1109/JSTARS.2017.2690623
10.1016/j.rse.2019.01.039
10.1002/jgrd.50497
10.1016/0034-4257(84)90057-9
10.1109/TGRS.2013.2238242
10.1016/j.jaridenv.2008.09.027
10.1016/S0168-1923(03)00109-6
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs11131597
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_8a8e4e253dd24615a2f51fd15fe6bc3b
10_3390_rs11131597
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-842fe021171f6e67bd1be73aad74f5b49cbeb07a5de0b8fbb8e67badcae639af3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:24:08 EDT 2025
Fri Jul 11 11:41:40 EDT 2025
Fri Jul 25 10:02:14 EDT 2025
Thu Apr 24 22:59:18 EDT 2025
Tue Jul 01 04:14:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-842fe021171f6e67bd1be73aad74f5b49cbeb07a5de0b8fbb8e67badcae639af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1932-8861
0000-0003-1472-5259
OpenAccessLink https://doaj.org/article/8a8e4e253dd24615a2f51fd15fe6bc3b
PQID 2312295445
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_8a8e4e253dd24615a2f51fd15fe6bc3b
proquest_miscellaneous_2985563853
proquest_journals_2312295445
crossref_citationtrail_10_3390_rs11131597
crossref_primary_10_3390_rs11131597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Combal (ref_39) 2003; 84
Pasolli (ref_37) 2015; 165
Duursma (ref_12) 2003; 118
Baret (ref_19) 2013; 137
Quan (ref_23) 2017; 54
ref_13
Ullah (ref_26) 2012; 19
Verhoef (ref_21) 1984; 16
Yang (ref_29) 2009; 73
Jay (ref_25) 2018; 217
Verger (ref_38) 2011; 115
Jacquemoud (ref_20) 2009; 113
Baldridge (ref_48) 2009; 113
Jia (ref_5) 2016; 60
Xie (ref_14) 2009; 220
Dusseux (ref_1) 2015; 38
Widlowski (ref_15) 2013; 118
Punalekar (ref_22) 2018; 218
Qiu (ref_49) 2018; 56
Shoko (ref_7) 2016; 120
He (ref_44) 2015; 8
Zeng (ref_17) 2016; 54
Verrelst (ref_45) 2015; 108
Fu (ref_2) 2014; 40
Morisette (ref_43) 2006; 44
Cohen (ref_46) 2003; 84
Garrigues (ref_40) 2006; 105
Wang (ref_24) 2011; 115
Yin (ref_33) 2015; 7
ref_30
Sibanda (ref_27) 2015; 110
Darvishzadeh (ref_34) 2008; 112
Verrelst (ref_18) 2014; 52
Xu (ref_35) 2019; 224
Yin (ref_42) 2015; 12
ref_47
Li (ref_10) 2016; 62
Schaaf (ref_31) 2002; 83
Liang (ref_11) 2016; 186
(ref_32) 2001; 70
ref_41
ref_3
Yin (ref_16) 2017; 55
Jin (ref_9) 2014; 6
ref_8
ref_4
ref_6
Liu (ref_28) 2017; 7
Nutini (ref_36) 2016; 187
References_xml – volume: 120
  start-page: 13
  year: 2016
  ident: ref_7
  article-title: Progress in the remote sensing of C3 and C4 grass species aboveground biomass over time and space
  publication-title: ISPRS J. Photogramm.
  doi: 10.1016/j.isprsjprs.2016.08.001
– volume: 105
  start-page: 286
  year: 2006
  ident: ref_40
  article-title: Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.07.013
– volume: 113
  start-page: 711
  year: 2009
  ident: ref_48
  article-title: The ASTER spectral library version 2.0
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.11.007
– volume: 7
  start-page: 4604
  year: 2015
  ident: ref_33
  article-title: Regional leaf area index retrieval based on remote sensing: the role of radiative transfer model selection
  publication-title: Remote Sens.
  doi: 10.3390/rs70404604
– volume: 218
  start-page: 207
  year: 2018
  ident: ref_22
  article-title: Application of Sentinel-2A data for pasture biomass monitoring using a physically based radiative transfer model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.028
– ident: ref_30
  doi: 10.3390/rs8030168
– volume: 44
  start-page: 1804
  year: 2006
  ident: ref_43
  article-title: Validation of global moderate-resolution LAI products: A framework proposed within the CEOS Land Product Validation subgroup
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.872529
– ident: ref_41
  doi: 10.3390/rs9121217
– volume: 165
  start-page: 159
  year: 2015
  ident: ref_37
  article-title: Retrieval of leaf area index in mountain grasslands in the Alps from MODIS satellite imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.04.027
– volume: 6
  start-page: 1496
  year: 2014
  ident: ref_9
  article-title: Remote sensing-based biomass estimation and its spatio-temporal variations in temperate grassland, Northern China
  publication-title: Remote Sens.
  doi: 10.3390/rs6021496
– volume: 217
  start-page: 110959
  year: 2018
  ident: ref_25
  article-title: Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning
  publication-title: Remote Sens. Environ.
– volume: 84
  start-page: 1
  year: 2003
  ident: ref_39
  article-title: Retrieval of canopy biophysical variables from bidirectional reflectance—Using prior information to solve the ill-posed inverse problem
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00035-4
– volume: 186
  start-page: 164
  year: 2016
  ident: ref_11
  article-title: Multi-factor modeling of above-ground biomass in alpine grassland: A case study in the Three-River Headwaters Region, China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.014
– ident: ref_6
  doi: 10.3390/ijgi7070242
– volume: 137
  start-page: 299
  year: 2013
  ident: ref_19
  article-title: GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.027
– volume: 187
  start-page: 102
  year: 2016
  ident: ref_36
  article-title: Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.009
– volume: 54
  start-page: 159
  year: 2017
  ident: ref_23
  article-title: A radiative transfer model-based method for the estimation of grassland aboveground biomass
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 54
  start-page: 4613
  year: 2016
  ident: ref_17
  article-title: A radiative transfer model for heterogeneous agro-forestry scenarios
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2547326
– volume: 108
  start-page: 273
  year: 2015
  ident: ref_45
  article-title: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.05.005
– ident: ref_8
  doi: 10.1371/journal.pone.0083824
– volume: 56
  start-page: 3119
  year: 2018
  ident: ref_49
  article-title: Improving the PROSPECT model to consider anisotropic scattering of leaf internal materials and its use for retrieving leaf biomass in fresh leaves
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2791930
– volume: 115
  start-page: 836
  year: 2011
  ident: ref_24
  article-title: Towards estimation of canopy foliar biomass with spectral reflectance measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.11.011
– volume: 110
  start-page: 55
  year: 2015
  ident: ref_27
  article-title: Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments
  publication-title: Isprs J. Photogramm.
  doi: 10.1016/j.isprsjprs.2015.10.005
– ident: ref_13
  doi: 10.3390/rs8010010
– volume: 84
  start-page: 561
  year: 2003
  ident: ref_46
  article-title: An improved strategy for regression of biophysical variables and Landsat ETM+ data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00173-6
– volume: 112
  start-page: 2592
  year: 2008
  ident: ref_34
  article-title: Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.12.003
– volume: 115
  start-page: 415
  year: 2011
  ident: ref_38
  article-title: Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.09.012
– volume: 40
  start-page: 102
  year: 2014
  ident: ref_2
  article-title: An improved indicator of simulated grassland production based on MODIS NDVI and GPP data: A case study in the Sichuan province, China
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.01.015
– volume: 8
  start-page: 550
  year: 2015
  ident: ref_44
  article-title: Estimating the aboveground dry biomass of grass by assimilation of retrieved LAI into a crop growth model
  publication-title: IEEE J. Sel. Top. App. Ear. Obsev. Remote Sens.
  doi: 10.1109/JSTARS.2014.2360676
– volume: 220
  start-page: 1810
  year: 2009
  ident: ref_14
  article-title: A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2009.04.025
– ident: ref_3
  doi: 10.3390/rs9090935
– volume: 70
  start-page: 431
  year: 2001
  ident: ref_32
  article-title: Computing the solar vector
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(00)00156-0
– volume: 7
  start-page: 4182
  year: 2017
  ident: ref_28
  article-title: Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04038-4
– volume: 12
  start-page: 359
  year: 2015
  ident: ref_42
  article-title: Improving leaf area index retrieval over heterogeneous surface by integrating textural and contextual information: A case study in the Heihe River Basin
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2341925
– volume: 60
  start-page: 1031
  year: 2016
  ident: ref_5
  article-title: Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.09.001
– volume: 55
  start-page: 4597
  year: 2017
  ident: ref_16
  article-title: Modeling canopy reflectance over sloping terrain based on path length correction
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2694483
– volume: 83
  start-page: 135
  year: 2002
  ident: ref_31
  article-title: First operational BRDF, albedo nadir reflectance products from MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00091-3
– volume: 62
  start-page: 279
  year: 2016
  ident: ref_10
  article-title: Modeling grassland aboveground biomass using a pure vegetation index
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.11.005
– ident: ref_4
  doi: 10.1029/2005GB002634
– volume: 113
  start-page: S56
  year: 2009
  ident: ref_20
  article-title: PROSPECT plus SAIL models: A review of use for vegetation characterization
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.01.026
– ident: ref_47
  doi: 10.1109/JSTARS.2017.2690623
– volume: 224
  start-page: 60
  year: 2019
  ident: ref_35
  article-title: Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.039
– volume: 118
  start-page: 6869
  year: 2013
  ident: ref_15
  article-title: The fourth radiation transfer model intercomparison (RAMI-IV): Proficiency testing of canopy reflectance models with ISO-13528
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50497
– volume: 19
  start-page: 196
  year: 2012
  ident: ref_26
  article-title: Estimation of grassland biomass and nitrogen using MERIS data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 16
  start-page: 125
  year: 1984
  ident: ref_21
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(84)90057-9
– volume: 52
  start-page: 257
  year: 2014
  ident: ref_18
  article-title: Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from sentinel-2 and-3 data: Role of cost functions
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2238242
– volume: 73
  start-page: 91
  year: 2009
  ident: ref_29
  article-title: Aboveground biomass in Tibetan grasslands
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2008.09.027
– volume: 38
  start-page: 72
  year: 2015
  ident: ref_1
  article-title: Evaluation of SPOT imagery for the estimation of grassland biomass
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 118
  start-page: 221
  year: 2003
  ident: ref_12
  article-title: Leaf area index inferred from solar beam transmission in mixed conifer forests on complex terrain
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(03)00109-6
SSID ssj0000331904
Score 2.3569756
Snippet The estimation of aboveground biomass (AGB), an important indicator of grassland production, is crucial for evaluating livestock carrying capacity,...
[...]the amount of the leaves can also be depicted by leaf area index, which is an important input of many canopy scale models, such as SAILH [21]. [...]a...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1597
SubjectTerms aboveground biomass
aboveground biomass (AGB)
algorithms
Biomass
Canopies
carrying capacity
China
climate change
Dry matter
empirical research
grassland
Grasslands
Growth models
Imagery
Landsat
Landsat satellites
Leaf area
Leaf area index
leaf dry matter content
Leaves
livestock
Mathematical models
MCD43A4
Methods
moderate resolution imaging spectroradiometer
MODIS
monitoring
Neural networks
Parameters
PROSAIL
Radiative transfer
Remote sensing
Retrieval
Scale models
sustainable development
time series analysis
Variables
Vegetation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgPcAFUT7EQqmM4MIhahLbiXNCu_2gi6CttlTqLfLY44JUNmV3i9R_z0zWuxUCcYuSSQ7OeOZ5PH5PiHehBj51UGWlxSbTBDCyxoDJgvKVLaFyLvZdvsfV0bn-dGEuUsFtntoqVzGxD9Sh81wj3yUcwsrTWpsP1z8zVo3i3dUkoXFfbFIItrT42hwdHJ9O1lWWXJGL5XrJS6pofb87m7O4OiXx-o9M1BP2_xWP-yRz-Fg8SuhQDpe_c0vcw-kT8SAJlX-7fSrCpFfAIveQXZQfZwR9uTVRDqH7hXxCg65H37nnZy6TBI9kKo2-KMavEN6Tp5OTs-H4s2QdtCvJlVj55WR_fCbHP5jR4vaZOD88-Lp3lCWhhMyrRi8yq8uIlKyLuogVVjWEArBWzoVaRwO68YCQ184EzMFGAMtGLniHBFBcVM_FxrSb4gshrUaCLL4MwUVNyR9iZZrcAR_Q9RjVQLxfDVrrE4s4i1lctbSa4AFu7wZ4IN6uba-X3Bn_tBrx2K8tmO-6v9HNLts0fVrrLGosjQqBCfCMK6MpYihMxAq8goHYXv25Nk3CeXvnMgPxZv2Ypg_vibgpdjdk01imSCPQ8vL_n3glHhJWapaduttiYzG7wdeERxawk5zuN3kE4Zc
  priority: 102
  providerName: ProQuest
Title Retrieval of Grassland Aboveground Biomass through Inversion of the PROSAIL Model with MODIS Imagery
URI https://www.proquest.com/docview/2312295445
https://www.proquest.com/docview/2985563853
https://doaj.org/article/8a8e4e253dd24615a2f51fd15fe6bc3b
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BeIAXxE9RNiojeOEhWhPbifPYsnUr2i-1TNpb5IvPGtJop7ZD2n_PXZKVIZB44SlRcpGsO9v32Tl_H8DHUKCcOsiTzFGZGAYYSWnRJkHXucsw9z42Vb4n-eG5-XJhL-5JfUlNWEsP3Dpu13lHhjKrQxDqM-uzaNMYUhspx1qjzL6c8-4tppo5WHPXGpiWj1Tzun53uRJRdU7exW8ZqCHq_2MebpLL-Bk87VChGrateQ4PaP4CHncC5Ze3LyFMG-Ur7hZqEdXBkiGvlCSqIS5-kJzM4PvRN6n1WalOekcJhUazGSafMM5TZ9PT2XBypET_7ErJDqw6Pt2bzNTkuzBZ3L6C8_H-18-HSSeQkNS6NOvEmSwSJ-m0SGNOeYEhRSq096Ew0aIpayQcFN4GGqCLiE6MfKg9MTDxUb-GrfliTm9AOUMMVeosBB8NJ32MuS0HHuVgbk1R9-DTndOqumMPFxGLq4pXEeLg6peDe_BhY3vdcmb81Wokvt9YCM9184CjX3XRr_4V_R7s3EWu6gbfqmLIKiLlxtgevN-85mEj_0L8nBY3bFM6oUZjsPL2f7RjG54wkirbOt4d2Fovb-gdo5U19uGhGx_04dFw7_hoxtfR_snZtN90159MD-2e
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigX1PIQS0sxAg4coiaxnTgHhLaU7YZuW9SH1FtqxzZUajdldwvaP8VvZCaPrRCIW29RMvFhPOP5bM_MB_DGpoaqDpIgVi4LBAKMIJNGBpaXiYpNorWvs3wPkuGp-Hwmz5bgV1cLQ2mV3ZpYL9S2KumMfAtxCDFPCyE_XH8PiDWKblc7Co3GLPbc_Cdu2abv8x2c37dxPPh08nEYtKwCQckzMQuUiL3DyBalkU9ckhobGZdyrW0qvDQiK40zYaqldaFR3hhFQtqW2mE0157juPfgvuA8I49Sg93FmU7I0aBD0XRBxe_h1mRKVO4IGdI_4l5ND_DX6l-HtMEqPGyxKOs3xrMGS278CFZaWvRv88dgj2q-LTRGVnm2O0GgTYmQrG-qH47qQfB5-4IyjKasJfxh1LijPoKjXxBdsi9Hh8f9fMSIde2S0bkv2z_cyY9ZfkX9M-ZP4PROFPgUlsfV2D0DpoRDgFTG1movEGoYn8gs1IbKgUvneQ_edUoryrZnOVFnXBa4dyEFF7cK7sHrhex106njn1LbpPuFBHXXrl9Uk69F66yF0soJF0tuLbXbkzr2MvI2kt4lpuSmBxvdzBWty0-LWwPtwavFZ3RWuoHRY1fdoEymqCEbQqTn_x_iJawMT_ZHxSg_2FuHB4jSsiZHeAOWZ5Mb9wKR0Mxs1ubH4Pyu7f039osgSA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiKcILWAEHDissru293GoUEIaurSkUUql3rb22gakNluStCh_jV_HzD5SIRC33la7sz6Mx57P45n5AN6YWFPVQeSFiU09gQDDS6WWnuFFlIQ6UspVWb7jaO9YfDqRJxvwq62FobTKdk-sNmpTFhQj7yEOIeZpIWTPNWkRk-Ho_cUPjxik6Ka1pdOoTWTfrn7i8W2xkw1xrt-G4Wj3y4c9r2EY8AqeiqWXiNBZ9HJBHLjIRrE2gbYxV8rEwkkt0kJb7cdKGuvrxGmdkJAyhbLo2ZXjOO4t2IzxVOR3YHOwO55M1xEen6N5-6Luicp56vfmCyJ2RwAR_-EFK7KAv3xB5eBG9-Feg0xZvzalB7BhZw_hTkOS_m31CMy0Yt9C02SlYx_nCLspLZL1dXllqToEnwffKd9owRr6H0ZtPKqAHP2CWJNNpodH_eyAEQfbGaMoMPt8OMyOWHZO3TRWj-H4RlT4BDqzcmafAkuERbhUhMYoJxB4aBfJ1FeaioML63gX3rVKy4umgzkRaZzleJIhBefXCu7C67XsRd23459SA9L9WoJ6bVcvyvnXvFm6eaISK2wouTHUfE-q0MnAmUA6G-mC6y5stzOXNxvAIr821y68Wn_GpUv3MWpmy0uUSRNqz4aA6dn_h3gJt9HW84NsvL8FdxGypXXC8DZ0lvNL-xxh0VK_aOyPwelNm_xvxDcl2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retrieval+of+Grassland+Aboveground+Biomass+through+Inversion+of+the+PROSAIL+Model+with+MODIS+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=He%2C+Li&rft.au=Li%2C+Ainong&rft.au=Yin%2C+Gaofei&rft.au=Nan%2C+Xi&rft.date=2019-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=13&rft.spage=1597&rft_id=info:doi/10.3390%2Frs11131597&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11131597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon